TMS320C6202B-250 [ETC]

Fixed-Point Digital Signal Processor ; 定点数字信号处理器\n
TMS320C6202B-250
型号: TMS320C6202B-250
厂家: ETC    ETC
描述:

Fixed-Point Digital Signal Processor
定点数字信号处理器\n

数字信号处理器
文件: 总100页 (文件大小:1521K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G – OCTOBER 1999 – REVISED APRIL 2003  
D
D
High-Performance Fixed-Point Digital  
Signal Processors (DSPs) – TMS320C62x  
– 5-, 4-, 3.33-ns Instruction Cycle Time  
– 200-, 250-, 300-MHz Clock Rate  
– Eight 32-Bit Instructions/Cycle  
– 1600, 2000, 2400 MIPS  
D
Four-Channel Bootloading  
Direct-Memory-Access (DMA) Controller  
With an Auxiliary Channel  
D
D
Flexible Phase-Locked-Loop (PLL) Clock  
Generator  
32-Bit Expansion Bus (XBus)  
– Glueless/Low-Glue Interface to Popular  
PCI Bridge Chips  
– Glueless/Low-Glue Interface to Popular  
Synchronous or Asynchronous  
Microprocessor Buses  
– Master/Slave Functionality  
– Glueless Interface to Synchronous FIFOs  
and Asynchronous Peripherals  
C6202 and C6203B GLS Ball Grid Array  
(BGA) Packages are Pin-Compatible With  
the C6204 GLW BGA Package  
D
D
C6202B and C6203B GNZ and GNY  
Packages are Pin-Compatible  
VelociTI Advanced Very-Long-Instruction-  
Word (VLIW) C62x DSP Core  
– Eight Highly Independent Functional  
Units:  
D
Three Multichannel Buffered Serial Ports  
(McBSPs)  
– Six ALUs (32-/40-Bit)  
– Two 16-Bit Multipliers (32-Bit Result)  
– Load-Store Architecture With 32 32-Bit  
General-Purpose Registers  
– Instruction Packing Reduces Code Size  
– All Instructions Conditional  
– Direct Interface to T1/E1, MVIP, SCSA  
Framers  
– ST-Bus-Switching Compatible  
– Up to 256 Channels Each  
– AC97-Compatible  
– Serial-Peripheral Interface (SPI)  
Compatible (Motorola )  
D
D
D
Instruction Set Features  
– Byte-Addressable (8-, 16-, 32-Bit Data)  
– 8-Bit Overflow Protection  
– Saturation  
– Bit-Field Extract, Set, Clear  
– Bit-Counting  
D
D
D
D
D
D
D
Two 32-Bit General-Purpose Timers  
IEEE-1149.1 (JTAG )  
Boundary-Scan-Compatible  
352-Pin BGA Package (GJL) (C6202)  
352-Pin BGA Package (GNZ) (C6202B)  
384-Pin BGA Package (GLS) (C6202)  
384-Pin BGA Package (GNY) (C6202B)  
– Normalization  
3M-Bit On-Chip SRAM  
– 2M-Bit Internal Program/Cache  
(64K 32-Bit Instructions)  
– 1M-Bit Dual-Access Internal Data  
(128K Bytes)  
0.18-µm/5-Level Metal Process (C6202)  
0.15-µm/5-Level Metal Process (C6202B)  
– CMOS Technology  
– Organized as Two 64K-Byte Blocks for  
Improved Concurrency  
D
3.3-V I/Os, 1.8-V Internal (C6202)  
3.3-V I/Os, 1.5-V Internal (C6202B)  
32-Bit External Memory Interface (EMIF)  
– Glueless Interface to Synchronous  
Memories: SDRAM or SBSRAM  
– Glueless Interface to Asynchronous  
Memories: SRAM and EPROM  
– 52M-Byte Addressable External Memory  
Space  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
TMS320C62x, VelociTI, and C62x are trademarks of Texas Instruments.  
Motorola is a trademark of Motorola, Inc.  
Other trademarks are the property of their respective owners.  
For more details, see the GLS BGA package bottom view.  
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
Copyright 2003, Texas Instruments Incorporated  
ꢀꢣ  
ꢟ ꢣ ꢠ ꢟꢘ ꢙꢭ ꢛꢚ ꢞ ꢦꢦ ꢤꢞ ꢜ ꢞ ꢝ ꢣ ꢟ ꢣ ꢜ ꢠ ꢨ  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Table of Contents  
revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
GJL, GNZ, GLS, and GNY BGA packages . . . . . . . . . . . . 3  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
C62x device compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
functional and CPU (DSP core) block diagram . . . . . . . . . 9  
CPU (DSP core) description . . . . . . . . . . . . . . . . . . . . . . . 10  
memory map summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
peripheral register descriptions . . . . . . . . . . . . . . . . . . . . . 13  
DMA synchronization events . . . . . . . . . . . . . . . . . . . . . . . 18  
interrupt sources and interrupt selector . . . . . . . . . . . . . . 19  
signal groups description . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
documentation support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
clock PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
power-supply sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
IEEE 1149.1 JTAG compatibility statement . . . . . . . . . . . 42  
parameter measurement information . . . . . . . . . . . . . . . 44  
signal transition levels . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
timing parameters and board routing analysis . . . . . . 45  
input and output clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
asynchronous memory timing . . . . . . . . . . . . . . . . . . . . . 49  
synchronous-burst memory timing . . . . . . . . . . . . . . . . . 53  
synchronous DRAM timing . . . . . . . . . . . . . . . . . . . . . . . . 56  
HOLD/HOLDA timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
reset timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
external interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
expansion bus synchronous FIFO timing . . . . . . . . . . . . 65  
expansion bus asynchronous peripheral timing . . . . . . 67  
expansion bus synchronous host-port timing . . . . . . . . 71  
expansion bus asynchronous host-port timing . . . . . . . 77  
XHOLD/XHOLDA timing . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
multichannel buffered serial port timing . . . . . . . . . . . . . 81  
DMAC, timer, power-down timing . . . . . . . . . . . . . . . . . . 93  
JTAG test-port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
absolute maximum ratings over operating case  
temperature ranges . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
recommended operating conditions . . . . . . . . . . . . . . . . . 43  
electrical characteristics over recommended ranges  
of supply voltage and operating case temperature 43  
REVISION HISTORY  
This data sheet revision history highlights the technical changes made to the SPRS104F device-specific data  
sheet to make it an SPRS104G revision.  
SCOPE: Applicable updates to the C62x device family, specifically relating to the C6202/02B devices, have  
been incorporated. Added device-specific information for the new extended-temperature device  
(C6202BGNZA-250).  
Also added and updated device-specific information to support the characterized C6202B devices which are  
now at the production data (PD) stage of development. The C6202BGNZA-250 extended-temperature device  
reflects the same electrical specifications as the C6202B-250 devices.  
PAGE(S)  
NO.  
ADDITIONS/CHANGES/DELETIONS  
Table 1, Characteristics of the Pin-Compatible DSPs:  
7
Added extended-temperature device-specific information for C6203B and C6202B device columns.  
Changed the device product status for the C6202B device from Advance Information (AI) to Production Data (PD)  
Deleted footnote description of PRODUCT PREVIEW and ADVANCE INFORMATION  
8
C62x Device Compatibility section:  
Added device clock speedsbullet and paragraph explanation  
36  
37  
Figure 4, TMS320C6000 DSP Platform Device Nomenclature (Including TMS320C6202 and C6202B):  
Added additional devices to the C6000 DSP:category  
Documentation Support section:  
Added paragraph referencing the TMS320C6202 Digital Signal Processor Silicon Errata [literature number SPRZ152]  
Added paragraph referencing the Using IBIS Models for Timing Analysis application report [literature number SPRA839]  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
PAGE(S)  
NO.  
ADDITIONS/CHANGES/DELETIONS  
4395  
Electricals:  
Added the device-specific information on the extended-temperature device (C6202BGNZA-250)  
43  
Absolute Maximum Ratings Over Operating Case Temperature Ranges section:  
Added the extended-temperature device-specific information to the Operating case temperature ranges, T : (A version)”  
C
43  
Recommended Operating Conditions table:  
Added :C6202BGNZA-250to the A version of T  
C
45  
Timing Parameters and Board Routing Analysis section:  
Added reference to the Using IBIS Models for Timing Analysis application report (literature number SPRA839) in first  
paragraph.  
Changed the title of Table 20 to Board-Level Timings Example”  
Changed the title of Figure 11 to Board-Level Input/Output Timings”  
98  
Replaced GNZ (S-PBGA-N352) [C6202B only] mechanical with the latest version  
GJL, GNZ, GLS, and GNY BGA packages  
GJL 352-PIN BALL GRID ARRAY (BGA) PACKAGE (BOTTOM VIEW) [C6202 only]  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23 25  
10 12 14 16 18 20 22 24 26  
2
4
6
8
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
GJL, GNZ, GLS, and GNY BGA packages (continued)  
GNZ 352-PIN BALL GRID ARRAY (BGA) PACKAGE (BOTTOM VIEW) [C6202B only]  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23 25  
10 12 14 16 18 20 22 24 26  
2
4
6
8
GLS 384-PIN BGA PACKAGE (BOTTOM VIEW) [C6202 only]  
AB  
AA  
Y
V
T
W
U
R
N
L
P
M
K
H
F
J
G
E
C
A
D
B
1
3
5
7
9
11 13 15 17 19 21  
2
4
6
8
10 12 14 16 18 20 22  
The C6202 and C6203B GLS BGA packages are pin-compatible with the C6204 GLW  
package except that the inner row of balls (which are additional power and ground pins)  
are removed for the C6204 GLW package.  
These balls are NOT applicable for the C6204 devices 340-pin GLW BGA package.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
GJL, GNZ, GLS, and GNY BGA packages (continued)  
GNY 384-PIN BGA PACKAGE (BOTTOM VIEW) [C6202B only]  
AB  
Y
AA  
W
U
R
N
L
V
T
P
M
K
H
F
J
G
E
C
A
D
B
1
3
5
7
9
11 13 15 17 19 21  
2
4
6
8
10 12 14 16 18 20 22  
description  
The TMS320C6202 and TMS320C6202B devices are part of the TMS320C62x fixed-point DSP generation  
in the TMS320C6000 DSP platform. The C62x DSP devices are based on the high-performance, advanced  
VelociTI very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these  
DSPs an excellent choice for multichannel and multifunction applications.  
The TMS320C62x DSP offers cost-effective solutions to high-performance DSP-programming challenges.  
The TMS320C6202/02B has a performance capability of up to 2400 million instructions per second (MIPS) at  
300 MHz. The C6202/02B DSP possesses the operational flexibility of high-speed controllers and the numerical  
capability of array processors. These processors have 32 general-purpose registers of 32-bit word length and  
eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for  
a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6202/02B can produce two  
multiply-accumulates (MACs) per cycle. This gives a total of 600 million MACs per second (MMACS) for the  
C6202/02B device. The C6202/02B DSP also has application-specific hardware logic, on-chip memory, and  
additional on-chip peripherals.  
The C6202/02B devices program memory consists of two blocks, with a 128K-byte block configured as  
memory-mapped program space, and the other 128K-byte block user-configurable as cache or  
memory-mapped program space. Data memory for the C6202/02B consists of two 64K-byte blocks of RAM.  
TMS320C6000 is a trademark of Texas Instruments.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
description (continued)  
The C6202/02B device has a powerful and diverse set of peripherals. The peripheral set includes three  
multichannel buffered serial ports (McBSPs), two general-purpose timers, a 32-bit expansion bus (XBus) that  
offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless  
32-bit external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous  
peripherals.  
The C62x devices have a complete set of development tools which includes: a new C compiler, an assembly  
optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source  
code execution.  
device characteristics  
Table 1 provides an overview of the TMS320C6202, TMS320C6202B, TMS320C6203B, and the  
TMS320C6204 pin-compatible DSPs. The table shows significant features of each device, including the  
capacity of on-chip RAM, the peripherals, the execution time, and the package type with pin count, etc. This  
data sheet primarily focuses on the functionality of the TMS320C6202/02B devices although it also identifies  
to the user the pin-compatibility of the C6202 and C6203B GLS, and the C6204 GLW BGA packages. This data  
sheet also identifies the pin-compatibility of the C6202B and the C6203B GNZ and GNY packages. For the  
functionality information on the TMS320C6203B device, see the TMS320C6203B Fixed-Point Digital Signal  
Processor data sheet (literature number SPRS086). For the functionality information on the TMS320C6204  
device, see the TMS320C6204 Fixed-Point Digital Signal Processor data sheet (literature number SPRS152).  
And for more details on the C6000 DSP device part numbers and part numbering, see Table 15 and Figure 4.  
C6000 is a trademark of Texas Instruments.  
Windows is a registered trademark of the Microsoft Corporation.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
device characteristics (continued)  
Table 1. Characteristics of the Pin-Compatible DSPs  
HARDWARE FEATURES  
C6202  
C6202B  
C6203B  
C6204  
EMIF  
4-Channel With  
Throughput  
4-Channel With  
Throughput  
4-Channel With  
Throughput  
DMA  
4-Channel  
Enhancements  
Enhancements  
Enhancements  
Peripherals  
Expansion Bus  
McBSPs  
3
3
3
2
32-Bit Timers  
Size (Bytes)  
2
2
2
2
256K  
256K  
384K  
64K  
Block 0:  
Block 0:  
Block 0:  
128K-Byte  
Mapped Program  
Block 1:  
128K-Byte  
Cache/Mapped  
Program  
128K-Byte Mapped  
Program  
Block 1:  
128K-Byte  
Cache/Mapped  
Program  
256K-Byte Mapped  
Program  
Block 1:  
128K-Byte  
Cache/Mapped  
Program  
Internal  
Program  
Memory  
1 Block:  
64K-Byte  
Cache/Mapped  
Program  
Organization  
Size (Bytes)  
Organization  
128K  
128K  
512K  
64K  
2 Blocks:  
Four 16-Bit Banks  
per Block  
2 Blocks:  
Four 16-Bit Banks  
per Block  
2 Blocks:  
Four 16-Bit Banks  
per Block  
2 Blocks:  
Four 16-Bit Banks  
per Block  
Internal Data  
Memory  
50/50 Split  
50/50 Split  
50/50 Split  
50/50 Split  
Control Status  
Register  
(CSR.[31:16])  
CPU ID +  
CPU Rev ID  
0x0002  
0x0003  
0x0003  
0x0003  
200  
Frequency  
Cycle Time  
MHz  
200, 250  
250, 300  
250, 300  
3.33 ns (6202B-300)  
4 ns (6202B-250)  
4 ns (02BGNZA-250)  
3.33 ns (6203B-300)  
4 ns (6203B-250)  
4 ns (03BGNZA-250)  
4 ns (6202-250)  
5 ns (6202-200)  
ns  
5 ns (6204-200)  
1.5  
1.7  
3.3  
Core (V)  
I/O (V)  
1.8  
3.3  
1.5  
3.3  
1.5  
3.3  
Voltage  
All PLL Options  
(GNY Pkg)  
All PLL Options  
(GLS/GNY Pkgs)  
CLKIN frequency  
multiplier [Bypass  
(x1), x4, x6, x7, x8,  
x9, x10, and x11]  
x1, x4  
(Both Pkgs)  
x1, x4  
(Both Pkgs)  
PLL Options  
x1, x4, x8, x10  
(GNZ Pkg)  
x1, x4, x8, x10  
(GNZ Pkg)  
27 x 27 mm  
18 x 18 mm  
352-pin GJL  
384-pin GLS  
352-pin GNZ  
352-pin GNZ  
384-pin GLS  
340-pin GLW  
BGA  
Packages  
384-pin GNY  
(2.x, 3.x only)  
18 x 18 mm  
16 x 16 mm  
µm  
384-pin GNY  
288-pin GHK  
0.15 µm  
Process  
Technology  
0.18 µm  
0.15 µm  
0.15 µm  
Product Preview (PP)  
Advance Information  
(AI)  
Product  
Status  
PD  
PD  
PD  
PD  
Production Data (PD)  
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include testing of all parameters.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
C62x device compatibility  
The TMS320C6202, C6202B, C6203B, and C6204 devices are pin-compatible; thus, making new system  
designs easier and providing faster time to market. The following list summarizes the C62x DSP device  
characteristic differences:  
D
D
D
Core Supply Voltage (1.8 V versus 1.7 V versus 1.5 V)  
The C6202 device core supply voltage is 1.8 V while the C6202B, C6203B, C6204 devices have core supply  
voltages of 1.5 V. Furthermore, the C6203B-300 speed devices (GNY and GNZ packages) also have a  
1.7-V core supply voltage.  
Device Clock Speeds  
The C6202B and C6203B devices run at 250 and 300 MHz clock speeds (with a C620xBGNZA extended  
temperature device that also runs at 250 MHz), while the C6202 device runs at 200 and 250 MHz, and  
the C6204 device runs at 200 MHz clock speed.  
PLL Options Availability  
Table 1 identifies the available PLL multiply factors [e.g., CLKIN x1 (PLL bypassed), x4, etc.] for each of the  
C62x DSP devices. For additional details on the PLL clock module and specific options for the C6202/02B  
devices, see the Clock PLL section of this data sheet.  
For additional details on the PLL clock module and specific options for the C6203B device, see the Clock  
PLL section of the TMS320C6203B Fixed-Point Digital Signal Processor data sheet (literature number  
SPRS086).  
And for additional details on the PLL clock module and specific options for the C6204 device, see the Clock  
PLL section of the TMS320C6204 Fixed-Point Digital Signal Processor data sheet (literature number  
SPRS152).  
D
D
On-Chip Memory Size  
The C6202/02B, C6203B, and C6204 devices have different on-chip program memory and data memory  
sizes (see Table 1).  
McBSPs  
The C6202, C6202B, and C6203B devices have three McBSPs while the C6204 device has two McBSPs  
on-chip.  
For a more detailed discussion on migration concerns, and similarities/differences between the C6202,  
C6202B, C6203B, and C6204 devices, see the How to Begin Development Today and Migrate Across the  
TMS320C6202/02B/03B/04 DSPs application report (literature number SPRA603).  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
functional and CPU (DSP core) block diagram  
C6202/02B Digital Signal Processors  
SDRAM or  
SBSRAM  
Program  
Access/Cache  
Controller  
32  
Internal Program Memory  
(See Table 1)  
SRAM  
External Memory  
Interface (EMIF)  
ROM/FLASH  
I/O Devices  
C62x CPU (DSP Core)  
Timer 0  
Timer 1  
Instruction Fetch  
Control  
Registers  
Instruction Dispatch  
Control  
Logic  
Instruction Decode  
Multichannel  
Buffered Serial  
Port 0  
Data Path A  
Data Path B  
Test  
Framing Chips:  
H.100, MVIP,  
SCSA, T1, E1  
AC97 Devices,  
SPI Devices,  
Codecs  
A Register File  
B Register File  
In-Circuit  
Emulation  
Multichannel  
Buffered Serial  
Port 1  
Interrupt  
Control  
.L1 .S1 .M1 .D1  
.D2 .M2 .S2 .L2  
Multichannel  
Buffered Serial  
Port 2  
Interrupt  
Selector  
Internal Data  
Memory  
Data  
Access  
Synchronous  
FIFOs  
Controller  
(See Table 1)  
32  
Peripheral Control Bus  
Expansion  
Bus (XBus)  
32-Bit  
I/O Devices  
Direct Memory  
Access Controller  
(DMA)  
HOST CONNECTION  
Master /Slave  
TI PCI2040  
Power PC  
683xx  
Power-  
Down  
Logic  
(See Table 1)  
PLL  
Boot Configuration  
960  
(x1, x4, x6, x7, x8,  
x9, x10, x11)  
For additional details on the PLL clock module and specific options for the C6202/02B devices, see Table 1 and the Clock PLL section of this  
data sheet.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
CPU (DSP core) description  
The CPU fetches VelociTI advanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight  
32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture  
features controls by which all eight units do not have to be supplied with instructions if they are not ready to  
execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute  
packet as the previous instruction, or whether it should be executed in the following clock as a part of the next  
execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The  
variable-length execute packets are a key memory-saving feature, distinguishing the C62x CPU from other  
VLIW architectures.  
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains  
functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files  
each contain 16 32-bit registers for a total of 32 general-purpose registers. The two sets of functional units, along  
with two register files, compose sides A and B of the CPU [see the functional and CPU (DSP core) block diagram  
and Figure 1]. The four functional units on each side of the CPU can freely share the 16 registers belonging to  
that side. Additionally, each side features a single data bus connected to all the registers on the other side, by  
which the two sets of functional units can access data from the register files on the opposite side. While register  
access by functional units on the same side of the CPU as the register file can service all the units in a single  
clock cycle, register access using the register file across the CPU supports one read and one write per cycle.  
Another key feature of the C62x CPU is the load/store architecture, where all instructions operate on registers  
(as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data  
transfers between the register files and the memory. The data address driven by the .D units allows data  
addresses generated from one register file to be used to load or store data to or from the other register file. The  
C62x CPU supports a variety of indirect addressing modes using either linear- or circular-addressing modes  
with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 32 registers. Some  
registers, however, are singled out to support specific addressing or to hold the condition for conditional  
instructions (if the condition is not automatically true). The two .M functional units are dedicated for multiplies.  
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results  
available every clock cycle.  
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory.  
The 32-bit instructions destined for the individual functional units are linkedtogether by 1bits in the least  
significant bit (LSB) position of the instructions. The instructions that are chainedtogether for simultaneous  
execution (up to eight in total) compose an execute packet. A 0in the LSB of an instruction breaks the chain,  
effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the  
256-bit-wide fetch-packet boundary, the assembler places it in the next fetch packet, while the remainder of the  
current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet can  
vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one per  
clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch  
packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units  
for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit  
registers, they can be subsequently moved to memory as bytes or half-words as well. All load and store  
instructions are byte-, half-word, or word-addressable.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
CPU (DSP core) description (continued)  
src1  
src2  
.L1  
dst  
long dst  
long src  
8
8
32  
ST1  
8
long src  
long dst  
dst  
Register  
File A  
Data Path A  
.S1  
src1  
(A0A15)  
src2  
dst  
src1  
.M1  
.D1  
src2  
LD1  
DA1  
dst  
src1  
src2  
2X  
1X  
src2  
src1  
dst  
DA2  
LD2  
.D2  
src2  
.M2  
.S2  
src1  
dst  
src2  
Register  
File B  
(B0B15)  
Data Path B  
src1  
dst  
long dst  
long src  
8
32  
8
ST2  
8
long src  
long dst  
dst  
.L2  
src2  
src1  
Control  
Register  
File  
Figure 1. TMS320C62x CPU (DSP Core) Data Paths  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
memory map summary  
Table 2 shows the memory map address ranges of the C6202/02B device. The C6202/02B device has the  
capability of a MAP 0 or MAP 1 memory block configuration. These memory block configurations are set up at  
reset by the boot configuration pins (generically called BOOTMODE[4:0]). For the C6202/02B device, the  
BOOTMODE configuration is handled, at reset, by the expansion bus module (specifically XD[4:0] pins). For  
more detailed information on the C6202/02B device settings, which include the device boot mode configuration  
at reset and other device-specific configurations, see the Boot Configuration section and the Boot Configuration  
Summary table of the TMS320C6000 Peripherals Reference Guide (literature number SPRU190).  
Table 2. TMS320C6202/02B Memory Map Summary  
MEMORY BLOCK DESCRIPTION  
BLOCK SIZE  
HEX ADDRESS RANGE  
(BYTES)  
MAP 0  
External Memory Interface (EMIF) CE0  
EMIF CE0  
MAP 1  
Internal Program RAM  
Reserved  
256K  
0000_0000 0003_FFFF  
0004_0000 003F_FFFF  
0040_0000 00FF_FFFF  
0100_0000 013F_FFFF  
0140_0000 0143_FFFF  
0144_0000 017F_FFFF  
0180_0000 0183_FFFF  
0184_0000 0187_FFFF  
0188_0000 018B_FFFF  
018C_0000 018F_FFFF  
0190_0000 0193_FFFF  
0194_0000 0197_FFFF  
0198_0000 019B_FFFF  
019C_0000 019C_01FF  
019C_0200 019F_FFFF  
01A0_0000 01A3_FFFF  
01A4_0000 01A7_FFFF  
01A8_0000 01FF_FFFF  
0200_0000 02FF_FFFF  
0300_0000 03FF_FFFF  
0400_0000 3FFF_FFFF  
4000_0000 4FFF_FFFF  
5000_0000 5FFF_FFFF  
6000_0000 6FFF_FFFF  
7000_0000 7FFF_FFFF  
8000_0000 8001_FFFF  
8002_0000 FFFF_FFFF  
4M 256K  
12M  
EMIF CE0  
EMIF CE0  
EMIF CE1  
EMIF CE0  
4M  
Internal Program RAM  
Reserved  
EMIF CE1  
256K  
EMIF CE1  
4M 256K  
256K  
EMIF Registers  
DMA Controller Registers  
256K  
Expansion Bus (XBus) Registers  
McBSP 0 Registers  
McBSP 1 Registers  
Timer 0 Registers  
Timer 1 Registers  
Interrupt Selector Registers  
Power-Down Registers  
Reserved  
256K  
256K  
256K  
256K  
256K  
512  
256K 512  
256K  
McBSP 2 Registers  
Reserved  
256K  
5.5M  
EMIF CE2  
16M  
EMIF CE3  
16M  
Reserved  
1G 64M  
256M  
XBus XCE0  
XBus XCE1  
256M  
XBus XCE2  
256M  
XBus XCE3  
256M  
Internal Data RAM  
Reserved  
128K  
2G 128K  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
peripheral register descriptions  
Table 3 through Table 12 identify the peripheral registers for the C6202/02B device by their register names,  
acronyms, and hex address or hex address range. For more detailed information on the register contents, bit  
names, and their descriptions, see the TMS320C6000 Peripherals Reference Guide (literature number  
SPRU190).  
Table 3. EMIF Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
EMIF global control  
COMMENTS  
0180 0000  
GBLCTL  
External or internal; dependent on MAP0 or  
MAP1 configuration (selected by the MAP bit  
in the EMIF GBLCTL register)  
0180 0004  
0180 0008  
CECTL1  
CECTL0  
EMIF CE1 space control  
EMIF CE0 space control  
External or internal; dependent on MAP0 or  
MAP1 configuration (selected by the MAP bit  
in the EMIF GBLCTL register)  
0180 000C  
0180 0010  
Reserved  
Corresponds to EMIF CE2 memory space:  
[0200 0000 02FF FFFF]  
CECTL2  
EMIF CE2 space control  
Corresponds to EMIF CE3 memory space:  
[0300 0000 03FF FFFF]  
0180 0014  
CECTL3  
EMIF CE3 space control  
0180 0018  
0180 001C  
SDCTL  
EMIF SDRAM control  
EMIF SDRAM refresh control  
Reserved  
SDTIM  
0180 0020 0180 0054  
0180 0058 0183 FFFF  
Reserved  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
peripheral register descriptions (continued)  
Table 4. DMA Registers  
HEX ADDRESS RANGE  
0184 0000  
0184 0004  
0184 0008  
0184 000C  
0184 0010  
0184 0014  
0184 0018  
0184 001C  
0184 0020  
0184 0024  
0184 0028  
0184 002C  
0184 0030  
0184 0034  
0184 0038  
0184 003C  
0184 0040  
0184 0044  
0184 0048  
0184 004C  
0184 0050  
0184 0054  
0184 0058  
0184 005C  
0184 0060  
0184 0064  
0184 0068  
0184 006C  
0184 0070  
0184 0074 0187 FFFF  
ACRONYM  
PRICTL0  
PRICTL2  
SECCTL0  
SECCTL2  
SRC0  
REGISTER NAME  
DMA channel 0 primary control  
DMA channel 2 primary control  
DMA channel 0 secondary control  
DMA channel 2 secondary control  
DMA channel 0 source address  
DMA channel 2 source address  
DMA channel 0 destination address  
DMA channel 2 destination address  
DMA channel 0 transfer counter  
DMA channel 2 transfer counter  
DMA global count reload register A  
DMA global count reload register B  
DMA global index register A  
SRC2  
DST0  
DST2  
XFRCNT0  
XFRCNT2  
GBLCNTA  
GBLCNTB  
GBLIDXA  
GBLIDXB  
DMA global index register B  
GBLADDRA DMA global address register A  
GBLADDRB DMA global address register B  
PRICTL1  
PRICTL3  
SECCTL1  
SECCTL3  
SRC1  
DMA channel 1 primary control  
DMA channel 3 primary control  
DMA channel 1 secondary control  
DMA channel 3 secondary control  
DMA channel 1 source address  
DMA channel 3 source address  
DMA channel 1 destination address  
DMA channel 3 destination address  
DMA channel 1 transfer counter  
DMA channel 3 transfer counter  
SRC3  
DST1  
DST3  
XFRCNT1  
XFRCNT3  
GBLADDRC DMA global address register C  
GBLADDRD DMA global address register D  
AUXCTL  
DMA auxiliary control register  
Reserved  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
peripheral register descriptions (continued)  
Table 5. Expansion Bus (XBUS) Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
0188 0000  
XBGC  
Expansion bus global control register  
Corresponds to XBus XCE0 memory  
space: [4000 0000 4FFF FFFF]  
0188 0004  
XCECTL1  
XCE1 space control register  
Corresponds to XBus XCE1 memory  
space: [5000 0000 5FFF FFFF]  
0188 0008  
0188 000C  
0188 0010  
XCECTL0  
XBHC  
XCE0 space control register  
Expansion bus host port interface control register  
XCE2 space control register  
DSP read/write access only  
Corresponds to XBus XCE2 memory  
space: [6000 0000 6FFF FFFF]  
XCECTL2  
Corresponds to XBus XCE3 memory  
space: [7000 0000 7FFF FFFF]  
0188 0014  
XCECTL3  
XCE3 space control register  
0188 0018  
Reserved  
0188 001C  
Reserved  
0188 0020  
XBIMA  
XBEA  
Expansion bus internal master address register  
Expansion bus external address register  
Reserved  
DSP read/write access only  
DSP read/write access only  
0188 0024  
0188 0028 018B FFFF  
XBISA  
XBD  
Expansion bus internal slave address  
Expansion bus data  
Table 6. Interrupt Selector Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Selects which interrupts drive CPU  
interrupts 1015 (INT10INT15)  
019C 0000  
MUXH  
Interrupt multiplexer high  
Selects which interrupts drive CPU  
interrupts 49 (INT04INT09)  
019C 0004  
019C 0008  
MUXL  
Interrupt multiplexer low  
External interrupt polarity  
Sets the polarity of the external  
interrupts (EXT_INT4EXT_INT7)  
EXTPOL  
019C 000C 019C 01FF  
019C 0200  
PDCTL  
Reserved  
Peripheral power-down control register  
Reserved  
019C 0204 019F FFFF  
Table 7. Peripheral Power-Down Control Register  
HEX ADDRESS RANGE  
ACRONYM  
PDCTL  
REGISTER NAME  
Peripheral power-down control register  
019C 0200  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
peripheral register descriptions (continued)  
Table 8. McBSP 0 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The CPU and DMA controller can only read  
this register; they cannot write to it.  
018C 0000  
DRR0  
McBSP0 data receive register  
018C 0004  
018C 0008  
DXR0  
SPCR0  
RCR0  
XCR0  
SRGR0  
MCR0  
RCER0  
XCER0  
PCR0  
McBSP0 data transmit register  
McBSP0 serial port control register  
McBSP0 receive control register  
McBSP0 transmit control register  
McBSP0 sample rate generator register  
McBSP0 multichannel control register  
McBSP0 receive channel enable register  
McBSP0 transmit channel enable register  
McBSP0 pin control register  
018C 000C  
018C 0010  
018C 0014  
018C 0018  
018C 001C  
018C 0020  
018C 0024  
018C 0028 018F FFFF  
Reserved  
Table 9. McBSP 1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The CPU and DMA controller can only read  
this register; they cannot write to it.  
0190 0000  
DRR1  
Data receive register  
0190 0004  
0190 0008  
DXR1  
SPCR1  
RCR1  
XCR1  
SRGR1  
MCR1  
RCER1  
XCER1  
PCR1  
McBSP1 data transmit register  
McBSP1 serial port control register  
McBSP1 receive control register  
McBSP1 transmit control register  
McBSP1 sample rate generator register  
McBSP1 multichannel control register  
McBSP1 receive channel enable register  
McBSP1 transmit channel enable register  
McBSP1 pin control register  
0190 000C  
0190 0010  
0190 0014  
0190 0018  
0190 001C  
0190 0020  
0190 0024  
0190 0028 0193 FFFF  
Reserved  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
peripheral register descriptions (continued)  
Table 10. McBSP 2 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The CPU and DMA controller can only read  
this register; they cannot write to it.  
01A4 0000  
DRR2  
McBSP2 data receive register  
01A4 0004  
01A4 0008  
DXR2  
SPCR2  
RCR2  
XCR2  
SRGR2  
MCR2  
RCER2  
XCER2  
PCR2  
McBSP2 data transmit register  
McBSP2 serial port control register  
McBSP2 receive control register  
McBSP2 transmit control register  
McBSP2 sample rate generator register  
McBSP2 multichannel control register  
McBSP2 receive channel enable register  
McBSP2 transmit channel enable register  
McBSP2 pin control register  
01A4 000C  
01A4 0010  
01A4 0014  
01A4 0018  
01A4 001C  
01A4 0020  
01A4 0024  
01A4 0028 01A7 FFFF  
Reserved  
Table 11. Timer 0 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer,  
monitors the timer status, and controls the  
function of the TOUT pin.  
0194 0000  
CTL0  
Timer 0 control register  
Contains the number of timer input clock  
cycles to count. This number controls the  
TSTAT signal frequency.  
0194 0004  
PRD0  
Timer 0 period register  
Contains the current value of the  
incrementing counter.  
0194 0008  
CNT0  
Timer 0 counter register  
Reserved  
0194 000C 0197 FFFF  
Table 12. Timer 1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer,  
monitors the timer status, and controls the  
function of the TOUT pin.  
0198 0000  
CTL1  
Timer 1 control register  
Contains the number of timer input clock  
cycles to count. This number controls the  
TSTAT signal frequency.  
0198 0004  
PRD1  
Timer 1 period register  
Contains the current value of the  
incrementing counter.  
0198 0008  
CNT1  
Timer 1 counter register  
Reserved  
0198 000C 019B FFFF  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
DMA synchronization events  
The C6202/C6202B DMA supports up to four independent programmable DMA channels, plus an auxiliary  
channel used for servicing the HPI module. The four main DMA channels can be read/write synchronized based  
on the events shown in Table 13. Selection of these events is done via the RSYNC and WSYNC fields in the  
Primary Control registers of the specific DMA channel. For more detailed information on the DMA module,  
associated channels, and event-synchronization, see the Direct Memory Access (DMA) Controller chapter of  
the TMS320C6000 Peripherals Reference Guide (literature number SPRU190).  
Table 13. TMS320C6202/02B DMA Synchronization Events  
DMA EVENT  
NUMBER  
(BINARY)  
EVENT NAME  
EVENT DESCRIPTION  
00000  
00001  
00010  
00011  
Reserved  
TINT0  
Reserved  
Timer 0 interrupt  
TINT1  
Timer 1 interrupt  
SD_INT  
EMIF SDRAM timer interrupt  
External interrupt pin 4  
External interrupt pin 5  
External interrupt pin 6  
External interrupt pin 7  
DMA channel 0 interrupt  
DMA channel 1 interrupt  
DMA channel 2 interrupt  
DMA channel 3 interrupt  
McBSP0 transmit event  
McBSP0 receive event  
McBSP1 transmit event  
McBSP1 receive event  
Host processor-to-DSP interrupt  
McBSP2 transmit event  
McBSP2 receive event  
Reserved. Not used.  
00100  
00101  
00110  
EXT_INT4  
EXT_INT5  
EXT_INT6  
EXT_INT7  
DMA_INT0  
DMA_INT1  
DMA_INT2  
DMA_INT3  
XEVT0  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
REVT0  
01110  
XEVT1  
01111  
REVT1  
10000  
10001  
10010  
10011 11111  
DSP_INT  
XEVT2  
REVT2  
Reserved  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
interrupt sources and interrupt selector  
The C62x DSP core supports 16 prioritized interrupts, which are listed in Table 14. The highest-priority interrupt  
is INT_00 (dedicated to RESET) while the lowest-priority interrupt is INT_15. The first four interrupts  
(INT_00INT_03) are non-maskable and fixed. The remaining interrupts (INT_04INT_15) are maskable and  
default to the interrupt source specified in Table 14. The interrupt source for interrupts 415 can be programmed  
by modifying the selector value (binary value) in the corresponding fields of the Interrupt Selector Control  
registers: MUXH (address 0x019C0000) and MUXL (address 0x019C0004).  
Table 14. C6202/02B DSP Interrupts  
INTERRUPT  
CPU  
INTERRUPT  
NUMBER  
SELECTOR  
VALUE  
(BINARY)  
INTERRUPT  
EVENT  
SELECTOR  
CONTROL  
REGISTER  
INTERRUPT SOURCE  
INT_00  
INT_01  
INT_02  
INT_03  
INT_04  
INT_05  
INT_06  
INT_07  
INT_08  
INT_09  
INT_10  
RESET  
NMI  
Reserved  
Reserved  
EXT_INT4  
EXT_INT5  
EXT_INT6  
EXT_INT7  
DMA_INT0  
DMA_INT1  
SD_INT  
DMA_INT2  
DMA_INT3  
DSP_INT  
TINT0  
Reserved. Do not use.  
Reserved. Do not use.  
External interrupt pin 4  
External interrupt pin 5  
External interrupt pin 6  
External interrupt pin 7  
DMA channel 0 interrupt  
DMA channel 1 interrupt  
EMIF SDRAM timer interrupt  
DMA channel 2 interrupt  
DMA channel 3 interrupt  
Host-processor-to-DSP interrupt  
Timer 0 interrupt  
MUXL[4:0]  
00100  
00101  
00110  
00111  
01000  
01001  
00011  
01010  
01011  
00000  
00001  
00010  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011 11111  
MUXL[9:5]  
MUXL[14:10]  
MUXL[20:16]  
MUXL[25:21]  
MUXL[30:26]  
MUXH[4:0]  
INT_11  
MUXH[9:5]  
INT_12  
MUXH[14:10]  
INT_13  
MUXH[20:16]  
INT_14  
MUXH[25:21]  
INT_15  
MUXH[30:26]  
TINT1  
Timer 1 interrupt  
XINT0  
McBSP0 transmit interrupt  
McBSP0 receive interrupt  
McBSP1 transmit interrupt  
McBSP1 receive interrupt  
Reserved. Not used.  
RINT0  
XINT1  
RINT1  
Reserved  
XINT2  
McBSP2 transmit interrupt  
McBSP2 receive interrupt  
Reserved. Do not use.  
RINT2  
Reserved  
Interrupts INT_00 through INT_03 are non-maskable and fixed.  
Interrupts INT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control  
registers fields. Table 14 shows the default interrupt sources for Interrupts INT_04 through INT_15. For more detailed information  
on interrupt sources and selection, see the Interrupt Selector and External Interrupts chapter of the TMS320C6000 Peripherals  
Reference Guide (literature number SPRU190).  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
signal groups description  
CLKIN  
CLKOUT2  
CLKOUT1  
RESET  
NMI  
CLKMODE0  
CLKMODE1  
Clock/PLL  
EXT_INT7  
CLKMODE2  
EXT_INT6  
EXT_INT5  
EXT_INT4  
IACK  
PLLV  
PLLG  
PLLF  
Reset and  
Interrupts  
INUM3  
INUM2  
INUM1  
INUM0  
TMS  
TDO  
TDI  
IEEE Standard  
1149.1  
(JTAG)  
Emulation  
TCK  
TRST  
EMU1  
EMU0  
DMAC3  
DMAC2  
DMAC1  
DMAC0  
DMA Status  
RSV4  
RSV3  
RSV2  
RSV1  
RSV0  
Reserved  
Power-Down  
Status  
PD  
Control/Status  
CLKMODE1 and CLKMODE2 are NOT available on the C6202 device GJL package.  
CLKMODE2 is also NOT available on the GNZ package for the C6202B device.  
Figure 2. CPU (DSP Core) Signals  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
signal groups description (continued)  
ARE  
Asynchronous  
Memory  
32  
AOE  
AWE  
ARDY  
ED[31:0]  
Data  
Control  
CE3  
CE2  
CE1  
CE0  
Memory Map  
Space Select  
SDA10  
Synchronous  
Memory  
SDRAS/SSOE  
SDCAS/SSADS  
SDWE/SSWE  
Control  
20  
EA[21:2]  
Word Address  
Byte Enables  
BE3  
BE2  
BE1  
BE0  
HOLD  
HOLD/  
HOLDA  
HOLDA  
EMIF  
(External Memory Interface)  
TOUT1  
TINP1  
TOUT0  
TINP0  
Timer 1  
Timer 0  
Timers  
McBSP1  
Transmit  
McBSP0  
Transmit  
CLKX1  
FSX1  
DX1  
CLKX0  
FSX0  
DX0  
CLKR1  
FSR1  
DR1  
CLKR0  
FSR0  
DR0  
Receive  
Clock  
Receive  
Clock  
CLKS1  
CLKS0  
McBSP2  
Transmit  
CLKX2  
FSX2  
DX2  
CLKR2  
FSR2  
DR2  
Receive  
Clock  
CLKS2  
McBSPs  
(Multichannel Buffered Serial Ports)  
Figure 3. Peripheral Signals  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢎꢏ  
ꢑꢋ  
ꢀꢔ  
ꢓꢒ  
ꢔꢕ  
ꢖꢑ  
ꢆꢍ  
ꢂꢂ  
ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
signal groups description (continued)  
32  
XCLKIN  
XFCLK  
XD[31:0]  
Data  
Clocks  
XBE3/XA5  
XBE2/XA4  
XBE1/XA3  
XBE0/XA2  
Byte-Enable  
Control/  
Address  
XOE  
XRE  
XWE/XWAIT  
XCE3  
XCE2  
I/O Port  
Control  
XRDY  
Control  
XCE1  
XCE0  
XHOLD  
Arbitration  
XHOLDA  
XCS  
XAS  
XCNTL  
XW/R  
XBLAST  
XBOFF  
Host  
Interface  
Control  
Expansion Bus  
Figure 3. Peripheral Signals (Continued)  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions  
PIN NO.  
SIGNAL  
NAME  
DESCRIPTION  
GJL/  
GLS/  
GNY  
TYPE  
GNZ  
CLOCK/PLL  
CLKIN  
C12  
B10  
Y18  
I
Clock Input  
Clock output at full device speed  
Clock output at half (1/2) of device speed  
Used for synchronous memory interface  
Clock mode selects  
CLKOUT1  
AD20  
O
CLKOUT2  
AC19  
B15  
AB19  
B12  
O
CLKMODE0  
CLKMODE1  
CLKMODE2  
I
I
I
Selects what multiply factors of the input clock frequency the CPU frequency  
equals.  
C11  
§
A9  
For more details on the GJL, GNZ, GLS, and GNY CLKMODE pins and the PLL multiply  
factors for the C6202 and C6202B devices, see the Clock PLL section of this data sheet.  
§
A14  
#
A
#
A
#
A
PLLV  
D13  
D14  
C13  
C11  
C12  
A11  
PLL analog V connection for the low-pass filter  
CC  
PLLG  
PLL analog GND connection for the low-pass filter  
PLL low-pass filter connection to external components and a bypass capacitor  
JTAG EMULATION  
PLLF  
TMS  
TDO  
TDI  
AD7  
AE6  
AF5  
AE5  
AC7  
AF6  
AC8  
Y5  
I
JTAG test-port mode select (features an internal pullup)  
JTAG test-port data out  
AA4  
Y4  
O/Z  
I
I
I
JTAG test-port data in (features an internal pullup)  
JTAG test-port clock  
TCK  
AB2  
AA3  
AA5  
AB4  
TRST  
EMU1  
EMU0  
JTAG test-port reset (features an internal pulldown)  
||  
||  
I/O/Z  
I/O/Z  
Emulation pin 1, pullup with a dedicated 20-kresistor  
Emulation pin 0, pullup with a dedicated 20-kresistor  
RESET AND INTERRUPTS  
RESET  
NMI  
K2  
L2  
J3  
I
I
Device reset  
Nonmaskable interrupt  
K2  
Edge-driven (rising edge)  
EXT_INT7  
EXT_INT6  
EXT_INT5  
EXT_INT4  
IACK  
V4  
Y2  
U2  
U3  
W1  
V2  
V1  
R3  
T1  
T2  
T3  
External interrupts  
Edge-driven  
I
Polarity independently selected via the external interrupt polarity register bits  
(EXTPOL.[3:0])  
AA1  
W4  
Y1  
O
Interrupt acknowledge for all active interrupts serviced by the CPU  
INUM3  
V2  
Active interrupt identification number  
INUM2  
U4  
V3  
Valid during IACK for all active interrupts (not just external)  
Encoding order follows the interrupt-service fetch-packet ordering  
O
INUM1  
INUM0  
W2  
§
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
For the C6202 GJL package only, the C11 pin is ground (V ). For all C62x GNZ packages, the C11 pin is CLKMODE1.  
SS  
For the C6202 GLS package, the CLKMODE2 (A14) and CLKMODE1 (A9) pins are internally unconnected.  
PLLV, PLLG, and PLLF are not part of external voltage supply or ground. See the Clock PLL section for information on how to connect these  
pins.  
#
||  
A = Analog Signal (PLL Filter)  
For emulation and normal operation, pull up EMU1 and EMU0 with a dedicated 20-kresistor. For boundary scan, pull down EMU1 and EMU0  
with a dedicated 20-kresistor.  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions (Continued)  
PIN NO.  
SIGNAL  
NAME  
DESCRIPTION  
GJL/  
GNZ  
GLS/  
GNY  
TYPE  
POWER-DOWN STATUS  
Power-down modes 2 or 3 (active if high)  
EXPANSION BUS  
PD  
AB2  
Y2  
O
XCLKIN  
XFCLK  
XD31  
XD30  
XD29  
XD28  
XD27  
XD26  
XD25  
XD24  
XD23  
XD22  
XD21  
XD20  
XD19  
XD18  
XD17  
XD16  
XD15  
XD14  
XD13  
XD12  
XD11  
XD10  
XD9  
A9  
C8  
I
Expansion bus synchronous host interface clock input  
Expansion bus FIFO interface clock output  
B9  
A8  
O
D15  
B16  
A17  
B17  
D16  
A18  
B18  
D17  
C18  
A20  
D18  
C19  
A21  
D19  
C20  
B21  
A22  
D20  
B22  
E25  
F24  
E26  
F25  
G24  
H23  
F26  
G25  
J23  
G26  
H25  
J24  
K23  
C13  
A13  
C14  
B14  
B15  
C15  
A15  
B16  
C16  
A17  
B17  
C17  
B18  
A19  
C18  
B19  
C19  
B20  
A21  
C21  
D20  
B22  
D21  
E20  
E21  
D22  
F20  
F21  
E22  
G20  
G21  
G22  
Expansion bus data  
Used for transfer of data, address, and control  
Also controls initialization of DSP modes and expansion bus at reset  
[Note: For more information on pin control and boot configuration fields, see the Boot Modes  
and Configuration chapter of the TMS320C6000 Peripherals Reference Guide (literature  
number SPRU190).]  
XD[30:16]XCE[3:0] memory type  
I/O/Z  
XD13  
XD12  
XD11  
XD10  
XD9  
XBLAST polarity  
XW/R polarity  
Asynchronous or synchronous host operation  
Arbitration mode (internal or external)  
FIFO mode  
Little endian/big endian  
Boot mode  
XD8  
XD[4:0]  
All other expansion bus data pins not listed should be pulled down.  
XD8  
XD7  
XD6  
XD5  
XD4  
XD3  
XD2  
XD1  
XD0  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions (Continued)  
PIN NO.  
SIGNAL  
NAME  
DESCRIPTION  
GJL/  
GLS/  
GNY  
TYPE  
GNZ  
EXPANSION BUS (CONTINUED)  
Expansion bus I/O port memory space enables  
XCE3  
F2  
E1  
D2  
B1  
D3  
C2  
C5  
A4  
B5  
C6  
A6  
C7  
B7  
C9  
B6  
B9  
B8  
C4  
B4  
A10  
A2  
B3  
XCE2  
Enabled by bits 28, 29, and 30 of the word address  
Only one asserted during any I/O port data access  
O/Z  
XCE1  
F3  
XCE0  
E2  
XBE3/XA5  
XBE2/XA4  
XBE1/XA3  
XBE0/XA2  
XOE  
C7  
D8  
A6  
Expansion bus multiplexed byte-enable control/address signals  
Act as byte-enable for host-port operation  
Act as address for I/O port operation  
I/O/Z  
C8  
A7  
O/Z  
O/Z  
O/Z  
I
Expansion bus I/O port output-enable  
XRE  
C9  
D10  
A10  
D9  
B10  
D11  
A5  
Expansion bus I/O port read-enable  
XWE/XWAIT  
XCS  
Expansion bus I/O port write-enable and host-port wait signals  
Expansion bus host-port chip-select input  
XAS  
I/O/Z  
I
Expansion bus host-port address strobe  
XCNTL  
XW/R  
Expansion bus host control. XCNTL selects between expansion bus address or data register.  
Expansion bus host-port write/read-enable. XW/R polarity is selected at reset.  
Expansion bus host-port ready (active low) and I/O port ready (active high)  
Expansion bus host-port burst last-polarity selected at reset  
Expansion bus back off  
I/O/Z  
I/O/Z  
I/O/Z  
I
XRDY  
XBLAST  
XBOFF  
XHOLD  
XHOLDA  
B6  
B11  
B5  
I/O/Z  
I/O/Z  
Expansion bus hold request  
D7  
Expansion bus hold acknowledge  
EMIF CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY  
CE3  
CE2  
CE1  
CE0  
BE3  
BE2  
BE1  
BE0  
AB25  
AA24  
AB26  
AA25  
Y24  
Y21  
W20  
AA22  
W21  
V20  
Memory space enables  
Enabled by bits 24 and 25 of the word address  
Only one asserted during any external data access  
O/Z  
O/Z  
Byte-enable control  
W23  
AA26  
Y25  
V21  
Decoded from the two lowest bits of the internal address  
Byte-write enables for most types of memory  
Can be directly connected to SDRAM read and write mask signal (SDQM)  
W22  
U20  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions (Continued)  
PIN NO.  
SIGNAL  
NAME  
DESCRIPTION  
GJL/  
GNZ  
GLS/  
GNY  
TYPE  
EMIF ADDRESS  
EA21  
J25  
J26  
H20  
H21  
H22  
J20  
EA20  
EA19  
EA18  
EA17  
EA16  
EA15  
EA14  
EA13  
EA12  
EA11  
EA10  
EA9  
L23  
K25  
L24  
L25  
M23  
M24  
M25  
N23  
P24  
P23  
R25  
R24  
R23  
T25  
T24  
U25  
T23  
V26  
J21  
K21  
K20  
K22  
L21  
L20  
L22  
M20  
M21  
N22  
N20  
N21  
P21  
P20  
R22  
R21  
O/Z  
External address (word address)  
EA8  
EA7  
EA6  
EA5  
EA4  
EA3  
EA2  
EMIF DATA  
ED31  
ED30  
ED29  
ED28  
ED27  
ED26  
ED25  
ED24  
ED23  
ED22  
ED21  
ED20  
ED19  
ED18  
ED17  
ED16  
ED15  
ED14  
AD8  
AC9  
Y6  
AA6  
AB6  
Y7  
AF7  
AD9  
AC10  
AE9  
AA7  
AB8  
Y8  
AF9  
AC11  
AE10  
AD11  
AE11  
AC12  
AD12  
AE12  
AC13  
AD14  
AC14  
AE15  
AA8  
AA9  
Y9  
I/O/Z  
External data  
AB10  
Y10  
AA10  
AA11  
Y11  
AB12  
Y12  
AA12  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions (Continued)  
PIN NO.  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
GJL/  
GLS/  
GNY  
GNZ  
EMIF DATA (CONTINUED)  
ED13  
AD15  
AC15  
AE16  
AD16  
AE17  
AC16  
AF18  
AE18  
AC17  
AD18  
AF20  
AC18  
AD19  
AF21  
AA13  
Y13  
ED12  
ED11  
ED10  
ED9  
ED8  
ED7  
ED6  
ED5  
ED4  
ED3  
ED2  
ED1  
ED0  
AB13  
Y14  
AA14  
AA15  
Y15  
I/O/Z  
External data  
AB15  
AA16  
Y16  
AB17  
AA17  
Y17  
AA18  
EMIF ASYNCHRONOUS MEMORY CONTROL  
ARE  
V24  
V25  
U23  
W25  
T21  
R20  
T22  
T20  
O/Z  
Asynchronous memory read-enable  
Asynchronous memory output-enable  
Asynchronous memory write-enable  
Asynchronous memory ready input  
AOE  
AWE  
ARDY  
O/Z  
O/Z  
I
EMIF SYNCHRONOUS DRAM (SDRAM)/SYNCHRONOUS BURST SRAM (SBSRAM) CONTROL  
SDA10  
AE21  
AE22  
AF22  
AC20  
AA19  
AB21  
Y19  
O/Z  
O/Z  
O/Z  
O/Z  
SDRAM address 10 (separate for deactivate command)  
SDRAM column-address strobe/SBSRAM address strobe  
SDRAM row-address strobe/SBSRAM output-enable  
SDRAM write-enable/SBSRAM write-enable  
EMIF BUS ARBITRATION  
SDCAS/SSADS  
SDRAS/SSOE  
SDWE/SSWE  
AA20  
HOLD  
Y26  
V23  
V22  
U21  
I
Hold request from the host  
HOLDA  
O
Hold-request-acknowledge to the host  
TIMER 0  
TOUT0  
TINP0  
F1  
H4  
D1  
E2  
O
I
Timer 0 or general-purpose output  
Timer 0 or general-purpose input  
TIMER 1  
TOUT1  
TINP1  
J4  
F2  
F3  
O
I
Timer 1 or general-purpose output  
Timer 1 or general-purpose input  
DMA ACTION COMPLETE STATUS  
G2  
DMAC3  
DMAC2  
DMAC1  
DMAC0  
Y3  
V3  
W2  
AA1  
W3  
AA2  
AB1  
AA3  
O
DMA action complete  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions (Continued)  
PIN NO.  
SIGNAL  
NAME  
DESCRIPTION  
GJL/  
GNZ  
GLS/  
GNY  
TYPE  
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)  
CLKS0  
M4  
M2  
M3  
R2  
P4  
N3  
N4  
K3  
L2  
I
External clock source (as opposed to internal)  
Receive clock  
CLKR0  
CLKX0  
DR0  
I/O/Z  
I/O/Z  
I
K1  
M2  
M3  
M1  
L3  
Transmit clock  
Receive data  
DX0  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR0  
FSX0  
Receive frame sync  
Transmit frame sync  
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)  
CLKS1  
CLKR1  
CLKX1  
DR1  
G1  
J3  
H2  
L4  
J1  
J2  
K4  
E1  
G2  
G3  
H1  
H2  
H3  
G1  
I
External clock source (as opposed to internal)  
Receive clock  
I/O/Z  
I/O/Z  
I
Transmit clock  
Receive data  
DX1  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR1  
FSX1  
Receive frame sync  
Transmit frame sync  
MULTICHANNEL BUFFERED SERIAL PORT 2 (McBSP2)  
CLKS2  
CLKR2  
CLKX2  
DR2  
R3  
T2  
R4  
V1  
T4  
U2  
T3  
N1  
N2  
N3  
R2  
R1  
P3  
P2  
I
External clock source (as opposed to internal)  
Receive clock  
I/O/Z  
I/O/Z  
I
Transmit clock  
Receive data  
DX2  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR2  
FSX2  
Receive frame sync  
Transmit frame sync  
RESERVED FOR TEST  
RSV0  
RSV1  
RSV2  
RSV3  
RSV4  
L3  
J2  
I
I
Reserved for testing, pullup with a dedicated 20-kresistor  
Reserved for testing, pullup with a dedicated 20-kresistor  
Reserved for testing, pullup with a dedicated 20-kresistor  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved (leave unconnected, do not connect to power or ground)  
G3  
E3  
A12  
C15  
D12  
B11  
B13  
C10  
I
O
O
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions (Continued)  
PIN NO.  
SIGNAL  
NAME  
DESCRIPTION  
GJL/  
GLS/  
GNY  
TYPE  
GNZ  
SUPPLY VOLTAGE PINS  
A11  
A16  
B7  
A3  
A7  
A16  
A20  
D4  
B8  
B19  
B20  
C6  
D6  
D7  
C10  
C14  
C17  
C21  
G4  
D9  
D10  
D13  
D14  
D16  
D17  
D19  
F1  
G23  
H3  
H24  
K3  
F4  
K24  
L1  
F19  
F22  
G4  
L26  
N24  
P3  
G19  
J4  
DV  
S
3.3-V supply voltage (I/O)  
DD  
T1  
J19  
K4  
T26  
U3  
K19  
L1  
U24  
W3  
M22  
N4  
W24  
Y4  
N19  
P4  
Y23  
AD6  
AD10  
AD13  
AD17  
AD21  
AE7  
AE8  
AE19  
AE20  
AF11  
P19  
T4  
T19  
U1  
U4  
U19  
U22  
W4  
W6  
W7  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions (Continued)  
PIN NO.  
SIGNAL  
NAME  
DESCRIPTION  
GJL/  
GNZ  
GLS/  
GNY  
TYPE  
SUPPLY VOLTAGE PINS (CONTINUED)  
AF16  
W9  
W10  
W13  
W14  
W16  
W17  
W19  
AB5  
AB9  
AB14  
AB18  
E7  
DV  
S
3.3-V supply voltage (I/O)  
DD  
A1  
A2  
A3  
A24  
A25  
A26  
B1  
B2  
B3  
B24  
B25  
B26  
C1  
C2  
C3  
C4  
C23  
C24  
C25  
C26  
D3  
D4  
D5  
D22  
D23  
D24  
E4  
E23  
AB4  
E8  
E10  
E11  
E12  
E13  
E15  
E16  
F7  
F8  
F9  
F11  
F12  
F14  
F15  
F16  
G5  
1.5-V supply voltage (core) (C6202B only)  
1.8-V supply voltage (core) (C6202 only)  
CV  
S
DD  
G6  
G17  
G18  
H5  
H6  
H17  
H18  
J6  
J17  
K5  
K18  
L5  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions (Continued)  
PIN NO.  
SIGNAL  
NAME  
DESCRIPTION  
GJL/  
GLS/  
GNY  
TYPE  
GNZ  
SUPPLY VOLTAGE PINS (CONTINUED)  
AB23  
AC3  
AC4  
AC5  
AC22  
AC23  
AC24  
AD1  
AD2  
AD3  
AD4  
AD23  
AD24  
AD25  
AD26  
AE1  
AE2  
AE3  
AE24  
AE25  
AE26  
AF1  
AF2  
AF3  
AF24  
AF25  
AF26  
L6  
L17  
L18  
M5  
M6  
M17  
M18  
N5  
N18  
P6  
P17  
R5  
R6  
R17  
R18  
T5  
T6  
1.5-V supply voltage (core) (C6202B only)  
1.8-V supply voltage (core) (C6202 only)  
T17  
T18  
U7  
CV  
S
DD  
U8  
U9  
U11  
U12  
U14  
U15  
U16  
V7  
V8  
V10  
V11  
V12  
V13  
V15  
V16  
GROUND PINS  
A4  
A8  
A1  
A5  
V
SS  
GND  
Ground pins  
A13  
A14  
A12  
A18  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions (Continued)  
PIN NO.  
SIGNAL  
NAME  
DESCRIPTION  
GJL/  
GNZ  
GLS/  
GNY  
TYPE  
GROUND PINS (CONTINUED)  
A15  
A19  
A23  
B4  
A22  
B2  
B21  
C1  
B12  
B13  
B14  
B23  
C5  
C3  
C20  
C22  
D5  
D8  
C11  
D11  
D12  
D15  
D18  
E4  
C16  
C22  
D1  
D2  
D6  
E5  
D21  
D25  
D26  
E3  
E6  
E9  
E14  
E17  
E18  
E19  
F5  
V
SS  
GND  
Ground pins  
E24  
F4  
F23  
H1  
F6  
H26  
K1  
F10  
F13  
F17  
F18  
H4  
K26  
M1  
M26  
N1  
H19  
J1  
N2  
N25  
N26  
P1  
J5  
J18  
J22  
K6  
P2  
P25  
P26  
K17  
L4  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
For the C6202 GJL package only, the C11 pin is ground (V ). For all C62x GNZ packages, the C11 pin is CLKMODE1.  
SS  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions (Continued)  
PIN NO.  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
GJL/  
GLS/  
GNY  
GNZ  
GROUND PINS (CONTINUED)  
R1  
R26  
U1  
L19  
M4  
M19  
N6  
U26  
W1  
N17  
P1  
W26  
AA4  
AA23  
AB3  
AB24  
AC1  
AC2  
AC6  
AC21  
AC25  
AC26  
AD5  
AD22  
AE4  
AE13  
AE14  
AE23  
AF4  
AF8  
AF10  
AF12  
AF13  
AF14  
AF15  
AF17  
AF19  
AF23  
P5  
P18  
P22  
R4  
R19  
U5  
U6  
U10  
U13  
U17  
U18  
V4  
V5  
V
SS  
GND  
Ground pins  
V6  
V9  
V14  
V17  
V18  
V19  
W5  
W8  
W11  
W12  
W15  
W18  
Y1  
Y3  
Y20  
Y22  
AA2  
AA21  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
Signal Descriptions (Continued)  
PIN NO.  
SIGNAL  
NAME  
DESCRIPTION  
GJL/  
GNZ  
GLS/  
GNY  
TYPE  
GROUND PINS (CONTINUED)  
AB1  
AB3  
AB7  
AB11  
AB16  
AB20  
AB22  
V
SS  
GND  
Ground pins  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
development support  
TI offers an extensive line of development tools for the TMS320C6000 DSP platform, including tools to  
evaluate the performance of the processors, generate code, develop algorithm implementations, and fully  
integrate and debug software and hardware modules.  
The following products support development of C6000 DSP-based applications:  
Software Development Tools:  
Code Composer Studio Integrated Development Environment (IDE) including Editor  
C/C++/Assembly Code Generation, and Debug plus additional development tools  
Scalable, Real-Time Foundation Software (DSP/BIOS ), which provides the basic run-time target software  
needed to support any DSP application.  
Hardware Development Tools:  
Extended Development System (XDS ) Emulator (supports C6000 DSP multiprocessor system debug)  
EVM (Evaluation Module)  
For a complete listing of development-support tools for the TMS320C6000 DSP platform, visit the Texas  
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For  
information on pricing and availability, contact the nearest TI field sales office or authorized distributor.  
Code Composer Studio, DSP/BIOS, XDS, and TMS320 are trademarks of Texas Instruments.  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
device and development-support tool nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320 DSP devices and support tools. Each TMS320 DSP commercial family member has one of three  
prefixes: TMX, TMP, or TMS. Texas Instruments recommends two of three possible prefix designators for  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from  
engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final devices electrical  
specifications  
Final silicon die that conforms to the devices electrical specifications but has not completed  
quality and reliability verification  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal qualification  
testing.  
TMDS  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
Developmental product is intended for internal evaluation purposes.”  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TIs standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, GLS), the temperature range (for example, blank is the default commercial temperature range),  
and the device speed range in megahertz (for example, -250 is 250 MHz).  
Table 15 lists the device orderable part numbers (P/Ns) and Figure 4 provides a legend for reading the complete  
device name for any member of the TMS320C6000 DSP platform. For more information on the C6202/02B  
device orderable P/Ns, visit the Texas Instruments web site on the Worldwide web at http://www.ti.com URL,  
or contact the nearest TI field sales office or authorized distributor.  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
device and development-support tool nomenclature (continued)  
Table 15. TMS320C6202/02B Device Part Numbers (P/Ns) and Ordering Information  
OPERATING CASE  
TEMPERATURE  
RANGE  
CV  
DV  
DD  
DD  
DEVICE ORDERABLE P/N  
DEVICE SPEED  
(CORE VOLTAGE)  
(I/O VOLTAGE)  
C6202  
TMS320C6202GJL200  
TMS320C6202GJL250  
TMS320C6202GJLA200  
TMS320C6202GLS200  
TMS320C6202GLS250  
C6202B  
200 MHz/1600 MIPS  
250 MHz/2000 MIPS  
200 MHz/1600 MIPS  
200 MHz/1600 MIPS  
250 MHz/2000 MIPS  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
0_C to 90_C  
0_C to 90_C  
40_C to105_C  
0_C to 90_C  
0_C to 90_C  
TMS320C6202BGNY250  
TMS320C6202BGNY300  
TMS320C6202BGNZ250  
TMS320C6202BGNZ300  
TMS32C6202BGNZA250  
250 MHz/2000 MIPS  
300 MHz/2400 MIPS  
250 MHz/2000 MIPS  
300 MHz/2400 MIPS  
250 MHz/2000 MIPS  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
0_C to 90_C  
0_C to 90_C  
0_C to 90_C  
0_C to 90_C  
40_C to 105_C  
(
)
TMS 320  
C
6202 GLS  
250  
PREFIX  
DEVICE SPEED RANGE  
TMX= Experimental device  
TMP= Prototype device  
100 MHz  
120 MHz  
150 MHz  
167 MHz  
200 MHz  
233 MHz  
250 MHz  
300 MHz  
500 MHz  
600 MHz  
TMS= Qualified device  
SMJ = MIL-PRF-38535, QML  
SM = High Rel (non-38535)  
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)  
Blank = 0°C to 90°C, commercial temperature  
A
= 40°C to 105°C, extended temperature  
DEVICE FAMILY  
320 = TMS320t DSP family  
PACKAGE TYPE  
GFN = 256-pin plastic BGA  
GGP = 352-pin plastic BGA  
GJC = 352-pin plastic BGA  
GJL = 352-pin plastic BGA  
GLS = 384-pin plastic BGA  
GLW = 340-pin plastic BGA  
GNY = 384-pin plastic BGA  
GNZ = 352-pin plastic BGA  
GHK = 288-pin plastic MicroStar BGAt  
TECHNOLOGY  
C
=
CMOS  
DEVICE  
C6000 DSP:  
6201  
6205  
6211  
6211B  
6411  
6414  
6415  
6416  
6701  
6711  
6711B  
6711C  
6712  
6712C  
6713  
6202  
6202B  
6203B  
6204  
BGA  
=
Ball Grid Array  
Figure 4. TMS320C6000 DSP Platform Device Nomenclature (Including TMS320C6202 and C6202B)  
MicroStar BGA is a trademark of Texas Instruments.  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
documentation support  
Extensive documentation supports all TMS320 DSP family devices from product announcement through  
applications development. The types of documentation available include: data sheets, such as this document,  
with design specifications; complete users reference guides for all devices and tools; technical briefs;  
development-support tools; on-line help; and hardware and software applications. The following is a brief,  
descriptive list of support documentation specific to the C6000 DSP devices:  
The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the  
C6000 CPU (DSP core) architecture, instruction set, pipeline, and associated interrupts.  
The TMS320C6000 Peripherals Reference Guide (literature number SPRU190) describes the functionality of  
the peripherals available on the C6000 DSP platform of devices, such as the 64-/32-/16-bit external memory  
interfaces (EMIFs), 32-/16-bit host-port interfaces (HPIs), multichannel buffered serial ports (McBSPs), direct  
memory access (DMA), enhanced direct-memory-access (EDMA) controller, expansion bus (XBus), peripheral  
component interconnect (PCI), clocking and phase-locked loop (PLL); and power-down modes. This guide also  
includes information on internal data and program memories.  
The How to Begin Development Today and Migrate Across the TMS320C6202/02B/03B/04 DSPs application  
report (literature number SPRA603) describes the migration concerns and identifies the similarities and  
differences between the C6202, C6202B, C6203B, and C6204 C6000 DSP devices.  
The TMS320C6202 Digital Signal Processor Silicon Errata (literature number SPRZ152) describes the known  
exceptions to the functional specifications for particular silicon revisions of the TMS320C6202 device . There  
are currently no known silicon advisories on the TMS320C6202B device.  
The Using IBIS Models for Timing Analysis application report (literature number SPRA839) describes how to  
properly use IBIS models to attain accurate timing analysis for a given system.  
The tools support documentation is electronically available within the Code Composer Studio IDE. For a  
complete listing of the latest C6000 DSP documentation, visit the Texas Instruments web site on the  
Worldwide Web at http://www.ti.com uniform resource locator (URL).  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
clock PLL  
All of the internal C6202/02B clocks are generated from a single source through the CLKIN pin. This source  
clock either drives the PLL, which multiplies the source clock in frequency to generate the internal CPU clock,  
or bypasses the PLL to become the internal CPU clock.  
To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Figure 5,  
and Table 16 through Table 19 show the external PLL circuitry for either x1 (PLL bypass) or x4 PLL multiply  
modes. Figure 6 shows the external PLL circuitry for a system with ONLY x1 (PLL bypass) mode.  
To minimize the clock jitter, a single clean power supply should power both the C6202/02B device and the  
external clock oscillator circuit. Noise coupling into PLLF directly impacts PLL clock jitter. The minimum CLKIN  
rise and fall times should also be observed. For the input clock timing requirements, see the Input and Output  
Clocks electricals section.  
3.3V  
PLLV  
Internal to  
PLL  
CLKMODE0  
CLKMODE1  
CLKMODE2  
C6202/02B  
PLLMULT  
CLKIN  
C4  
C3  
PLLCLK  
0.1 mF  
10 mF  
CLKIN  
1
0
CPU  
CLOCK  
LOOP FILTER  
(For the PLL Options  
and CLKMODE pins setup,  
C2  
see Table 16 through Table 19)  
C1  
R1  
CLKMODE1 and CLKMODE2 pins are not applicable (N/A) to the C6202 GJL package. The CLKMODE2 pin is also N/A on the C6202B GNZ package.  
NOTES: A. Keep the lead length and the number of vias between pin PLLF, pin PLLG, R1, C1, and C2 to a minimum. In addition, place all PLL  
components (R1, C1, C2, C3, C4, and EMI Filter) as close to the C6000 DSP device as possible. Best performance is achieved  
with the PLL components on a single side of the board without jumpers, switches, or components other than the ones shown.  
B. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (R1, C1, C2, C3, C4,  
and the EMI Filter).  
C. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DV  
D. EMI filter manufacturer: TDK part number ACF451832-333, 223, 153, 103. Panasonic part number EXCCET103U.  
.
DD  
Figure 5. External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode  
3.3V  
PLLV  
Internal to  
C6202/02B  
CLKMODE0  
PLL  
CLKMODE1  
CLKMODE2  
PLLMULT  
CLKIN  
PLLCLK  
CLKIN  
1
0
LOOP FILTER  
CPU  
CLOCK  
CLKMODE1 and CLKMODE2 pins are not applicable (N/A) to the C6202 GJL package. The CLKMODE2 pin is also N/A on the C6202B GNZ package.  
NOTES: A. For a system with ONLY PLL x1 (bypass) mode, short the PLLF to PLLG.  
B. The 3.3-V supply for PLLV must be from the same 3.3-V power plane supplying the I/O voltage, DV  
.
DD  
Figure 6. External PLL Circuitry for x1 (Bypass) PLL Mode Only  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
clock PLL (continued)  
Table 16. TMS320C6202 GLS and C6202B GNY Packages PLL Multiply and Bypass (x1) Options  
GLS PACKAGE 18 x 18 mm BGA [C6202 only] and  
GNY PACKAGE 18 x 18 mm BGA [C6202B only]  
DEVICES AND PLL CLOCK OPTIONS  
BIT (PIN NO.)  
CLKMODE2 (A14)  
CLKMODE1 (A9)  
CLKMODE0 (B12)  
C6202 (GLS)  
Bypass (x1)  
x4  
C6202B (GNY)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Bypass (x1)  
x4  
x8  
Bypass (x1)  
x4  
x10  
x6  
Value  
Bypass (x1)  
x4  
x9  
Bypass (x1)  
x4  
x7  
x11  
f(CPU Clock) = f(CLKIN) x (PLL mode)  
For the C6202 GLS package, the CLKMODE2 (A14) and CLKMODE1 (A9) pins are internally unconnected.  
Table 17. TMS320C6202 GJL and TMS320C6202B GNZ Packages PLL Multiply and Bypass (x1) Options  
GJL PACKAGE 27 x 27 mm BGA [C6202 only] and  
GNZ PACKAGE 27 x 27 mm BGA [C6202B only]  
DEVICES AND PLL CLOCK OPTIONS  
§
§
BIT (PIN NO.)  
CLKMODE2 (N/A)  
CLKMODE1 (C11)  
CLKMODE0 (B15)  
§
§
C6202 (GJL)  
Bypass (x1)  
x4  
C6202B (GNZ)  
0
0
1
1
0
1
0
1
Bypass (x1)  
x4  
x8  
Value  
N/A  
N/A  
x10  
§
f(CPU Clock) = f(CLKIN) x (PLL mode)  
CLKMODE2 and CLKMODE1 pins are not available on the C6202 GJL package.  
The CLKMODE2 pin is not available (N/A) on the C6202B GNZ package.  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
clock PLL (continued)  
Table 18. TMS320C6202 PLL Component Selection Table  
CPU CLOCK  
CLKOUT2  
CLKIN  
RANGE  
(MHz)  
TYPICAL  
LOCK TIME  
(µs)  
FREQUENCY  
CLKMODE  
RANGE  
(MHz)  
R1 [±1%]  
60.4 Ω  
C1 [±10%]  
C2 [±10%]  
(CLKOUT1)  
RANGE (MHz)  
x4  
32.562.5  
130250  
65125  
27 nF  
560 pF  
75  
Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For example, if  
the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.  
Table 19. TMS320C6202B PLL Component Selection Table  
CLKIN  
RANGE  
(MHz)  
CPU CLOCK  
FREQUENCY  
RANGE (MHz)  
CLKOUT2  
RANGE  
(MHz)  
TYPICAL  
LOCK TIME  
(µs)  
CLKMODE  
R1 [±1%]  
C1 [±10%]  
C2 [±10%]  
x4  
x6  
32.575  
21.750  
x7  
18.642.9  
16.337.5  
14.433.3  
1330  
x8  
130300  
65150  
45.3 Ω  
47 nF  
10 pF  
75  
x9  
x10  
x11  
11.827.3  
Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For example, if  
the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.  
CLKMODE x1, x4, x6, x7, x8, x9, x10, and x11 apply to the C6202B GNY devices. The C6202B GNZ device is restricted to x1, x4, x8, and x10  
multiply factors.  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
power-supply sequencing  
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,  
systems should be designed to ensure that neither supply is powered up for extended periods of time  
(>1 second) if the other supply is below the proper operating voltage.  
system-level design considerations  
System-level design considerations, such as bus contention, may require supply sequencing to be  
implemented. In this case, the core supply should be powered up at the same time as, or prior to (and powered  
down after), the I/O buffers. This is to ensure that the I/O buffers receive valid inputs from the core before the  
output buffers are powered up, thus, preventing bus contention with other chips on the board.  
power-supply design considerations  
A dual-power supply with simultaneous sequencing can be used to eliminate the delay between core and I/O  
power up. A Schottky diode can also be used to tie the core rail to the I/O rail (see Figure 7).  
I/O Supply  
DV  
CV  
DD  
Schottky  
Diode  
C6000  
DSP  
Core Supply  
DD  
V
SS  
GND  
Figure 7. Schottky Diode Diagram  
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize  
inductance and resistance in the power delivery path. Additionally, when designing for high-performance  
applications utilizing the C6000 platform of DSPs, the PC board should include separate power planes for  
core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.  
On systems using C62x and C67x DSPs, the core may consume in excess of 2 A per DSP until the I/O supply  
powers on. This extra current results from uninitialized logic within the DSP(s). A normal current state returns  
once the I/O power supply turns on and the CPU sees a clock pulse. Decreasing the amount of time between  
the core supply power-up and the I/O supply power-up reduces the effects of the current draw. If the external  
supply to the DSP core cannot supply the excess current, the minimum core voltage may not be achieved until  
after normal current returns. This voltage starvation of the core supply during power up will not affect run-time  
operation. Voltage starvation can affect power supply systems that gate the I/O supply via the core supply,  
causing the I/O supply to never turn on. During the transition from excess to normal current, a voltage spike may  
be seen on the core supply. Care must be taken when designing overvoltage protection circuitry on the core  
supply to not restart the power sequence due to this spike. Otherwise, the supply may cycle indefinitely.  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
IEEE 1149.1 JTAG compatibility statement  
For compatibility with IEEE 1149.1 JTAG programmers, the TRST pin may need to be externally pulled up via  
a 1-kresistor. For these C62x devices, this pin is internally pulled down, holding the JTAG port in reset by  
default. This is typically only a problem in systems where the DSP shares a scan chain with some other device.  
Some JTAG programmers for these other devices do not actively drive TRST high, leaving the scan chain  
inoperable while the C62x JTAG port is held in reset. TI emulators do drive TRST high, so the external pullup  
resistor is not needed in systems where TI emulators are the only devices that control JTAG scan chains on  
which the DSP(s) reside. If the system has other devices in the same scan chain as the DSP, and the  
programmer for these devices does not drive TRST high, then an external 1-kpullup resistor is required.  
With this external 1-kpullup resistor installed, care must be taken to keep the DSP in a usable state under  
all circumstances. When TRST is pulled up, the JTAG driver must maintain the TMS signal high for 5 TCLK  
cycles, forcing the DSP(s) into the test logic reset (TLR) state. From the TLR state, the DSPs data scan path  
can be put in bypass (scan all 1s into the IR) to scan the other devices. The TLR state also allows normal  
operation of the DSP. If operation without anything driving the JTAG port is desired, the pullup resistor should  
be jumpered so that it may be engaged for programming the other devices and disconneted for running without  
a JTAG programmer or emulator.  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
absolute maximum ratings over operating case temperature ranges (unless otherwise noted)  
Supply voltage range, CV  
Supply voltage range, DV  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 2.3 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
DD  
DD  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
Operating case temperature ranges, T :(default) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0_C to 90_C  
C
(A version): C6202BGNZA-250 . . . . . . . . . . . . . . . 40_C to105_C  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65_C to 150_C  
stg  
Temperature cycle range, (1000-cycle performance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40_C to 125_C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
SS  
.
recommended operating conditions  
MIN NOM  
MAX UNIT  
CV  
CV  
DV  
Supply voltage, Core  
Supply voltage, Core  
Supply voltage, I/O  
C6202B only  
C6202 only  
1.43  
1.71  
3.14  
0
1.5  
1.8  
3.3  
0
1.57  
1.89  
3.46  
0
V
V
DD  
DD  
DD  
V
V
V
V
Supply ground  
V
SS  
High-level input voltage  
Low-level input voltage  
High-level output current  
Low-level output current  
2
V
IH  
IL  
0.8  
8  
8
V
I
mA  
mA  
_C  
_C  
OH  
OL  
I
Default  
0
90  
105  
T
C
Operating case temperature  
A version: C6202BGNZA-250  
40  
electrical characteristics over recommended ranges of supply voltage and operating case  
temperature (unless otherwise noted)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
DV  
DV  
= MIN,  
= MIN,  
I
I
= MAX  
= MAX  
2.4  
OH  
DD  
DD  
OH  
0.6  
±10  
±10  
V
OL  
OL  
I
I
Input current  
V = V  
I SS  
to DV  
DD  
uA  
uA  
mA  
mA  
mA  
mA  
mA  
mA  
pF  
I
Off-state output current  
V
= DV  
or 0 V  
= NOM, CPU clock = 200 MHz  
= NOM, CPU clock = 200 MHz  
= NOM, CPU clock = 200 MHz  
OZ  
O DD  
C6202, CV  
DD  
520  
340  
390  
235  
70  
Supply current, CPU + CPU memory  
I
I
I
DD2V  
§
access  
C6202B, CV  
DD  
C6202, CV  
DD  
§
Supply current, peripherals  
DD2V  
DD3V  
C6202B, CV  
= NOM, CPU clock = 200 MHz  
= NOM, CPU clock = 200 MHz  
DD  
C6202, DV  
DD  
§
Supply current, I/O pins  
C6202B, DV  
DD  
= NOM, CPU clock = 200 MHz  
45  
C
C
Input capacitance  
Output capacitance  
10  
10  
i
pF  
o
§
TMS and TDI are not included due to internal pullups. TRST is not included due to internal pulldown.  
Measured with average activity (50% high / 50% low power). For more details on CPU, peripheral, and I/O activity, see the TMS320C6000 Power  
Consumption Summary application report (literature number SPRA486).  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
PARAMETER MEASUREMENT INFORMATION  
I
OL  
Tester Pin  
Electronics  
Output  
Under  
Test  
50 Ω  
V
comm  
C
T
I
OH  
Where:  
I
I
V
=
=
=
=
2 mA  
2 mA  
1.5 V  
OL  
OH  
comm  
T
C
15-pF typical load-circuit capacitance  
Typical distributed load circuit capacitance  
Figure 8. Test Load Circuit for AC Timing Measurements  
signal transition levels  
All input and output timing parameters are referenced to 1.5 V for both 0and 1logic levels.  
V
ref  
= 1.5 V  
Figure 9. Input and Output Voltage Reference Levels for ac Timing Measurements  
All rise and fall transition timing parameters are referenced to V MAX and V MIN for input clocks, and  
IL  
IH  
V
MAX and V  
MIN for output clocks.  
OL  
OH  
V
ref  
= V MIN (or V  
IH OH  
MIN)  
V
ref  
= V MAX (or V  
IL OL  
MAX)  
Figure 10. Rise and Fall Transition Time Voltage Reference Levels  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
PARAMETER MEASUREMENT INFORMATION (CONTINUED)  
timing parameters and board routing analysis  
The timing parameter values specified in this data sheet do not include delays by board routings. As a good  
board design practice, such delays must always be taken into account. Timing values may be adjusted by  
increasing/decreasing such delays. TI recommends utilizing the available I/O buffer information specification  
(IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate  
timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report (literature  
number SPRA839). If needed, external logic hardware such as buffers may be used to compensate any timing  
differences.  
For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device and  
from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time margin,  
but also tends to improve the input hold time margins (see Table 20 and Figure 11).  
Figure 11 represents a general transfer between the DSP and an external device. The figure also represents  
board route delays and how they are perceived by the DSP and the external device.  
Table 20. Board-Level TImings Example (see Figure 11)  
NO.  
1
DESCRIPTION  
Clock route delay  
2
Minimum DSP hold time  
3
Minimum DSP setup time  
External device hold time requirement  
External device setup time requirement  
Control signal route delay  
External device hold time  
4
5
6
7
8
External device access time  
DSP hold time requirement  
DSP setup time requirement  
Data route delay  
9
10  
11  
CLKOUT2  
(Output from DSP)  
1
CLKOUT2  
(Input to External Device)  
2
3
Control Signals  
(Output from DSP)  
4
5
6
Control Signals  
(Input to External Device)  
7
8
Data Signals  
(Output from External Device)  
9
10  
11  
Data Signals  
(Input to DSP)  
Control signals include data for Writes.  
Data signals are generated during Reads from an external device.  
Figure 11. Board-Level Input/Output Timings  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
INPUT AND OUTPUT CLOCKS  
†‡§  
timing requirements for CLKIN (PLL used)  
(see Figure 12)  
C6202-250  
C6202B-250  
C6202-200  
C6202B-300  
NO.  
UNIT  
MIN  
5 * M  
0.4C  
0.4C  
MAX  
MIN  
4 * M  
0.4C  
0.4C  
MAX  
MIN  
3.33 * M  
0.4C  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKIN  
ns  
ns  
ns  
ns  
c(CLKIN)  
w(CLKINH)  
w(CLKINL)  
t(CLKIN)  
Pulse duration, CLKIN high  
Pulse duration, CLKIN low  
Transition time, CLKIN  
0.4C  
5
5
5
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
IL IH  
M = the PLL multiplier factor (x4, x6, x7, x8, x9, x10, or x11) for C6202 GLS and C6202B GNY only.  
M = the PLL multiplier factor (x4, x6, x8, or x10) for C6202B GNZ only.  
For more details, see the Clock PLL section of this data sheet.  
C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns.  
§
†¶  
timing requirements for CLKIN [PLL bypassed (x1)] (see Figure 12)  
C6202-250  
C6202B-250  
C6202-200  
C6202B-300  
NO.  
UNIT  
MIN  
5
MAX  
MIN  
4
MAX  
MIN  
3.33  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKIN  
ns  
ns  
ns  
ns  
c(CLKIN)  
w(CLKINH)  
w(CLKINL)  
t(CLKIN)  
Pulse duration, CLKIN high  
Pulse duration, CLKIN low  
Transition time, CLKIN  
0.45C  
0.45C  
0.45C  
0.45C  
0.45C  
0.45C  
0.6  
0.6  
0.6  
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
IL IH  
C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns. The maximum CLKIN cycle time is PLL bypass mode  
(x1) is 200 MHz.  
1
4
2
CLKIN  
3
4
Figure 12. CLKIN Timings  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
INPUT AND OUTPUT CLOCKS (CONTINUED)  
timing requirements for XCLKIN (see Figure 13)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN MAX  
4P  
1
2
3
t
t
t
Cycle time, XCLKIN  
ns  
ns  
ns  
c(XCLKIN)  
Pulse duration, XCLKIN high  
Pulse duration, XCLKIN low  
1.8P  
w(XCLKINH)  
w(XCLKINL)  
1.8P  
P = 1/CPU clock frequency in nanoseconds (ns).  
1
2
XCLKIN  
3
Figure 13. XCLKIN Timings  
‡§  
switching characteristics over recommended operating conditions for CLKOUT2 (see Figure 14)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
t
t
t
Cycle time, CLKOUT2  
2P 0.7  
P 0.7  
P 0.7  
2P + 0.7  
P + 0.7  
P + 0.7  
ns  
ns  
ns  
c(CKO2)  
Pulse duration, CLKOUT2 high  
Pulse duration, CLKOUT2 low  
w(CKO2H)  
w(CKO2L)  
§
P = 1/CPU clock frequency in ns.  
The reference points for the rise and fall transitions are measured at V  
MAX and V  
MIN.  
OL  
OH  
1
2
CLKOUT2  
3
Figure 14. CLKOUT2 Timings  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
INPUT AND OUTPUT CLOCKS (CONTINUED)  
†‡  
switching characteristics over recommended operating conditions for XFCLK (see Figure 15)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
D * P 0.7  
MAX  
1
2
3
t
t
t
Cycle time, XFCLK  
D * P + 0.7  
ns  
ns  
ns  
c(XFCK)  
Pulse duration, XFCLK high  
Pulse duration, XFCLK low  
(D/2) * P 0.7 (D/2) * P + 0.7  
(D/2) * P 0.7 (D/2) * P + 0.7  
w(XFCKH)  
w(XFCKL)  
P = 1/CPU clock frequency in ns.  
D = 8, 6, 4, or 2; FIFO clock divide ratio, user-programmable  
1
2
XFCLK  
3
Figure 15. XFCLK Timings  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
ASYNCHRONOUS MEMORY TIMING  
†‡§¶  
timing requirements for asynchronous memory cycles  
(see Figure 16 Figure 19)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
Setup time, EDx valid before  
ARE high  
3
4
6
7
t
t
t
t
1
1
ns  
ns  
ns  
ns  
su(EDV-AREH)  
Hold time, EDx valid after  
ARE high  
3.5  
[(RST 3) * P 6]  
(RST 3) * P + 2  
4.9  
[(RST 3) * P 6]  
(RST 3) * P + 2  
h(AREH-EDV)  
Setup time, ARDY high before  
ARE low  
su(ARDYH-AREL)  
h(AREL-ARDYH)  
Hold time, ARDY high after  
ARE low  
Setup time, ARDY low before  
ARE low  
9
t
[(RST 3) * P 6]  
[(RST 3) * P 6]  
ns  
su(ARDYL-AREL)  
Hold time, ARDY low after  
ARE low  
10  
11  
15  
t
t
t
(RST 3) * P + 2  
2P  
(RST 3) * P + 2  
2P  
ns  
ns  
ns  
h(AREL-ARDYL)  
Pulse width, ARDY high  
w(ARDYH)  
Setup time, ARDY high before  
AWE low  
[(WST 3) * P 6]  
[(WST 3) * P 6]  
su(ARDYH-AWEL)  
Hold time, ARDY high after  
AWE low  
16  
t
(WST 3) * P + 2  
(WST 3) * P + 2  
ns  
h(AWEL-ARDYH)  
Setup time, ARDY low before  
AWE low  
18  
19  
t
[(WST 3) * P 6]  
(WST 3) * P + 2  
[(WST 3) * P 6]  
(WST 3) * P + 2  
ns  
ns  
su(ARDYL-AWEL)  
h(AWEL-ARDYL)  
Hold time, ARDY low after  
AWE low  
t
To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does meet setup or hold  
time, it may be recognized in the current cycle or the next cycle. Thus, ARDY can be an asynchronous input.  
RS = Read Setup, RST = Read Strobe, RH = Read Hold, WS = Write Setup, WST = Write Strobe, WH = Write Hold. These parameters are  
programmed via the EMIF CE space control registers.  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
The sum of RS and RST (or WS and WST) must be a minimum of 4 in order to use ARDY input to extend strobe width.  
§
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
ASYNCHRONOUS MEMORY TIMING (CONTINUED)  
switching characteristics over recommended operating conditions for asynchronous memory  
†‡§¶  
cycles  
(see Figure 16 Figure 19)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Output setup time, select  
signals valid to ARE low  
1
t
RS * P 2  
RH * P 2  
RS * P 2  
RH * P 2  
ns  
osu(SELV-AREL)  
Output hold time, ARE high to  
select signals invalid  
2
5
8
t
t
t
ns  
ns  
ns  
oh(AREH-SELIV)  
Pulse width, ARE low  
RST * P  
RST * P  
w(AREL)  
Delay time, ARDY high to  
ARE high  
3P  
WS * P 3  
WH * P 2  
4P + 5  
3P  
WS * P 2  
WH * P 2  
4P + 5  
d(ARDYH-AREH)  
Output setup time, select  
signals valid to AWE low  
12  
t
ns  
osu(SELV-AWEL)  
Output hold time, AWE high  
to select signals invalid  
13  
14  
t
t
ns  
ns  
oh(AWEH-SELIV)  
Pulse width, AWE low  
WST * P  
WST * P  
w(AWEL)  
Delay time, ARDY high to  
AWE high  
17  
t
3P  
4P + 5  
3P  
4P + 5  
ns  
d(ARDYH-AWEH)  
RS = Read Setup, RST = Read Strobe, RH = Read Hold, WS = Write Setup, WST = Write Strobe, WH = Write Hold. These parameters are  
programmed via the EMIF CE space control registers.  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
The sum of RS and RST (or WS and WST) must be a minimum of 4 in order to use ARDY input to extend strobe width.  
Select signals include: CEx, BE[3:0], EA[21:2], AOE; and for writes, include ED[31:0], with the exception that CEx can stay active for an additional  
7P ns following the end of the cycle.  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
ASYNCHRONOUS MEMORY TIMING (CONTINUED)  
Setup = 2 Strobe = 3  
Hold = 2  
CLKOUT1  
CEx  
1
2
1
1
2
2
BE[3:0]  
EA[21:2]  
3
4
ED[31:0]  
AOE  
1
2
5
6
7
ARE  
AWE  
ARDY  
Figure 16. Asynchronous Memory Read Timing (ARDY Not Used)  
Setup = 2 Strobe = 3  
Not Ready  
Hold = 2  
CLKOUT1  
CEx  
1
1
1
2
2
2
BE[3:0]  
EA[21:2]  
3
4
ED[31:0]  
AOE  
1
9
2
8
10  
ARE  
AWE  
11  
ARDY  
Figure 17. Asynchronous Memory Read Timing (ARDY Used)  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
ASYNCHRONOUS MEMORY TIMING (CONTINUED)  
Setup = 2 Strobe = 3  
Hold = 2  
CLKOUT1  
CEx  
12  
12  
12  
12  
13  
13  
13  
13  
BE[3:0]  
EA[21:2]  
ED[31:0]  
AOE  
15  
16  
ARE  
14  
AWE  
ARDY  
Figure 18. Asynchronous Memory Write Timing (ARDY Not Used)  
Setup = 2 Strobe = 3  
Not Ready  
Hold = 2  
CLKOUT1  
12  
12  
12  
12  
13  
13  
13  
13  
CEx  
BE[3:0]  
EA[21:2]  
ED[31:0]  
AOE  
ARE  
17  
18  
19  
AWE  
11  
ARDY  
Figure 19. Asynchronous Memory Write Timing (ARDY Used)  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
SYNCHRONOUS-BURST MEMORY TIMING  
timing requirements for synchronous-burst SRAM cycles for C6202 devices (see Figure 20)  
C6202-200  
C6202-250  
NO.  
UNIT  
MIN  
2.5  
MAX  
MIN  
2.0  
MAX  
7
8
t
t
Setup time, read EDx valid before CLKOUT2 high  
Hold time, read EDx valid after CLKOUT2 high  
ns  
ns  
su(EDV-CKO2H)  
2.0  
2.0  
h(CKO2H-EDV)  
switching characteristics over recommended operating conditions for synchronous-burst SRAM  
†‡  
cycles for C6202 devices (see Figure 20 and Figure 21)  
C6202-200  
C6202-250  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
3
4
5
6
t
t
t
t
t
t
Output setup time, CEx valid before CLKOUT2 high  
Output hold time, CEx valid after CLKOUT2 high  
Output setup time, BEx valid before CLKOUT2 high  
Output hold time, BEx invalid after CLKOUT2 high  
Output setup time, EAx valid before CLKOUT2 high  
Output hold time, EAx invalid after CLKOUT2 high  
P 0.8  
P 4  
P 0.8  
P 3  
ns  
ns  
ns  
ns  
ns  
ns  
osu(CEV-CKO2H)  
oh(CKO2H-CEV)  
osu(BEV-CKO2H)  
oh(CKO2H-BEIV)  
osu(EAV-CKO2H)  
oh(CKO2H-EAIV)  
P 0.8  
P 4  
P 0.8  
P 3  
P 0.8  
P 4  
P 0.8  
P 3  
Output setup time, SDCAS/SSADS valid before  
CLKOUT2 high  
9
t
t
t
t
P 0.8  
P 4  
P 0.8  
P 3  
ns  
ns  
ns  
ns  
osu(ADSV-CKO2H)  
oh(CKO2H-ADSV)  
osu(OEV-CKO2H)  
oh(CKO2H-OEV)  
Output hold time, SDCAS/SSADS valid after CLKOUT2  
high  
10  
11  
12  
Output setup time, SDRAS/SSOE valid before  
CLKOUT2 high  
P 0.8  
P 4  
P 0.8  
P 3  
Output hold time, SDRAS/SSOE valid after CLKOUT2  
high  
§
13  
14  
t
t
Output setup time, EDx valid before CLKOUT2 high  
P 1.2  
P 4  
P 1.2  
P 3  
ns  
ns  
osu(EDV-CKO2H)  
Output hold time, EDx invalid after CLKOUT2 high  
oh(CKO2H-EDIV)  
Output setup time, SDWE/SSWE valid before CLKOUT2  
high  
15  
16  
t
P 0.8  
P 4  
P 0.8  
P 3  
ns  
ns  
osu(WEV-CKO2H)  
Output hold time, SDWE/SSWE valid after CLKOUT2  
high  
t
oh(CKO2H-WEV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.  
For the first write in a series of one or more consecutive adjacent writes, the write data is generated one CLKOUT2 cycle early to accommodate  
the ED enable time.  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)  
timing requirements for synchronous-burst SRAM cycles C6202B devices (see Figure 20)  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
2.9  
MAX  
MIN  
1.6  
MAX  
7
8
t
t
Setup time, read EDx valid before CLKOUT2 high  
Hold time, read EDx valid after CLKOUT2 high  
ns  
ns  
su(EDV-CKO2H)  
2.1  
2.3  
h(CKO2H-EDV)  
switching characteristics over recommended operating conditions for synchronous-burst SRAM  
†‡  
cycles for C6202B devices (see Figure 20 and Figure 21)  
C6202B-250  
C6202B-300  
MIN MAX  
P 1  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
5
6
t
t
t
t
t
t
Output setup time, CEx valid before CLKOUT2 high  
Output hold time, CEx valid after CLKOUT2 high  
Output setup time, BEx valid before CLKOUT2 high  
Output hold time, BEx invalid after CLKOUT2 high  
Output setup time, EAx valid before CLKOUT2 high  
Output hold time, EAx invalid after CLKOUT2 high  
P 1.7  
P 3.4  
P 1.7  
P 3.4  
P 1.7  
P 3.4  
ns  
ns  
ns  
ns  
ns  
ns  
osu(CEV-CKO2H)  
oh(CKO2H-CEV)  
osu(BEV-CKO2H)  
oh(CKO2H-BEIV)  
osu(EAV-CKO2H)  
oh(CKO2H-EAIV)  
P 2.7  
P 1  
P 2.7  
P 1  
P 2.7  
Output setup time, SDCAS/SSADS valid before  
CLKOUT2 high  
9
t
t
t
t
P 1.7  
P 3.4  
P 1.7  
P 3.4  
P 1  
P 2.7  
P 1  
ns  
ns  
ns  
ns  
osu(ADSV-CKO2H)  
oh(CKO2H-ADSV)  
osu(OEV-CKO2H)  
oh(CKO2H-OEV)  
Output hold time, SDCAS/SSADS valid after CLKOUT2  
high  
10  
11  
12  
Output setup time, SDRAS/SSOE valid before  
CLKOUT2 high  
Output hold time, SDRAS/SSOE valid after CLKOUT2  
high  
P 2.7  
§
13  
14  
t
t
Output setup time, EDx valid before CLKOUT2 high  
P 2.3  
P 3.2  
P 1.6  
P 2.5  
ns  
ns  
osu(EDV-CKO2H)  
Output hold time, EDx invalid after CLKOUT2 high  
oh(CKO2H-EDIV)  
Output setup time, SDWE/SSWE valid before CLKOUT2  
high  
15  
16  
t
P 1.7  
P 3.4  
P 1  
ns  
ns  
osu(WEV-CKO2H)  
Output hold time, SDWE/SSWE valid after CLKOUT2  
high  
t
P 2.7  
oh(CKO2H-WEV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.  
For the first write in a series of one or more consecutive adjacent writes, the write data is generated one CLKOUT2 cycle early to accommodate  
the ED enable time.  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)  
CLKOUT2  
1
2
CEx  
3
4
6
BE[3:0]  
BE1  
BE2  
A2  
BE3  
A3  
BE4  
5
A1  
A4  
8
EA[21:2]  
ED[31:0]  
7
Q1  
Q2  
Q3  
10  
Q4  
9
SDCAS/SSADS  
11  
12  
SDRAS/SSOE  
SDWE/SSWE  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.  
Figure 20. SBSRAM Read Timing  
CLKOUT2  
1
2
CEx  
BE[3:0]  
3
4
6
BE1  
BE2  
A2  
BE3  
A3  
BE4  
A4  
5
EA[21:2]  
A1  
13  
14  
10  
Q1  
Q2  
Q3  
Q4  
ED[31:0]  
9
SDCAS/SSADS  
SDRAS/SSOE  
SDWE/SSWE  
15  
16  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.  
Figure 21. SBSRAM Write Timing  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
SYNCHRONOUS DRAM TIMING  
timing requirements for synchronous DRAM cycles for C6202 devices (see Figure 22)  
C6202-200  
C6202-250  
MIN MAX  
1.2  
NO.  
UNIT  
MIN MAX  
7
8
t
t
Setup time, read EDx valid before CLKOUT2 high  
Hold time, read EDx valid after CLKOUT2 high  
1.2  
3
ns  
ns  
su(EDV-CKO2H)  
2.7  
h(CKO2H-EDV)  
switching characteristics over recommended operating conditions for synchronous DRAM cycles  
†‡  
for C6202 devices (see Figure 22Figure 27)  
C6202-200  
MIN MAX  
P 1  
C6202-250  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
5
6
t
t
t
t
t
t
Output setup time, CEx valid before CLKOUT2 high  
Output hold time, CEx valid after CLKOUT2 high  
Output setup time, BEx valid before CLKOUT2 high  
Output hold time, BEx invalid after CLKOUT2 high  
Output setup time, EAx valid before CLKOUT2 high  
Output hold time, EAx invalid after CLKOUT2 high  
P 0.9  
P 2.9  
P 0.9  
P 2.9  
P 0.9  
P 2.9  
ns  
ns  
ns  
ns  
ns  
ns  
osu(CEV-CKO2H)  
oh(CKO2H-CEV)  
osu(BEV-CKO2H)  
oh(CKO2H-BEIV)  
osu(EAV-CKO2H)  
oh(CKO2H-EAIV)  
P 3.5  
P 1  
P 3.5  
P 1  
P 3.5  
Output setup time, SDCAS/SSADS valid before  
CLKOUT2 high  
9
t
t
P 1  
P 0.9  
P 2.9  
ns  
ns  
osu(CASV-CKO2H)  
oh(CKO2H-CASV)  
Output hold time, SDCAS/SSADS valid after  
CLKOUT2 high  
10  
P 3.5  
§
11  
12  
t
t
Output setup time, EDx valid before CLKOUT2 high  
P 1  
P 1.5  
P 2.8  
ns  
ns  
osu(EDV-CKO2H)  
Output hold time, EDx invalid after CLKOUT2 high  
P 3.5  
oh(CKO2H-EDIV)  
Output setup time, SDWE/SSWE valid before  
CLKOUT2 high  
13  
14  
t
P 1  
P 0.9  
P 2.9  
ns  
ns  
osu(WEV-CKO2H)  
oh(CKO2H-WEV)  
Output hold time, SDWE/SSWE valid after CLKOUT2  
high  
t
P 3.5  
Output setup time, SDA10 valid before CLKOUT2  
high  
15  
16  
17  
t
t
t
P 1  
P 3.5  
P 1  
P 0.9  
P 2.9  
P 0.9  
ns  
ns  
ns  
osu(SDA10V-CKO2H)  
oh(CKO2H-SDA10IV)  
osu(RASV-CKO2H)  
Output hold time, SDA10 invalid after CLKOUT2 high  
Output setup time, SDRAS/SSOE valid before  
CLKOUT2 high  
Output hold time, SDRAS/SSOE valid after CLKOUT2  
high  
18  
t
P 3.5  
P 2.9  
ns  
oh(CKO2H-RASV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.  
For the first write in a series of one or more consecutive adjacent writes, the write data is generated one CLKOUT2 cycle early to accommodate  
the ED enable time.  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
timing requirements for synchronous DRAM cycles for C6202B devices (see Figure 22)  
C6202B-250  
MIN MAX  
1.3  
C6202B-300  
NO.  
UNIT  
MIN MAX  
7
8
t
t
Setup time, read EDx valid before CLKOUT2 high  
Hold time, read EDx valid after CLKOUT2 high  
0
ns  
ns  
su(EDV-CKO2H)  
2.3  
2.3  
h(CKO2H-EDV)  
switching characteristics over recommended operating conditions for synchronous DRAM cycles  
†‡  
for C6202B devices (see Figure 22Figure 27)  
C6202B-250  
C6202B-300  
MIN MAX  
P 1  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
5
6
t
t
t
t
t
t
Output setup time, CEx valid before CLKOUT2 high  
Output hold time, CEx valid after CLKOUT2 high  
Output setup time, BEx valid before CLKOUT2 high  
Output hold time, BEx invalid after CLKOUT2 high  
Output setup time, EAx valid before CLKOUT2 high  
Output hold time, EAx invalid after CLKOUT2 high  
P 1.7  
P 3  
ns  
ns  
ns  
ns  
ns  
ns  
osu(CEV-CKO2H)  
oh(CKO2H-CEV)  
osu(BEV-CKO2H)  
oh(CKO2H-BEIV)  
osu(EAV-CKO2H)  
oh(CKO2H-EAIV)  
P 2.3  
P 1  
P 1.7  
P 3  
P 2.3  
P 1  
P 1.7  
P 3  
P 2.3  
Output setup time, SDCAS/SSADS valid before  
CLKOUT2 high  
9
t
t
P 1.7  
P 3  
P 1  
ns  
ns  
osu(CASV-CKO2H)  
oh(CKO2H-CASV)  
Output hold time, SDCAS/SSADS valid after  
CLKOUT2 high  
10  
P 2.3  
§
11  
12  
t
t
Output setup time, EDx valid before CLKOUT2 high  
P 2.3  
P 2.7  
P 1.6  
P 2  
ns  
ns  
osu(EDV-CKO2H)  
Output hold time, EDx invalid after CLKOUT2 high  
oh(CKO2H-EDIV)  
Output setup time, SDWE/SSWE valid before  
CLKOUT2 high  
13  
14  
t
t
P 1.7  
P 3  
P 1  
ns  
ns  
osu(WEV-CKO2H)  
Output hold time, SDWE/SSWE valid after CLKOUT2  
high  
P 2.3  
oh(CKO2H-WEV)  
Output setup time, SDA10 valid before CLKOUT2  
high  
15  
16  
17  
t
t
t
P 1.7  
P 3  
P 1  
P 2.3  
P 1  
ns  
ns  
ns  
osu(SDA10V-CKO2H)  
oh(CKO2H-SDA10IV)  
osu(RASV-CKO2H)  
Output hold time, SDA10 invalid after CLKOUT2 high  
Output setup time, SDRAS/SSOE valid before  
CLKOUT2 high  
P 1.7  
Output hold time, SDRAS/SSOE valid after CLKOUT2  
high  
18  
t
P 3  
P 2.3  
ns  
oh(CKO2H-RASV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.  
For the first write in a series of one or more consecutive adjacent writes, the write data is generated one CLKOUT2 cycle early to accommodate  
the ED enable time.  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
READ  
READ  
READ  
CLKOUT2  
CEx  
1
5
2
3
4
BE[3:0]  
EA[15:2]  
BE1  
BE2  
CA3  
BE3  
7
6
CA1  
CA2  
8
D1  
D2  
D3  
ED[31:0]  
SDA10  
15  
9
16  
10  
SDRAS/SSOE  
SDCAS/SSADS  
SDWE/SSWE  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.  
Figure 22. Three SDRAM READ Commands  
WRITE  
WRITE  
WRITE  
CLKOUT2  
CEx  
1
3
5
2
4
6
BE[3:0]  
BE1  
CA1  
BE2  
CA2  
D2  
BE3  
CA3  
D3  
EA[15:2]  
11  
12  
D1  
ED[31:0]  
SDA10  
15  
16  
SDRAS/SSOE  
9
10  
14  
SDCAS/SSADS  
13  
SDWE/SSWE  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.  
Figure 23. Three SDRAM WRT Commands  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
ACTV  
CLKOUT2  
1
2
CEx  
BE[3:0]  
5
Bank Activate/Row Address  
EA[15:2]  
ED[31:0]  
15  
Row Address  
SDA10  
17  
18  
SDRAS/SSOE  
SDCAS/SSADS  
SDWE/SSWE  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.  
Figure 24. SDRAM ACTV Command  
DCAB  
CLKOUT2  
1
2
CEx  
BE[3:0]  
EA[15:2]  
ED[31:0]  
15  
16  
SDA10  
17  
18  
SDRAS/SSOE  
SDCAS/SSADS  
13  
14  
SDWE/SSWE  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.  
Figure 25. SDRAM DCAB Command  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
REFR  
CLKOUT2  
CEx  
1
2
BE[3:0]  
EA[15:2]  
ED[31:0]  
SDA10  
17  
18  
SDRAS/SSOE  
9
10  
SDCAS/SSADS  
SDWE/SSWE  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.  
Figure 26. SDRAM REFR Command  
MRS  
CLKOUT2  
1
2
6
CEx  
BE[3:0]  
5
EA[15:2]  
ED[31:0]  
SDA10  
MRS Value  
17  
18  
10  
14  
SDRAS/SSOE  
9
SDCAS/SSADS  
13  
SDWE/SSWE  
SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.  
Figure 27. SDRAM MRS Command  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
HOLD/HOLDA TIMING  
timing requirements for the HOLD/HOLDA cycles (see Figure 28)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN MAX  
3
t
Output hold time, HOLD low after HOLDA low  
P
ns  
oh(HOLDAL-HOLDL)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
†‡  
switching characteristics over recommended operating conditions for the HOLD/HOLDA cycles  
(see Figure 28)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
3P  
0
MAX  
§
1
2
4
5
t
t
t
t
Delay time, HOLD low to EMIF Bus high impedance  
Delay time, EMIF Bus high impedance to HOLDA low  
Delay time, HOLD high to EMIF Bus low impedance  
Delay time, EMIF Bus low impedance to HOLDA high  
ns  
ns  
ns  
ns  
d(HOLDL-EMHZ)  
d(EMHZ-HOLDAL)  
d(HOLDH-EMLZ)  
d(EMLZ-HOLDAH)  
2P  
7P  
2P  
3P  
0
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SDCAS/SSADS, SDRAS/SSOE, SDWE/SSWE, and SDA10.  
All pending EMIF transactions are allowed to complete before HOLDA is asserted. The worst case for this is an asynchronous read or write with  
external ARDY used or a minimum of eight consecutive SDRAM reads or writes when RBTR8 = 1. If no bus transactions are occurring, then the  
minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1.  
External Requestor  
DSP Owns Bus  
DSP Owns Bus  
Owns Bus  
3
HOLD  
2
5
HOLDA  
1
4
EMIF Bus  
C6202/02B  
C6202/02B  
EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SDCAS/SSADS, SDRAS/SSOE, SDWE/SSWE, and SDA10.  
Figure 28. HOLD/HOLDA Timing  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
RESET TIMING  
timing requirements for reset (see Figure 29)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
10P  
250  
5P  
MAX  
Width of the RESET pulse (PLL stable)  
ns  
µs  
ns  
ns  
1
t
w(RST)  
§
Width of the RESET pulse (PLL needs to sync up)  
Setup time, XD configuration bits valid before RESET high  
10  
11  
t
t
su(XD)  
Hold time, XD configuration bits valid after RESET high  
5P  
h(XD)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
This parameter applies to CLKMODE x1 when CLKIN is stable, and applies to CLKMODE x4 only when CLKIN and PLL are stable for C6202.  
This parameter applies to CLKMODE x4, x6, x7, x8, x9, x10, and x11 when CLKIN and PLL are stable for C6202B GNY devices.  
This parameter applies to CLKMODE x4, x6, x8, and x10 only when CLKIN and PLL are stable for C6202B GNZ devices.  
This parameter applies to CLKMODE x4 only (it does not apply to CLKMODE x1) for C6202. This parameter applies to CLKMODE x4, x6, x7,  
x8, x9, x10, and x11 only (it does not apply to CLKMODE x1) for C6202B GNY devices. This parameter applies to CLKMODE x4, x6, x8, and  
x10 only (it does not apply to CLKMODE x1) for C6202B GNZ devices. The RESET signal is not connected internally to the clock PLL circuit.  
The PLL, however, may need up to 250 µs to stabilize following device power up or after PLL configuration has been changed. During that time,  
RESET must be asserted to ensure proper device operation. See the Clock PLL section for PLL lock times.  
§
XD[31:0] are the boot configuration pins during device reset.  
#  
switching characteristics over recommended operating conditions during reset (see Figure 29)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
2
3
4
5
6
7
8
9
t
t
t
t
t
t
t
t
Delay time, RESET low to CLKOUT2 invalid  
Delay time, RESET high to CLKOUT2 valid  
Delay time, RESET low to high group invalid  
Delay time, RESET high to high group valid  
Delay time, RESET low to low group invalid  
Delay time, RESET high to low group valid  
Delay time, RESET low to Z group high impedance  
Delay time, RESET high to Z group valid  
P
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(RSTL-CKO2IV)  
d(RSTH-CKO2V)  
d(RSTL-HIGHIV)  
d(RSTH-HIGHV)  
d(RSTL-LOWIV)  
d(RSTH-LOWV)  
d(RSTL-ZHZ)  
4P  
P
P
P
4P  
4P  
4P  
d(RSTH-ZV)  
#
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
High group consists of:  
Low group consists of:  
Z group consists of:  
XFCLK, HOLDA  
IACK, INUM[3:0], DMAC[3:0], PD, TOUT0, and TOUT1  
EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SDCAS/SSADS, SDRAS/SSOE, SDWE/SSWE,  
SDA10, CLKX0, CLKX1, CLKX2, FSX0, FSX1, FSX2, DX0, DX1, DX2, CLKR0, CLKR1, CLKR2, FSR0, FSR1,  
FSR2, XCE[3:0], XBE[3:0]/XA[5:2], XOE, XRE, XWE/XWAIT, XAS, XW/R, XRDY, XBLAST, XHOLD,  
and XHOLDA  
62  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
RESET TIMING (CONTINUED)  
CLKOUT1  
1
10  
11  
RESET  
2
4
3
CLKOUT2  
5
7
9
HIGH GROUP  
LOW GROUP  
6
8
Z GROUP  
Boot Configuration  
XD[31:0]  
High group consists of:  
Low group consists of:  
Z group consists of:  
XFCLK, HOLDA  
IACK, INUM[3:0], DMAC[3:0], PD, TOUT0, and TOUT1.  
EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SDCAS/SSADS, SDRAS/SSOE, SDWE/SSWE,  
SDA10, CLKX0, CLKX1, CLKX2, FSX0, FSX1, FSX2, DX0, DX1, DX2, CLKR0, CLKR1, CLKR2, FSR0, FSR1,  
FSR2, XCE[3:0], XBE[3:0]/XA[5:2], XOE, XRE, XWE/XWAIT, XAS, XW/R, XRDY, XBLAST, XHOLD,  
and XHOLDA.  
XD[31:0] are the boot configuration pins during device reset.  
Figure 29. Reset Timing  
63  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXTERNAL INTERRUPT TIMING  
timing requirements for interrupt response cycles (see Figure 30)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
2P  
MAX  
2
3
t
t
Width of the interrupt pulse low  
Width of the interrupt pulse high  
ns  
ns  
w(ILOW)  
2P  
w(IHIGH)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
switching characteristics over recommended operating conditions during interrupt response  
cycles (see Figure 30)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
9P  
1
MAX  
MIN  
9P  
MAX  
1
4
5
6
t
t
t
t
Response time, EXT_INTx high to IACK high  
Delay time, CLKOUT2 low to IACK valid  
Delay time, CLKOUT2 low to INUMx valid  
Delay time, CLKOUT2 low to INUMx invalid  
ns  
ns  
ns  
ns  
R(EINTH IACKH)  
d(CKO2L-IACKV)  
d(CKO2L-INUMV)  
d(CKO2L-INUMIV)  
10  
10  
10  
1.5  
2.0  
2.0  
10  
10  
10  
0
0
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
1
CLKOUT2  
3
2
EXT_INTx, NMI  
Intr Flag  
4
4
IACK  
6
5
Interrupt Number  
INUMx  
Figure 30. Interrupt Timing  
64  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS SYNCHRONOUS FIFO TIMING  
timing requirements for synchronous FIFO interface (see Figure 31, Figure 32, and Figure 33)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
5
6
t
t
Setup time, read XDx valid before XFCLK high  
Hold time, read XDx valid after XFCLK high  
3
3
ns  
ns  
su(XDV-XFCKH)  
2.5  
2.5  
h(XFCKH-XDV)  
switching characteristics over recommended operating conditions for synchronous FIFO  
interface (see Figure 31, Figure 32, and Figure 33)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
1.5  
MAX  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
MIN  
1.5  
MAX  
5.5  
5.5  
5.5  
5.5  
5.5  
6
1
2
3
4
7
8
9
t
t
t
t
t
t
t
Delay time, XFCLK high to XCEx valid  
Delay time, XFCLK high to XBE[3:0]/XA[5:2] valid  
Delay time, XFCLK high to XOE valid  
Delay time, XFCLK high to XRE valid  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(XFCKH-XCEV)  
d(XFCKH-XAV)  
d(XFCKH-XOEV)  
d(XFCKH-XREV)  
d(XFCKH-XWEV)  
d(XFCKH-XDV)  
d(XFCKH-XDIV)  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
Delay time, XFCLK high to XWE/XWAIT valid  
Delay time, XFCLK high to XDx valid  
Delay time, XFCLK high to XDx invalid  
1.5  
1.5  
XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during synchronous FIFO accesses.  
XWE/XWAIT operates as the write-enable signal XWE during synchronous FIFO accesses.  
XFCLK  
1
1
XCE3  
2
3
4
2
3
XA1  
XA2  
XA3  
XA4  
XBE[3:0]/XA[5:2]  
XOE  
XRE  
4
§
XWE/XWAIT  
6
5
XD[31:0]  
FIFO read (glueless) mode only available in XCE3.  
XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during synchronous FIFO accesses.  
XWE/XWAIT operates as the write-enable signal XWE during synchronous FIFO accesses.  
D1  
D2  
D3  
D4  
§
Figure 31. FIFO Read Timing (Glueless Read Mode)  
65  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS SYNCHRONOUS FIFO TIMING (CONTINUED)  
XFCLK  
XCEx  
1
2
1
2
3
XA1  
XA2  
XA3  
XA4  
XBE[3:0]/XA[5:2]  
3
4
XOE  
XRE  
4
XWE/XWAIT  
6
5
XD[31:0]  
D1  
D2  
D3  
D4  
XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during synchronous FIFO accesses.  
XWE/XWAIT operates as the write-enable signal XWE during synchronous FIFO accesses.  
Figure 32. FIFO Read Timing  
XFCLK  
1
1
XCEx  
2
2
XA1  
XA2  
XA3  
XA4  
XBE[3:0]/XA[5:2]  
XOE  
XRE  
7
8
7
XWE/XWAIT  
9
XD[31:0]  
D1  
D2  
D3  
D4  
XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during synchronous FIFO accesses.  
XWE/XWAIT operates as the write-enable signal XWE during synchronous FIFO accesses.  
Figure 33. FIFO Write Timing  
66  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS ASYNCHRONOUS PERIPHERAL TIMING  
†‡§¶  
timing requirements for asynchronous peripheral cycles  
(see Figure 34Figure 37)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN MAX  
MIN MAX  
Setup time, XDx valid before XRE  
high  
3
4
6
7
t
t
t
t
4.5  
1
4.5  
2.5  
ns  
ns  
ns  
ns  
su(XDV-XREH)  
Hold time, XDx valid after XRE  
high  
h(XREH-XDV)  
Setup time, XRDY high before  
XRE low  
[(RST 3) * P 6]  
(RST 3) * P + 2  
[(RST 3) * P 6]  
(RST 3) * P + 2  
su(XRDYH-XREL)  
h(XREL-XRDYH)  
Hold time, XRDY high after XRE  
low  
Setup time, XRDY low before XRE  
low  
9
t
[(RST 3) * P 6]  
[(RST 3) * P 6]  
ns  
su(XRDYL-XREL)  
Hold time, XRDY low after XRE  
low  
10  
11  
15  
t
t
t
(RST 3) * P + 2  
2P  
(RST 3) * P + 2  
2P  
ns  
ns  
ns  
h(XREL-XRDYL)  
Pulse width, XRDY high  
w(XRDYH)  
Setup time, XRDY high before  
XWE low  
[(WST 3) * P 6]  
[(WST 3) * P 6]  
su(XRDYH-XWEL)  
Hold time, XRDY high after XWE  
low  
16  
t
(WST 3) * P + 2  
(WST 3) * P + 2  
ns  
h(XWEL-XRDYH)  
Setup time, XRDY low before  
XWE low  
18  
19  
t
[(WST 3) * P 6]  
(WST 3) * P + 2  
[(WST 3) * P 6]  
(WST 3) * P + 2  
ns  
ns  
su(XRDYL-XWEL)  
h(XWEL-XRDYL)  
Hold time, XRDY low after XWE  
low  
t
To ensure data setup time, simply program the strobe width wide enough. XRDY is internally synchronized. If XRDY does meet setup or hold  
time, it may be recognized in the current cycle or the next cycle. Thus, XRDY can be an asynchronous input.  
RS = Read Setup, RST = Read Strobe, RH = Read Hold, WS = Write Setup, WST = Write Strobe, WH = Write Hold. These parameters are  
programmed via the XBUS XCE space control registers.  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
The sum of RS and RST (or WS and WST) must be a minimum of 4 in order to use XRDY input to extend strobe width.  
§
67  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS ASYNCHRONOUS PERIPHERAL TIMING (CONTINUED)  
switching characteristics over recommended operating conditions for asynchronous peripheral  
†‡§¶  
cycles  
(see Figure 34Figure 37)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Output setup time, select  
signals valid to XRE low  
1
t
RS * P 2  
RH * P 2  
RS * P 2  
RH * P 2  
ns  
osu(SELV-XREL)  
Output hold time, XRE low to  
select signals invalid  
2
5
8
t
t
t
ns  
ns  
ns  
oh(XREH-SELIV)  
Pulse width, XRE low  
RST * P  
RST * P  
w(XREL)  
Delay time, XRDY high to XRE  
high  
3P  
WS * P 2  
WH * P 2  
4P + 5  
3P  
WS * P 3  
WH * P 2  
4P + 5  
d(XRDYH-XREH)  
Output setup time, select  
signals valid to XWE low  
12  
t
ns  
osu(SELV-XWEL)  
Output hold time, XWE low to  
select signals invalid  
13  
14  
t
t
ns  
ns  
oh(XWEH-SELIV)  
Pulse width, XWE low  
WST * P  
WST * P  
w(XWEL)  
Delay time, XRDY high to XWE  
high  
17  
t
3P  
4P + 5  
3P  
4P + 5  
ns  
d(XRDYH-XWEH)  
RS = Read Setup, RST = Read Strobe, RH = Read Hold, WS = Write Setup, WST = Write Strobe, WH = Write Hold. These parameters are  
programmed via the XBUS XCE space control registers.  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
The sum of RS and RST (or WS and WST) must be a minimum of 4 in order to use XRDY input to extend strobe width.  
Select signals include: XCEx, XBE[3:0]/XA[5:2], XOE; and for writes, include XD[31:0], with the exception that XCEx can stay active for an  
additional 7P ns following the end of the cycle.  
68  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS ASYNCHRONOUS PERIPHERAL TIMING (CONTINUED)  
Setup = 2 Strobe = 3  
Hold = 2  
CLKOUT1  
1
1
2
2
XCEx  
XBE[3:0]/  
XA[5:2]  
3
4
XD[31:0]  
XOE  
1
2
5
6
7
XRE  
XWE/XWAIT  
§
XRDY  
§
XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during expansion bus asynchronous peripheral accesses.  
XWE/XWAIT operates as the write-enable signal XWE during expansion bus asynchronous peripheral accesses.  
XRDY operates as active-high ready input during expansion bus asynchronous peripheral accesses.  
Figure 34. Expansion Bus Asynchronous Peripheral Read Timing (XRDY Not Used)  
Setup = 2 Strobe = 3  
Not Ready  
Hold = 2  
CLKOUT1  
1
1
2
2
XCEx  
XBE[3:0]/  
XA[5:2]  
3
4
XD[31:0]  
XOE  
1
9
2
8
10  
XRE  
XWE/XWAIT  
11  
§
XRDY  
§
XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during expansion bus asynchronous peripheral accesses.  
XWE/XWAIT operates as the write-enable signal XWE during expansion bus asynchronous peripheral accesses.  
XRDY operates as active-high ready input during expansion bus asynchronous peripheral accesses.  
Figure 35. Expansion Bus Asynchronous Peripheral Read Timing (XRDY Used)  
69  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS ASYNCHRONOUS PERIPHERAL TIMING (CONTINUED)  
Setup = 2 Strobe = 3  
Hold = 2  
CLKOUT1  
XCEx  
12  
12  
13  
13  
XBE[3:0]/  
XA[5:2]  
12  
13  
XD[31:0]  
XOE  
XRE  
15  
16  
14  
§
XWE/XWAIT  
XRDY  
§
XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during expansion bus asynchronous peripheral accesses.  
XWE/XWAIT operates as the write-enable signal XWE during expansion bus asynchronous peripheral accesses.  
XRDY operates as active-high ready input during expansion bus asynchronous peripheral accesses.  
Figure 36. Expansion Bus Asynchronous Peripheral Write Timing (XRDY Not Used)  
Setup = 2 Strobe = 3  
Not Ready  
Hold = 2  
CLKOUT1  
12  
12  
13  
13  
XCEx  
XBE[3:0]/  
XA[5:2]  
12  
13  
XD[31:0]  
XOE  
XRE  
17  
18  
19  
XWE/XWAIT  
11  
§
XRDY  
§
XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during expansion bus asynchronous peripheral accesses.  
XWE/XWAIT operates as the write-enable signal XWE during expansion bus asynchronous peripheral accesses.  
XRDY operates as active-high ready input during expansion bus asynchronous peripheral accesses.  
Figure 37. Expansion Bus Asynchronous Peripheral Write Timing (XRDY Used)  
70  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS SYNCHRONOUS HOST-PORT TIMING  
timing requirements with external device as bus master (see Figure 38 and Figure 39)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
3.5  
MAX  
MIN MAX  
3.5  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
Setup time, XCS valid before XCLKIN high  
Hold time, XCS valid after XCLKIN high  
Setup time, XAS valid before XCLKIN high  
Hold time, XAS valid after XCLKIN high  
Setup time, XCNTL valid before XCLKIN high  
Hold time, XCNTL valid after XCLKIN high  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(XCSV-XCKIH)  
2.8  
3.5  
2.8  
3.5  
2.8  
3.5  
2.8  
3.5  
2.8  
3.5  
2.8  
2.8  
3.5  
2.8  
3.5  
2.8  
3.5  
2.8  
3.5  
2.8  
3.5  
2.8  
h(XCKIH-XCS)  
3
su(XAS-XCKIH)  
h(XCKIH-XAS)  
4
5
su(XCTL-XCKIH)  
h(XCKIH-XCTL)  
su(XWR-XCKIH)  
h(XCKIH-XWR)  
su(XBLTV-XCKIH)  
h(XCKIH-XBLTV)  
su(XBEV-XCKIH)  
h(XCKIH-XBEV)  
6
Setup time, XW/R valid before XCLKIN high  
7
8
Hold time, XW/R valid after XCLKIN high  
Setup time, XBLAST valid before XCLKIN high  
9
10  
16  
17  
Hold time, XBLAST valid after XCLKIN high  
Setup time, XBE[3:0]/XA[5:2] valid before XCLKIN high  
§
§
Hold time, XBE[3:0]/XA[5:2] valid after XCLKIN high  
18  
19  
t
Setup time, XDx valid before XCLKIN high  
Hold time, XDx valid after XCLKIN high  
3.5  
2.8  
3.5  
2.8  
ns  
ns  
su(XD-XCKIH)  
h(XCKIH-XD)  
t
§
XW/R input/output polarity selected at boot.  
XBLAST input polarity selected at boot  
XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.  
switching characteristics over recommended operating conditions with external device as bus  
master (see Figure 38 and Figure 39)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
11  
12  
13  
14  
15  
20  
21  
t
t
t
t
t
t
t
Delay time, XCLKIN high to XDx low impedance  
Delay time, XCLKIN high to XDx valid  
0
5
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(XCKIH-XDLZ)  
d(XCKIH-XDV)  
d(XCKIH-XDIV)  
d(XCKIH-XDHZ)  
d(XCKIH-XRY)  
d(XCKIH-XRYLZ)  
d(XCKIH-XRYHZ)  
16.5  
4P 0.5  
Delay time, XCLKIN high to XDx invalid  
Delay time, XCLKIN high to XDx high impedance  
4P  
16.5  
16.5  
4P  
4P 0.5  
4P 0.5  
7P + 0.5  
#
Delay time, XCLKIN high to XRDY invalid  
5
5
3
3
Delay time, XCLKIN high to XRDY low impedance  
Delay time, XCLKIN high to XRDY high impedance  
#
2P + 5 3P + 16.5 2P + 3  
#
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
XRDY operates as active-low ready input/output during host-port accesses.  
71  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS SYNCHRONOUS HOST-PORT TIMING (CONTINUED)  
XCLKIN  
2
1
XCS  
4
3
XAS  
6
5
XCNTL  
8
7
XW/R  
8
7
XW/R  
XBE[3:0]/XA[5:2]  
10  
10  
9
9
§
XBLAST  
XBLAST  
§
13  
14  
12  
11  
D1  
15  
D2  
D3  
D4  
XD[31:0]  
21  
20  
15  
XRDY  
§
XW/R input/output polarity selected at boot  
XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.  
XBLAST input polarity selected at boot  
XRDY operates as active-low ready input/output during host-port accesses.  
Figure 38. External Host as Bus MasterRead  
72  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS SYNCHRONOUS HOST-PORT TIMING (CONTINUED)  
XCLKIN  
2
1
XCS  
4
3
XAS  
6
5
XCNTL  
8
7
XW/R  
XW/R  
8
7
17  
16  
XBE1  
XBE2  
XBE3  
9
XBE4  
XBE[3:0]/XA[5:2]  
XBLAST  
10  
10  
§
9
§
XBLAST  
19  
18  
D1  
15  
D2  
D3  
D4  
XD[31:0]  
21  
20  
15  
XRDY  
§
XW/R input/output polarity selected at boot  
XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.  
XBLAST input polarity selected at boot  
XRDY operates as active-low ready input/output during host-port accesses.  
Figure 39. External Host as Bus MasterWrite  
73  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS SYNCHRONOUS HOST-PORT TIMING (CONTINUED)  
timing requirements with C62x as bus master (see Figure 40, Figure 41, and Figure 42)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
3.5  
MAX  
MIN  
3.5  
MAX  
9
t
t
t
t
t
t
Setup time, XDx valid before XCLKIN high  
Hold time, XDx valid after XCLKIN high  
Setup time, XRDY valid before XCLKIN high  
ns  
ns  
ns  
ns  
ns  
ns  
su(XDV-XCKIH)  
h(XCKIH-XDV)  
su(XRY-XCKIH)  
h(XCKIH-XRY)  
su(XBFF-XCKIH)  
h(XCKIH-XBFF)  
10  
11  
12  
14  
15  
2.8  
3.5  
2.8  
3.5  
2.8  
2.8  
3.5  
2.8  
3.5  
2.8  
Hold time, XRDY valid after XCLKIN high  
Setup time, XBOFF valid before XCLKIN high  
Hold time, XBOFF valid after XCLKIN high  
XRDY operates as active-low ready input/output during host-port accesses.  
switching characteristics over recommended operating conditions with C62x as bus master  
(see Figure 40, Figure 41, and Figure 42)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
16.5  
16.5  
16.5  
16.5  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
Delay time, XCLKIN high to XAS valid  
Delay time, XCLKIN high to XW/R valid  
5
3
4P 0.5  
4P 0.5  
4P 0.5  
4P 0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(XCKIH-XASV)  
d(XCKIH-XWRV)  
d(XCKIH-XBLTV)  
d(XCKIH-XBEV)  
d(XCKIH-XDLZ)  
d(XCKIH-XDV)  
d(XCKIH-XDIV)  
d(XCKIH-XDHZ)  
d(XCKIH-XWTV)  
5
5
5
0
3
3
3
0
§
Delay time, XCLKIN high to XBLAST valid  
3
4
Delay time, XCLKIN high to XBE[3:0]/XA[5:2] valid  
Delay time, XCLKIN high to XDx low impedance  
Delay time, XCLKIN high to XDx valid  
5
6
16.5  
4P 0.5  
7
Delay time, XCLKIN high to XDx invalid  
5
5
3
3
8
Delay time, XCLKIN high to XDx high impedance  
4P  
4P  
#
13  
Delay time, XCLKIN high to XWE/XWAIT valid  
16.5  
4P 0.5  
§
#
XW/R input/output polarity selected at boot.  
XBLAST output polarity is always active low.  
XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.  
XWE/XWAIT operates as XWAIT output signal during host-port accesses.  
74  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS SYNCHRONOUS HOST-PORT TIMING (CONTINUED)  
XCLKIN  
1
1
XAS  
2
2
3
XW/R  
XW/R  
3
§
XBLAST  
4
4
XBE[3:0]/XA[5:2]  
BE  
5
9
7
6
8
10  
D2  
AD  
D1  
D3  
D4  
XD[31:0]  
XRDY  
11  
12  
13  
13  
XWE/XWAIT  
§
XW/R input/output polarity selected at boot  
XBLAST output polarity is always active low.  
XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.  
XWE/XWAIT operates as XWAIT output signal during host-port accesses.  
Figure 40. C62x as Bus MasterRead  
XCLKIN  
XAS  
1
1
XW/R  
XW/R  
2
2
3
4
7
3
XBLAST  
4
§
XBE[3:0]/XA[5:2]  
6
Addr  
5
8
D1  
D2  
11  
D3  
D4  
XD[31:0]  
XRDY  
12  
13  
13  
XWE/XWAIT  
§
XW/R input/output polarity selected at boot  
XBLAST output polarity is always active low.  
XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.  
XWE/XWAIT operates as XWAIT output signal during host-port accesses.  
Figure 41. C62x as Bus MasterWrite  
75  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS SYNCHRONOUS HOST-PORT TIMING (CONTINUED)  
XCLKIN  
1
1
XAS  
XW/R  
2
2
XW/R  
XBLAST  
4
4
7
§
XBE[3:0]/XA[5:2]  
6
5
8
Addr  
D1  
11  
D2  
XD[31:0]  
XRDY  
12  
15  
14  
XBOFF  
#
XHOLD  
XHOLDA  
XHOLD  
#
XHOLDA  
§
#
||  
XW/R input/output polarity selected at boot  
XBLAST output polarity is always active low.  
XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.  
Internal arbiter enabled  
Internal arbiter disabled  
This diagram illustrates XBOFF timing. Bus arbitration timing is shown in Figure 45 and Figure 46.  
||  
Figure 42. C62x as Bus MasterBOFF Operation  
76  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS ASYNCHRONOUS HOST-PORT TIMING  
timing requirements with external device as asynchronous bus master (see Figure 43 and  
Figure 44)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
4P  
MAX  
MIN  
4P  
MAX  
1
2
t
t
Pulse duration, XCS low  
Pulse duration, XCS high  
ns  
ns  
w(XCSL)  
4P  
1
4P  
1
w(XCSH)  
Setup time, expansion bus select signals valid before XCS  
low  
3
t
ns  
su(XSEL-XCSL)  
4
t
t
t
t
t
t
Hold time, expansion bus select signals valid after XCS low  
3
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
h(XCSL-XSEL)  
h(XRYL-XCSL)  
su(XBEV-XCSH)  
h(XCSH-XBEV)  
su(XDV-XCSH)  
h(XCSH-XDV)  
10  
11  
12  
13  
14  
Hold time, XCS low after XRDY low  
P + 1.5  
P + 1.5  
§
Setup time, XBE[3:0]/XA[5:2] valid before XCS high  
1
3
1
3
1
3
1
3
§
Hold time, XBE[3:0]/XA[5:2] valid after XCS high  
Setup time, XDx valid before XCS high  
Hold time, XDx valid after XCS high  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
Expansion bus select signals include XCNTL and XR/W.  
XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.  
switching characteristics over recommended operating conditions with external device as  
asynchronous bus master (see Figure 43 and Figure 44)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
5
6
7
8
9
t
t
t
t
t
Delay time, XCS low to XDx low impedance  
Delay time, XCS high to XDx invalid  
Delay time, XCS high to XDx high impedance  
Delay time, XRDY low to XDx valid  
0
0
ns  
ns  
ns  
ns  
ns  
d(XCSL-XDLZ)  
d(XCSH-XDIV)  
d(XCSH-XDHZ)  
d(XRYL-XDV)  
d(XCSH-XRYH)  
0
12  
0
12  
4P  
1
4P  
1.8  
12  
4  
4  
1  
Delay time, XCS high to XRDY high  
0
12  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
77  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
EXPANSION BUS ASYNCHRONOUS HOST-PORT TIMING (CONTINUED)  
1
1
2
10  
10  
XCS  
3
3
4
4
XCNTL  
XBE[3:0]/XA[5:2]  
3
3
3
3
4
4
4
4
XR/W  
XR/W  
7
6
7
6
5
8
5
8
Word  
XD[31:0]  
XRDY  
9
9
XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.  
XW/R input/output polarity selected at boot  
Figure 43. External Device as Asynchronous MasterRead  
10  
1
2
10  
1
XCS  
3
3
4
4
XCNTL  
11  
11  
12  
12  
XBE[3:0]/XA[5:2]  
XR/W  
3
3
3
3
4
4
4
4
XR/W  
13  
13  
14  
9
14  
9
Word  
XD[31:0]  
XRDY  
XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.  
XW/R input/output polarity selected at boot  
Figure 44. External Device as Asynchronous MasterWrite  
78  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
XHOLD/XHOLDA TIMING  
timing requirements for expansion bus arbitration (internal arbiter enabled) (see Figure 45)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
MAX  
3
t
Output hold time, XHOLD high after XHOLDA high  
P
ns  
oh(XHDAH-XHDH)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
switching characteristics over recommended operating conditions for expansion bus arbitration  
†‡  
(internal arbiter enabled) (see Figure 45)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
3P  
MAX  
§
1
2
4
5
t
t
t
t
Delay time, XHOLD high to XBus high impedance  
Delay time, XBus high impedance to XHOLDA high  
Delay time, XHOLD low to XHOLDA low  
ns  
ns  
ns  
ns  
d(XHDH-XBHZ)  
d(XBHZ-XHDAH)  
d(XHDL-XHDAL)  
d(XHDAL-XBLZ)  
0
3P  
0
2P  
2P  
Delay time, XHOLDA low to XBus low impedance  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
XBus consists of XBE[3:0]/XA[5:2], XAS, XW/R, and XBLAST.  
All pending XBus transactions are allowed to complete before XHOLDA is asserted.  
External Requestor  
DSP Owns Bus  
Owns Bus  
DSP Owns Bus  
3
XHOLD (input)  
2
4
XHOLDA (output)  
1
5
C6202/02B  
C6202/02B  
XBus  
XBus consists of XBE[3:0]/XA[5:2], XAS, XW/R, and XBLAST.  
Figure 45. Expansion Bus ArbitrationInternal Arbiter Enabled  
79  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
XHOLD/XHOLDA TIMING (CONTINUED)  
switching characteristics over recommended operating conditions for expansion bus arbitration  
(internal arbiter disabled) (see Figure 46)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
2P 2P + 10  
2P  
MAX  
1
2
t
t
Delay time, XHOLDA high to XBus low impedance  
ns  
ns  
d(XHDAH-XBLZ)  
Delay time, XBus high impedance to XHOLD low  
0
d(XBHZ-XHDL)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
XBus consists of XBE[3:0]/XA[5:2], XAS, XW/R, and XBLAST.  
2
XHOLD (output)  
XHOLDA (input)  
1
C6202/02B  
XBus  
XBus consists of XBE[3:0]/XA[5:2], XAS, XW/R, and XBLAST.  
Figure 46. Expansion Bus ArbitrationInternal Arbiter Disabled  
80  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING  
†‡  
timing requirements for McBSP (see Figure 47)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN MAX  
MIN  
MAX  
§
§
2
3
t
t
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
2P  
2P  
ns  
ns  
c(CKRX)  
P1  
P1  
Pulse duration, CLKR/X high or CLKR/X low  
w(CKRX)  
9
2
9
2
5
6
t
t
t
t
t
t
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
su(FRH-CKRL)  
h(CKRL-FRH)  
su(DRV-CKRL)  
h(CKRL-DRV)  
su(FXH-CKXL)  
h(CKXL-FXH)  
6
6
3
3
8
8
7
0.5  
3
0.5  
3
8
Hold time, DR valid after CLKR low  
4
4.5  
9
9
10  
11  
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
2
2
6
6
3
4
§
CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
The maximum bit rate for the C6202/02B device is 100 Mbps or CPU/2 (the slower of the two). Care must be taken to ensure that the AC timings  
specified in this data sheet are met. The maximum bit rate for McBSP-to-McBSP communications is 100 MHz; therefore, the minimum CLKR/X  
clock cycle is either twice the CPU cycle time (2P), or 10 ns (100 MHz), whichever value is larger. For example, when running parts at 250 MHz  
(P = 4 ns), use 10 ns as the minimum CLKR/X clock cycle (by setting the appropriate CLKGDV ratio or external clock source). When running  
parts at 100 MHz (P = 10 ns), use 2P = 20 ns (50 MHz) as the minimum CLKR/X clock cycle. The maximum bit rate for McBSP-to-McBSP  
communications applies when the serial port is a master of the clock and frame syncs (with CLKR connected to CLKX, FSR connected to FSX,  
CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY = 01b or 10b) and the other device the McBSP  
communicates to is a slave.  
The minimum CLKR/X pulse duration is either (P1) or 4 ns, whichever is larger. For example, when running parts at 250 MHz (P = 4 ns), use  
4 ns as the minimum CLKR/X pulse duration. When running parts at 100 MHz (P = 10 ns), use (P1) = 9 ns as the minimum CLKR/X pulse  
duration.  
81  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
switching characteristics over recommended operating conditions for McBSP (see Figure 47)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
Delay time, CLKS high to CLKR/X high for  
internal CLKR/X generated from CLKS  
input  
1
t
4
16  
4
16  
ns  
d(CKSH-CKRXH)  
§¶  
§¶  
2
3
t
t
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
2P  
2P  
ns  
ns  
c(CKRX)  
Pulse duration, CLKR/X high or CLKR/X  
low  
#
#
3
#
#
3
C 1  
C + 1  
C 1  
C + 1  
w(CKRX)  
Delay time, CLKR high to internal FSR  
valid  
4
9
t
t
t
t
CLKR int  
2  
2  
ns  
ns  
ns  
ns  
d(CKRH-FRV)  
d(CKXH-FXV)  
dis(CKXH-DXHZ)  
d(CKXH-DXV)  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
2  
3
3
9
5
9
4
2  
2
3
9
5
9
3
Delay time, CLKX high to internal FSX  
valid  
1  
2
1  
2
Disable time, DX high impedance following  
last data bit from CLKX high  
12  
13  
1  
2
0.5  
2
Delay time, CLKX high to DX valid  
11  
5
11  
5
Delay time, FSX high to DX valid  
ONLY applies when in data delay 0  
(XDATDLY = 00b) mode.  
FSX int  
FSX ext  
1  
1  
14  
t
ns  
d(FXH-DXV)  
0
10  
0
10  
§
CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
Minimum delay times also represent minimum output hold times.  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
The maximum bit rate for the C6202/02B device is 100 Mbps or CPU/2 (the slower of the two). Care must be taken to ensure that the AC timings  
specified in this data sheet are met. The maximum bit rate for McBSP-to-McBSP communications is 100 MHz; therefore, the minimum CLKR/X  
clock cycle is either twice the CPU cycle time (2P), or 10 ns (100 MHz), whichever value is larger. For example, when running parts at 250 MHz  
(P = 4 ns), use 10 ns as the minimum CLKR/X clock cycle (by setting the appropriate CLKGDV ratio or external clock source). When running  
parts at 100 MHz (P = 10 ns), use 2P = 20 ns (50 MHz) as the minimum CLKR/X clock cycle. The maximum bit rate for McBSP-to-McBSP  
communications applies when the serial port is a master of the clock and frame syncs (with CLKR connected to CLKX, FSR connected to FSX,  
CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY = 01b or 10b) and the other device the McBSP  
communicates to is a slave.  
#
C = H or L  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the 100-MHz limit.  
82  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKS  
1
2
3
3
CLKR  
4
4
FSR (int)  
5
6
FSR (ext)  
7
8
DR  
Bit(n-1)  
(n-2)  
(n-3)  
2
3
3
CLKX  
9
FSX (int)  
11  
10  
FSX (ext)  
FSX (XDATDLY=00b)  
13  
(n-2)  
14  
13  
12  
DX  
Bit 0  
Bit(n-1)  
(n-3)  
Figure 47. McBSP Timings  
83  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
timing requirements for FSR when GSYNC = 1 (see Figure 48)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
4
MAX  
1
2
t
t
Setup time, FSR high before CLKS high  
Hold time, FSR high after CLKS high  
ns  
ns  
su(FRH-CKSH)  
4
h(CKSH-FRH)  
CLKS  
1
2
FSR external  
CLKR/X (no need to resync)  
CLKR/X (needs resync)  
Figure 48. FSR Timing When GSYNC = 1  
84  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0 (see Figure 49)  
C6202-200  
C6202-250  
C6202B-250  
NO.  
UNIT  
C6202B-300  
MASTER SLAVE  
MIN  
12  
4
MAX  
MIN  
2 3P  
5 + 6P  
MAX  
4
5
t
t
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
ns  
ns  
su(DRV-CKXL)  
h(CKXL-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 10b, CLKXP = 0 (see Figure 49)  
C6202-200  
C6202-250  
C6202B-250  
NO.  
PARAMETER  
UNIT  
C6202B-300  
§
MASTER  
MIN MAX  
SLAVE  
MIN  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
T 2 T + 3  
L 2 L + 3  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX high to DX valid  
3  
4
3P + 4 5P + 17  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
t
L 2 L + 3  
ns  
dis(CKXL-DXHZ)  
Disable time, DX high impedance following last data bit from FSX  
high  
7
8
t
t
P + 3 3P + 17  
2P + 2 4P + 17  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the 100-MHz limit.  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
85  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
1
2
8
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 49. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
86  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 0 (see Figure 50)  
C6202-200  
C6202-250  
C6202B-250  
NO.  
UNIT  
C6202B-300  
MASTER SLAVE  
MIN  
12  
4
MAX  
MIN  
2 3P  
5 + 6P  
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
ns  
ns  
su(DRV-CKXH)  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 11b, CLKXP = 0 (see Figure 50)  
C6202-200  
C6202-250  
C6202B-250  
NO.  
PARAMETER  
UNIT  
C6202B-300  
§
MASTER  
MIN MAX  
SLAVE  
MIN  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
L 2 L + 3  
T 2 T + 3  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX low to DX valid  
2  
4
3P + 4 5P + 17  
3P + 3 5P + 17  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
t
2  
4
ns  
ns  
dis(CKXL-DXHZ)  
7
t
Delay time, FSX low to DX valid  
H 2 H + 4  
2P + 2 4P + 17  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
The maximum transfer rate for SPI mode is limited to the above AC timing constraints.  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
87  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
DX  
1
2
7
6
3
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
DR  
Bit 0  
(n-2)  
(n-4)  
Figure 50. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
88  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1 (see Figure 51)  
C6202-200  
C6202-250  
C6202B-250  
NO.  
UNIT  
C6202B-300  
MASTER SLAVE  
MIN  
12  
4
MAX  
MIN  
2 3P  
5 + 6P  
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
ns  
ns  
su(DRV-CKXH)  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 10b, CLKXP = 1 (see Figure 51)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
§
§
MASTER  
SLAVE  
MIN  
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
MIN MAX  
MAX  
Hold time, FSX low after  
CLKX high  
1
2
3
t
t
t
T 2 T + 3  
H 2 H + 3  
T 2 T + 3  
H 2 H + 3  
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXL-DXV)  
Delay time, FSX low to  
#
CLKX low  
Delay time, CLKX low to  
DX valid  
2  
4
3P + 4 5P + 17  
3  
4
3P + 4 5P + 17  
Disable time, DX high  
impedance following last  
data bit from CLKX high  
6
t
H 2 H + 3  
H 2 H + 3  
ns  
dis(CKXH-DXHZ)  
Disable time, DX high  
impedance following last  
data bit from FSX high  
7
8
t
t
P + 3 3P + 17  
2P + 2 4P + 17  
P + 3 3P + 17  
2P + 2 4P + 17  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to  
DX valid  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
The maximum transfer rate for SPI mode is limited to the above AC timing constraints.  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
89  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
1
2
7
6
8
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 51. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
90  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1 (see Figure 52)  
C6202-200  
C6202-250  
C6202B-250  
NO.  
UNIT  
C6202B-300  
MASTER SLAVE  
MIN  
12  
4
MAX  
MIN  
2 3P  
5 + 6P  
MAX  
4
5
t
t
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
ns  
ns  
su(DRV-CKXL)  
h(CKXL-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 11b, CLKXP = 1 (see Figure 52)  
C6202-200  
C6202-250  
C6202B-250  
NO.  
PARAMETER  
UNIT  
C6202B-300  
§
MASTER  
MIN MAX  
SLAVE  
MIN  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
H 2 H + 3  
T 2 T + 2  
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
3  
4
3P + 4 5P + 17  
3P + 3 5P + 17  
Disable time, DX high impedance following last data bit from  
CLKX high  
6
t
2  
4
ns  
ns  
dis(CKXH-DXHZ)  
7
t
Delay time, FSX low to DX valid  
L 2 L + 5  
2P + 2 4P + 17  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the 100-MHz limit.  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
91  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
DX  
1
2
7
6
3
Bit 0  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
DR  
(n-2)  
(n-3)  
(n-4)  
Figure 52. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
92  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
DMAC, TIMER, POWER-DOWN TIMING  
switching characteristics over recommended operating conditions for DMAC outputs  
(see Figure 53)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
t
Pulse duration, DMAC high  
2P3  
ns  
w(DMACH)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
1
DMAC[3:0]  
Figure 53. DMAC Timing  
timing requirements for timer inputs (see Figure 54)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
2P  
MAX  
1
2
t
t
Pulse duration, TINP high  
Pulse duration, TINP low  
ns  
ns  
w(TINPH)  
2P  
w(TINPL)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
switching characteristics over recommended operating conditions for timer outputs  
(see Figure 54)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
2P3  
2P3  
MAX  
3
4
t
t
Pulse duration, TOUT high  
Pulse duration, TOUT low  
ns  
ns  
w(TOUTH)  
w(TOUTL)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
2
1
TINPx  
4
3
TOUTx  
Figure 54. Timer Timing  
93  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
DMAC, TIMER, POWER-DOWN TIMING (CONTINUED)  
switching characteristics over recommended operating conditions for power-down outputs  
(see Figure 55)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
t
Pulse duration, PD high  
2P  
ns  
w(PDH)  
P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.  
1
PD  
Figure 55. Power-Down Timing  
94  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢊ ꢋꢌ ꢍꢎꢏꢐꢑ ꢋ ꢒꢀ ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
JTAG TEST-PORT TIMING  
timing requirements for JTAG test port (see Figure 56)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
UNIT  
MIN  
35  
11  
9
MAX  
1
3
4
t
t
t
Cycle time, TCK  
ns  
ns  
ns  
c(TCK)  
Setup time, TDI/TMS/TRST valid before TCK high  
Hold time, TDI/TMS/TRST valid after TCK high  
su(TDIV-TCKH)  
h(TCKH-TDIV)  
switching characteristics over recommended operating conditions for JTAG test port  
(see Figure 56)  
C6202-200  
C6202-250  
C6202B-250  
C6202B-300  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
12  
MIN  
MAX  
2
t
Delay time, TCK low to TDO valid  
4.5  
4.5  
13.5  
ns  
d(TCKL-TDOV)  
1
TCK  
TDO  
2
2
4
3
TDI/TMS/TRST  
Figure 56. JTAG Test-Port Timing  
95  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MECHANICAL DATA  
GJL (S-PBGA-N352) [C6202 only]  
PLASTIC BALL GRID ARRAY  
27,20  
SQ  
26,80  
25,20  
SQ  
25,00 TYP  
24,80  
1,00  
16,30 NOM  
0,50  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
A1 Corner  
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23 25  
2
4
6
8
10 12 14 16 18 20 22 24 26  
Bottom View  
Heat Slug  
See Note E  
3,80 MAX  
1,30  
0,87  
Seating Plane  
0,15  
0,70  
0,10  
0,50  
M
0,60  
0,40  
4173516-2/H 02/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Thermally enhanced plastic package with heat slug (HSL)  
D. Flip chip application only  
E. Possible protrusion in this area, but within 3,50 max package height specification  
F. Falls within JEDEC MO-151/AAL-1  
thermal resistance characteristics (S-PBGA package) [C6202 only]  
NO  
°C/W  
0.47  
14.2  
12.3  
10.9  
9.3  
Air Flow m/s  
1
2
3
4
5
RΘ  
RΘ  
RΘ  
RΘ  
RΘ  
Junction-to-case  
N/A  
JC  
JA  
JA  
JA  
JA  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
0.00  
0.50  
1.00  
2.00  
m/s = meters per second  
96  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
ꢋꢌ  
ꢍꢎ  
ꢏꢐ  
ꢒꢀ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MECHANICAL DATA  
GLS (S-PBGA-N384)  
PLASTIC BALL GRID ARRAY  
18,10  
17,90  
SQ  
16,80 TYP  
0,80  
0,40  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
A1 Corner  
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21  
2
4
6
8
10 12 14 16 18 20 22  
Heat Slug  
Bottom View  
2,80 MAX  
1,00 NOM  
Seating Plane  
0,12  
0,55  
0,45  
M
0,10  
0,45  
0,35  
4188959-3/E 11/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Thermally enhanced plastic package with heat slug (HSL)  
D. Flip chip application only  
thermal resistance characteristics (S-PBGA package) ) [C6202 only]  
NO  
°C/W  
0.85  
21.6  
18.0  
15.5  
12.8  
Air Flow m/s  
1
2
3
4
5
RΘ  
RΘ  
RΘ  
RΘ  
RΘ  
Junction-to-case  
N/A  
JC  
JA  
JA  
JA  
JA  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
0.00  
0.50  
1.00  
2.00  
m/s = meters per second  
97  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢅ ꢄꢈ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅ ꢄꢉ  
ꢊ ꢋ ꢌꢍ ꢎꢏꢐ ꢑꢋ ꢒ ꢀ ꢎꢋ ꢓ ꢋ ꢀꢔꢕ ꢂ ꢋ ꢓꢒ ꢔꢕ ꢐ ꢖꢑ ꢆꢍ ꢂꢂꢑ ꢖꢂ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MECHANICAL DATA  
GNZ (SPBGAN352) [C6202B only]  
PLASTIC BALL GRID ARRAY  
27,20  
SQ  
25,00 TYP  
26,80  
1,00  
25,20  
SQ  
24,80  
0,50  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
1,00  
U
T
A1 Corner  
R
P
N
M
L
K
0,50  
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23 25  
10 12 14 16 18 20 22 24 26  
2
4
6
8
Bottom View  
2,80 MAX  
0,50 NOM  
Seating Plane  
0,15  
0,70  
0,50  
M
0,10  
0,60  
0,40  
4202595-2/E 12/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Flip chip application only.  
D. Substrate color may vary.  
thermal resistance characteristics (S-PBGA package) [C6202B only]  
NO  
°C/W  
6.35  
20.0  
17.0  
16.3  
15.2  
Air Flow m/s  
1
2
3
4
5
RΘ  
RΘ  
RΘ  
RΘ  
RΘ  
Junction-to-case  
N/A  
JC  
JA  
JA  
JA  
JA  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
0.00  
0.50  
1.00  
2.00  
m/s = meters per second  
98  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢅꢄ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢅ ꢄꢉ  
ꢎꢋ ꢓꢋ ꢀꢔꢕ ꢂꢋ ꢓ ꢒꢔꢕ ꢐꢖ ꢑ ꢆꢍ ꢂ ꢂꢑ ꢖ ꢂ  
ꢋꢌ  
ꢍꢎ  
ꢏꢐ  
ꢒꢀ  
SPRS104G OCTOBER 1999 REVISED APRIL 2003  
MECHANICAL DATA  
GNY (S-PBGA-N384) [C6202B only]  
PLASTIC BALL GRID ARRAY  
18,10  
SQ  
16,80 TYP  
0,80  
17,90  
0,40  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
A1 Corner  
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21  
2
4
6
8
10 12 14 16 18 20 22  
Bottom View  
2,35 MAX  
Seating Plane  
0,12  
0,55  
0,45  
M
0,10  
0,45  
0,35  
4201137/C 11/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Flip chip application only  
D. Substrate color may vary  
thermal resistance characteristics (S-PBGA package) [C6202B only]  
Air Flow m/s  
NO  
(°C/W)  
6.27  
17.6  
13.9  
13.1  
11.9  
1
2
3
4
5
RΘ  
RΘ  
RΘ  
RΘ  
RΘ  
Junction-to-case  
N/A  
0.0  
0.5  
1.0  
2.0  
JC  
JA  
JA  
JA  
JA  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
m/s = meters per second  
99  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

TMS320C6202B-300

Fixed-Point Digital Signal Processor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TMS320C6202BGDP167

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6202BGFN100

FIXED-POINT DIGITAL SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6202BGFN167

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6202BGGP100

FIXED-POINT DIGITAL SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6202BGGP167

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6202BGHK100

FIXED-POINT DIGITAL SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6202BGHK167

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6202BGJC100

FIXED-POINT DIGITAL SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6202BGJC167

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6202BGJL-100

32-BIT, 100MHz, OTHER DSP, PBGA352, PLASTIC, BGA-352

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6202BGJL-150

32-BIT, 150MHz, OTHER DSP, PBGA352, PLASTIC, BGA-352

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI