TMS320C6711BGFNA100 [ETC]

DSP|32-BIT|CMOS|BGA|256PIN|PLASTIC ;
TMS320C6711BGFNA100
型号: TMS320C6711BGFNA100
厂家: ETC    ETC
描述:

DSP|32-BIT|CMOS|BGA|256PIN|PLASTIC

外围集成电路 时钟
文件: 总85页 (文件大小:1193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B – FEBRUARY 1999 – REVISED SEPTEMBER 2001  
D
D
Excellent Price/Performance Digital Signal  
Processors (DSPs): TMS320C67x  
(TMS320C6711 and TMS320C6711B)  
– Eight 32-Bit Instructions/Cycle  
– C6211, C6211B, C6711, and C6711B are  
Pin-Compatible  
– 100-, 150-MHz Clock Rates  
– 10-, 6.7-ns Instruction Cycle Time  
– 600, 900 MFLOPS  
D
D
Device Configuration  
– Boot Mode: HPI, 8-, 16-, and 32-Bit ROM  
Boot  
– Endianness: Little Endian, Big Endian  
32-Bit External Memory Interface (EMIF)  
– Glueless Interface to Asynchronous  
Memories: SRAM and EPROM  
– Glueless Interface to Synchronous  
Memories: SDRAM and SBSRAM  
– 512M-Byte Total Addressable External  
Memory Space  
VelociTI Advanced Very Long Instruction  
Word (VLIW) C67x DSP Core (C6711/11B)  
– Eight Highly Independent Functional  
Units:  
D
D
D
Enhanced Direct-Memory-Access (EDMA)  
Controller (16 Independent Channels)  
– Four ALUs (Floating- and Fixed-Point)  
– Two ALUs (Fixed-Point)  
– Two Multipliers (Floating- and  
Fixed-Point)  
16-Bit Host-Port Interface (HPI)  
– Access to Entire Memory Map  
Two Multichannel Buffered Serial Ports  
(McBSPs)  
– Direct Interface to T1/E1, MVIP, SCSA  
Framers  
– ST-Bus-Switching Compatible  
– Up to 256 Channels Each  
– AC97-Compatible  
– Serial-Peripheral-Interface (SPI)  
Compatible (Motorola )  
– Load-Store Architecture With 32 32-Bit  
General-Purpose Registers  
– Instruction Packing Reduces Code Size  
– All Instructions Conditional  
D
D
Instruction Set Features  
– Hardware Support for IEEE  
Single-Precision and Double-Precision  
Instructions  
– Byte-Addressable (8-, 16-, 32-Bit Data)  
– 8-Bit Overflow Protection  
– Saturation  
– Bit-Field Extract, Set, Clear  
– Bit-Counting  
– Normalization  
D
D
Two 32-Bit General-Purpose Timers  
Flexible Phase-Locked-Loop (PLL) Clock  
Generator  
D
D
D
D
IEEE-1149.1 (JTAG )  
Boundary-Scan-Compatible  
256-Pin Ball Grid Array (BGA) Package  
(GFN Suffix)  
L1/L2 Memory Architecture  
– 32K-Bit (4K-Byte) L1P Program Cache  
(Direct Mapped)  
– 32K-Bit (4K-Byte) L1D Data Cache  
(2-Way Set-Associative)  
0.18-µm/5-Level Metal Process  
– CMOS Technology  
3.3-V I/Os, 1.8-V Internal  
– 512K-Bit (64K-Byte) L2 Unified Mapped  
RAM/Cache  
(Flexible Data/Program Allocation)  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
TMS320C67x, VelociTI, and C67x are trademarks of Texas Instruments.  
Motorola is a trademark of Motorola, Inc.  
All trademarks are the property of their respective owners.  
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
Copyright 2001, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
Table of Contents  
GFN BGA package (bottom view) . . . . . . . . . . . . . . . . . . . . . . 2  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
device compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
functional block and CPU (DSP core) diagram . . . . . . . . . . . 6  
CPU (DSP core) description . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
memory map summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
peripheral register descriptions . . . . . . . . . . . . . . . . . . . . . . . 10  
PWRD bits in CPU CSR register description . . . . . . . . . . . 15  
EDMA channel synchronization events . . . . . . . . . . . . . . . . 16  
interrupt sources and interrupt selector . . . . . . . . . . . . . . . . 17  
signal groups description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
terminal functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
documentation support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
clock PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
power-supply sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
recommended operating conditions . . . . . . . . . . . . . . . . 35  
electrical characteristics over recommended ranges of  
supply voltage and operating case temperature . 35  
parameter measurement information . . . . . . . . . . . . . . . 36  
signal transition levels . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
timing parameters and board routing analysis . . . . . . 37  
input and output clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
asynchronous memory timing . . . . . . . . . . . . . . . . . . . . . 42  
synchronous-burst memory timing . . . . . . . . . . . . . . . . . 46  
synchronous DRAM timing . . . . . . . . . . . . . . . . . . . . . . . . 49  
HOLD/HOLDA timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
BUSREQ timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
reset timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
external interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
host-port interface timing . . . . . . . . . . . . . . . . . . . . . . . . . 61  
multichannel buffered serial port timing . . . . . . . . . . . . . 65  
timer timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
JTAG test-port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
absolute maximum ratings over operating case  
temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
GFN BGA package (bottom view)  
GFN 256-PIN BALL GRID ARRAY (BGA) PACKAGE  
(BOTTOM VIEW)  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13  
12  
15  
17  
19  
2
4
6
8
10  
14  
16  
18  
20  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
description  
The TMS320C67x DSPs (including the TMS320C6711/C6711B devices) compose the floating-point DSP  
family in the TMS320C6000 DSP platform. The TMS320C6711 (C6711) and TMS320C6711B (C6711B)  
devices are based on the high-performance, advanced VelociTI very-long-instruction-word (VLIW)  
architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and  
multifunction applications.  
With performance of up to 900 million floating-point operations per second (MFLOPS) at a clock rate of  
150 MHz, the C6711/C6711B device also offers cost-effective solutions to high-performance DSP  
programming challenges. The C6711/C6711B DSP possesses the operational flexibility of high-speed  
controllers and the numerical capability of array processors. This processor has 32 general-purpose registers  
of 32-bit word length and eight highly independent functional units. The eight functional units provide four  
floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The C6711/C6711B  
can produce two MACs per cycle for a total of 300 MMACS. The C6711/C6711B DSP also has  
application-specific hardware logic, on-chip memory, and additional on-chip peripherals.  
The C6711/C6711B uses a two-level cache-based architecture and has a powerful and diverse set of  
peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache  
(L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory  
space that is shared between program and data space. L2 memory can be configured as mapped memory,  
cache, or combinations of the two.The peripheral set includes two multichannel buffered serial ports (McBSPs),  
two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF)  
capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals.  
The C6711/C6711B has a complete set of development tools which includes: a new C compiler, an assembly  
optimizer to simplify programming and scheduling, and a Windows debugger interface for visibility into source  
code execution.  
TMS320C6000 is a trademark of Texas Instruments.  
Windows is a registered trademark of the Microsoft Corporation.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
device characteristics  
Table 1 provides an overview of the C6711/C6711B DSP. The table shows significant features of each device,  
including the capacity of on-chip RAM, the peripherals, the execution time, and the package type with pin count.  
For more details on the C6000 DSP device part numbers and part numbering, see Table 17 and Figure 4.  
Table 1. Characteristics of the C6711/C6711B Processors  
C6711  
(FLOATING-POINT DSP)  
C6711B  
(FLOATING-POINT DSP)  
HARDWARE FEATURES  
EMIF  
1
1
(Clock source = ECLKIN)  
EDMA  
(Internal clock source =  
CPU clock frequency)  
1
1
2
1
1
2
HPI  
Peripherals  
McBSPs  
(Internal clock source =  
CPU/2 clock frequency)  
32-Bit Timers  
(Internal clock source =  
CPU/4 clock frequency)  
2
2
Size (Bytes)  
72K  
72K  
On-Chip  
Memory  
4K-Byte (4KB) L1 Program (L1P) Cache  
4KB L1 Data (L1D) Cache  
4K-Byte (4KB) L1 Program (L1P) Cache  
4KB L1 Data (L1D) Cache  
Organization  
64KB Unified Mapped RAM/Cache (L2)  
64KB Unified Mapped RAM/Cache (L2)  
CPU ID+  
CPU Rev ID  
Control Status Register  
(CSR.[31:16])  
0x0202  
0x0202  
Frequency  
MHz  
150, 100  
150, 100  
6.7 ns (C6711B-150)  
10 ns (C6711B-100)  
10 ns (C6711BGFNA-100)  
6.7 ns (C6711-150)  
10 ns (C6711-100)  
Cycle Time  
ns  
Core (V)  
1.8  
3.3  
1.8  
3.3  
Voltage  
I/O (V)  
PLL Options  
CLKIN frequency multiplier  
27 x 27 mm  
Bypass (x1), x4  
256-Pin BGA (GFN)  
Bypass (x1), x4  
256-Pin BGA (GFN)  
BGA Package  
Process  
Technology  
µm  
0.18 µm  
0.18 µm  
Product Status  
Product Preview (PP)  
Advance Information (AI)  
Production Data (PD)  
PD  
PD  
C6000 is a trademark of Texas Instruments.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
device compatibility  
The TMS320C6211/C6211B and C6711/C6711B devices are pin-compatible and have the same peripheral set;  
thus, making new system designs easier and providing faster time to market. The following list summarizes the  
device characteristic differences among the C6211, C6211B, C6711, and C6711B devices:  
D
D
The C6211 and C6211B devices have a fixed-point C62x CPU, while the C6711 and C6711B devices have  
a floating-point C67x CPU.  
The C6211/C6211B device runs at -167 and -150 MHz clock speeds (with a C6211BGFNA extended  
temperature device that also runs at -150 MHz), while the C6711/C6711B device runs at -150 and -100 MHz  
(with a C6711BGFNA extended temperature device that also runs at -100 MHz).  
For a more detailed discussion on the similarities/differences between the C6211 and C6711 devices, see the  
How to Begin Development Today with the TMS320C6211 DSP and How to Begin Development with the  
TMS320C6711 DSP application reports (literature number SPRA474 and SPRA522, respectively).  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
functional block and CPU (DSP core) diagram  
C6711/C6711B Digital Signal Processors  
SDRAM  
External  
SBSRAM  
32  
Memory  
Interface  
(EMIF)  
L1P Cache  
Direct Mapped  
4K Bytes Total  
SRAM  
ROM/FLASH  
I/O Devices  
Timer 0  
Timer 1  
C6000 CPU (DSP Core)  
Instruction Fetch  
Instruction Dispatch  
Instruction Decode  
Control  
Registers  
L2  
Memory  
4 Banks  
64K Bytes  
Total  
Enhanced  
DMA  
Controller  
(16 channel)  
Control  
Logic  
Multichannel  
Buffered  
Serial Port 1  
(McBSP1)  
Data Path A  
A Register File  
Data Path B  
Framing Chips:  
H.100, MVIP,  
SCSA, T1, E1  
AC97 Devices,  
SPI Devices,  
Codecs  
Test  
B Register File  
In-Circuit  
Emulation  
Multichannel  
Buffered  
Serial Port 0  
(McBSP0)  
Interrupt  
Control  
.L1 .S1 .M1 .D1  
.D2 .M2 .S2 .L2  
L1D Cache  
2-Way Set  
Associative  
Host Port  
Interface  
(HPI)  
16  
4K Bytes Total  
Power-Down  
Logic  
PLL  
(x1, x4)  
Boot  
Configuration  
Interrupt  
Selector  
In addition to fixed-point instructions, these functional units execute floating-point instructions.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
CPU (DSP core) description  
The CPU fetches VelociTI advanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight  
32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture  
features controls by which all eight units do not have to be supplied with instructions if they are not ready to  
execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute  
packet as the previous instruction, or whether it should be executed in the following clock as a part of the next  
execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The  
variable-length execute packets are a key memory-saving feature, distinguishing the C67x CPU from other  
VLIW architectures.  
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains  
functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files  
eachcontain1632-bitregistersforatotalof32general-purposeregisters. Thetwosetsoffunctionalunits, along  
with two register files, compose sides A and B of the CPU (see the functional block and CPU diagram and  
Figure 1). The four functional units on each side of the CPU can freely share the 16 registers belonging to that  
side. Additionally, each side features a single data bus connected to all the registers on the other side, by which  
the two sets of functional units can access data from the register files on the opposite side. While register access  
by functional units on the same side of the CPU as the register file can service all the units in a single clock cycle,  
register access using the register file across the CPU supports one read and one write per cycle.  
The C67x CPU executes all C62x instructions. In addition to C62x fixed-point instructions, the six out of eight  
functional units (.L1, .S1, .M1, .M2, .S2, and .L2) also execute floating-point instructions. The remaining two  
functional units (.D1 and .D2) also execute the new LDDW instruction which loads 64 bits per CPU side for a  
total of 128 bits per cycle.  
Another key feature of the C67x CPU is the load/store architecture, where all instructions operate on registers  
(as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data  
transfers between the register files and the memory. The data address driven by the .D units allows data  
addresses generated from one register file to be used to load or store data to or from the other register file. The  
C67x CPU supports a variety of indirect addressing modes using either linear- or circular-addressing modes  
with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 32 registers. Some  
registers, however, are singled out to support specific addressing or to hold the condition for conditional  
instructions (if the condition is not automatically true). The two .M functional units are dedicated for multiplies.  
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results  
available every clock cycle.  
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory.  
The 32-bit instructions destined for the individual functional units are linkedtogether by 1bits in the least  
significant bit (LSB) position of the instructions. The instructions that are chainedtogether for simultaneous  
execution (up to eight in total) compose an execute packet. A 0in the LSB of an instruction breaks the chain,  
effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the  
fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of  
the current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet  
can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one  
per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch  
packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units  
for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit  
registers, they can be subsequently moved to memory as bytes or half-words as well. All load and store  
instructions are byte-, half-word, or word-addressable.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
CPU (DSP core) description (continued)  
src1  
.L1  
src2  
dst  
8
8
long dst  
long src  
8
32  
32  
LD1 32 MSB  
ST1  
Register  
File A  
(A0A15)  
long src  
long dst  
dst  
8
Data Path A  
.S1  
src1  
src2  
dst  
.M1  
src1  
src2  
LD1 32 LSB  
DA1  
dst  
src1  
src2  
.D1  
2X  
1X  
src2  
src1  
dst  
DA2  
.D2  
.M2  
LD2 32 LSB  
src2  
src1  
dst  
src2  
Register  
File B  
(B0B15)  
src1  
dst  
.S2  
Data Path B  
8
8
long dst  
long src  
8
32  
32  
LD2 32 MSB  
ST2  
long src  
long dst  
dst  
8
.L2  
src2  
src1  
Control  
Register File  
In addition to fixed-point instructions, these functional units execute floating-point instructions.  
Figure 1. TMS320C67x CPU (DSP Core) Data Paths  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
memory map summary  
Table 2 shows the memory map address ranges of the C6711/C6711B devices. Internal memory is always  
located at address 0 and can be used as both program and data memory. The C6711/C6711B configuration  
registers for the common peripherals are located at the same hex address ranges. The external memory  
address ranges in the C6711/C6711B devices begin at the address location 0x8000 0000.  
Table 2. TMS320C6711/C6711B Memory Map Summary  
MEMORY BLOCK DESCRIPTION  
Internal RAM (L2)  
BLOCK SIZE (BYTES)  
HEX ADDRESS RANGE  
0000 0000 0000 FFFF  
0001 0000 017F FFFF  
0180 0000 0183 FFFF  
0184 0000 0187 FFFF  
0188 0000 018B FFFF  
018C 0000 018F FFFF  
0190 0000 0193 FFFF  
0194 0000 0197 FFFF  
0198 0000 019B FFFF  
019C 0000 019F FFFF  
01A0 0000 01A3 FFFF  
01A4 0000 01FF FFFF  
0200 0000 0200 0033  
0200 0034 2FFF FFFF  
3000 0000 3FFF FFFF  
4000 0000 7FFF FFFF  
8000 0000 8FFF FFFF  
9000 0000 9FFF FFFF  
A000 0000 AFFF FFFF  
B000 0000 BFFF FFFF  
C000 0000 FFFF FFFF  
64K  
24M 64K  
256K  
Reserved  
External Memory Interface (EMIF) Registers  
L2 Registers  
256K  
HPI Registers  
256K  
McBSP 0 Registers  
McBSP 1 Registers  
Timer 0 Registers  
256K  
256K  
256K  
Timer 1 Registers  
256K  
Interrupt Selector Registers  
EDMA RAM and EDMA Registers  
Reserved  
256K  
256K  
6M 256K  
52  
QDMA Registers  
Reserved  
736M 52  
256M  
1G  
McBSP 0/1 Data  
Reserved  
EMIF CE0  
EMIF CE1  
EMIF CE2  
EMIF CE3  
256M  
256M  
256M  
256M  
1G  
Reserved  
The number of EMIF address pins (EA[21:2]) limits the maximum addressable memory (SDRAM) to 128MB per CE space. To get 256MB of  
addressable memory, additional general-purpose output pin or external logic is required.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
peripheral register descriptions  
Table 3 through Table 13 identify the peripheral registers for the C6711/C6711B device by their register names,  
acronyms, and hex address or hex address range. For more detailed information on the register contents, bit  
names, and their descriptions, see the TMS320C6000 Peripherals Reference Guide (literature number  
SPRU190).  
Table 3. EMIF Registers  
HEX ADDRESS RANGE  
0180 0000  
ACRONYM  
GBLCTL  
CECTL1  
CECTL0  
REGISTER NAME  
EMIF global control  
EMIF CE1 space control  
EMIF CE0 space control  
Reserved  
0180 0004  
0180 0008  
0180 000C  
0180 0010  
CECTL2  
CECTL3  
SDCTL  
SDTIM  
SDEXT  
EMIF CE2 space control  
EMIF CE3 space control  
EMIF SDRAM control  
EMIF SDRAM refresh control  
EMIF SDRAM extension  
Reserved  
0180 0014  
0180 0018  
0180 001C  
0180 0020  
0180 0024 0183 FFFF  
Table 4. L2 Cache Registers  
HEX ADDRESS RANGE  
0184 0000  
ACRONYM  
CCFG  
REGISTER NAME  
Cache configuration register  
0184 4000  
L2FBAR  
L2FWC  
L2CBAR  
L2CWC  
L1PFBAR  
L1PFWC  
L1DFBAR  
L1DFWC  
L2FLUSH  
L2CLEAN  
MAR0  
L2 flush base address register  
0184 4004  
L2 flush word count register  
0184 4010  
L2 clean base address register  
0184 4014  
L2 clean word count register  
0184 4020  
L1P flush base address register  
0184 4024  
L1P flush word count register  
0184 4030  
L1D flush base address register  
0184 4034  
L1D flush word count register  
0184 5000  
L2 flush register  
0184 5004  
L2 clean register  
0184 8200  
Controls CE0 range 8000 0000 80FF FFFF  
Controls CE0 range 8100 0000 81FF FFFF  
Controls CE0 range 8200 0000 82FF FFFF  
Controls CE0 range 8300 0000 83FF FFFF  
Controls CE1 range 9000 0000 90FF FFFF  
Controls CE1 range 9100 0000 91FF FFFF  
Controls CE1 range 9200 0000 92FF FFFF  
Controls CE1 range 9300 0000 93FF FFFF  
Controls CE2 range A000 0000 A0FF FFFF  
Controls CE2 range A100 0000 A1FF FFFF  
Controls CE2 range A200 0000 A2FF FFFF  
Controls CE2 range A300 0000 A3FF FFFF  
Controls CE3 range B000 0000 B0FF FFFF  
Controls CE3 range B100 0000 B1FF FFFF  
Controls CE3 range B200 0000 B2FF FFFF  
Controls CE3 range B300 0000 B3FF FFFF  
Reserved  
0184 8204  
MAR1  
0184 8208  
MAR2  
0184 820C  
0184 8240  
MAR3  
MAR4  
0184 8244  
MAR5  
0184 8248  
MAR6  
0184 824C  
0184 8280  
MAR7  
MAR8  
0184 8284  
MAR9  
0184 8288  
MAR10  
MAR11  
MAR12  
MAR13  
MAR14  
MAR15  
0184 828C  
0184 82C0  
0184 82C4  
0184 82C8  
0184 82CC  
0184 82D0 0187 FFFF  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
peripheral register descriptions (continued)  
Table 5. EDMA Registers  
HEX ADDRESS RANGE  
01A0 FF9C 01A0 FFDC  
01A0 FFE0  
ACRONYM  
REGISTER NAME  
Reserved  
PQSR  
CIPR  
CIER  
CCER  
ER  
Priority queue status register  
Channel interrupt pending register  
Channel interrupt enable register  
Channel chain enable register  
Event register  
01A0 FFE4  
01A0 FFE8  
01A0 FFEC  
01A0 FFF0  
01A0 FFF4  
EER  
ECR  
ESR  
Event enable register  
Event clear register  
01A0 FFF8  
01A0 FFFC  
Event set register  
01A1 0000 01A3 FFFF  
Reserved  
Table 6. EDMA Parameter RAM  
HEX ADDRESS RANGE  
01A0 0000 01A0 0017  
01A0 0018 01A0 002F  
01A0 0030 01A0 0047  
01A0 0048 01A0 005F  
01A0 0060 01A0 0077  
01A0 0078 01A0 008F  
01A0 0090 01A0 00A7  
01A0 00A8 01A0 00BF  
01A0 00C0 01A0 00D7  
01A0 00D8 01A0 00EF  
01A0 00F0 01A0 00107  
01A0 0108 01A0 011F  
01A0 0120 01A0 0137  
01A0 0138 01A0 014F  
01A0 0150 01A0 0167  
01A0 0168 01A0 017F  
01A0 0180 01A0 0197  
01A0 0198 01A0 01AF  
...  
ACRONYM  
REGISTER NAME  
Parameters for Event 0 (6 words)  
Parameters for Event 1 (6 words)  
Parameters for Event 2 (6 words)  
Parameters for Event 3 (6 words)  
Parameters for Event 4 (6 words)  
Parameters for Event 5 (6 words)  
Parameters for Event 6 (6 words)  
Parameters for Event 7 (6 words)  
Parameters for Event 8 (6 words)  
Parameters for Event 9 (6 words)  
Parameters for Event 10 (6 words)  
Parameters for Event 11 (6 words)  
Parameters for Event 12 (6 words)  
Parameters for Event 13 (6 words)  
Parameters for Event 14 (6 words)  
Parameters for Event 15 (6 words)  
Reload/link parameters for Event M (6 words)  
Reload/link parameters for Event N (6 words)  
...  
01A0 07E0 01A0 07F7  
01A0 07F8 01A0 07FF  
Reload/link parameters for Event Z (6 words)  
Scratch pad area (2 words)  
The C6711/C6711B device has sixty-nine parameter sets [six (6) words each] that can be used to reload/link EDMA transfers.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
peripheral register descriptions (continued)  
Table 7. Quick DMA (QDMA) and Pseudo Registers  
HEX ADDRESS RANGE  
0200 0000  
ACRONYM  
QOPT  
QSRC  
QCNT  
QDST  
QIDX  
REGISTER NAME  
QDMA options parameter register  
QDMA source address register  
QDMA frame count register  
QDMA destination address register  
QDMA index register  
0200 0004  
0200 0008  
0200 000C  
0200 0010  
0200 0014 0200 001C  
0200 0020  
Reserved  
QSOPT  
QSSRC  
QSCNT  
QSDST  
QSIDX  
QDMA pseudo options register  
0200 0024  
QDMA pseudo source address register  
QDMA pseudo frame count register  
QDMA pseudo destination address register  
QDMA pseudo index register  
0200 0028  
0200 002C  
0200 0030  
All the QDMA and Pseudo registers are write-accessible only  
Table 8. Interrupt Selector Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Selects which interrupts drive CPU interrupts 1015  
(INT10INT15)  
019C 0000  
MUXH  
Interrupt multiplexer high  
Selects which interrupts drive CPU interrupts 49  
(INT04INT09)  
019C 0004  
MUXL  
Interrupt multiplexer low  
Sets the polarity of the external interrupts  
(EXT_INT4EXT_INT7)  
019C 0008  
EXTPOL  
External interrupt polarity  
Reserved  
019C 000C 019F FFFF  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
peripheral register descriptions (continued)  
Table 9. McBSP 0 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The CPU and DMA/EDMA  
controller can only read this  
register; they cannot write to  
it.  
018C 0000  
DRR0  
McBSP0 data receive register via Peripheral Bus  
0x3000 0000 0x33FF FFFF  
018C 0004  
DRR0  
DXR0  
DXR0  
SPCR0  
RCR0  
XCR0  
SRGR0  
MCR0  
RCER0  
XCER0  
PCR0  
McBSP0 data receive register via EDMA Bus  
McBSP0 data transmit register via Peripheral Bus  
McBSP0 data transmit register via EDMA Bus  
McBSP0 serial port control register  
McBSP0 receive control register  
0x3000 0000 0x33FF FFFF  
018C 0008  
018C 000C  
018C 0010  
McBSP0 transmit control register  
018C 0014  
McBSP0 sample rate generator register  
McBSP0 multichannel control register  
McBSP0 receive channel enable register  
McBSP0 transmit channel enable register  
McBSP0 pin control register  
018C 0018  
018C 001C  
018C 0020  
018C 0024  
018C 0028 018F FFFF  
Reserved  
Table 10. McBSP 1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The CPU and DMA/EDMA  
controller can only read this  
register; they cannot write to  
it.  
0190 0000  
DRR1  
Data receive register via Peripheral Bus  
0x3400 0000 0x37FF FFFF  
0190 0004  
DRR1  
DXR1  
DXR1  
SPCR1  
RCR1  
XCR1  
SRGR1  
MCR1  
RCER1  
XCER1  
PCR1  
McBSP1 data receive register via EDMA Bus  
McBSP1 data transmit register via Peripheral Bus  
McBSP1 data transmit register via EDMA Bus  
McBSP1 serial port control register  
McBSP1 receive control register  
0x3400 0000 0x37FF FFFF  
0190 0008  
0190 000C  
0190 0010  
McBSP1 transmit control register  
0190 0014  
McBSP1 sample rate generator register  
McBSP1 multichannel control register  
McBSP1 receive channel enable register  
McBSP1 transmit channel enable register  
McBSP1 pin control register  
0190 0018  
0190 001C  
0190 0020  
0190 0024  
0190 0028 0193 FFFF  
Reserved  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
peripheral register descriptions (continued)  
Table 11. Timer 0 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer,  
monitors the timer status, and controls the function  
of the TOUT pin.  
0194 0000  
CTL0  
Timer 0 control register  
Timer 0 period register  
Contains the number of timer input clock cycles to  
count. This number controls the TSTAT signal  
frequency.  
0194 0004  
PRD0  
Contains the current value of the incrementing  
counter.  
0194 0008  
CNT0  
Timer 0 counter register  
Reserved  
0194 000C 0197 FFFF  
Table 12. Timer 1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer,  
monitors the timer status, and controls the function  
of the TOUT pin.  
0198 0000  
CTL1  
Timer 1 control register  
Contains the number of timer input clock cycles to  
count. This number controls the TSTAT signal  
frequency.  
0198 0004  
PRD1  
Timer 1 period register  
Contains the current value of the incrementing  
counter.  
0198 0008  
CNT1  
Timer 1 counter register  
Reserved  
0198 000C 019B FFFF  
Table 13. HPI Registers  
HEX ADDRESS RANGE  
ACRONYM  
HPID  
HPIA  
HPIC  
REGISTER NAME  
HPI data register  
COMMENTS  
Host read/write access only  
Host read/write access only  
Both Host/CPU read/write access  
HPI address register  
HPI control register  
Reserved  
0188 0000  
0188 0001 018B FFFF  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
PWRD bits in CPU CSR register description  
Table 14 identifies the PWRD field (bits 1510) in the CPU CSR register. These bits control the device  
power-down modes. For more detailed information on the PWRD bit field of the CPU CSR register, see the  
TMS320C6000 Peripherals Reference Guide (literature number SPRU190).  
Table 14. PWRD field bits in the CPU CSR Register  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The PWRD field (bits 1510 in the CPU CSR)  
controls the device power-down modes.  
CSR  
Control status register  
Accessible by writing a value to the CSR register.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
EDMA channel synchronization events  
The C67x EDMA supports up to 16 EDMA channels. Four of the sixteen channels (channels 811) are reserved  
for EDMA chaining, leaving 12 EDMA channels available to service peripheral devices. Table 15 lists the source  
of synchronization events associated with each of the programmable EDMA channels. For the C6711/11B, the  
association of an event to a channel is fixed; each of the EDMA channels has one specific event associated  
with it. For more detailed information on the EDMA module, associated channels, and event-transfer chaining,  
see the EDMA Controller chapter of the TMS320C6000 Peripherals Reference Guide (literature number  
SPRU190).  
Table 15. TMS320C6711/C6711B EDMA Channel Synchronization Events  
EDMA  
CHANNEL  
EVENT NAME  
EVENT DESCRIPTION  
Host-port interface (HPI)-to-DSP interrupt  
0
1
2
3
4
5
6
7
DSP_INT  
TINT0  
Timer 0 interrupt  
TINT1  
Timer 1 interrupt  
SD_INT  
EMIF SDRAM timer interrupt  
External interrupt pin 4  
EXT_INT4  
EXT_INT5  
EXT_INT6  
EXT_INT7  
EDMA_TCC8  
EDMA_TCC9  
EDMA_TCC10  
EDMA_TCC11  
XEVT0  
External interrupt pin 5  
External interrupt pin 6  
External interrupt pin 7  
8
9
EDMA transfer complete code (TCC) 1000b interrupt  
EDMA TCC 1001b interrupt  
EDMA TCC 1010b interrupt  
EDMA TCC 1011b interrupt  
McBSP0 transmit event  
McBSP0 receive event  
10  
11  
12  
13  
14  
15  
REVT0  
XEVT1  
McBSP1 transmit event  
McBSP1 receive event  
REVT1  
EDMA channels 8 through 11 are used for transfer chaining only. For more detailed information on event-transfer chaining, see the EDMA  
Controller chapter of the TMS320C6000 Peripherals Reference Guide (literature number SPRU190).  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
interrupt sources and interrupt selector  
The C67x DSP core supports 16 prioritized interrupts, which are listed in Table 16. The highest-priority interrupt  
is INT_00 (dedicated to RESET) while the lowest-priority interrupt is INT_15. The first four interrupts  
(INT_00INT_03) are non-maskable and fixed. The remaining interrupts (INT_04INT_15) are maskable and  
default to the interrupt source specified in Table 16. The interrupt source for interrupts 415 can be programmed  
by modifying the selector value (binary value) in the corresponding fields of the Interrupt Selector Control  
registers: MUXH (address 0x019C0000) and MUXL (address 0x019C0004).  
Table 16. C6711/C6711B DSP Interrupts  
INTERRUPT  
CPU  
INTERRUPT  
NUMBER  
SELECTOR  
VALUE  
(BINARY)  
INTERRUPT  
EVENT  
SELECTOR  
CONTROL  
REGISTER  
INTERRUPT SOURCE  
INT_00  
INT_01  
INT_02  
INT_03  
INT_04  
INT_05  
INT_06  
INT_07  
INT_08  
INT_09  
INT_10  
RESET  
NMI  
Reserved  
Reserved  
EXT_INT4  
EXT_INT5  
EXT_INT6  
EXT_INT7  
EDMA_INT  
Reserved  
SD_INT  
Reserved  
Reserved  
DSP_INT  
TINT0  
Reserved. Do not use.  
Reserved. Do not use.  
MUXL[4:0]  
MUXL[9:5]  
MUXL[14:10]  
MUXL[20:16]  
MUXL[25:21]  
MUXL[30:26]  
MUXH[4:0]  
MUXH[9:5]  
MUXH[14:10]  
MUXH[20:16]  
MUXH[25:21]  
MUXH[30:26]  
00100  
00101  
00110  
00111  
01000  
01001  
00011  
01010  
01011  
00000  
00001  
00010  
01100  
01101  
01110  
01111  
10000 11111  
External interrupt pin 4  
External interrupt pin 5  
External interrupt pin 6  
External interrupt pin 7  
EDMA channel (0 through 15) interrupt  
None, but programmable  
EMIF SDRAM timer interrupt  
None, but programmable  
None, but programmable  
Host-port interface (HPI)-to-DSP interrupt  
Timer 0 interrupt  
INT_11  
INT_12  
INT_13  
INT_14  
INT_15  
TINT1  
Timer 1 interrupt  
XINT0  
McBSP0 transmit interrupt  
McBSP0 receive interrupt  
McBSP1 transmit interrupt  
McBSP1 receive interrupt  
Reserved. Do not use.  
RINT0  
XINT1  
RINT1  
Reserved  
Interrupts INT_00 through INT_03 are non-maskable and fixed.  
InterruptsINT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control  
registers fields. Table 16 shows the default interrupt sources for interrupts INT_04 through INT_15. For more detailed  
information on interrupt sources and selection, see the Interrupt Selector and External Interrupts chapter of the  
TMS320C6000 Peripherals Reference Guide (literature number SPRU190).  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
signal groups description  
CLKIN  
CLKOUT2  
CLKOUT1  
RESET  
NMI  
EXT_INT7  
EXT_INT6  
EXT_INT5  
EXT_INT4  
Reset and  
Interrupts  
CLKMODE0  
Clock/PLL  
PLLV  
PLLG  
PLLF  
TMS  
TDO  
TDI  
RSV5  
RSV4  
RSV3  
RSV2  
RSV1  
RSV0  
TCK  
IEEE Standard  
1149.1  
(JTAG)  
Emulation  
TRST  
EMU0  
EMU1  
EMU2  
EMU3  
EMU4  
EMU5  
Reserved  
Control/Status  
HPI  
16  
(Host-Port Interface)  
HD[15:0]  
Data  
HAS  
HCNTL0  
HCNTL1  
HR/W  
HCS  
HDS1  
HDS2  
HRDY  
HINT  
Register Select  
Control  
Half-Word  
Select  
HHWIL  
Figure 2. CPU (DSP Core) and Peripheral Signals  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
signal groups description (continued)  
32  
ED[31:0]  
Data  
ECLKIN  
ECLKOUT  
Memory  
Control  
ARE/SDCAS/SSADS  
CE3  
CE2  
CE1  
CE0  
AOE/SDRAS/SSOE  
AWE/SDWE/SSWE  
ARDY  
Memory Map  
Space Select  
20  
EA[21:2]  
Address  
HOLD  
HOLDA  
Bus  
Arbitration  
BE3  
BE2  
BE1  
BE0  
BUSREQ  
Byte Enables  
EMIF  
(External Memory Interface)  
TOUT1  
TINP1  
TOUT0  
TINP0  
Timer 1  
Timer 0  
Timers  
McBSP1  
Transmit  
McBSP0  
Transmit  
CLKX1  
FSX1  
DX1  
CLKX0  
FSX0  
DX0  
CLKR1  
FSR1  
DR1  
CLKR0  
FSR0  
DR0  
Receive  
Clock  
Receive  
Clock  
CLKS1  
CLKS0  
McBSPs  
(Multichannel Buffered Serial Ports)  
Figure 3. Peripheral Signals  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
Terminal Functions  
SIGNAL  
NAME  
IPD/  
IPU  
DESCRIPTION  
TYPE  
NO.  
CLOCK/PLL  
CLKIN  
A3  
D7  
I
IPD  
IPD  
IPD  
Clock Input  
CLKOUT1  
CLKOUT2  
O
O
Clock output at device speed  
Clock output at half of device speed  
Clock mode select  
Y12  
CLKMODE0  
C4  
I
IPU  
Selects whether the CPU clock frequency = input clock frequency x4 or x1  
§
A
A
A
PLLV  
A4  
C6  
B5  
PLL analog V connection for the low-pass filter  
CC  
§
PLLG  
PLL analog GND connection for the low-pass filter  
PLL low-pass filter connection to external components and a bypass capacitor  
JTAG EMULATION  
PLLF  
TMS  
TDO  
TDI  
B7  
A8  
I
IPU  
IPU  
IPU  
IPU  
IPD  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
JTAG test-port mode select  
O/Z  
JTAG test-port data out  
A7  
I
I
I
JTAG test-port data in  
TCK  
A6  
JTAG test-port clock  
TRST  
EMU5  
EMU4  
EMU3  
EMU2  
EMU1  
EMU0  
B6  
JTAG test-port reset  
B12  
C11  
B10  
D10  
B9  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Emulation pin 5. Reserved for future use, leave unconnected.  
Emulation pin 4. Reserved for future use, leave unconnected.  
Emulation pin 3. Reserved for future use, leave unconnected.  
Emulation pin 2. Reserved for future use, leave unconnected.  
#
Emulation pin 1  
Emulation pin 0  
#
D9  
RESETS AND INTERRUPTS  
Device reset  
Nonmaskable interrupt  
Edge-driven (rising edge)  
RESET  
NMI  
A13  
C13  
I
I
IPU  
IPD  
EXT_INT7  
EXT_INT6  
EXT_INT5  
EXT_INT4  
E3  
D2  
C1  
C2  
External interrupts  
Edge-driven  
I
IPU  
Polarity independently selected via the External Interrupt Polarity Register bits  
(EXTPOL.[3:0])  
HOST-PORT INTERFACE (HPI)  
HINT  
J20  
G19  
G18  
H20  
G20  
O
I
IPU  
IPU  
IPU  
IPU  
IPU  
Host interrupt (from DSP to host)  
HCNTL1  
HCNTL0  
HHWIL  
HR/W  
Host control selects between control, address, or data registers  
Host control selects between control, address, or data registers  
Host half-word select first or second half-word (not necessarily high or low order)  
Host read or write select  
I
I
I
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
PLLV and PLLG are not part of external voltage supply or ground. See the CLOCK/PLL documentation for information on how to connect these  
§
pins.  
#
A = Analog signal (PLL Filter)  
The EMU0 and EMU1 pins are internally pulled up with 30-kresistors; therefore, for emulation and normal operation, no external  
pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ  
resistor.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
Terminal Functions (Continued)  
SIGNAL  
NAME  
IPD/  
IPU‡  
TYPE  
DESCRIPTION  
HOST-PORT INTERFACE (HPI) (CONTINUED)  
NO.  
HD15  
B14  
C14  
A15  
C15  
A16  
B16  
C16  
B17  
A18  
C17  
B18  
C19  
C20  
D18  
D20  
E20  
E18  
F20  
E19  
F18  
H19  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPD  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPD  
HD14  
HD13  
HD12  
HD11  
HD10  
HD9  
Host-port data  
Used for transfer of data, address, and control  
Also controls initialization of DSP modes at reset via pullup/pulldown resistors  
Device Endian mode  
HD8: 0 Big Endian  
HD8  
I/O/Z  
1 Little Endian  
HD7  
Boot mode  
HD[4:3]: 00 HPI boot  
01 8-bit ROM boot with default timings  
HD6  
HD5  
10 16-bit ROM boot with default timings  
11 32-bit ROM boot with default timings  
HD4  
HD3  
HD2  
HD1  
HD0  
HAS  
HCS  
HDS1  
HDS2  
HRDY  
I
I
Host address strobe  
Host chip select  
I
Host data strobe 1  
I
Host data strobe 2  
O
Host ready (from DSP to host)  
EMIF CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY  
CE3  
CE2  
CE1  
CE0  
BE3  
BE2  
BE1  
BE0  
V6  
W6  
W18  
V17  
V5  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
IPU  
Memory space enables  
IPU  
Enabled by bits 28 through 31 of the word address  
Only one asserted during any external data access  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
Byte-enable control  
Y4  
Decoded from the two lowest bits of the internal address  
Byte-write enables for most types of memory  
Can be directly connected to SDRAM read and write mask signal (SDQM)  
U19  
V20  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
Terminal Functions (Continued)  
SIGNAL  
NAME  
IPD/  
IPU  
TYPE  
DESCRIPTION  
NO.  
EMIF BUS ARBITRATION  
Hold-request-acknowledge to the host  
Hold request from the host  
HOLDA  
HOLD  
J18  
J17  
J19  
O
I
IPU  
IPU  
IPU  
BUSREQ  
O
Bus request output  
EMIF ASYNCHRONOUS/SYNCHRONOUS DRAM/SYNCHRONOUS BURST SRAM MEMORY CONTROL  
ECLKIN  
Y11  
Y10  
I
IPD  
IPD  
EMIF input clock  
ECLKOUT  
O
EMIF output clock (based on ECLKIN)  
ARE/SDCAS/  
SSADS  
V11  
O/Z  
O/Z  
IPU  
IPU  
Asynchronousmemoryreadenable/SDRAMcolumn-addressstrobe/SBSRAMaddressstrobe  
Asynchronous memory output enable/SDRAM row-address strobe/SBSRAM output enable  
Asynchronous memory write enable/SDRAM write enable/SBSRAM write enable  
AOE/SDRAS/  
SSOE  
W10  
AWE/SDWE/  
SSWE  
V12  
Y5  
O/Z  
I
IPU  
IPU  
ARDY  
Asynchronous memory ready input  
EMIF ADDRESS  
EA21  
EA20  
EA19  
EA18  
EA17  
EA16  
EA15  
EA14  
EA13  
EA12  
EA11  
EA10  
EA9  
U18  
Y18  
W17  
Y16  
V16  
Y15  
W15  
Y14  
W14  
V14  
W13  
V10  
Y9  
O/Z  
IPU  
External address (word address)  
EA8  
V9  
EA7  
Y8  
EA6  
W8  
V8  
EA5  
EA4  
W7  
V7  
EA3  
EA2  
Y6  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
Terminal Functions (Continued)  
SIGNAL  
NAME  
IPD/  
IPU‡  
TYPE  
DESCRIPTION  
NO.  
EMIF DATA  
ED31  
N3  
P3  
ED30  
ED29  
ED28  
ED27  
ED26  
ED25  
ED24  
ED23  
ED22  
ED21  
ED20  
ED19  
ED18  
ED17  
ED16  
ED15  
ED14  
ED13  
ED12  
ED11  
ED10  
ED9  
P2  
P1  
R2  
R3  
T2  
T1  
U3  
U1  
U2  
V1  
V2  
Y3  
W4  
V4  
I/O/Z  
IPU  
External data  
T19  
T20  
T18  
R20  
R19  
P20  
P18  
N20  
N19  
N18  
M20  
M19  
L19  
L18  
K19  
K18  
ED8  
ED7  
ED6  
ED5  
ED4  
ED3  
ED2  
ED1  
ED0  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
Terminal Functions (Continued)  
SIGNAL  
NAME  
IPD/  
IPU‡  
TYPE  
DESCRIPTION  
NO.  
TIMER 1  
Timer 1 or general-purpose output  
Timer 1 or general-purpose input  
TIMER 0  
TOUT1  
F1  
F2  
O
I
IPD  
IPD  
TINP1  
TOUT0  
TINP0  
G1  
G2  
O
I
IPD  
IPD  
Timer 0 or general-purpose output  
Timer 0 or general-purpose input  
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)  
CLKS1  
CLKR1  
CLKX1  
DR1  
E1  
M1  
L3  
I
IPD  
IPD  
IPD  
IPU  
IPU  
IPD  
IPD  
External clock source (as opposed to internal)  
Receive clock  
I/O/Z  
I/O/Z  
I
Transmit clock  
M2  
L2  
Receive data  
DX1  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR1  
FSX1  
M3  
L1  
Receive frame sync  
Transmit frame sync  
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)  
CLKS0  
CLKR0  
CLKX0  
DR0  
K3  
H3  
G3  
J1  
I
IPD  
IPD  
IPD  
IPU  
IPU  
IPD  
IPD  
External clock source (as opposed to internal)  
Receive clock  
I/O/Z  
I/O/Z  
I
Transmit clock  
Receive data  
DX0  
H2  
J3  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR0  
FSX0  
Receive frame sync  
H1  
Transmit frame sync  
RESERVED FOR TEST  
RSV0  
RSV1  
RSV2  
RSV3  
RSV4  
RSV5  
C12  
D12  
A5  
O
O
O
O
O
O
IPU  
IPU  
IPU  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved (leave unconnected, do not connect to power or ground)  
D3  
N2  
Y20  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
Terminal Functions (Continued)  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
SUPPLY VOLTAGE PINS  
NO.  
A17  
B3  
B8  
B13  
C5  
C10  
D1  
D16  
D19  
F3  
H18  
J2  
M18  
N1  
R1  
DV  
S
3.3-V supply voltage  
DD  
R18  
T3  
U5  
U7  
U12  
U16  
V13  
V15  
V19  
W3  
W9  
W12  
Y7  
Y17  
A9  
A10  
A12  
B2  
B19  
C3  
CV  
S
1.8-V supply voltage  
DD  
C7  
C18  
D5  
D6  
D11  
D14  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
Terminal Functions (Continued)  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
SUPPLY VOLTAGE PINS (CONTINUED)  
NO.  
D15  
F4  
F17  
K1  
K4  
K17  
L4  
L17  
L20  
R4  
CV  
S
1.8-V supply voltage  
DD  
R17  
U6  
U10  
U11  
U14  
U15  
V3  
V18  
W2  
W19  
GROUND PINS  
A1  
A2  
A11  
A14  
A19  
A20  
B1  
B4  
B11  
B15  
B20  
C8  
V
SS  
GND  
Ground pins  
C9  
D4  
D8  
D13  
D17  
E2  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
Terminal Functions (Continued)  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
GROUND PINS (CONTINUED)  
NO.  
E4  
E17  
F19  
G4  
G17  
H4  
H17  
J4  
K2  
K20  
M4  
M17  
N4  
N17  
P4  
P17  
P19  
T4  
V
SS  
GND  
Ground pins  
T17  
U4  
U8  
U9  
U13  
U17  
U20  
W1  
W5  
W11  
W16  
W20  
Y1  
Y2  
Y13  
Y19  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
development support  
TI offers an extensive line of development tools for the TMS320C6000 DSP platform, including tools to  
evaluate the performance of the processors, generate code, develop algorithm implementations, and fully  
integrate and debug software and hardware modules.  
The following products support development of C6000 DSP-based applications:  
Software Development Tools:  
Code Composer Studio Integrated Development Environment (IDE): including Editor  
C/C++/Assembly Code Generation, and Debug plus additional development tools  
Scalable, Real-Time Foundation Software (DSP/BIOS ), which provides the basic run-time target software  
needed to support any DSP application.  
Hardware Development Tools:  
Extended Development System (XDS ) Emulator (supports C6000 DSP multiprocessor system debug)  
EVM (Evaluation Module)  
The TMS320 DSP Development Support Reference Guide (SPRU011) contains information about  
development-support products for all TMS320 DSP family member devices, including documentation. See  
thisdocumentforfurtherinformationonTMS320 DSPdocumentationoranyTMS320 DSPsupportproducts  
from Texas Instruments. An additional document, the TMS320 Third-Party Support Reference Guide  
(SPRU052), contains information about TMS320 DSP-related products from other companies in the industry.  
To receive TMS320 DSP literature, contact the Literature Response Center at 800/477-8924.  
For a complete listing of development-support tools for the TMS320C6000 DSP platform, visit the Texas  
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL) and select  
Find Development Tools. For device-specific tools, under Semiconductor Products, select Digital Signal  
Processors, choose a product family, and select the particular DSP device. For information on pricing and  
availability, contact the nearest TI field sales office or authorized distributor.  
Code Composer Studio, DSP/BIOS, XDS, and TMS320 are trademarks of Texas Instruments.  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
device and development-support tool nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320 DSP devices and support tools. Each TMS320 DSP commercial family member has one of three  
prefixes: TMX, TMP, or TMS. Texas Instruments recommends two of three possible prefix designators for  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from  
engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final devices electrical  
specifications  
Final silicon die that conforms to the devices electrical specifications but has not completed  
quality and reliability verification  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal qualification  
testing.  
TMDS  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
Developmental product is intended for internal evaluation purposes.”  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TIs standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. TexasInstrumentsrecommendsthatthesedevicesnotbeusedinanyproductionsystembecausetheir  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example,GFN), the temperature range (for example, blank is the default commercial temperature range),  
and the device speed range in megahertz (for example, -150 is 150 MHz).  
Figure 4 provides a legend for reading the complete device name for any TMS3206000 DSP family member.  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
device and development-support tool nomenclature (continued)  
Table 17. TMS320C6711/C6711B Device Part Numbers (P/Ns) and Ordering Information  
OPERATING CASE  
TEMPERATURE  
RANGE  
CV  
DV  
DD  
DD  
DEVICE ORDERABLE P/N  
DEVICE SPEED  
(CORE VOLTAGE)  
(I/O VOLTAGE)  
C6711  
TMS320C6711GFN150  
TMS320C6711GFN100  
C6711B  
150 MHz/900 MFLOPS  
100 MHz/600 MFLOPS  
1.8 V  
1.8 V  
3.3 V  
3.3 V  
0_C to 90_C  
0_C to 90_C  
TMS320C6711BGFN150  
TMS320C6711BGFN100  
TMS320C6711BGFNA100  
150 MHz/900 MFLOPS  
100 MHz/600 MFLOPS  
100 MHz/600 MFLOPS  
1.8 V  
1.8 V  
1.8 V  
3.3 V  
3.3 V  
3.3 V  
0_C to 90_C  
0_C to 90_C  
40_C to105_C  
(
)
TMS 320  
C
6711 GFN  
150  
PREFIX  
DEVICE SPEED RANGE  
TMX= Experimental device  
TMP= Prototype device  
100 MHz  
120 MHz  
150 MHz  
167 MHz  
200 MHz  
233 MHz  
250 MHz  
300 MHz  
TMS= Qualified device  
SMJ = MIL-PRF-38535, QML  
SM = High Rel (non-38535)  
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)  
Blank = 0°C to 90°C, commercial temperature  
A
= 40°C to 105°C, extended temperature  
DEVICE FAMILY  
320 = TMS320 DSP family  
PACKAGE TYPE  
GFN = 256-pin plastic BGA  
GGP = 352-pin plastic BGA  
GJC = 352-pin plastic BGA  
GJL = 352-pin plastic BGA  
GLS = 384-pin plastic BGA  
GLW = 340-pin plastic BGA  
GHK = 288-pin plastic MicroStar BGAt  
TECHNOLOGY  
C
= CMOS  
DEVICE  
C6000 DSP:  
6201  
6204  
6205  
6211  
6211B  
6414  
6415  
6416  
6701  
6711  
6711B  
6712  
6202  
6202B  
6203B  
6203C  
BGA  
=
Ball Grid Array  
Figure 4. TMS320C6000 DSP Device Nomenclature (Including the TMS320C6711  
and TMS320C6711B Devices)  
MicroStar BGA is a trademark of Texas Instruments.  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
documentation support  
Extensive documentation supports all TMS320  
DSP family generations of devices from product  
announcement through applications development. The types of documentation available include: data sheets,  
such as this document, with design specifications; complete users reference guides for all devices and tools;  
technical briefs; development-support tools; on-line help; and hardware and software applications. The  
following is a brief, descriptive list of support documentation specific to the C6000 DSP devices:  
The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the  
C6000 CPU (DSP core) architecture, instruction set, pipeline, and associated interrupts.  
The TMS320C6000 Peripherals Reference Guide (literature number SPRU190) describes the functionality of  
the peripherals available on the C6000 DSP platform of devices, such as the external memory interface  
(EMIF), host-port interface (HPI), multichannel buffered serial ports (McBSPs), direct-memory-access (DMA),  
enhanced direct-memory-access (EDMA) controller, expansion bus (XB), clocking and phase-locked loop  
(PLL); and power-down modes. This guide also includes information on internal data and program memories.  
The TMS320C6000 Technical Brief (literature number SPRU197) gives an introduction to the  
TMS320C62x /TMS320C67x devices, associated development tools, and third-party support.  
The tools support documentation is electronically available within the Code Composer Studio Integrated  
Development Environment (IDE). For a complete listing of C6000 DSP latest documentation, visit the Texas  
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL).  
See the Worldwide Web URL for the application reports How To Begin Development Today with the  
TMS320C6211 DSP (literature number SPRA474) and How To Begin Development with the TMS320C6711  
DSP(literaturenumberSPRA522), whichdescribeinmoredetailthesimilarities/differencesbetweentheC6211  
and C6711 C6000 DSP devices.  
TMS320C62x is a trademark of Texas Instruments.  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
clock PLL  
All of the internal C67x clocks are generated from a single source through the CLKIN pin. This source clock  
either drives the PLL, which multiplies the source clock in frequency to generate the internal CPU clock, or  
bypasses the PLL to become the internal CPU clock.  
To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Figure 5  
shows the external PLL circuitry for either x1 (PLL bypass) or x4 PLL multiply modes. Figure 6 shows the  
external PLL circuitry for a system with ONLY x1 (PLL bypass) mode.  
To minimize the clock jitter, a single clean power supply should power both the C67x device and the external  
clock oscillator circuit. Noise coupling into PLLF will directly impact PLL clock jitter. The minimum CLKIN rise  
and fall times should also be observed. For the input clock timing requirements, see the input and output clocks  
electricals section.  
Rise/fall times, duty cycles (high/low pulse durations), and the load capacitance of the external clock source  
must meet the DSP requirements in this data sheet (see the electrical characteristics over recommended  
ranges of suppy voltage and operating case temperature table and the input and output clocks electricals  
section). Table 18 lists some examples of compatible CLKIN external clock sources:  
Table 18. Compatible CLKIN External Clock Sources  
COMPATIBLE PARTS FOR  
EXTERNAL CLOCK SOURCES (CLKIN)  
PART NUMBER  
MANUFACTURER  
JITO-2  
STA series, ST4100 series  
SG-636  
Fox Electronix  
SaRonix Corporation  
Epson America  
Oscillators  
342  
Corning Frequency Control  
Integrated Circuit Systems  
PLL  
MK1711-S, ICS525-02  
3.3V  
PLLV  
Internal to  
PLL  
C6711/C6711B  
CLKMODE0  
PLLMULT  
CLKIN  
C4  
C3  
PLLCLK  
0.1 mF  
10 mF  
CLKIN  
1
0
CPU  
CLOCK  
LOOP FILTER  
Available Multiply Factors  
CPU Clock  
Frequency  
f(CPUCLOCK)  
PLL Multiply  
Factors  
C2  
CLKMODE0  
(For C1, C2, and R1 values, see Table 19.)  
0
1
x1(BYPASS)  
x4  
1 x f(CLKIN)  
4 x f(CLKIN)  
C1  
R1  
NOTES: A. Keep the lead length and the number of vias between the PLLF pin, the PLLG pin, and R1, C1, and C2 to a minimum. In addition,  
place all PLL external components (R1, C1, C2, C3, C4, and the EMI Filter) as close to the C6000 device as possible. For the best  
performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or  
components other than the ones shown.  
B. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (R1, C1, C2, C3, C4,  
and the EMI filter).  
C. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DV  
D. EMI filter manufacturer: TDK part number ACF451832-333, 223, 153, 103. Panasonic part number EXCCET103U.  
.
DD  
Figure 5. External PLL Circuitry for Either PLL x4 Mode or x1 (Bypass) Mode  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
clock PLL (continued)  
3.3V  
PLLV  
Internal to  
PLL  
C6711/C6711B  
CLKMODE0  
CLKIN  
PLLMULT  
CLKIN  
PLLCLK  
1
0
LOOP FILTER  
CPU  
CLOCK  
NOTES: A. For a system with ONLY PLL x1 (bypass) mode, short the PLLF terminal to the PLLG terminal.  
B. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DV  
.
DD  
Figure 6. External PLL Circuitry for x1 (Bypass) Mode Only  
Table 19. C6711/C6711B PLL Component Selection  
CPU CLOCK  
FREQUENCY  
(CLKOUT1)  
CLKIN  
RANGE  
(MHz)  
CLKOUT2  
RANGE  
(MHz)  
TYPICAL  
R1 [±1%]  
()  
C1 [±10%]  
C2 [±10%]  
CLKMODE  
LOCK TIME  
(nF)  
(pF)  
(µs)  
RANGE (MHz)  
x4  
16.341.6  
65167  
32.583  
60.4  
27  
560  
75  
Under some operating conditions, the maximum PLL lock time may vary as much as 150% from the specified typical value. For example, if the  
typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
power-supply sequencing  
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,  
systems should be designed to ensure that neither supply is powered up for extended periods of time if the other  
supply is below the proper operating voltage.  
system-level design considerations  
System-level design considerations, such as bus contention, may require supply sequencing to be  
implemented. In this case, the core supply should be powered up at the same time as, or prior to (and powered  
down after), the I/O buffers. This is to ensure that the I/O buffers receive valid inputs from the core before the  
output buffers are powered up, thus, preventing bus contention with other chips on the board.  
power-supply design considerations  
For systems using the C6000 DSP platform of devices, the core supply may be required to provide in excess  
of 2 A per DSP until the I/O supply is powered up. This extra current condition is a result of uninitialized logic  
within the DSP(s) and is corrected once the CPU sees an internal clock pulse. With the PLL enabled, as the  
I/O supply is powered on, a clock pulse is produced stopping the extra current draw from the supply. With the  
PLL disabled, as many as five external clock cycle pulses may be required to stop this extra current draw. A  
normal current state returns once the I/O power supply is turned on and the CPU sees a clock pulse. Decreasing  
the amount of time between the core supply power up and the I/O supply power up can minimize the effects  
of this current draw.  
A dual-power supply with simultaneous sequencing, such as available with TPS563xx controllers or PT69xx  
plug-in power modules, can be used to eliminate the delay between core and I/O power up [see the Using the  
TPS56300 to Power DSPs application report (literature number SLVA088)]. A Schottky diode can also be used  
to tie the core rail to the I/O rail, effectively pulling up the I/O power supply to a level that can help initialize the  
logic within the DSP.  
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize  
inductance and resistance in the power delivery path. Additionally, when designing for high-performance  
applications utilizing the C6000 platform of DSPs, the PC board should include separate power planes for  
core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
absolute maximum ratings over operating case temperature range (unless otherwise noted)  
Supply voltage range, CV  
Supply voltage range, DV  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 2.3 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
DD  
DD  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
Operating case temperature ranges, T :(default) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0_C to 90_C  
C
(A version) [C6711BGFNA only] . . . . . . . . . . . . . . 40_C to105_C  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65_C to 150_C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
SS  
.
recommended operating conditions  
MIN NOM  
MAX UNIT  
CV  
DV  
Supply voltage, Core  
Supply voltage, I/O  
Supply ground  
1.71  
3.14  
0
1.8  
3.3  
0
1.89  
3.46  
0
V
V
DD  
DD  
V
V
V
V
SS  
High-level input voltage  
Low-level input voltage  
2
V
IH  
IL  
0.8  
4  
8  
4
V
All signals except CLKOUT1, CLKOUT2, and ECLKOUT  
CLKOUT1, CLKOUT2, and ECLKOUT  
All signals except CLKOUT1, CLKOUT2, and ECLKOUT  
CLKOUT1, CLKOUT2, and ECLKOUT  
Default  
mA  
mA  
mA  
mA  
_C  
_C  
I
I
High-level output current  
Low-level output current  
Operating case temperature  
OH  
OL  
8
0
90  
105  
T
C
A version (C6711BGFNA only)  
40  
electrical characteristics over recommended ranges of supply voltage and operating case  
temperature (unless otherwise noted)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
Input current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
DV  
DV  
= MIN,  
= MIN,  
I
I
= MAX  
= MAX  
2.4  
OH  
DD  
DD  
OH  
OL  
0.4  
±150  
±10  
V
OL  
I
I
V = V  
I
to DV  
uA  
uA  
mA  
mA  
mA  
mA  
mA  
mA  
pF  
SS  
= DV  
DD  
or 0 V  
I
Off-state output current  
V
O DD  
C6711, CV  
OZ  
= NOM, CPU clock = 150 MHz  
= NOM, CPU clock = 150 MHz  
410  
410  
220  
220  
60  
Supply current, CPU + CPU memory  
DD  
I
I
I
DD2V  
§
access  
C6711B, CV  
DD  
= NOM, CPU clock = 150 MHz  
C6711, CV  
DD  
§
Supply current, peripherals  
DD2V  
DD3V  
C6711B, CV  
= NOM, CPU clock = 150 MHz  
= NOM, CPU clock = 150 MHz  
DD  
C6711, DV  
DD  
§
Supply current, I/O pins  
C6711B, DV  
DD  
= NOM, CPU clock = 150 MHz  
60  
C
C
Input capacitance  
Output capacitance  
7
7
i
pF  
o
§
For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table.  
Measured with average activity (50% high/50% low power). For more details on CPU, peripheral, and I/O activity, refer to the TMS320C6000  
Power Consumption Summary application report (literature number SPRA486).  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
PARAMETER MEASUREMENT INFORMATION  
I
OL  
Tester Pin  
Electronics  
Output  
Under  
Test  
50 Ω  
V
comm  
C
T
I
OH  
Where:  
I
I
V
=
=
=
=
2 mA  
2 mA  
0.8 V  
OL  
OH  
comm  
T
C
1015-pF typical load-circuit capacitance  
Figure 7. Test Load Circuit for AC Timing Measurements  
signal transition levels  
All input and output timing parameters are referenced to 1.5 V for both 0and 1logic levels.  
V
ref  
= 1.5 V  
Figure 8. Input and Output Voltage Reference Levels for ac Timing Measurements  
All rise and fall transition timing parameters are referenced to V MAX and V MIN for input clocks, and  
IL  
IH  
V
MAX and V  
MIN for output clocks.  
OL  
OH  
V
ref  
= V MIN (or V  
IH  
MIN)  
OH  
V
ref  
= V MAX (or V  
IL  
MAX)  
OL  
Figure 9. Rise and Fall Transition Time Voltage Reference Levels  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
PARAMETER MEASUREMENT INFORMATION (CONTINUED)  
timing parameters and board routing analysis  
The timing parameter values specified in this data sheet do not include delays by board routings. As a good  
board design practice, such delays must always be taken into account. Timing values may be adjusted by  
increasing/decreasing such delays. TI recommends utilizing the available I/O buffer information specification  
(IBIS) models to analyze the timing characteristics correctly. If needed, external logic hardware such as buffers  
may be used to compensate any timing differences. For example:  
D
D
In typical boards with the C6711B commercial temperature device, the routing delay improves the external  
memorys ability to meet the DSPs EMIF data input hold time requirement [t ].  
h(EKOH-EDV)  
In some boards with the C6711BGFNA extended temperature device, the routing delay improves the  
external memorys ability to meet the DSPs EMIF data input hold time requirement [t ]. In  
h(EKOH-EDV)  
addition, it may be necessary to add an extra delay to the input clock of the external memory to robustly  
meet the DSPs data input hold time requirement. If the extra delay approach is used, memory bus  
frequency adjustments may be needed to ensure the DPSs input setup time requirement [t  
is still maintained.  
]
su(EDV-EKOH)  
For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device and  
fromtheexternaldevicetotheDSP. Thisround-tripdelaytendstonegativelyimpacttheinputsetuptimemargin,  
but also tends to improve the input hold time margins (see Table 20 and Figure 10).  
Figure 10 represents a general transfer between the DSP and an external device. The figure also represents  
board route delays and how they are perceived by the DSP and the external device.  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
PARAMETER MEASUREMENT INFORMATION (CONTINUED)  
Table 20. IBIS Timing Parameters Example (see Figure 10)  
NO.  
1
DESCRIPTION  
Clock route delay  
2
Minimum DSP hold time  
3
Minimum DSP setup time  
External device hold time requirement  
External device setup time requirement  
Control signal route delay  
External device hold time  
4
5
6
7
8
External device access time  
DSP hold time requirement  
DSP setup time requirement  
Data route delay  
9
10  
11  
ECLKOUT  
(Output from DSP)  
1
ECLKOUT  
(Input to External Device)  
2
3
Control Signals  
(Output from DSP)  
4
5
6
Control Signals  
(Input to External Device)  
7
8
Data Signals  
(Output from External Device)  
9
10  
11  
Data Signals  
(Input to DSP)  
Control signals include data for Writes.  
Data signals are generated during Reads from an external device.  
Figure 10. IBIS Input/Output Timings  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
INPUT AND OUTPUT CLOCKS  
†‡  
timing requirements for CLKIN (see Figure 11)  
100  
CLKMODE = x4 CLKMODE = x1  
150  
CLKMODE = x4 CLKMODE = x1  
NO.  
UNIT  
MIN  
40  
MAX  
MIN  
10  
MAX  
MIN  
26.7  
0.4C  
0.4C  
MAX  
MIN  
6.7  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKIN  
ns  
ns  
ns  
ns  
c(CLKIN)  
w(CLKINH)  
w(CLKINL)  
t(CLKIN)  
Pulse duration, CLKIN high  
Pulse duration, CLKIN low  
Transition time, CLKIN  
0.4C  
0.4C  
0.45C  
0.45C  
0.45C  
0.45C  
5
1
5
1
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
C = CLKIN cycle time in ns. For example, when CLKIN frequency is 40 MHz, use C = 25 ns.  
IL  
IH  
1
4
2
CLKIN  
3
4
Figure 11. CLKIN Timings  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
INPUT AND OUTPUT CLOCKS (CONTINUED)  
†‡§  
switching characteristics over recommended operating conditions for CLKOUT1  
(see Figure 12)  
100  
150  
NO.  
PARAMETER  
UNIT  
CLKMODE = x4  
CLKMODE = x1  
MIN  
MAX  
P + 0.7  
MIN  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKOUT1  
P 0.7  
P 0.7  
P + 0.7  
ns  
ns  
ns  
ns  
c(CKO1)  
w(CKO1H)  
w(CKO1L)  
t(CKO1)  
Pulse duration, CLKOUT1 high  
Pulse duration, CLKOUT1 low  
Transition time, CLKOUT1  
(P/2) 0.7 (P/2 ) + 0.7 PH 0.7 PH + 0.7  
(P/2) 0.7 (P/2 ) + 0.7  
PL 0.7  
PL + 0.7  
2
2
§
The reference points for the rise and fall transitions are measured at V  
P = 1/CPU clock frequency in nanoseconds (ns)  
PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.  
MAX and V  
MIN.  
OH  
OL  
1
4
2
CLKOUT1  
3
4
Figure 12. CLKOUT1 Timings  
†‡  
switching characteristics over recommended operating conditions for CLKOUT2 (see Figure 13)  
100  
150  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKOUT2  
2P 0.7 2P + 0.7  
ns  
ns  
ns  
ns  
c(CKO2)  
w(CKO2H)  
w(CKO2L)  
t(CKO2)  
Pulse duration, CLKOUT2 high  
Pulse duration, CLKOUT2 low  
Transition time, CLKOUT2  
P 0.7  
P 0.7  
P + 0.7  
P + 0.7  
2
The reference points for the rise and fall transitions are measured at V  
P = 1/CPU clock frequency in ns  
MAX and V  
MIN.  
OH  
OL  
1
4
2
CLKOUT2  
3
4
Figure 13. CLKOUT2 Timings  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
INPUT AND OUTPUT CLOCKS (CONTINUED)  
timing requirements for ECLKIN (see Figure 14)  
100  
MIN  
150  
MIN  
NO.  
UNIT  
MAX  
MAX  
1
2
3
4
t
t
t
t
Cycle time, ECLKIN  
15  
6.8  
6.8  
10  
4.5  
4.5  
ns  
ns  
ns  
ns  
c(EKI)  
Pulse duration, ECLKIN high  
Pulse duration, ECLKIN low  
Transition time, ECLKIN  
w(EKIH)  
w(EKIL)  
t(EKI)  
2.2  
2.2  
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
IL IH  
1
4
2
ECLKIN  
3
4
Figure 14. ECLKIN Timings  
‡§¶  
switching characteristics over recommended operating conditions for ECLKOUT  
(see Figure 15)  
100  
150  
NO.  
PARAMETER  
UNIT  
MIN  
E 0.7  
MAX  
1
2
3
4
5
6
t
t
t
t
Cycle time, ECLKOUT  
E + 0.7  
ns  
ns  
ns  
ns  
ns  
ns  
c(EKO)  
Pulse duration, ECLKOUT high  
EH 0.7 EH + 0.7  
EL 0.7 EL + 0.7  
2
w(EKOH)  
w(EKOL)  
t(EKO)  
Pulse duration, ECLKOUT low  
Transition time, ECLKOUT  
t
Delay time, ECLKIN high to ECLKOUT high  
Delay time, ECLKIN low to ECLKOUT low  
1
1
7
7
d(EKIH-EKOH)  
t
d(EKIL-EKOL)  
§
The reference points for the rise and fall transitions are measured at V  
E = ECLKIN period in ns  
EH is the high period of ECLKIN in ns and EL is the low period of ECLKIN in ns.  
MAX and V  
MIN.  
OH  
OL  
ECLKIN  
6
1
4
4
2
5
3
ECLKOUT  
Figure 15. ECLKOUT Timings  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
ASYNCHRONOUS MEMORY TIMING  
†‡§  
timing requirements for asynchronous memory cycles  
(see Figure 16Figure 17)  
C6711100  
C6711150  
NO.  
UNIT  
MIN MAX  
MIN MAX  
3
4
6
7
t
t
Setup time, EDx valid before ARE high  
Hold time, EDx valid after ARE high  
13  
1
9
1
3
1
ns  
ns  
ns  
ns  
su(EDV-AREH)  
h(AREH-EDV)  
t
Setup time, ARDY valid before ECLKOUT high  
Hold time, ARDY valid after ECLKOUT high  
6
su(ARDY-EKOH)  
t
1
h(EKOH-ARDY)  
C6711B-100  
C6711BGFNA100  
C6711B150  
NO.  
UNIT  
MIN  
13  
1
MAX  
MIN MAX  
3
4
6
7
t
Setup time, EDx valid before ARE high  
Hold time, EDx valid after ARE high  
9
1
ns  
ns  
ns  
ns  
su(EDV-AREH)  
t
h(AREH-EDV)  
t
Setup time, ARDY valid before ECLKOUT high  
Hold time, ARDY valid after ECLKOUT high  
6
3
su(ARDY-EKOH)  
t
2.5  
2.5  
h(EKOH-ARDY)  
To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. The ARDY signal is recognized in  
the cycle for which the setup and hold time is met. To use ARDY as an asynchronous input, the pulse width of the ARDY signal should be wide  
enough (e.g., pulse width = 2E) to ensure setup and hold time is met.  
§
RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are  
programmed via the EMIF CE space control registers.  
E = ECLKOUT period in ns  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
ASYNCHRONOUS MEMORY TIMING (CONTINUED)  
switching characteristics over recommended operating conditions for asynchronous memory  
†‡§  
cycles  
(see Figure 16Figure 17)  
C6711100  
C6711150  
NO.  
1
PARAMETER  
UNIT  
ns  
MIN  
MAX  
MIN  
MAX  
t
Output setup time, select signals valid to ARE low  
RS * E 3  
RS * E 3  
osu(SELV-AREL)  
Output hold time, ARE high to select signals  
invalid  
2
t
RH * E 3  
RH * E 3  
ns  
oh(AREH-SELIV)  
5
8
t
Delay time, ECLKOUT high to ARE vaild  
1.5  
WS * E 3  
WH * E 3  
1.5  
11  
11  
1.5  
WS * E 3  
WH * E 3  
1.5  
8
8
ns  
ns  
ns  
ns  
d(EKOH-AREV)  
t
Output setup time, select signals valid to AWE low  
Output hold time, AWE high to select signals invalid  
Delay time, ECLKOUT high to AWE vaild  
osu(SELV-AWEL)  
9
t
oh(AWEH-SELIV)  
10  
t
d(EKOH-AWEV)  
C6711B100  
C6711BGFNA-100  
C6711B150  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
t
Output setup time, select signals valid to ARE low  
RS * E 3  
RS * E 3  
ns  
ns  
osu(SELV-AREL)  
Output hold time, ARE high to select signals  
invalid  
t
RH * E 3  
RH * E 3  
oh(AREH-SELIV)  
5
8
t
Delay time, ECLKOUT high to ARE vaild  
1
WS * E 3  
WH * E 3  
1
11  
11  
1
WS * E 3  
WH * E 3  
1
8
8
ns  
ns  
ns  
ns  
d(EKOH-AREV)  
t
Output setup time, select signals valid to AWE low  
Output hold time, AWE high to select signals invalid  
Delay time, ECLKOUT high to AWE vaild  
osu(SELV-AWEL)  
9
t
oh(AWEH-SELIV)  
10  
t
d(EKOH-AWEV)  
RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are  
programmed via the EMIF CE space control registers.  
E = ECLKOUT period in ns  
§
Select signals include: CEx, BE[3:0], EA[21:2], AOE; and for writes, include ED[31:0].  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
ASYNCHRONOUS MEMORY TIMING (CONTINUED)  
Setup = 2  
Strobe = 3  
Not Ready  
Hold = 2  
ECLKOUT  
CEx  
1
1
1
2
2
2
BE[3:0]  
EA[21:2]  
BE  
Address  
3
4
ED[31:0]  
1
5
2
5
Read Data  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
7
7
6
6
ARDY  
AOE/SDRAS/SSOE, ARE/SDCAS/SSADS, and AWE/SDWE/SSWE operate as AOE (identified under select signals), ARE, and AWE,  
respectively, during asynchronous memory accesses.  
Figure 16. Asynchronous Memory Read Timing  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
ASYNCHRONOUS MEMORY TIMING (CONTINUED)  
Setup = 2  
Hold = 2  
Strobe = 3  
Not Ready  
ECLKOUT  
CEx  
8
8
8
8
9
9
9
9
BE[3:0]  
BE  
EA[21:2]  
ED[31:0]  
Address  
Write Data  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
10  
10  
AWE/SDWE/SSWE  
7
7
6
6
ARDY  
AOE/SDRAS/SSOE, ARE/SDCAS/SSADS, and AWE/SDWE/SSWE operate as AOE (identified under select signals), ARE, and AWE,  
respectively, during asynchronous memory accesses.  
Figure 17. Asynchronous Memory Write Timing  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
SYNCHRONOUS-BURST MEMORY TIMING  
timing requirements for synchronous-burst SRAM cycles (see Figure 18)  
C6711-100  
C6711-150  
NO.  
UNIT  
MIN  
6
MAX  
MIN  
2.5  
1
MAX  
6
7
t
Setup time, read EDx valid before ECLKOUT high  
Hold time, read EDx valid after ECLKOUT high  
ns  
ns  
su(EDV-EKOH)  
t
1
h(EKOH-EDV)  
C6711BGFNA-100  
C6711B-150  
C6711B-100  
NO.  
UNIT  
MIN  
6
MAX  
MIN  
2.5  
MAX  
6
7
t
Setup time, read EDx valid before ECLKOUT high  
Hold time, read EDx valid after ECLKOUT high  
ns  
ns  
su(EDV-EKOH)  
t
2.5  
2.5  
h(EKOH-EDV)  
The C6711 SBSRAM interface takes advantage of the internal burst counter in the SBSRAM. Accesses default to incrementing 4-word bursts,  
but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)  
switching characteristics over recommended operating conditions for synchronous-burst SRAM  
†‡  
cycles (see Figure 18 and Figure 19)  
C6711-100  
C6711-150  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
t
Delay time, ECLKOUT high to CEx valid  
1.5  
11  
11  
1.5  
6.5  
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(EKOH-CEV)  
t
Delay time, ECLKOUT high to BEx valid  
d(EKOH-BEV)  
3
t
Delay time, ECLKOUT high to BEx invalid  
Delay time, ECLKOUT high to EAx valid  
1.5  
1.5  
d(EKOH-BEIV)  
4
t
11  
6.5  
d(EKOH-EAV)  
5
t
Delay time, ECLKOUT high to EAx invalid  
Delay time, ECLKOUT high to ARE/SDCAS/SSADS valid  
Delay time, ECLKOUT high to, AOE/SDRAS/SSOE valid  
Delay time, ECLKOUT high to EDx valid  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
d(EKOH-EAIV)  
8
t
11  
11  
11  
6.5  
6.5  
7
d(EKOH-ADSV)  
9
t
d(EKOH-OEV)  
10  
11  
12  
t
d(EKOH-EDV)  
t
Delay time, ECLKOUT high to EDx invalid  
Delay time, ECLKOUT high to AWE/SDWE/SSWE valid  
1.5  
1.5  
1.5  
1.5  
d(EKOH-EDIV)  
t
11  
6.5  
d(EKOH-WEV)  
C6711B-100  
C6711BGFNA-100  
C6711B-150  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
11  
MIN  
MAX  
8.5  
MIN  
MAX  
7.5  
1
2
3
4
5
t
Delay time, ECLKOUT high to CEx valid  
Delay time, ECLKOUT high to BEx valid  
Delay time, ECLKOUT high to BEx invalid  
Delay time, ECLKOUT high to EAx valid  
Delay time, ECLKOUT high to EAx invalid  
1
1
1
ns  
ns  
ns  
ns  
ns  
d(EKOH-CEV)  
t
11  
8.5  
7.5  
d(EKOH-BEV)  
t
1
1
1
d(EKOH-BEIV)  
t
11  
11  
8.5  
8.5  
7.5  
7.5  
d(EKOH-EAV)  
t
1
1
1
1
1
1
d(EKOH-EAIV)  
Delay time, ECLKOUT high to  
ARE/SDCAS/SSADS valid  
8
9
t
ns  
ns  
d(EKOH-ADSV)  
Delay time, ECLKOUT high to,  
AOE/SDRAS/SSOE valid  
t
1
11  
11  
1
8.5  
8.5  
1
7.5  
7.5  
d(EKOH-OEV)  
10  
11  
t
Delay time, ECLKOUT high to EDx valid  
Delay time, ECLKOUT high to EDx invalid  
ns  
ns  
d(EKOH-EDV)  
t
1
1
1
1
1
1
d(EKOH-EDIV)  
Delay time, ECLKOUT high to  
AWE/SDWE/SSWE valid  
12  
t
11  
8.5  
7.5  
ns  
d(EKOH-WEV)  
The C6711 SBSRAM interface takes advantage of the internal burst counter in the SBSRAM. Accesses default to incrementing 4-word bursts,  
but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.  
ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM  
accesses.  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)  
ECLKOUT  
1
2
1
CEx  
3
BE[3:0]  
BE1  
BE2  
BE3  
EA  
BE4  
7
4
5
EA[21:2]  
ED[31:0]  
6
Q1  
Q2  
Q3  
Q4  
8
8
ARE/SDCAS/SSADS  
9
9
AOE/SDRAS/SSOE  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM  
accesses.  
Figure 18. SBSRAM Read Timing  
ECLKOUT  
1
2
1
3
CEx  
BE[3:0]  
BE1  
BE2  
Q2  
BE3  
5
BE4  
Q4  
4
EA[21:2]  
ED[31:0]  
EA  
10  
11  
12  
Q1  
Q3  
8
8
ARE/SDCAS/SSADS  
AOE/SDRAS/SSOE  
12  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM  
accesses.  
Figure 19. SBSRAM Write Timing  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
SYNCHRONOUS DRAM TIMING  
timing requirements for synchronous DRAM cycles (see Figure 20)  
C6711-100  
C6711-150  
NO.  
UNIT  
MIN  
6
MAX  
MIN MAX  
6
7
t
t
Setup time, read EDx valid before ECLKOUT high  
Hold time, read EDx valid after ECLKOUT high  
2.5  
1
ns  
ns  
su(EDV-EKOH)  
1
h(EKOH-EDV)  
C6711BGFNA-100  
C6711B-150  
C6711B-100  
NO.  
UNIT  
MIN  
6
MAX  
MIN  
2.5  
MAX  
6
7
t
t
Setup time, read EDx valid before ECLKOUT high  
Hold time, read EDx valid after ECLKOUT high  
ns  
ns  
su(EDV-EKOH)  
2.5  
2.5  
h(EKOH-EDV)  
The C6711 SDRAM interface takes advantage of the internal burst counter in the SDRAM. Accesses default to incrementing 4-word bursts, but  
random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
switching characteristics over recommended operating conditions for synchronous DRAM  
†‡  
cycles (see Figure 20Figure 26)  
C6711-100  
C6711-150  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
Delay time, ECLKOUT high to CEx valid  
1.5  
11  
11  
1.5  
6.5  
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(EKOH-CEV)  
d(EKOH-BEV)  
d(EKOH-BEIV)  
d(EKOH-EAV)  
d(EKOH-EAIV)  
Delay time, ECLKOUT high to BEx valid  
3
Delay time, ECLKOUT high to BEx invalid  
Delay time, ECLKOUT high to EAx valid  
1.5  
1.5  
4
11  
6.5  
5
Delay time, ECLKOUT high to EAx invalid  
Delay time, ECLKOUT high to ARE/SDCAS/SSADS valid  
Delay time, ECLKOUT high to EDx valid  
1.5  
1.5  
1.5  
1.5  
8
t
11  
11  
6.5  
7
d(EKOH-CASV)  
9
t
d(EKOH-EDV)  
d(EKOH-EDIV)  
d(EKOH-WEV)  
d(EKOH-RAS)  
10  
11  
12  
t
t
t
Delay time, ECLKOUT high to EDx invalid  
Delay time, ECLKOUT high to AWE/SDWE/SSWE valid  
Delay time, ECLKOUT high to, AOE/SDRAS/SSOE valid  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
11  
11  
6.5  
6.5  
C6711BGFNA-100  
C6711B-150  
C6711B-100  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
11  
MIN  
MAX  
1
2
t
t
t
t
t
Delay time, ECLKOUT high to CEx valid  
1
1
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(EKOH-CEV)  
d(EKOH-BEV)  
d(EKOH-BEIV)  
d(EKOH-EAV)  
d(EKOH-EAIV)  
Delay time, ECLKOUT high to BEx valid  
11  
3
Delay time, ECLKOUT high to BEx invalid  
Delay time, ECLKOUT high to EAx valid  
1
1
4
11  
8
5
Delay time, ECLKOUT high to EAx invalid  
Delay time, ECLKOUT high to ARE/SDCAS/SSADS valid  
Delay time, ECLKOUT high to EDx valid  
1
1
1
1
8
t
11  
11  
8
8
d(EKOH-CASV)  
9
t
d(EKOH-EDV)  
d(EKOH-EDIV)  
d(EKOH-WEV)  
d(EKOH-RAS)  
10  
11  
12  
t
t
t
Delay time, ECLKOUT high to EDx invalid  
Delay time, ECLKOUT high to AWE/SDWE/SSWE valid  
Delay time, ECLKOUT high to, AOE/SDRAS/SSOE valid  
1
1
1
1
1
1
11  
11  
8
8
The C6711 SDRAM interface takes advantage of the internal burst counter in the SDRAM. Accesses default to incrementing 4-word bursts, but  
random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
READ  
ECLKOUT  
CEx  
1
1
2
3
BE[3:0]  
BE1  
BE2  
BE3  
BE4  
4
5
5
5
Bank  
EA[21:13]  
EA[11:2]  
4
Column  
4
EA12  
6
7
D2  
ED[31:0]  
D1  
D3  
D4  
AOE/SDRAS/SSOE  
8
8
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 20. SDRAM Read Command (CAS Latency 3)  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
WRITE  
ECLKOUT  
CEx  
1
2
4
4
4
9
2
4
5
5
5
9
3
BE[3:0]  
BE1  
BE2  
BE3  
BE4  
Bank  
EA[21:13]  
Column  
EA[11:2]  
EA12  
10  
ED[31:0]  
D1  
D2  
D3  
D4  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
8
8
11  
11  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 21. SDRAM Write Command  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
ACTV  
ECLKOUT  
1
4
1
CEx  
BE[3:0]  
5
5
5
Bank Activate  
EA[21:13]  
EA[11:2]  
4
Row Address  
4
Row Address  
EA12  
ED[31:0]  
12  
12  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 22. SDRAM ACTV Command  
DCAB  
ECLKOUT  
1
1
CEx  
BE[3:0]  
EA[21:13, 11:2]  
4
12  
11  
5
12  
11  
EA12  
ED[31:0]  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 23. SDRAM DCAB Command  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
DEAC  
ECLKOUT  
1
1
CEx  
BE[3:0]  
4
5
EA[21:13]  
EA[11:2]  
Bank  
4
5
EA12  
ED[31:0]  
12  
11  
12  
11  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 24. SDRAM DEAC Command  
REFR  
ECLKOUT  
1
1
CEx  
BE[3:0]  
EA[21:2]  
EA12  
ED[31:0]  
12  
8
12  
8
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 25. SDRAM REFR Command  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
MRS  
ECLKOUT  
1
4
1
5
CEx  
BE[3:0]  
EA[21:2]  
ED[31:0]  
MRS value  
12  
8
12  
8
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
11  
11  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 26. SDRAM MRS Command  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
HOLD/HOLDA TIMING  
timing requirements for the HOLD/HOLDA cycles (see Figure 27)  
100  
150  
NO.  
UNIT  
MIN MAX  
3
t
Output hold time, HOLD low after HOLDA low  
E
ns  
oh(HOLDAL-HOLDL)  
E = ECLKIN period in ns  
†‡  
switching characteristics over recommended operating conditions for the HOLD/HOLDA cycles  
(see Figure 27)  
100  
150  
NO.  
PARAMETER  
UNIT  
MIN  
2E  
0
MAX  
§
1
2
4
5
t
Delay time, HOLD low to EMIF Bus high impedance  
Delay time, EMIF Bus high impedance to HOLDA low  
Delay time, HOLD high to EMIF Bus low impedance  
Delay time, EMIF Bus low impedance to HOLDA high  
ns  
ns  
ns  
ns  
d(HOLDL-EMHZ)  
t
2E  
7E  
2E  
d(EMHZ-HOLDAL)  
t
2E  
0
d(HOLDH-EMLZ)  
t
d(EMLZ-HOLDAH)  
§
E = ECLKIN period in ns  
EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE.  
All pending EMIF transactions are allowed to complete before HOLDA is asserted. If no bus transactions are occurring, then the minimum delay  
time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1.  
External Requestor  
DSP Owns Bus  
DSP Owns Bus  
Owns Bus  
3
HOLD  
2
5
HOLDA  
1
C6711/C6711B  
4
EMIF Bus  
C6711/C6711B  
EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE.  
Figure 27. HOLD/HOLDA Timing  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
BUSREQ TIMING  
switching characteristics over recommended operating conditions for the BUSREQ cycles  
(see Figure 28)  
100  
MIN  
150  
MIN  
1.5  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
t
Delay time, ECLKOUT high to BUSREQ valid  
2
11  
11  
ns  
d(EKOH-BUSRV)  
ECLKOUT  
BUSREQ  
1
1
Figure 28. BUSREQ Timing  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
RESET TIMING  
timing requirements for reset (see Figure 29)  
100  
150  
NO.  
UNIT  
MIN  
MAX  
Width of the RESET pulse (PLL stable)  
Width of the RESET pulse (PLL needs to sync up)  
Setup time, HD boot configuration bits valid before RESET high  
10P  
250  
2P  
ns  
µs  
ns  
ns  
1
t
w(RST)  
§
14  
15  
t
t
su(HD)  
Hold time, HD boot configuration bits valid after RESET high  
2P  
h(HD)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
This parameter applies to CLKMODE x1 when CLKIN is stable, and applies to CLKMODE x4 when CLKIN and PLL are stable.  
This parameter applies to CLKMODE x4 only (it does not apply to CLKMODE x1). The RESET signal is not connected internally to the clock PLL  
circuit. The PLL, however, may need up to 250 µs to stabilize following device power up or after PLL configuration has been changed. During  
that time, RESET must be asserted to ensure proper device operation. See the clock PLL section for PLL lock times.  
HD[4:3] are the boot configuration pins during device reset.  
#||  
switching characteristics over recommended operating conditions during reset  
(see Figure 29)  
100  
150  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
3P + 4E  
3P + 4E  
2
3
t
t
Delay time, RESET low to ECLKIN synchronized internally  
Delay time, RESET high to ECLKIN synchronized internally  
Delay time, RESET low to EMIF Z group high impedance  
Delay time, RESET high to EMIF Z group valid  
Delay time, RESET low to EMIF high group invalid  
Delay time, RESET high to EMIF high group valid  
Delay time, RESET low to EMIF low group invalid  
Delay time, RESET high to EMIF low group valid  
Delay time, RESET low to high group invalid  
2P + 3E  
2P + 3E  
2P + 3E  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(RSTL-ECKI)  
d(RSTH-ECKI)  
4
t
d(RSTL-EMIFZHZ)  
5
t
3P + 4E  
3P + 4E  
3P + 4E  
4P  
d(RSTH-EMIFZV)  
6
t
2P + 3E  
2P + 3E  
2P  
d(RSTL-EMIFHIV)  
7
t
d(RSTH-EMIFHV)  
8
t
d(RSTL-EMIFLIV)  
9
t
d(RSTH-EMIFLV)  
10  
11  
12  
13  
t
d(RSTL-HIGHIV)  
t
Delay time, RESET high to high group valid  
d(RSTH-HIGHV)  
t
Delay time, RESET low to Z group high impedance  
Delay time, RESET high to Z group valid  
2P  
2P  
d(RSTL-ZHZ)  
t
d(RSTH-ZV)  
#
||  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
E = ECLKIN period in ns  
EMIF Z group consists of:  
EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE  
EMIF high group consists of: HOLDA  
EMIF low group consists of: BUSREQ  
High group consists of:  
Z group consists of:  
HRDY and HINT  
HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, FSR1, TOUT0, and TOUT1.  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
RESET TIMING (CONTINUED)  
CLKOUT1  
CLKOUT2  
1
15  
14  
RESET  
2
4
6
3
5
ECLKIN  
EMIF Z Group  
7
EMIF High Group  
8
9
EMIF Low Group  
10  
12  
11  
13  
High Group  
Z Group  
HD[8, 4:3]  
EMIF Z group consists of:  
EMIF high group consists of: HOLDA  
EMIF low group consists of: BUSREQ  
High group consists of:  
Z group consists of:  
HD[8, 4:3] are the endianness and boot configuration pins during device reset.  
EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE  
HRDY and HINT  
HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, FSR1, TOUT0, and TOUT1.  
Figure 29. Reset Timing  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
EXTERNAL INTERRUPT TIMING  
timing requirements for external interrupts (see Figure 30)  
100  
150  
NO.  
UNIT  
MIN  
MAX  
1
2
t
t
Width of the interrupt pulse low  
Width of the interrupt pulse high  
2P  
2P  
ns  
ns  
w(ILOW)  
w(IHIGH)  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
2
1
EXT_INT, NMI  
Figure 30. External/NMI Interrupt Timing  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
HOST-PORT INTERFACE TIMING  
†‡  
timing requirements for host-port interface cycles (see Figure 31, Figure 32, Figure 33, and  
Figure 34)  
C6711-100  
C6711-150  
C6711B-100  
NO.  
UNIT  
MIN MAX  
§
1
2
t
Setup time, select signals valid before HSTROBE low  
5
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(SELV-HSTBL)  
§
t
Hold time, select signals valid after HSTROBE low  
h(HSTBL-SELV)  
3
t
t
t
t
Pulse duration, HSTROBE low  
4P  
4P  
5
w(HSTBL)  
4
Pulse duration, HSTROBE high between consecutive accesses  
w(HSTBH)  
§
Setup time, select signals valid before HAS low  
10  
11  
12  
13  
su(SELV-HASL)  
h(HASL-SELV)  
§
Hold time, select signals valid after HAS low  
3
t
Setup time, host data valid before HSTROBE high  
Hold time, host data valid after HSTROBE high  
5
su(HDV-HSTBH)  
t
3
h(HSTBH-HDV)  
Hold time, HSTROBE low after HRDY low. HSTROBE should not be inactivated until  
HRDY is active (low); otherwise, HPI writes will not complete properly.  
14  
t
2
ns  
h(HRDYL-HSTBL)  
18  
19  
t
Setup time, HAS low before HSTROBE low  
Hold time, HAS low after HSTROBE low  
2
2
ns  
ns  
su(HASL-HSTBL)  
t
h(HSTBL-HASL)  
C6711B-150  
C6711BGFNA-100  
NO.  
UNIT  
MIN MAX  
§
1
2
t
Setup time, select signals valid before HSTROBE low  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(SELV-HSTBL)  
§
t
Hold time, select signals valid after HSTROBE low  
4
4P  
4P  
5
h(HSTBL-SELV)  
3
t
Pulse duration, HSTROBE low  
w(HSTBL)  
4
t
t
t
Pulse duration, HSTROBE high between consecutive accesses  
w(HSTBH)  
§
Setup time, select signals valid before HAS low  
10  
11  
12  
13  
su(SELV-HASL)  
h(HASL-SELV)  
§
Hold time, select signals valid after HAS low  
3
t
Setup time, host data valid before HSTROBE high  
Hold time, host data valid after HSTROBE high  
5
su(HDV-HSTBH)  
t
3
h(HSTBH-HDV)  
Hold time, HSTROBE low after HRDY low. HSTROBE should not be  
inactivated until HRDY is active (low); otherwise, HPI writes will not complete  
properly.  
14  
t
2
ns  
h(HRDYL-HSTBL)  
18  
19  
t
Setup time, HAS low before HSTROBE low  
Hold time, HAS low after HSTROBE low  
2
2
ns  
ns  
su(HASL-HSTBL)  
t
h(HSTBL-HASL)  
§
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
Select signals include: HCNTL[1:0], HR/W, and HHWIL.  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
HOST-PORT INTERFACE TIMING (CONTINUED)  
switching characteristics over recommended operating conditions during host-port interface  
†‡  
cycles (see Figure 31, Figure 32, Figure 33, and Figure 34)  
C6711-100  
C6711-150  
C6711B-100  
NO.  
PARAMETER  
UNIT  
MIN MAX  
§
5
6
t
t
t
t
t
t
Delay time, HCS to HRDY  
1
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
d(HCS-HRDY)  
Delay time, HSTROBE low to HRDY high  
3
d(HSTBL-HRDYH)  
d(HSTBL-HDLZ)  
d(HDV-HRDYL)  
oh(HSTBH-HDV)  
d(HSTBH-HDHZ)  
7
Delay time, HSTROBE low to HD low impedance for an HPI read  
Delay time, HD valid to HRDY low  
2
8
2P 4  
2P  
15  
15  
9
Output hold time, HD valid after HSTROBE high  
Delay time, HSTROBE high to HD high impedance  
3
3
15  
16  
17  
20  
t
t
t
Delay time, HSTROBE low to HD valid  
3
3
3
15  
15  
15  
ns  
ns  
ns  
d(HSTBL-HDV)  
#
Delay time, HSTROBE high to HRDY high  
d(HSTBH-HRDYH)  
d(HASL-HRDYH)  
Delay time, HAS low to HRDY high  
C6711BGFNA-100  
C6711B-150  
NO.  
PARAMETER  
UNIT  
MIN  
1
MAX  
13  
MIN  
1
MAX  
12  
§
5
6
t
Delay time, HCS to HRDY  
ns  
ns  
d(HCS-HRDY)  
t
Delay time, HSTROBE low to HRDY high  
3
13  
3
12  
d(HSTBL-HRDYH)  
Delay time, HSTROBE low to HD low impedance for  
an HPI read  
7
t
2
2
ns  
d(HSTBL-HDLZ)  
8
9
t
Delay time, HD valid to HRDY low  
2P 4  
2P  
13  
13  
13  
2P 4  
2P  
12  
12  
12  
ns  
ns  
ns  
ns  
d(HDV-HRDYL)  
t
Output hold time, HD valid after HSTROBE high  
Delay time, HSTROBE high to HD high impedance  
Delay time, HSTROBE low to HD valid  
3
3
3
3
3
3
oh(HSTBH-HDV)  
15  
16  
t
d(HSTBH-HDHZ)  
t
d(HSTBL-HDV)  
#
17  
20  
t
Delay time, HSTROBE high to HRDY high  
3
3
13  
13  
3
3
12  
12  
ns  
ns  
d(HSTBH-HRDYH)  
t
Delay time, HAS low to HRDY high  
d(HASL-HRDYH)  
§
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
HCS enables HRDY, and HRDY is always low when HCS is high. The case where HRDY goes high when HCS falls indicates that HPI is busy  
completing a previous HPID write or READ with autoincrement.  
This parameter is used during an HPID read. At the beginning of the first half-word transfer on the falling edge of HSTROBE, the HPI sends the  
requestto the EDMA internal address generation hardware, and HRDY remains high until the EDMA internal address generation hardware loads  
the requested data into HPID.  
This parameter is used after the second half-word of an HPID write or autoincrement read. HRDY remains low if the access is not an HPID write  
or autoincrement read. Reading or writing to HPIC or HPIA does not affect the HRDY signal.  
#
62  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
HOST-PORT INTERFACE TIMING (CONTINUED)  
HAS  
HCNTL[1:0]  
HR/W  
1
1
1
1
2
2
2
2
2
2
1
1
HHWIL  
4
3
3
HSTROBE  
HCS  
15  
9
15  
9
7
16  
HD[15:0] (output)  
HRDY (case 1)  
HRDY (case 2)  
5
5
1st halfword  
2nd halfword  
5
8
8
17  
17  
6
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 31. HPI Read Timing (HAS Not Used, Tied High)  
HAS  
19  
11  
19  
11  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
11  
11  
10  
10  
HHWIL  
4
3
HSTROBE  
18  
18  
HCS  
15  
15  
7
9
16  
9
17  
17  
HD[15:0] (output)  
HRDY (case 1)  
HRDY (case 2)  
1st half-word  
2nd half-word  
5
8
8
5
5
20  
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 32. HPI Read Timing (HAS Used)  
63  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
HOST-PORT INTERFACE TIMING (CONTINUED)  
HAS  
HCNTL[1:0]  
HR/W  
1
1
2
2
2
2
2
2
3
1
1
1
1
HHWIL  
3
4
14  
HSTROBE  
HCS  
HD[15:0] (input)  
HRDY  
12  
12  
13  
2nd halfword  
13  
17  
1st halfword  
5
5
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 33. HPI Write Timing (HAS Not Used, Tied High)  
HAS  
19  
11  
19  
11  
11  
11  
10  
10  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
HHWIL  
3
4
14  
HSTROBE  
18  
12  
18  
HCS  
HD[15:0] (input)  
HRDY  
12  
13  
13  
1st half-word  
2nd half-word  
5
5
17  
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 34. HPI Write Timing (HAS Used)  
64  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING  
†‡  
timing requirements for McBSP (see Figure 35)  
C6711-100  
C6711-150  
NO.  
UNIT  
MIN  
MAX  
§
2
3
t
t
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
2P  
ns  
ns  
c(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
0.5t  
c(CKRX)  
1  
20  
1
w(CKRX)  
5
6
t
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
su(FRH-CKRL)  
6
t
h(CKRL-FRH)  
3
22  
3
7
t
su(DRV-CKRL)  
3
8
t
Hold time, DR valid after CLKR low  
h(CKRL-DRV)  
4
23  
1
10  
11  
t
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
su(FXH-CKXL)  
6
t
h(CKXL-FXH)  
3
C6711B-100  
C6711B-150  
C6711BGFNA-100  
NO.  
UNIT  
MIN MAX  
§
2
3
t
t
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
2P  
ns  
ns  
c(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
0.5t  
c(CKRX)  
1  
20  
1
w(CKRX)  
5
6
t
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
su(FRH-CKRL)  
6
t
h(CKRL-FRH)  
5
22  
3
7
t
su(DRV-CKRL)  
3
8
t
Hold time, DR valid after CLKR low  
h(CKRL-DRV)  
5
23  
1
10  
11  
t
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
su(FXH-CKXL)  
6
t
h(CKXL-FXH)  
3
§
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
The minimum CLKR/X period is twice the CPU cycle time (2P). This means that the maximum bit rate for communications between the McBSP  
and other device is 75 Mbps for 150 MHz CPU clock or 50 Mbps for 100 MHz CPU clock; where the McBSP is either the master or the slave.  
Care must be taken to ensure that the AC timings specified in this data sheet are met. The maximum bit rate for McBSP-to-McBSP  
communications is 33 Mbps; therefore, the minimum CLKR/X clock cycle is either twice the CPU cycle time (2P), or 30 ns (33 MHz), whichever  
valueislarger. Forexample, whenrunningpartsat150MHz(P=6.7ns), use33nsastheminimumCLKR/Xclockcycle(bysettingtheappropriate  
CLKGDV ratio or external clock source). When running parts at 60 MHz (P = 16.67 ns), use 2P = 33 ns (30 MHz) as the minimum CLKR/X clock  
cycle. The maximum bit rate for McBSP-to-McBSP communications applies when the serial port is a master of the clock and frame syncs (with  
CLKR connected to CLKX, FSR connected to FSX, CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY =  
01b or 10b) and the other device the McBSP communicates to is a slave.  
65  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
switching characteristics over recommended operating conditions for McBSP (see Figure 35)  
(C6711-100 and C6711-150)  
C6711-100  
C6711-150  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from  
CLKS input  
1
t
4
26  
ns  
d(CKSH-CKRXH)  
§¶  
2
3
4
t
t
t
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
2P  
ns  
ns  
ns  
c(CKRX)  
#
#
Pulse duration, CLKR/X high or CLKR/X low  
Delay time, CLKR high to internal FSR valid  
C 1  
C + 1  
w(CKRX)  
11  
11  
3
3
3
9
4
9
d(CKRH-FRV)  
9
t
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
d(CKXH-FXV)  
9  
3
Disable time, DX high impedance following last data bit from  
CLKX high  
12  
13  
t
dis(CKXH-DXHZ)  
||  
||  
9+ D1  
4 + D2  
t
Delay time, CLKX high to DX valid  
Delay time, FSX high to DX valid  
d(CKXH-DXV)  
||  
||  
3 + D1  
19 + D2  
FSX int  
FSX ext  
1  
3
9
14  
t
ns  
d(FXH-DXV)  
ONLY applies when in data  
delay 0 (XDATDLY = 00b) mode  
3
§
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
Minimum delay times also represent minimum output hold times.  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
The minimum CLKR/X period is twice the CPU cycle time (2P). This means that the maximum bit rate for communications between the McBSP  
and other device is 75 Mbps for 150 MHz CPU clock or 50 Mbps for 100 MHz CPU clock; where the McBSP is either the master or the slave.  
Care must be taken to ensure that the AC timings specified in this data sheet are met. The maximum bit rate for McBSP-to-McBSP  
communications is 33 Mbps; therefore, the minimum CLKR/X clock cycle is either twice the CPU cycle time (2P), or 30 ns (33 MHz), whichever  
valueislarger. Forexample, whenrunningpartsat150MHz(P=6.7ns), use33nsastheminimumCLKR/Xclockcycle(bysettingtheappropriate  
CLKGDV ratio or external clock source). When running parts at 60 MHz (P = 16.67 ns), use 2P = 33 ns (30 MHz) as the minimum CLKR/X clock  
cycle. The maximum bit rate for McBSP-to-McBSP communications applies when the serial port is a master of the clock and frame syncs (with  
CLKR connected to CLKX, FSR connected to FSX, CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY =  
01b or 10b) and the other device the McBSP communicates to is a slave.  
#
C = H or L  
S = sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see footnote above).  
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.  
If DXENA = 0, then D1 = D2 = 0  
||  
If DXENA = 1, then D1 = 2P, D2 = 4P  
66  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
switching characteristics over recommended operating conditions for McBSP (see Figure 35)  
(C6711B-100, C6711B-150, and C6711BGFNA-100)  
C6711B-100  
C6711B-150  
C6711BGFNA-100  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from  
CLKS input  
1
t
4
26  
ns  
d(CKSH-CKRXH)  
§¶  
2
3
4
t
t
t
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
2P  
ns  
ns  
ns  
c(CKRX)  
#
#
3
Pulse duration, CLKR/X high or CLKR/X low  
Delay time, CLKR high to internal FSR valid  
C 1  
C + 1  
w(CKRX)  
11  
10  
3
d(CKRH-FRV)  
3.5  
16  
4
9
t
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
d(CKXH-FXV)  
9  
3
Disable time, DX high impedance following last data bit from  
CLKX high  
12  
13  
t
dis(CKXH-DXHZ)  
9
||  
||  
9+ D1  
8 + D2  
t
Delay time, CLKX high to DX valid  
Delay time, FSX high to DX valid  
d(CKXH-DXV)  
||  
||  
3 + D1  
26 + D2  
FSX int  
FSX ext  
1  
3
9
14  
t
ns  
d(FXH-DXV)  
ONLY applies when in data  
delay 0 (XDATDLY = 00b) mode  
3
§
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
Minimum delay times also represent minimum output hold times.  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
The minimum CLKR/X period is twice the CPU cycle time (2P). This means that the maximum bit rate for communications between the McBSP  
and other device is 75 Mbps for 150 MHz CPU clock or 50 Mbps for 100 MHz CPU clock; where the McBSP is either the master or the slave.  
Care must be taken to ensure that the AC timings specified in this data sheet are met. The maximum bit rate for McBSP-to-McBSP  
communications is 33 Mbps; therefore, the minimum CLKR/X clock cycle is either twice the CPU cycle time (2P), or 30 ns (33 MHz), whichever  
valueislarger. Forexample, whenrunningpartsat150MHz(P=6.7ns), use33nsastheminimumCLKR/Xclockcycle(bysettingtheappropriate  
CLKGDV ratio or external clock source). When running parts at 60 MHz (P = 16.67 ns), use 2P = 33 ns (30 MHz) as the minimum CLKR/X clock  
cycle. The maximum bit rate for McBSP-to-McBSP communications applies when the serial port is a master of the clock and frame syncs (with  
CLKR connected to CLKX, FSR connected to FSX, CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY =  
01b or 10b) and the other device the McBSP communicates to is a slave.  
#
C = H or L  
S = sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see footnote above).  
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.  
If DXENA = 0, then D1 = D2 = 0  
||  
If DXENA = 1, then D1 = 2P, D2 = 4P  
67  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKS  
1
2
3
3
CLKR  
FSR (int)  
FSR (ext)  
DR  
4
4
5
6
7
8
Bit(n-1)  
(n-2)  
(n-3)  
2
3
3
CLKX  
9
FSX (int)  
11  
10  
FSX (ext)  
FSX (XDATDLY=00b)  
13  
(n-2)  
14  
13  
12  
DX  
Bit 0  
Bit(n-1)  
(n-3)  
Figure 35. McBSP Timings  
68  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
timing requirements for FSR when GSYNC = 1 (see Figure 36)  
100  
150  
NO.  
UNIT  
MIN  
MAX  
1
2
t
t
Setup time, FSR high before CLKS high  
Hold time, FSR high after CLKS high  
4
4
ns  
ns  
su(FRH-CKSH)  
h(CKSH-FRH)  
CLKS  
1
2
FSR external  
CLKR/X (no need to resync)  
CLKR/X (needs resync)  
Figure 36. FSR Timing When GSYNC = 1  
69  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0 (see Figure 37)  
C6711-100  
C6711-150  
NO.  
UNIT  
MASTER  
SLAVE  
MIN  
26  
4
MAX  
MIN  
2 6P  
MAX  
4
5
t
t
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
ns  
ns  
su(DRV-CKXL)  
6 + 12P  
h(CKXL-DRV)  
C6711B-100  
C6711B-150  
C6711BGFNA-100  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
26  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
2 6P  
14 + 12P  
ns  
ns  
su(DRV-CKXL)  
h(CKXL-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
70  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 10b, CLKXP = 0 (see Figure 37)  
C6711-100  
C6711-150  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
T 9 T + 9  
L 9 L + 9  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX high to DX valid  
9  
9
6P + 4 10P + 20  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
t
L 9 L + 9  
ns  
dis(CKXL-DXHZ)  
Disable time, DX high impedance following last data bit from  
FSX high  
7
8
t
t
2P + 3  
4P + 2  
6P + 20  
8P + 20  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
C6711B-100  
C6711B-150  
C6711BGFNA-100  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
T 10 T + 10  
L 10 L + 10  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX high to DX valid  
10  
10  
6P + 4 10P + 25  
Disable time, DX high impedance following last data bit  
from CLKX low  
6
t
L 10 L + 10  
ns  
dis(CKXL-DXHZ)  
Disable time, DX high impedance following last data bit  
from FSX high  
7
8
t
t
2P + 3  
4P + 2  
6P + 25  
8P + 25  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
71  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
1
2
8
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 37. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
72  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 0 (see Figure 38)  
C6711-100  
C6711-150  
NO.  
UNIT  
MASTER  
SLAVE  
MIN  
26  
4
MAX  
MIN  
2 6P  
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
ns  
ns  
su(DRV-CKXH)  
6 + 12P  
h(CKXH-DRV)  
C6711B-100  
C6711B-150  
C6711BGFNA-100  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
26  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 6P  
14 + 12P  
ns  
ns  
su(DRV-CKXH)  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
73  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 11b, CLKXP = 0 (see Figure 38)  
C6711-100  
C6711-150  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
L 9 L + 9  
T 9 T + 9  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX low to DX valid  
9  
9
6P + 4 10P + 20  
6P + 3 10P + 20  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
7
t
9  
9
ns  
ns  
dis(CKXL-DXHZ)  
d(FXL-DXV)  
t
Delay time, FSX low to DX valid  
H 9 H + 9  
4P + 2  
8P + 20  
C6711B-100  
C6711B-150  
C6711BGFNA-100  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
L 10 L + 10  
T 10 T + 10  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX low to DX valid  
10  
10  
6P + 4 10P + 25  
6P + 3 10P + 25  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
t
10  
10  
ns  
ns  
dis(CKXL-DXHZ)  
7
t
Delay time, FSX low to DX valid  
H 10 H + 10  
4P + 2  
8P + 25  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
74  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
DX  
1
2
7
6
3
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
DR  
Bit 0  
(n-2)  
(n-4)  
Figure 38. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
75  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1 (see Figure 39)  
C6711-100  
C6711-150  
NO.  
UNIT  
MASTER  
SLAVE  
MIN  
26  
4
MAX  
MIN  
2 6P  
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
ns  
ns  
su(DRV-CKXH)  
6 + 12P  
h(CKXH-DRV)  
C6711B-100  
C6711B-150  
C6711BGFNA-100  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
26  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 6P  
14 + 12P  
ns  
ns  
su(DRV-CKXH)  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
76  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 10b, CLKXP = 1 (see Figure 39)  
C6711-100  
C6711-150  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
T 9 T + 9  
H 9 H + 9  
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX low to DX valid  
9  
9
6P + 4 10P + 20  
Disable time, DX high impedance following last data bit from  
CLKX high  
6
t
H 9 H + 9  
ns  
dis(CKXH-DXHZ)  
Disable time, DX high impedance following last data bit from  
FSX high  
7
8
t
t
2P + 3  
4P + 2  
6P + 20  
8P + 20  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
C6711B-100  
C6711B-150  
C6711BGFNA-100  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
T 10 T + 10  
H 10 H + 10  
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX low to DX valid  
10  
10  
6P + 4 10P + 25  
Disable time, DX high impedance following last data bit  
from CLKX high  
6
t
H 10 H + 10  
ns  
dis(CKXH-DXHZ)  
Disable time, DX high impedance following last data bit  
from FSX high  
7
8
t
t
2P + 3  
4P + 2  
6P + 25  
8P + 25  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
77  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
1
2
8
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 39. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
78  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1 (see Figure 40)  
C6711-100  
C6711-150  
NO.  
UNIT  
MASTER  
SLAVE  
MIN  
26  
4
MAX  
MIN  
2 6P  
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
ns  
ns  
su(DRV-CKXH)  
6 + 12P  
h(CKXH-DRV)  
C6711B-100  
C6711B-150  
C6711BGFNA-100  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
26  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 6P  
14 + 12P  
ns  
ns  
su(DRV-CKXH)  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
79  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 11b, CLKXP = 1 (see Figure 40)  
C6711-100  
C6711-150  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
H 9 H + 9  
T 9 T + 9  
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
9  
9
6P + 4 10P + 20  
6P + 3 10P + 20  
Disable time, DX high impedance following last data bit from  
CLKX high  
6
7
t
9  
9
ns  
ns  
dis(CKXH-DXHZ)  
d(FXL-DXV)  
t
Delay time, FSX low to DX valid  
L 9 L + 9  
4P + 2  
8P + 20  
C6711B-100  
C6711B-150  
C6711BGFNA-100  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
H 10 H + 10  
T 10 T + 10  
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
10  
10  
6P + 4 10P + 25  
6P + 3 10P + 25  
Disable time, DX high impedance following last data bit  
from CLKX high  
6
t
10  
10  
ns  
ns  
dis(CKXH-DXHZ)  
7
t
Delay time, FSX low to DX valid  
L 10 L + 10  
4P + 2  
8P + 25  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
80  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
DX  
1
2
7
6
3
Bit 0  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
DR  
(n-2)  
(n-3)  
(n-4)  
Figure 40. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
81  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
TIMER TIMING  
timing requirements for timer inputs (see Figure 41)  
100  
150  
NO.  
UNIT  
MIN  
MAX  
1
2
t
t
Pulse duration, TINP high  
Pulse duration, TINP low  
2P  
2P  
ns  
ns  
w(TINPH)  
w(TINPL)  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
switching characteristics over recommended operating conditions for timer outputs  
(see Figure 41)  
100  
150  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
3
4
t
t
Pulse duration, TOUT high  
Pulse duration, TOUT low  
4P3  
4P3  
ns  
ns  
w(TOUTH)  
w(TOUTL)  
P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.  
2
1
TINPx  
4
3
TOUTx  
Figure 41. Timer Timing  
82  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
JTAG TEST-PORT TIMING  
timing requirements for JTAG test port (see Figure 42)  
100  
150  
NO.  
UNIT  
MIN  
MAX  
1
3
4
t
t
t
Cycle time, TCK  
35  
10  
9
ns  
ns  
ns  
c(TCK)  
Setup time, TDI/TMS/TRST valid before TCK high  
Hold time, TDI/TMS/TRST valid after TCK high  
su(TDIV-TCKH)  
h(TCKH-TDIV)  
switching characteristics over recommended operating conditions for JTAG test port  
(see Figure 42)  
100  
150  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
2
t
Delay time, TCK low to TDO valid  
3  
18  
ns  
d(TCKL-TDOV)  
1
TCK  
TDO  
2
2
4
3
TDI/TMS/TRST  
Figure 42. JTAG Test-Port Timing  
83  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS320C6711, TMS320C6711B  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
SPRS088B FEBRUARY 1999 REVISED SEPTEMBER 2001  
MECHANICAL DATA  
GFN (S-PBGA-N256)  
PLASTIC BALL GRID ARRAY  
27,20  
26,80  
24,70  
23,95  
SQ  
SQ  
24,13 TYP  
1,27  
0,635  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19  
10 12 14 16 18 20  
2
4
6
8
2,32 MAX  
1,17 NOM  
Seating Plane  
0,15  
0,90  
0,60  
0,40  
0,30  
M
0,15  
0,70  
0,50  
4040185-2/B 11/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
thermal resistance characteristics (S-PBGA package)  
NO  
°C/W  
6.4  
Air Flow (m/s)  
1
2
3
4
5
RΘ  
RΘ  
RΘ  
RΘ  
RΘ  
Junction-to-case  
N/A  
0.0  
0.5  
1.0  
2.0  
JC  
JA  
JA  
JA  
JA  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
25.5  
23.1  
22.3  
21.2  
m/s = meters per second  
84  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TIs terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TIs standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding thirdparty products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2001, Texas Instruments Incorporated  

相关型号:

TMS320C6711C

FLOATING-POINT DIGITAL SIGNAL PROCESSORS
TI

TMS320C6711C-200

Floating-Point Digital Signal Processor
ETC

TMS320C6711CGDP167

32-BIT, 166.66MHz, OTHER DSP, PBGA272, 27 X 27 MM, PLASTIC, BGA-272
TI

TMS320C6711CGDP200

FLOATING-POINT DIGITAL SIGNAL PROCESSORS
TI

TMS320C6711CZDP200

FLOATING-POINT DIGITAL SIGNAL PROCESSORS
TI

TMS320C6711D

FLOATING-POINT DIGITAL SIGNAL PROCESSORS
TI

TMS320C6711DGDP200

FLOATING-POINT DIGITAL SIGNAL PROCESSORS
TI

TMS320C6711DGDP250

FLOATING-POINT DIGITAL SIGNAL PROCESSORS
TI

TMS320C6711DZDP200

C67x 浮点 DSP- 高达 250MHz、McBSP、32 位 EMIFA | ZDP | 272 | 0 to 90
TI

TMS320C6711DZDP250

C67x 浮点 DSP- 高达 250MHz、McBSP、32 位 EMIFA | ZDP | 272 | 0 to 90
TI

TMS320C6711D_07

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320C6711FD100

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI