TN80C186EA25 [ETC]

Microprocessor ; 微处理器\n
TN80C186EA25
型号: TN80C186EA25
厂家: ETC    ETC
描述:

Microprocessor
微处理器\n

外围集成电路 微处理器 装置 动态存储器 时钟
文件: 总56页 (文件大小:626K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® 80C186EA/80C188EA AND  
80L186EA/80L188EA  
16-Bit High-Integration Embedded Processors  
Datasheet  
Intel® 80C186 Upgrade for Power Critical Applications  
Fully Static Operation  
True CMOS Inputs and Outputs  
Product Features  
Integrated Feature Set  
Speed Versions Available (3V)  
13 MHz (Intel® 80L186EA13/  
80L188EA13)  
Static 186 CPU Core  
Power Save, Idle and Powerdown  
Modes  
Direct Addressing Capability to 1 Mbyte  
Memory and 64 Kbyte I/O  
Clock Generator  
Supports Intel® 80C187 Numeric  
Coprocessor Interface (Intel® 80C186EA  
only)  
—2 Independent DMA Channels  
—3 Programmable 16-Bit Timers  
Dynamic RAM Refresh Control Unit  
Available in the Following Packages:  
68-Pin Plastic Leaded Chip Carrier  
(PLCC)  
Programmable Memory and Peripheral  
Chip Select Logic  
Available in Extended Temperature Range  
Programmable Wait State Generator  
Local Bus Controller  
(-40°C to +85°C)  
System-Level Testing Support (High  
Impedance Test Mode)  
Speed Versions Available (5V):  
—25 MHz (Intel® 80C186EA25/80C188EA25)  
—20 MHz (Intel® 80C186EA20/80C188EA20)  
—13 MHz (Intel® 80C186EA13/80C188EA13)  
The Intel® 80C186EA is a CHMOS high integration embedded microprocessor. The Intel®  
80C186EA includes all of the features of an ``Enhanced Mode'' Intel® 80C186 while adding the  
additional capabilities of Idle and Powerdown Modes. In Numerics Mode, the Intel® 80C186EA  
interfaces directly with an Intel® 80C187 Numerics Coprocessor.  
Order Number: 272432-005  
April 2002  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel® 80C186EA/80C188EA AND 80L186EA/80L188EA may contain design defects or errors known as errata which may cause the product to  
deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © Intel Corporation, 2002  
AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,  
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,  
IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel  
NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation,  
Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer  
logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare,  
RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In,  
TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and  
other countries.  
*Other names and brands may be claimed as the property of others.  
2
Datasheet  
Contents  
Contents  
1.0 Introduction....................................................................................................................................7  
2.0 Intel® 80C186EA Core Architecture.............................................................................................9  
2.1  
2.2  
Bus Interface Unit .................................................................................................................9  
Clock Generator....................................................................................................................9  
3.0 Intel® 80C186EA Peripheral Architecture .................................................................................11  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Interrupt Control Unit ..........................................................................................................11  
Timer/Counter Unit .............................................................................................................11  
DMA Control Unit................................................................................................................14  
Chip-Select Unit..................................................................................................................14  
Refresh Control Unit ...........................................................................................................14  
Power Management............................................................................................................14  
80C187 Interface (80C186EA Only) ...................................................................................15  
ONCE Test Mode ...............................................................................................................15  
4.0 Intel® 80C186XL and Intel® 80C186EA Differences.................................................................16  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Pinout Compatibility ............................................................................................................16  
Operating Modes ................................................................................................................16  
TTL vs. CMOS Inputs .........................................................................................................16  
Timing Specifications..........................................................................................................16  
Package Information...........................................................................................................17  
Pin Descriptions..................................................................................................................17  
5.0 Intel® 80C186EA Pinout..............................................................................................................22  
6.0 Package Thermal Specifications................................................................................................24  
7.0 Electrical Specification ...............................................................................................................25  
7.1  
7.2  
Absolute Maximum Ratings*...............................................................................................25  
Recommended Connections ..............................................................................................25  
8.0 DC Specifications ........................................................................................................................26  
8.1  
8.2  
ICC Versus Frequency and Voltage ...................................................................................28  
PDTMR Pin Delay Calculation............................................................................................29  
Datasheet  
3
Contents  
9.0 AC Specifications........................................................................................................................30  
10.0 AC Test Conditions .....................................................................................................................34  
11.0 AC Timing Waveforms ................................................................................................................35  
12.0 Derating Curves...........................................................................................................................38  
13.0 Reset.............................................................................................................................................39  
14.0 Bus Cycle Waveforms.................................................................................................................42  
15.0 Product Name Execution Timings .............................................................................................49  
16.0 Revision History ..........................................................................................................................56  
17.0 Errata ............................................................................................................................................56  
4
Datasheet  
Contents  
Figures  
1
2
3
4
5
6
7
8
9
Product Name Block Diagram ......................................................................................................8  
Clock Configurations...................................................................................................................10  
68-Lead PLCC Pinout Diagram ..................................................................................................23  
AC Test Load..............................................................................................................................34  
Input and Output Clock Waveform..............................................................................................35  
Output Delay and Float Waveform .............................................................................................35  
Input Setup and Hold ..................................................................................................................36  
Relative Signal Waveform ..........................................................................................................37  
Typical Output Delay Variations Versus Load Capacitance .......................................................38  
10 Typical Rise and Fall Variations Versus Load Capacitance .......................................................38  
11 Powerup Reset Waveforms ........................................................................................................40  
12 Warm Reset Waveforms.............................................................................................................41  
13 Read, Fetch and Refresh Cycle Waveform ................................................................................42  
14 Write Cycle Waveform................................................................................................................43  
15 Halt Cycle Waveform ..................................................................................................................44  
16 INTA Cycle Waveform ................................................................................................................45  
17 HOLD/HLDA Waveform..............................................................................................................46  
18 DRAM Refresh Cycle During Hold Acknowledge .......................................................................47  
19 Ready Waveform........................................................................................................................48  
20 Instruction Set Summary ............................................................................................................50  
Tables  
1
Peripheral Control Block Registers.............................................................................................12  
2
3
4
5
6
7
8
9
Intel® 80C186EA Slave Mode Peripheral Control Block Registers............................................13  
Prefix Identification .....................................................................................................................17  
Pin Description Nomenclature ....................................................................................................18  
Pin Descriptions..........................................................................................................................19  
PLCC Pin Names with Package Location...................................................................................22  
PLCC Package Location with Pin Names...................................................................................22  
Thermal Resistance (qCA) at Various Airflows (in °C/Watt) .......................................................24  
DC SPECIFICATIONS (80C186EA/80C188EA) ........................................................................26  
10 DC SPECIFICATIONS (80L186EA/80L188EA)..........................................................................27  
11 CDEV Values..............................................................................................................................28  
12 AC Characteristics—80C186EA25/80C186EA20/80C186EA13 ................................................30  
13 AC Characteristics—80L186EA13/80C186EA8 .........................................................................32  
14 Relative Timings (80C186EA25/20/13, 80L186EA13)................................................................33  
Datasheet  
5
Contents  
Revision History  
Date  
Revision  
Description  
June 2002  
April 2002  
005  
004  
Discontinued device reference removal and reformatting.  
Datasheet updates  
6
Datasheet  
Introduction  
1.0  
Introduction  
Unless specifically noted, all references to the Intel® 80C186EA apply to the Intel® 80C188EA,  
Intel® 80L186EA, and Intel® 80L188EA. References to pins that differ between the Intel®  
80C186EA/80L186EA and the Intel® 80C188EA/ 80L188EA are given in parentheses. The “L” in  
the part number denotes low voltage operation. Physically and functionally, the “C” and “L”  
devices are identical.  
The 80C186EA is the second product in a new generation of low-power, high-integration  
microprocessors. It enhances the existing Intel® 80C186XL family by offering new features and  
operating modes. The 80C186EA is object code compatible with the 80C186XL embedded  
processor.  
The 80L186EA is the 3V version of the 80C186EA. The 80L186EA is functionally identical to the  
80C186EA embedded processor. Current 80C186EA customers can easily upgrade their designs to  
use the 80L186EA and benefit from the reduced power consumption inherent in 3V operation.  
The feature set of the 80C186EA/80L186EA meets the needs of low-power, space-critical  
applications. Low-power applications benefit from the static design of the CPU core and the  
integrated peripherals as well as low voltage operation. Minimum current consumption is achieved  
by providing a Powerdown Mode that halts operation of the device, and freezes the clock circuits.  
Peripheral design enhancements ensure that non-initialized peripherals consume little current.  
Space-critical applications benefit from the integration of commonly used system peripherals. Two  
flexible DMA channels perform CPU-independent data transfers. A flexible chip select unit  
simplifies memory and peripheral interfacing. The interrupt unit provides sources for up to  
128 external interrupts and will prioritize these interrupts with those generated from the on-chip  
peripherals. Three general purpose timer/counters round out the feature set of the 80C186EA.  
Figure 1 shows a block diagram of the 80C186EA/ 80C188EA. The Execution Unit (EU) is an  
enhanced 8086 CPU core that includes: dedicated hardware to speed up effective address  
calculations, enhance execution speed for multiple-bit shift and rotate instructions and for multiply  
and divide instructions, string move instructions that operate at full bus bandwidth, ten new  
instructions, and static operation. The Bus Interface Unit (BIU) is the same as that found on the  
original 80C186 family products. An independent internal bus is used to allow communication  
between the BIU and internal peripherals.  
Product Name Datasheet  
7
Introduction  
Figure 1.  
Product Name Block Diagram  
Note:  
Pin names in parentheses apply to the 80C186EA / 80L188EA  
8
Product Name Datasheet  
Intel® 80C186EA Core Architecture  
2.0  
Intel® 80C186EA Core Architecture  
2.1  
Bus Interface Unit  
The 80C186EA core incorporates a bus controller that generates local bus control signals. In  
addition, it employs a HOLD/HLDA protocol to share the local bus with other bus masters.  
The bus controller is responsible for generating 20 bits of address, read and write strobes, bus cycle  
status information and data (for write operations) information. It is also responsible for reading  
data off the local bus during a read operation. SRDY and ARDY input pins are provided to extend  
a bus cycle beyond the minimum four states (clocks).  
The local bus controller also generates a control signal (DEN) when interfacing to external  
transceiver chips. This capability allows the addition of transceivers for simple buffering of the  
multiplexed address/data bus.  
2.2  
Clock Generator  
The processor provides an on-chip clock generator for both internal and external clock generation.  
The clock generator features a crystal oscillator, a divideby- two counter, and two low-power  
operating modes.  
The oscillator circuit is designed to be used with either a parallel resonant fundamental or third-  
overtone mode crystal network. Alternatively, the oscillator circuit may be driven from an external  
clock source. Figure 2 shows the various operating modes of the oscillator circuit.  
The crystal or clock frequency chosen must be twice the required processor operating frequency  
due to the internal divide-by-two counter. This counter is used to drive all internal phase clocks and  
the external CLKOUT signal. CLKOUT is a 50% duty cycle processor clock and can be used to  
drive other system components. All AC timings are referenced to CLKOUT.  
The following parameters are recommended when choosing a crystal:  
Temperature Range:  
Application Specific  
ESR (Equivalent Series Resistance): 60 max  
C0 (Shunt Capacitance of Crystal):  
7 pF max  
C (Load Capacitance):  
20 pF ± 2 pF  
2 mW maximum  
L
Drive Level:  
Product Name Datasheet  
9
Intel® 80C186EA Core Architecture  
Figure 2.  
Clock Configurations  
Note:  
The L C network is only required when using a third-overtone crystal.  
1
1
10  
Product Name Datasheet  
Intel® 80C186EA Peripheral Architecture  
3.0  
Intel® 80C186EA Peripheral Architecture  
The 80C186EA has integrated several common system peripherals with a CPU core to create a  
compact, yet powerful system. The integrated peripherals are designed to be flexible and provide  
logical interconnections between supporting units (e.g., the interrupt control unit supports interrupt  
requests from the timer/counters or DMA channels).  
The list of integrated peripherals include:  
4-Input Interrupt Control Unit  
3-Channel Timer/Counter Unit  
2-Channel DMA Unit  
13-Output Chip-Select Unit  
Refresh Control Unit  
Power Management Logic  
The registers associated with each integrated peripheral are contained within a 128 x 16 register  
file called the Peripheral Control Block (PCB). The PCB can be located in either memory or I/O  
space on any 256 byte address boundary.  
Table 1 provides a list of the registers associated with the PCB when the processor's Interrupt  
Control Unit is in Master Mode. In Slave Mode, the definitions of some registers change. Table 2  
provides register definitions specific to Slave Mode.  
3.1  
Interrupt Control Unit  
The 80C186EA can receive interrupts from a number of sources, both internal and external. The  
Interrupt Control Unit (ICU) serves to merge these requests on a priority basis, for individual  
service by the CPU. Each interrupt source can be independently masked by the Interrupt Control  
Unit or all interrupts can be globally masked by the CPU.  
Internal interrupt sources include the Timers and DMA channels. External interrupt sources come  
from the four input pins INT3:0. The NMI interrupt pin is not controlled by the ICU and is passed  
directly to the CPU. Although the timers only have one request input to the ICU, separate vector  
types are generated to service individual interrupts within the Timer Unit.  
3.2  
Timer/Counter Unit  
The 80C186EA Timer/Counter Unit (TCU) provides three 16-bit programmable timers. Two of  
these are highly flexible and are connected to external pins for control or clocking. A third timer is  
not connected to any external pins and can only be clocked internally. However, it can be used to  
clock the other two timer channels. The TCU can be used to count external events, time external  
events, generate non-repetitive waveforms, generate timed interrupts, etc.  
Product Name Datasheet  
11  
Intel® 80C186EA Peripheral Architecture  
Table 1.  
Peripheral Control Block Registers  
PCB  
Offset  
PCB  
Offset  
PCB  
Offset  
PCB  
Offset  
Function  
Function  
Function  
Function  
00H  
02H  
04H  
06H  
08H  
0AH  
OCH  
0EH  
10H  
12H  
14H  
16H  
18H  
1AH  
1CH  
1EH  
20H  
22H  
24H  
26H  
28H  
2AH  
2CH  
2EH  
30H  
32H  
34H  
36H  
38H  
3AH  
3CH  
3EH  
Reserved  
Reserved  
40H  
42H  
44H  
46H  
48H  
4AH  
4CH  
4EH  
50H  
52H  
54H  
56H  
58H  
5AH  
5CH  
5EH  
60H  
62H  
64H  
66H  
68H  
6AH  
6CH  
6EH  
70H  
72H  
74H  
76H  
78H  
7AH  
7CH  
7EH  
Reserved  
Reserved  
80H  
82H  
84H  
86H  
88H  
8AH  
8CH  
8EH  
90H  
92H  
94H  
96H  
98H  
9AH  
9CH  
9EH  
A0H  
A2H  
A4H  
A6H  
A8H  
AAH  
ACH  
AEH  
B0H  
B2H  
B4H  
B6H  
B8H  
BAH  
BCH  
BEH  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UMCS  
C0H  
C2H  
C4H  
C6H  
C8H  
CAH  
CCH  
CEH  
D0H  
D2H  
D4H  
D6H  
D8H  
DAH  
DCH  
DEH  
E0H  
E2H  
E4H  
E6H  
E8H  
EAH  
ECH  
EEH  
F0H  
F2H  
F4H  
F6H  
F8H  
FAH  
FCH  
FEH  
DMA0 Src. Lo  
DMA0 Src. Hi  
DMA0 Dest. Lo  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DMA0 Count  
DMA0 Control  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Timer 0 Count  
Timer 0 Compare A  
Timer 0 Compare B  
Timer 0 Control  
Timer 1 Count  
Timer 1 Compare A  
Timer 1 Compare B  
Timer 1 Control  
Timer 2 Count  
Timer 2 Compare  
Reserved  
DMA1 Src. Lo  
DMA1 Src. Hi  
DMA1 Dest. Lo  
DMA1 Dest. Hi  
DMA1 Count  
DMA1 Control  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Refresh Base  
Refresh Time  
Refresh Control  
Reserved  
End of Interrupt  
Poll  
LMCS  
PACS  
Poll Status  
Interrupt Mask  
Priority Mask  
In-Service  
Timer 2 Control  
Reserved  
MMCS  
MPCS  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Interrupt Request  
Interrupt Status  
Timer Control  
DMA0 Int. Control  
DMA0 Int. Control  
INT0 Control  
INT1 Control  
INT2 Control  
INT3 Control  
Reserved  
Reserved  
Reserved  
Power-Save  
Power Control  
Reserved  
Reserved  
Reserved  
Reserved  
Step ID  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Relocation  
12  
Product Name Datasheet  
Intel® 80C186EA Peripheral Architecture  
Table 2.  
Intel® 80C186EA Slave Mode Peripheral Control Block Registers  
PCB Offset  
Function  
20H  
22H  
24H  
26H  
28H  
2AH  
2C  
Interrupt Vector  
Specific EOI  
Reserved  
Reserved  
Interrupt Mask  
Priority Mask  
In-Service  
2E  
Interrupt Request  
Interrupt Status  
TMR0 Interrupt Control  
DMA0 Interrupt Control  
DMA1 Interrupt Control  
TMR1 Interrupt Control  
TMR2 Interrupt Control  
Reserved  
30  
32  
34  
36  
38  
3A  
3C  
3E  
Reserved  
Product Name Datasheet  
13  
Intel® 80C186EA Peripheral Architecture  
3.3  
DMA Control Unit  
The 80C186EA DMA Control Unit provides two independent high-speed DMA channels. Data  
transfers can occur between memory and I/O space in any combination: memory to memory,  
memory to I/O, I/O to I/O or I/O to memory. Data can be transferred either in bytes or words.  
Transfers may proceed to or from either even or odd addresses, but even-aligned word transfers  
proceed at a faster rate. Each data transfer consumes two bus cycles (a minimum of eight clocks),  
one cycle to fetch data and the other to store data. The chip-select/ready logic may be programmed  
to point to the memory or I/O space subject to DMA transfers in order to provide hardware chip  
select lines. DMA cycles run at higher priority than general processor execution cycles.  
3.4  
3.5  
Chip-Select Unit  
The 80C186EA Chip-Select Unit integrates logic which provides up to 13 programmable chip-  
selects to access both memories and peripherals. In addition, each chip-select can be programmed  
to automatically terminate a bus cycle independent of the condition of the SRDY and ARDY input  
pins. The chip-select lines are available for all memory and I/O bus cycles, whether they are  
generated by the CPU, the DMA unit, or the Refresh Control Unit.  
Refresh Control Unit  
The Refresh Control Unit (RCU) automatically generates a periodic memory read bus cycle to  
keep dynamic or pseudo-static memory refreshed. A 9-bit counter controls the number of clocks  
between refresh requests.  
A 9-bit address generator is maintained by the RCU with the address presented on the A9:1 address  
lines during the refresh bus cycle. Address bits A19:13 are programmable to allow the refresh  
address block to be located on any 8 Kbyte boundary.  
3.6  
Power Management  
The 80C186EA has three operational modes to control the power consumption of the device. They  
are Power Save Mode, Idle Mode, and Powerdown Mode.  
Power Save Mode divides the processor clock by a programmable value to take advantage of the  
fact that current is linearly proportional to frequency. An unmasked interrupt, NMI, or reset will  
cause the 80C186EA to exit Power Save Mode.  
Idle Mode freezes the clocks of the Execution Unit and the Bus Interface Unit at a logic zero state  
while all peripherals operate normally.  
Powerdown Mode freezes all internal clocks at a logic zero level and disables the crystal oscillator.  
All internal registers hold their values provided VCC is maintained. Current consumption is  
reduced to transistor leakage only.  
14  
Product Name Datasheet  
Intel® 80C186EA Peripheral Architecture  
3.7  
80C187 Interface (80C186EA Only)  
The 80C187 Numerics Coprocessor may be used to extend the 80C186EA instruction set to  
include floating point and advanced integer instructions. Connecting the 80C186EA RESOUT and  
TEST/ BUSY pins to the 80C187 enables Numerics Mode operation. In Numerics Mode, three of  
the four Mid- Range Chip Select (MCS) pins become handshaking pins for the interface. The  
exchange of data and control information proceeds through four dedicated I/O ports.  
If an 80C187 is not present, the 80C186EA configures itself for regular operation at reset.  
Note: The 80C187 is not specified for 3V operation and therefore does not interface directly to the 80L186EA.  
3.8  
ONCE Test Mode  
To facilitate testing and inspection of devices when fixed into a target system, the 80C186EA has a  
test mode available which forces all output and input/ output pins to be placed in the high-  
impedance state. ONCE stands for “ON Circuit Emulation.” The ONCE mode is selected by  
forcing the UCS and LCS pins LOW (0) during a processor reset (these pins are weakly held to a  
HIGH (1) level) while RESIN is active.  
Product Name Datasheet  
15  
Intel® 80C186XL and Intel® 80C186EA Differences  
4.0  
4.1  
4.2  
Intel® 80C186XL and Intel® 80C186EA Differences  
The 80C186EA is intended as a direct functional upgrade for 80C186XL designs. In many cases, it  
will be possible to replace an existing 80C186XL with little or no hardware redesign. The  
following sections describe differences in pinout, operating modes, and AC and DC specifications  
to keep in mind.  
Pinout Compatibility  
The 80C186EA requires a PDTMR pin to time the processor's exit from Powerdown Mode. The  
original pin arrangement for the 80C186XL in the PLCC package did not have any spare leads to  
use for PDTMR. The arrangement of all the other leads in the 68-lead PLCC is identical between  
the 80C186XL and the 80C186EA. Therefore, upgrading a PLCC 80C186XL to PLCC 80C186EA  
is straightforward.  
Operating Modes  
The 80C186XL has two operating modes, Compatible and Enhanced. Compatible Mode is a pin-  
to-pin replacement for the NMOS 80186, except for numerics coprocessing. In Enhanced Mode,  
the processor has a Refresh Control Unit, the Power-Save feature and an interface to the 80C187  
Numerics Coprocessor. The MCS0, MCS1, and MCS3 pins change their functions to constitute  
handshaking pins for the 80C187.  
The 80C186EA allows all non-80C187 users to use all the MCS pins for chip-selects. In regular  
operation, all 80C186EA features (including those of the Enhanced Mode 80C186) are present  
except for the interface to the 80C187. Numerics Mode disables the three chip-select pins and  
reconfigures them for connection to the 80C187.  
4.3  
4.4  
TTL vs. CMOS Inputs  
The inputs of the 80C186EA are rated for CMOS switching levels for improved noise immunity,  
but the 80C186XL inputs are rated for TTL switching levels. In particular, the 80C186EA requires  
a minimum V of 3.5V to recognize a logic one while the 80C186XL requires a minimum V of  
IH  
IH  
only 1.9V (assuming 5.0V operation). The solution is to drive the 80C186EA with true CMOS  
devices, such as those from the HC and AC logic families, or to use pull-up resistors where the  
added current draw is not a problem.  
Timing Specifications  
80C186EA timing relationships are expressed in a simplified format over the 80C186XL. The AC  
performance of an 80C186EA at a specified frequency will be very close to that of an 80C186XL  
at the same frequency. Check the timings applicable to your design prior to replacing the  
80C186XL.  
16  
Product Name Datasheet  
Intel® 80C186XL and Intel® 80C186EA Differences  
4.5  
Package Information  
This section describes the pins, pinouts, and thermal characteristics for the 80C186EA in the  
Plastic Leaded Chip Carrier (PLCC) package. For complete package specifications and  
information, see the Intel® Packaging Outlines and Dimensions Guide (Order Number: 231369).  
With the extended temperature range operational characteristics are guaranteed over a temperature  
range corresponding to -40 °C to +85 °C ambient. Package types are identified by a two-letter  
prefix to the part number. The prefixes are listed in Table 3.  
Table 3.  
Prefix Identification  
Prefix  
Note  
Package Type  
Temperature Range  
TN  
PLCC  
Extended  
NOTE:  
1. The 25 MHz version is only available in commercial temperature range corresponding to 0 °C to +70 °C  
ambient.  
4.6  
Pin Descriptions  
Each pin or logical set of pins is described in Table 5. There are three columns for each entry in the  
Pin Description Table.  
The Pin Name column contains a mnemonic that describes the pin function. Negation of the signal  
name (for example, RESIN) denotes a signal that is active low.  
The Pin Type column contains two kinds of information. The first symbol indicates whether a pin  
is power (P), ground (G), input only (I), output only (O) or input/output (I/O). Some pins have  
multiplexed functions (for example, A19/S6). Additional symbols indicate additional  
characteristics for each pin. Table 5 lists all the possible symbols for this column.  
The Input Type column indicates the type of input (asynchronous or synchronous).  
Asynchronous pins require that setup and hold times be met only in order to guarantee recognition  
at a particular clock edge. Synchronous pins require that setup and hold times be met to guarantee  
proper operation. For example, missing the setup or hold time for the SRDY pin (a synchronous  
input) will result in a system failure or lockup. Input pins may also be edge- or level-sensitive. The  
possible characteristics for input pins are S(E), S(L), A(E) and A(L).  
The Output States column indicates the output state as a function of the device operating mode.  
Output states are dependent upon the current activity of the processor. There are four operational  
states that are different from regular operation: bus hold, reset, Idle Mode and Powerdown Mode.  
Appropriate characteristics for these states are also indicated in this column, with the legend for all  
possible characteristics in Table 4.  
The Pin Description column contains a text description of each pin.  
As an example, consider AD15:0. I/O signifies the pins are bidirectional. S(L) signifies that the  
input function is synchronous and level-sensitive. H(Z) signifies that, as outputs, the pins are high-  
impedance upon acknowledgement of bus hold. R(Z) signifies that the pins float during reset. P(X)  
signifies that the pins retain their states during Powerdown Mode.  
Product Name Datasheet  
17  
Intel® 80C186XL and Intel® 80C186EA Differences  
Table 4.  
Pin Description Nomenclature  
Symbol  
Description  
P
G
I
Power Pin (Apply +VCC Voltage)  
Ground (Connect to VSS  
Input Only Pin  
)
O
Output Only Pin  
I/O  
Input/Output Pin  
S(E)  
S(L)  
A(E)  
A(L)  
Synchronous, Edge Sensitive  
Synchronous, Level Sensitive  
Asynchronous, Edge Sensitive  
Asynchronous, Level Sensitive  
H(1)  
H(0)  
H(Z)  
H(Q)  
H(X)  
Output Driven to VCC during Bus Hold  
Output Driven to VSS during Bus Hold  
Output Floats during Bus Hold  
Output Remains Active during Bus Hold  
Output Retains Current State during Bus Hold  
R(WH)  
R(1)  
R(0)  
Output Weakly Held at VCC during Reset  
Output Driven to VCC during Reset  
Output Driven to VSS during Reset  
Output Floats during Reset  
R(Z)  
R(Q)  
R(X)  
Output Remains Active during Reset  
Output Retains Current State during Reset  
I(1)  
I(0)  
I(Z)  
I(Q)  
I(X)  
Output Driven to VCC during Idle Mode  
Output Driven to VSS during Idle Mode  
Output Floats during Idle Mode  
Output Remains Active during Idle Mode  
Output Retains Current State during Idle Mode  
P(1)  
P(0)  
P(Z)  
P(Q)  
P(X)  
Output Driven to VCC during Powerdown Mode  
Output Driven to VSS during Powerdown Mode  
Output Floats during Powerdown Mode  
Output Remains Active during Powerdown Mode  
Output Retains Current State during Powerdown Mode  
18  
Product Name Datasheet  
Intel® 80C186XL and Intel® 80C186EA Differences  
Table 5.  
Pin Descriptions (Sheet 1 of 3)  
Pin  
Type  
Input Output  
Pin Name  
VCC  
Description  
Type  
States  
P
G
I
POWER connections consist of six pins which must be shorted  
externally to a VCC board plane.  
VSS  
GROUND connections consist of five pins which must be shorted  
externally to a VSS board plane.  
CLKIN  
A(E)  
CLocK INput is an input for an external clock. An external oscillator  
operating at two times the required processor operating frequency can  
be connected to CLKIN. For crystal operation, CLKIN (along with  
OSCOUT) are the crystal connections to an internal Pierce oscillator.  
OSCOUT  
O
H(Q)  
R(Q)  
P(Q)  
OSCillator OUTput is only used when using a crystal to generate the  
external clock. OSCOUT (along with CLKIN) are the crystal R(Q)  
connections to an internal Pierce oscillator. This pin is not to be P(Q)  
used as 2X clock output for non-crystal applications (i.e., this pin is N.C.  
for non-crystal applications). OSCOUT does not float in ONCE mode.  
CLKOUT  
RESIN  
O
I
H(Q)  
R(Q)  
P(Q)  
CLocK OUTput provides a timing reference for inputs and outputs of the  
processor, and is one-half the input clock (CLKIN) frequency. CLKOUT  
has a 50% duty cycle and transitions every falling edge of CLKIN.  
A(L)  
RESet IN causes the processor to immediately terminate any bus cycle  
in progress and assume an initialized state. All pins will be driven to a  
known state, and RESOUT will also be driven active. The rising edge  
(low-to-high) transition synchronizes CLKOUT with CLKIN before the  
processor begins fetching opcodes at memory location 0FFFF0H.  
RESOUT  
PDTMR  
O
H(0)  
R(I)  
P(O)  
RESet OUTput that indicates the processor is currently in the reset  
state. RESOUT will remain active as long as RESIN remains active.  
When tied to the TEST/BUSY pin, RESOUT forces the 80C186EA into  
Numerics Mode.  
I/O  
A(L)  
H(WH) Power-Down TiMeR pin (normally connected to an external capacitor)  
R(Z)  
P(1)  
that determines the amount of time the processor waits after an exit from  
power down before resuming normal operation. P(1) The duration of time  
required will depend on the startup characteristics of the crystal  
oscillator.  
NMI  
I
I
A(E)  
A(E)  
Non-Maskable Interrupt input causes a Type 2 interrupt to be serviced  
by the CPU. NMI is latched internally.  
TEST/BUSY  
(TEST)  
TEST/BUSY is sampled upon reset to determine whether the 80C186EA  
is to enter Numerics Mode. In regular operation, the pin is TEST. TEST is  
used during the execution of the WAIT instruction to suspend CPU  
operation until the pin is sampled active (low). In Numerics Mode, the pin  
is BUSY. BUSY notifies the 80C186EA of 80C187 Numerics  
Coprocessor activity.  
AD15:0  
(AD7:0)  
I/O  
O
S(L)  
H(Z)  
R(Z)  
P(X)  
These pins provide a multiplexed Address and Data bus. During the  
address phase of the bus cycle, address bits 0 through 15 (0 through 7  
on the 8-bit bus versions) are presented on the bus and can be latched  
using ALE. 8- or 16-bit data information is transferred during the data  
phase of the bus cycle.  
A18:16  
A19/S6–A16  
(A19–A8)  
H(Z)  
R(Z)  
P(X)  
These pins provide multiplexed Address during the address phase of  
the bus cycle. Address bits 16 through 19 are presented on these pins  
and can be latched using ALE. A18:16 are driven to a logic 0 during the  
data phase of the bus cycle. On the 8-bit bus versions, A15–A8 provide  
valid address information for the entire bus cycle. Also during the data  
phase, S6 is driven to a logic 0 to indicate a CPU-initiated bus cycle or  
logic 1 to indicate a DMA-initiated bus cycle or a refresh cycle.  
Product Name Datasheet  
19  
Intel® 80C186XL and Intel® 80C186EA Differences  
Table 5.  
Pin Descriptions (Sheet 2 of 3)  
Pin  
Type  
Input Output  
Pin Name  
S2:0  
Description  
Type  
States  
O
H(Z)  
R(Z)  
P(1)  
Bus cycle Status are encoded on these pins to provide bus transaction  
information. S2:0 are encoded as follows:  
S2  
S1  
S0  
Bus Cycle Initiated  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Interrupt Acknowledge  
Read I/O  
Write I/O  
Processor HALT  
Queue Instruction Fetch  
Read Memory  
Write Memory  
Passive (no bus activity)  
ALE/QS0  
O
O
H(0)  
R(0)  
P(0)  
Address Latch Enable output is used to strobe address information into  
a transparent type latch during the address phase of the bus cycle. In  
Queue Status Mode, QS0 provides queue status information along with  
QS1.  
BHE  
(RFSH)  
H(Z)  
R(Z)  
P(X)  
Byte High Enable output to indicate that the bus cycle in progress is  
transferring data over the upper half of the data bus. BHE and A0 have  
the following logical encoding:  
A0  
BHE Encoding (For 80C186EA/80L186EA Only)  
0
0
1
1
0
1
0
1
Word Transfer  
Even Byte Transfer  
Odd Byte Transfer  
Refresh Operation  
On the 80C188EA/80L188EA, RFSH is asserted low to indicate a  
Refresh bus cycle.  
RD/QSMD  
O
H(Z)  
ReaD output signals that the accessed memory or I/O device must drive  
R(WH) data information onto the data bus. Upon reset, this pin has an alternate  
P(1)  
function. As QSMD, it enables Queue Status Mode when grounded. In  
Queue Status Mode, the ALE/QS0 and WR/QS1 pins provide the  
following information about processor/instruction queue interaction:  
QS1  
QS0 Queue Operation  
0
0
1
1
0
1
1
0
No Queue Operation  
First Opcode Byte Fetched from the Queue  
Subsequent Byte Fetched from the Queue  
Empty the Queue  
WR/QS1  
ARDY  
O
I
H(Z)  
R(Z)  
P(1)  
WRite output signals that data available on the data bus are to be written  
into the accessed memory or I/O device. In Queue Status Mode, QS1  
provides queue status information along with QS0.  
A(L)  
S(L)  
Asynchronous ReaDY is an input to signal for the end of a bus cycle.  
ARDY is asynchronous on rising CLKOUT and synchronous on falling  
CLKOUT. ARDY or SRDY must be active to terminate any processor bus  
cycle, unless they are ignored due to correct programming of the Chip  
Select Unit.  
SRDY  
I
S(L)  
Synchronous ReaDY is an input to signal for the end of a bus cycle.  
ARDY or SRDY must be active to terminate any processor bus cycle,  
unless they are ignored due to correct programming of the Chip Select  
Unit.  
DEN  
O
O
H(Z)  
R(Z)  
P(1)  
Data ENable output to control the enable of bidirectional transceivers  
when buffering a system. DEN is active only when data is to be  
transferred on the bus.  
LOCK  
H(Z)  
LOCK output indicates that the bus cycle in progress is not to be  
R(WH) interrupted. The processor will not service other bus requests (such as  
P(1)  
HOLD) while LOCK is active. This pin is configured as a weakly held  
high input while RESIN is active and must not be driven low.  
20  
Product Name Datasheet  
Intel® 80C186XL and Intel® 80C186EA Differences  
Table 5.  
Pin Descriptions (Sheet 3 of 3)  
Pin  
Type  
Input Output  
Pin Name  
HOLD  
Description  
Type  
States  
I
A(L)  
HOLD request input to signal that an external bus master wishes to gain  
control of the local bus. The processor will relinquish control of the local  
bus between instruction boundaries not conditioned by a LOCK prefix.  
HLDA  
UCS  
O
H(1)  
R(0)  
P(0)  
HoLD Acknowledge output to indicate that the processor has  
relinquished control of the local bus. When HLDA is asserted, the  
processor will (or has) floated its data bus and control signals allowing  
another bus master to drive the signals directly.  
O
H(1)  
R(1)  
P(1)  
Upper Chip Select will go active whenever the address of a memory or  
I/O bus cycle is within the address limitations programmed by the user.  
After reset, UCS is configured to be active for memory accesses  
between 0FFC00H and 0FFFFFH. During a processor reset, UCS and  
LCS are used to enable ONCE Mode.  
LCS  
O
H(1)  
R(1)  
P(1)  
Lower Chip Select will go active whenever the address of a memory  
bus cycle is within the address limitations programmed by the user. R(1)  
LCS is inactive after a reset. During a processor reset, UCS and LCS are  
used to enable ONCE Mode.  
MCS0/PEREQ  
MCS1/ERROR  
MCS2  
I/O  
A(L)  
H(1)  
R(1)  
P(1)  
These pins provide a multiplexed function. If enabled, these pins  
normally comprise a block of Mid-Range Chip Select outputs which will  
go active whenever the address of a memory bus cycle is within the  
address limitations programmed by the user. In Numerics Mode  
(80C186EA only), three of the pins become handshaking pins for the  
80C187. The CoProcessor REQuest input signals that a data transfer is  
pending. ERROR is an input which indicates that the previous numerics  
coprocessor operation resulted in an exception condition. An interrupt  
Type 16 is generated when ERROR is sampled active at the beginning of  
a numerics operation. Numerics Coprocessor Select is an output  
signal generated when the processor accesses the 80C187.  
MCS3/NCS  
PCS4:0  
O
O
H(1)  
R(1)  
P(1)  
Peripheral Chip Selects go active whenever the address of a memory  
or I/O bus cycle is within the address limitations programmed by the  
user.  
PCS5/A1  
PCS6/A2  
H(1)/  
H(X)  
R(1)  
P(1)  
These pins provide a multiplexed function. As additional Peripheral  
Chip Selects, they go active whenever the address of a memory or  
I/O bus cycle is within the address limitations by the user. They may also  
be programmed to provide latched Address A2:1 signals.  
T0OUT  
T1OUT  
O
H(Q)  
R(1)  
P(Q)  
Timer OUTput pins can be programmed to provide a single clock or  
continuous waveform generation, depending on the timer mode  
selected.  
T0IN  
I
A(L)  
A(E)  
Timer INput is used either as clock or control signals, depending on the  
timer mode selected. T1IN A(E)  
DRQ0  
DRQ1  
I
I
A(L)  
DMA ReQuest is asserted by an external request when it is prepared for  
a DMA transfer.  
INT0  
INT1/SELECT  
A(E,L)  
Maskable INTerrupt input will cause a vector to a specific Type interrupt  
routine. To allow interrupt expansion, INT0 and/or INT1 can be used with  
INTA0 and INTA1 to interface with an external slave controller. INT1  
becomes SELECT when the ICU is configured for Slave Mode.  
INT2/INTA0  
INT3/INTA1/IRQ  
I/O  
A(E,L)  
H(1)  
R(Z)  
P(1)  
These pins provide multiplexed functions. As inputs, they provide a  
maskable INTerrupt that will cause the CPU to vector to a specific Type  
interrupt routine. As outputs, each is programmatically controlled to  
provide an INTerrupt Acknowledge handshake signal to allow interrupt  
expansion. INT3/INTA1 becomes IRQ when the ICU is configured for  
Slave Mode.  
N.C.  
No Connect. For compatibility with future products, do not connect to  
these pins.  
NOTE: Pin names in parentheses apply to the 80C188EA and 80L188EA.  
Product Name Datasheet  
21  
Intel® 80C186EA Pinout  
5.0  
Intel® 80C186EA Pinout  
Table 6 and Table 7 list the 80C186EA pin names with package location for the 68-pin Plastic  
Leaded Chip Carrier (PLCC) component. Figure 3 depicts the complete 80C186EA/80L186EA  
pinout (PLCC package) as viewed from the top side of the component (i.e., contacts facing down).  
Table 6.  
PLCC Pin Names with Package Location  
Address/Data Bus  
Name Location  
AD0  
AD1  
AD2  
Bus Control  
Processor Control  
Name Location  
RESIN  
RESOUT  
CLKIN  
OSCOUT  
CLKOUT  
TEST/BUSY  
PDTMR  
NMI  
INT0  
I/O  
Name  
Location  
Name  
Location  
17  
15  
13  
11  
8
ALE/QS0  
BHE (RFSH)  
S0  
61  
64  
52  
53  
54  
62  
63  
55  
49  
39  
48  
50  
51  
24  
57  
59  
58  
56  
47  
40  
46  
45  
44  
42  
41  
UCS  
LCS  
34  
33  
38  
37  
36  
35  
25  
27  
28  
29  
30  
31  
32  
22  
20  
23  
21  
18  
19  
MCS0/PEREQ  
MCS1/ERROR  
MCS2  
AD3  
AD4  
S1  
S2  
AD5  
6
RD/QSMD  
WR/QS1  
ARDY  
SRDY  
DEN  
MCS3/NCS  
PCS0  
PCS1  
PCS2  
PCS3  
PCS4  
PCS5/A1  
PCS6/A2  
T0OUT  
T0IN  
AD6  
4
AD7  
2
AD8 (A8)  
AD9 (A9)  
AD10 (A10)  
AD11 (A11)  
AD12 (A12)  
AD13 (A13)  
AD14 (A14)  
AD15 (A15)  
A16  
16  
14  
12  
10  
7
5
3
INT1/SELECT  
INT2/INTA0  
INT3/INTA1/  
IRQ  
LOCK  
HOLD  
HLDA  
Power  
1
T1OUT  
T1IN  
DRQ0  
DRQ1  
68  
67  
66  
65  
Name  
Location  
A17  
A18  
A19/S6  
VSS  
VCC  
26, 60  
9, 43  
NOTE: Pin names in parentheses apply to the 80C188EA/80L188EA.  
Table 7.  
PLCC Package Location with Pin Names  
Location  
Name  
Location  
Name  
Location  
Name  
Location  
Name  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
AD15 (A15)  
AD7  
AD14 (A14)  
AD6  
AD13 (A13)  
AD5  
AD12 (A12)  
AD4  
VCC  
AD11 (A11)  
AD3  
AD10 (A10)  
AD2  
AD9 (A9)  
AD1  
AD8 (A8)  
AD0  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
DRQ0  
DRQ1  
T0IN  
35  
36  
37  
38  
39  
40  
41  
MCS3/NCS  
MCS2  
MCS1/ERROR  
MCS0/PEREQ  
DEN  
PDTMR  
INT3/INTA1/  
IRQ  
INT2/INTA0  
VCC  
INT1/SELECT  
INT0  
NMI  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
S0  
S1  
S2  
T1IN  
ARDY  
T0OUT  
T1OUT  
RESIN  
PCS0  
VSS  
PCS1  
PCS2  
PCS3  
PCS4  
PCS5/A1  
PCS6/A2  
LCS  
CLKOUT  
RESOUT  
OSCOUT  
CLKIN  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
VSS  
ALE/QS0  
RD/QSMD  
WR/QS1  
BHE RFSH  
A19/S6  
A18  
TEST/BUSY  
LOCK  
SRDY  
HOLD  
HLDA  
A17  
A16  
UCS  
NOTE: Pin names in parentheses apply to the 80C188EA/80L188EA.  
22  
Product Name Datasheet  
Intel® 80C186EA Pinout  
Figure 3.  
68-Lead PLCC Pinout Diagram  
Notes:  
1. The nine character alphanumeric code (XXXXXXXXD) underneath the product number is the Intel FPO number.  
2. Pin names in parentheses apply to the 80C186EA/80L188EA.  
Product Name Datasheet  
23  
Package Thermal Specifications  
6.0  
Package Thermal Specifications  
The 80C186EA/80L186EA is specified for operation when T (the case temperature) is within the  
C
range of 0°C to 85°C (PLCC package). T may be measured in any environment to determine  
C
whether the processor is within the specified operating range. The case temperature must be  
measured at the center of the top surface.  
T (the ambient temperature) can be calculated from θ (thermal resistance from the case to  
A
CA  
ambient) with the following equation:  
T = T - P × θ  
CA  
A
C
Typical values for θ at various airflows are given in Table 8.  
CA  
P (the maximum power consumption, specified in watts) is calculated by using the maximum ICC  
as tabulated in the DC specifications and V of 5.5 V.  
CC  
Table 8.  
Thermal Resistance (θ ) at Various Airflows (in °C/Watt)  
CA  
Airflow Linear ft./min. (m/sec)  
0
200  
400  
600  
800  
1000  
(0)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
(5.07)  
θCA (PLCC)  
29  
25  
21  
19  
17  
16.5  
24  
Product Name Datasheet  
Electrical Specification  
7.0  
Electrical Specification  
7.1  
Absolute Maximum Ratings*  
Storage Temperature:  
-65 °C to + 150 °C  
-65 °C to + 150 °C  
-0.5 V to + 6.5 V  
Case Temperature under Bias:  
Supply Voltage with Respect to V  
:
SS  
Voltage on Other Pins with Respect to V  
:
-0.5 V to V + 0.5 V  
CC  
SS  
Note: This data sheet contains preliminary information on new products in production. It is valid for the  
devices indicated in the revision history. The specifications are subject to change without notice.  
*Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.  
These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended  
and extended exposure beyond the “Operating Conditions” may affect device reliability.  
7.2  
Recommended Connections  
Power and ground connections must be made to multiple V and V pins. Every 80C186EA  
CC  
SS  
based circuit board should contain separate power (V ) and ground (V ) planes. All V and  
CC  
SS  
CC  
V
pins must be connected to the appropriate plane. Pins identified as “N.C.” must not be  
SS  
connected in the system. Decoupling capacitors should be placed near the processor. The value and  
type of decoupling capacitors is application and board layout dependent. The processor can cause  
transient power surges when its output buffers transition, particularly when connected to large  
capacitive loads.  
Always connect any unused input pins to an appropriate signal level. In particular, unused interrupt  
pins (NMI, INT3:0) should be connected to V to avoid unwanted interrupts. Leave any unused  
SS  
output pin or any “N.C.” pin unconnected.  
Product Name Datasheet  
25  
DC Specifications  
8.0  
DC Specifications  
Table 9.  
DC SPECIFICATIONS (80C186EA/80C188EA)  
Symbol  
Parameter  
Supply Voltage  
Min  
Max  
Units  
V
Conditions  
V
V
V
V
V
V
4ꢀ5  
5ꢀ5  
CC  
IL  
b
Input Low Voltage for All Pins  
Input High Voltage for All Pins  
Output Low Voltage  
0ꢀ5  
0ꢀ7 V  
0ꢀ3 V  
V
CC  
a
V
CC  
0ꢀ5  
V
IH  
CC  
e
3 m A (m in)  
0ꢀ45  
V
I
I
OL  
OH  
HYR  
OL  
b
e b  
2 m A (m in)  
Output High Voltage  
V
0ꢀ5  
V
CC  
OH  
Input Hysterisis on RESIN  
0ꢀ30  
V
s
s
g
g
I
Input Leakage Current (except  
RD-QSMDꢁ UCSꢁ LCSꢁ MCS0-PEREQꢁ  
MCS1-ERRORꢁ LOCK and TEST-BUSY)  
10  
mA  
0V  
V
V
CC  
IL1  
IN  
b
e
V 0ꢀ7 V  
IN  
(Note 1)  
I
Input Leakage Current  
(RD-QSMDꢁ UCSꢁ LCSꢁ MCS0-PEREQꢁ  
MCS1ꢁ ERRORꢁ LOCK and TEST-BUSY  
275  
mA  
mA  
IL2  
CC  
s
s
V
I
I
Output Leakage Current  
0ꢀ45  
(Note 2)  
V
OL  
CC  
OUT  
CC  
10  
Supply Current Cold (RESET)  
80C186EA25-80C188EA25  
80C186EA20-80C188EA20  
80C186EA13-80C188EA13  
105  
90  
mA (Notes 3ꢁ 5)  
mA  
mA  
65  
I
I
Supply Current In Idle Mode  
80C186EA25-80C188EA25  
80C186EA20-80C188EA20  
80C186EA13-80C188EA13  
ID  
90  
70  
46  
mA (Note 5)  
mA  
mA  
Supply Current In Powerdown Mode  
80C186EA25-80C188EA25  
80C186EA20-80C188EA20  
80C186EA13-80C188EA13  
PD  
100  
100  
100  
mA  
mA  
mA  
(Note 5)  
e
e
C
C
Output Pin Capacitance  
Input Pin Capacitance  
0
0
15  
15  
pF  
pF  
T
T
1 MHz (Note 4)  
1 MHz  
OUT  
F
F
IN  
NOTES:  
1.RD/QSMD, UCS, LCS, MCS0/PEREQ, MCS1/ERROR, LOCK and TEST/BUSY have internal pull-ups that  
are only activated during RESET. Loading these pins above IOL = -275 µA will cause the processor to  
enter alternate modes of operation.  
2.Output pins are floated using HOLD or ONCE Mode.  
3.Measured at worst case temperature and VCC with all outputs loaded as specified in the AC Test  
Conditions, and with the device in RESET (RESIN held low). RESET is worst case for ICC  
4.Output capacitance is the capacitive load of a floating output pin.  
.
5.Operating conditions for 25 MHz are 0°C to +70°C, VCC = 5.0V ±10%.  
26  
Product Name Datasheet  
DC Specifications  
Table 10.  
DC SPECIFICATIONS (80L186EA/80L188EA)  
NOTES:  
1.RD/QSMD, UCS, LCS, MCS0, MCS1, LOCK and TEST have internal pull-ups that are only activated during  
RESET. Loading these pins above IOL = -275 µA will cause the processor to enter alternate modes of  
operation.  
2.Output pins are floated using HOLD or ONCE Mode.  
3.Measured at worst case temperature and VCC with all outputs loaded as specified in the AC Test  
Conditions, and with the device in RESET (RESIN held low).  
4.Output capacitance is the capacitive load of a floating output pin.  
Product Name Datasheet  
27  
DC Specifications  
8.1  
ICC Versus Frequency and Voltage  
The current (I ) consumption of the processor is essentially composed of two components; IPD  
CC  
and ICCS.  
I
is the quiescent current that represents internal device leakage, and is measured with all inputs  
PD  
or floating outputs at GND or V (no clock applied to the device). I is equal to the Powerdown  
CC  
PD  
current and is typically less than 50 µA.  
I
is the switching current used to charge and discharge parasitic device capacitance when  
CCS  
changing logic levels. Since I  
is typically much greater than I , I can often be ignored when  
CCS  
PD PD  
calculating I  
.
CC  
I
is related to the voltage and frequency at which the device is operating. It is given by the  
CCS  
formula:  
Power = V × I = V2 × C  
× f  
DEV  
I = I = I  
= V × C  
× f  
DEV  
CC  
CCS  
Where: V = Device operating voltage (V  
)
CC  
C
= Device capacitance  
DEV  
f = Device operating frequency  
I
= I = Device current  
CC  
CCS  
Measuring C  
on a device like the 80C186EA would be difficult. Instead, C  
is calculated  
DEV  
DEV  
using the above formula by measuring I at a known V and frequency (see Table 11). Using  
CC  
CC  
this C  
value, I can be calculated at any voltage and frequency within the specified operating  
DEV  
CC  
range.  
EXAMPLE: Calculate the typical I when operating at 20 MHz, 4.8V.  
CC  
I
= I  
= 4.8 × 0.515 × 20 49 mA  
CCS  
CC  
Table 11.  
C
Values  
DEV  
Parameter  
Type  
Max  
Units  
Notes  
C
DEV (Device in Reset)  
0.515  
0.391  
0.905  
0.635  
mA/V*MHz  
mA/V*MHz  
1,2  
1,2  
CDEV (Device in Idle)  
1. Max CDEV is calculated at -40 °C, all floating outputs driven to VCC or GND, and all outputs loaded to 50 pF  
(including CLKOUT and OSCOUT).  
2. Typical CDEV is calculated at 25°C with all outputs loaded to 50 pF except CLKOUT and OSCOUT, which  
are not loaded.  
28  
Product Name Datasheet  
DC Specifications  
8.2  
PDTMR Pin Delay Calculation  
The PDTMR pin provides a delay between the assertion of NMI and the enabling of the internal  
clocks when exiting Powerdown. A delay is required only when using the on-chip oscillator to  
allow the crystal or resonator circuit time to stabilize.  
Note: The PDTMR pin function does not apply when RESIN is asserted (i.e., a device reset during  
Powerdown is similar to a cold reset and RESIN must remain active until after the oscillator has  
stabilized).  
To calculate the value of capacitor required to provide a desired delay, use the equation:  
440 × t = C (5V, 25 °C)  
PD  
Where: t = desired delay in seconds  
C
= capacitive load on PDTMR in microfarads  
PD  
Example 1. To get a delay of 300 µs, a capacitor value of C = 440 × (300 × 10-6) = 0.132 µF is  
PD  
required. Round up to standard (available) capacitive values.  
Note: The above equation applies to delay times greater than 10 µs and will compute the TYPICAL  
capacitance needed to achieve the desired delay. A delay variance of +50% or -25% can occur due  
to temperature, voltage, and device process extremes. In general, higher V and/or lower  
CC  
temperature will decrease delay time, while lower V and/or higher temperature will increase  
CC  
delay time.  
Product Name Datasheet  
29  
AC Specifications  
9.0  
AC Specifications  
Table 12.  
AC Characteristics80C186EA25/80C186EA20/80C186EA13 (Sheet 1 of 2)  
Symbol  
Parameter  
MinMax  
MinMax  
MinMaxitsUnNotes  
(12)  
INPUT CLOCK  
25 MHz  
20 MHz  
13 MHz  
T
T
T
T
T
T
CLKIN Frequency  
CLKIN Period  
CLKIN High Time  
CLKIN Low Time  
CLKIN Rise Time  
CLKIN Fall Time  
0
20  
10  
10  
1
50  
%
%
%
8
8
0
25  
10  
10  
1
40  
%
%
%
8
8
0
38ꢀ5  
12  
12  
1
26 MHz  
%
1
1
1ꢁ 2  
1ꢁ 2  
1ꢁ 3  
1ꢁ 3  
F
ns  
ns  
C
%
CH  
CL  
CR  
CF  
%
ns  
8
8
ns  
ns  
1
1
1
OUTPUT CLOCK  
T
T
T
T
T
T
CLKIN to CLKOUT Delay  
CLKOUT Period  
CLKOUT High Time  
CLKOUT Low Time  
CLKOUT Rise Time  
CLKOUT Fall Time  
0
15  
2T  
0
17  
2T  
0
23  
2T  
C
ns  
ns  
ns  
ns  
ns  
ns  
1ꢁ 4  
1
1
1
1ꢁ 5  
1ꢁ 5  
CD  
C
C
b
b
b
b
b
b
(T-2)  
(T-2)  
5
5
(T-2)  
(T-2)  
5
5
(T-2)  
(T-2)  
5
5
PH  
PL  
PR  
PF  
1
1
6
6
1
1
6
6
1
1
6
6
OUTPUT DELAYS  
T
T
T
ALEꢁ S2@0ꢁ DEN  
BHEꢁ (RFSH)ꢁ LOCKꢁ A19@16  
3
3
3
20  
25  
20  
3
3
3
22  
27  
22  
3
3
3
25  
30  
25  
ns 1ꢁ 4ꢁ 6ꢁ 7  
ns 1ꢁ 4ꢁ 6ꢁ 8  
CHOV1  
CHOV2  
CLOV1  
MCS3@0ꢁ LCSꢁ UCSꢁ PCS6@0ꢁ  
NCSꢁ RDꢁ WR  
BHE (RFSH)ꢁ DENꢁ LOCKꢁ  
RESOUTꢁ HLDAꢁ  
T0OUTꢁ T1OUTꢁ A19@16  
ns  
ns  
1ꢁ 4ꢁ 6  
1ꢁ 4ꢁ 6  
T
RDꢁ WRꢁ MCS3@0ꢁ LCSꢁ  
UCSꢁ PCS6@0ꢁ AD15@0  
(A15@8ꢁ AD7@0)ꢁ  
3
25  
3
27  
3
30  
CLOV2  
NCSꢁ INTA1@0ꢁ S2@0  
T
T
RDꢁ WRꢁ BHE (RFSH)ꢁ  
LOCKꢁ S2@0ꢁ A19@16  
0
0
25  
25  
0
0
25  
25  
0
0
25  
25  
ns  
ns  
1
1
CHOF  
CLOF  
DENꢁ AD15@0 (A15@8ꢁ AD7@0)  
30  
Product Name Datasheet  
AC Specifications  
Table 12.  
AC Characteristics80C186EA25/80C186EA20/80C186EA13 (Sheet 2 of 2)  
Symbol  
Parameter  
MinMax  
25 MHz  
8
MinMax  
MinMax itUsn Notes  
20 MHz 13 MHz  
10  
(12)  
SYNCHRONOUS INPUTS  
T
T
T
T
T
T
TESTꢁ NMIꢁ INT3@0ꢁ  
T1@0INꢁ ARDY  
10  
3
ns  
ns  
ns  
ns  
ns  
ns  
1ꢁ 9  
1ꢁ 9  
CHIS  
CHIH  
CLIS  
CLIH  
CLIS  
CLIH  
TESTꢁ NMIꢁ INT3@0ꢁ  
T1@0INꢁ ARDY  
3
10  
3
3
10  
3
AD15@0 (AD7@0)ꢁ ARDYꢁ  
SRDYꢁ DRQ1@0  
10  
3
1ꢁ 10  
1ꢁ 10  
1ꢁ 9  
AD15@0 (AD7@0)ꢁ ARDYꢁ  
SRDYꢁ DRQ1@0  
HOLDꢁ PEREQꢁ ERROR  
(80C186EA Only)  
10  
3
10  
3
10  
3
HOLDꢁ PEREQꢁ ERROR  
(80C186EA Only)  
1ꢁ 9  
T
T
RESIN (to CLKIN)  
10  
3
10  
3
10  
3
ns  
ns  
1ꢁ 9  
1ꢁ 9  
CLIS  
CLIH  
RESIN (fromCLKIN)  
NOTES:  
1.See AC Timing Waveforms, for waveforms and definition.  
2.Measured at VIH for high time, VIL for low time.  
3.Only required to guarantee ICC. Maximum limits are bounded by TC, TCH and TCL  
4.Specified for a 50 pF load, see Figure 9 for capacitive derating information.  
5.Specified for a 50 pF load, see Figure 10 for rise and fall times outside 50 pF.  
6.See Figure 10 for rise and fall times.  
.
7.TCHOV1 applies to BHE (RFSH), LOCK and A19:16 only after a HOLD release.  
8.TCHOV2 applies to RD and WR only after a HOLD release.  
9.Setup and Hold are required to guarantee recognition.  
10.Setup and Hold are required for proper operation.  
11.TCHOVS applies to BHE (RFSH) and A19:16 only after a HOLD release.  
12.Operating conditions for 25 MHz are 0°C to +70°C, VCC = 5.0V ±10%.  
13.Pin names in parentheses apply to the 80C188EA/80L188EA.  
Product Name Datasheet  
31  
AC Specifications  
Table 13.  
AC Characteristics80L186EA13/80C186EA8  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
INPUT CLOCK  
TF  
CLKIN Frequency  
0
38.5  
12  
12  
1
26  
8
MHz  
ns  
1
TC  
CLKIN Period  
1
TCH  
TCL  
TCR  
TCF  
CLKIN High Time  
CLKIN Low Time  
CLKIN Rise Time  
CLKIN Fall Time  
ns  
1,2  
1,2  
1,3  
1,3  
ns  
ns  
1
8
ns  
OUTPUT CLOCK  
TCD  
T
CLKIN to CLKOUT Delay  
0
45  
ns  
ns  
ns  
ns  
ns  
ns  
1,4  
1
CLKOUT Period  
2*TC  
TPH  
TPL  
TPR  
TPF  
CLKOUT High Time  
CLKOUT Low Time  
CLKOUT Rise Time  
CLKOUT Fall Time  
(T/2) 5  
1
(T/2) 5  
1
1
1
12  
12  
1,5  
1,5  
OUTPUT DELAYS  
TCHOV1  
TCHOV2  
TCHOV3  
TCLOV1  
TCLOV2  
TCLOV3  
TCLOV4  
TCLOV5  
TCHOF  
ALE, LOCK  
3
3
3
3
3
3
3
3
0
0
27  
32  
30  
27  
32  
30  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,4,6,7  
1,4,6,8  
1
MCS3:0, LCS, UCS, PCS6:0, RD, WR  
S2:0, (DEN), BHE, (RFSH), A19:16  
LOCK, RESOUT, HLDA, T0OUT, T1OUT  
RD, WR, MCS3:0, LCS, UCS, PCS6:0, INTA1:0  
BHE, (RFSH), DEN, A19:16  
1, 4, 6  
1, 4, 6  
1, 4, 6  
1, 4, 6  
1, 4, 6  
1
AD15:0, (A15:8, AD7:0)  
S2:0  
38  
27  
27  
RD, WR, BHE, (RFSH), LOCK, S2:0, A19:16  
DEN, AD15:0, (A15:8, AD7:0)  
TCLOF  
1
SYNCHRONOUS INPUTS  
TCHIS  
TCHIH  
TCLIS  
TCLIH  
TCLIS  
TCLIH  
TCLIS  
TCLIH  
NOTES:  
TEST, NMI, INT3:0, T1:0IN, ARDY  
22  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 9  
1, 9  
TEST, NMI, INT3:0, T1:0IN, ARDY  
AD15:0, (AD7:0), ARDY, SRDY, DRQ1:0  
AD15:0, (AD7:0), ARDY, SRDY, DRQ1:0  
HOLD  
22  
3
1, 10  
1, 10  
1, 9  
22  
3
HOLD  
1, 9  
RESIN (to CLKIN)  
22  
3
1, 9  
RESIN (from CLKIN)  
1, 9  
1. See AC Timing Waveforms, for waveforms and definition.  
2. Measured at VIH for high time, VIL for low time.  
3. Only required to guarantee ICC. Maximum limits are bounded by TC, TCH and TCL  
.
4. Specified for a 50 pF load, see Figure 9 for capacitive derating information.  
5. Specified for a 50 pF load, see Figure 10 for rise and fall times outside 50 pF.  
6. See Figure 10 for rise and fall times.  
7. TCHOV1 applies to BHE (RFSH), LOCK and A19:16 only after a HOLD release.  
8. TCHOV2 applies to RD and WR only after a HOLD release.  
9. Setup and Hold are required to guarantee recognition.  
10.Setup and Hold are required for proper operation.  
11. TCHOVS applies to BHE (RFSH) and A19:16 only after a HOLD release.  
12.Pin names in parentheses apply to the 80C188EA/80L188EA.  
32  
Product Name Datasheet  
AC Specifications  
Table 14.  
Relative Timings (80C186EA25/20/13, 80L186EA13)  
Symbol  
Parameter  
MinMaxit  
UNnotes  
RELATIVE TIMINGS  
b
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
ALE Rising to ALE Falling  
Address Valid to ALE Falling  
Chip Selects Valid to ALE Falling  
Address Hold fromALE Falling  
ALE Falling to WR Falling  
ALE Falling to RD Falling  
RD Rising to ALE Rising  
T
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
b
ꢀꢁꢂT  
ꢀꢁꢂT  
ꢀꢁꢂT  
ꢀꢁꢂT  
ꢀꢁꢂT  
ꢀꢁꢂT  
ꢀꢁꢂT  
10  
10  
10  
15  
15  
10  
10  
AVLL  
b
b
b
b
b
b
0
1
PLLL  
LLAX  
1
1
1
1
LLWL  
LLRL  
RHLH  
WHLH  
AFRL  
RLRH  
WLWH  
RHAV  
WHDX  
WHDEX  
WHPH  
RHPH  
PHPL  
WR Rising to ALE Rising  
Address Float to RD Falling  
RD Falling to RD Rising  
b
(2T)  
(2T)  
5
5
2
2
b
WR Falling to WR Rising  
b
b
RD Rising to Address Active  
Output Data Hold after WR Rising  
WR Rising to DEN Rising  
WR Rising to Chip Select Rising  
RD Rising to Chip Select Rising  
CS Inactive to CS Active  
T
T
15  
15  
b
b
b
b
ꢀꢁꢂT  
ꢀꢁꢂT  
ꢀꢁꢂT  
ꢀꢁꢂT  
10  
10  
10  
10  
1
1ꢁ 4  
1ꢁ 4  
1
Rising  
T
T
3
) Active to RESIN  
) to RESIN Rising  
T
T
ONCE (UCSꢁ LCS  
ONCE (UCSꢁ LCS  
OVRH  
RHOX  
3
NOTES:  
1. Assumes equal loading on both pins.  
2. Can be extended using wait states.  
3. Not tested.  
4. Not applicable to latched A2:1. These signals change only on falling T1.  
5. For write cycle followed by read cycle.  
6. Operating conditions for 25 MHz are 0°C to +70°C, VCC = 5.0V ±10%.  
Product Name Datasheet  
33  
AC Test Conditions  
10.0  
AC Test Conditions  
The AC specifications are tested with the 50 pF load shown in Figure 4. See the Derating Curves  
section to see how timings vary with load capacitance.  
Specifications are measured at the V /2 crossing point, unless otherwise specified. See AC  
CC  
Timing Waveforms, for AC specification definitions, test pins, and illustrations.  
Figure 4.  
AC Test Load  
Note: C = 50 pF for all signals.  
L
34  
Product Name Datasheet  
AC Timing Waveforms  
11.0  
AC Timing Waveforms  
Figure 5.  
Input and Output Clock Waveform  
Figure 6.  
Output Delay and Float Waveform  
k
k
Float 80% V  
CC  
Note: 20% V  
CC  
Product Name Datasheet  
35  
AC Timing Waveforms  
Figure 7.  
Input Setup and Hold  
Note: RESIN measured to CLKIN, not CLKOUT  
36  
Product Name Datasheet  
AC Timing Waveforms  
Figure 8.  
Relative Signal Waveform  
CLKOUT  
T
LHLL  
V
CC  
50%  
50%  
50%  
ALE  
OV  
T
AVLL  
T
T
LLAX  
50%  
WHLH  
V
CC  
T
RHLH  
ADD:15 [AD0:7]  
A19:16 [A19:8]  
50%  
50%  
OV  
T
T
AFRL  
WHDX  
T
T
LLWL LLRL  
T
RHAV  
V
CC  
T
T
RLRH  
WLWH  
T
RD# or WR#  
50%  
50%  
OV  
T
T
PHPL  
PLLL  
T
RHPH WHPH  
V
CC  
MCS3:0#, LCS#,  
UCS#, PCS6:0#  
50%  
50%  
50%  
OV  
T
WHDEX  
50%  
V
CC  
DEN#  
50%  
OV  
RESIN#  
50%  
OV  
T
T
RHOX  
OVRH  
UCS#, LCS#  
50%  
50%  
Notes: Pin names in parentheses apply to the 80C188EA  
Product Name Datasheet  
37  
Derating Curves  
12.0  
Derating Curves  
Figure 9.  
Typical Output Delay Variations Versus Load Capacitance  
Figure 10.  
Typical Rise and Fall Variations Versus Load Capacitance  
38  
Product Name Datasheet  
Reset  
13.0  
Reset  
The processor performs a reset operation any time the RESIN pin is active. The RESIN pin is  
actually synchronized before it is presented internally, which means that the clock must be  
operating before a reset can take effect. From a power-on state, RESIN must be held active (low) in  
order to guarantee correct initialization of the processor. Failure to provide RESIN while the  
device is powering up will result in unspecified operation of the device.  
Figure 11 shows the correct reset sequence when first applying power to the processor. An external  
clock connected to CLKIN must not exceed the V threshold being applied to the processor. This  
CC  
is normally not a problem if the clock driver is supplied with the same V that supplies the  
CC  
processor. When attaching a crystal to the device, RESIN must remain active until both V and  
CC  
CLKOUT are stable (the length of time is application specific and depends on the startup  
characteristics of the crystal circuit). The RESIN pin is designed to operate correctly using an RC  
reset circuit, but the designer must ensure that the ramp time for V is not so long that RESIN is  
CC  
never really sampled at a logic low level when V reaches minimum operating conditions.  
CC  
Figure 12 shows the timing sequence when RESIN is applied after V is stable and the device has  
CC  
been operating. Note that a reset will terminate all activity and return the processor to a known  
operating state. Any bus operation that is in progress at the time RESIN is asserted will terminate  
immediately (note that most control signals will be driven to their inactive state first before  
floating).  
While RESIN is active, signals RD/QSMD, UCS, LCS, MCS0/PEREQ, MCS1/ERROR, LOCK,  
and TEST/BUSY are configured as inputs and weakly held high by internal pull-up transistors.  
Forcing UCS and LCS low selects ONCE Mode. Forcing QSMD low selects Queue Status Mode.  
Forcing TEST/ BUSY high at reset and low four clocks later enables Numerics Mode. Forcing  
LOCK low is prohibited and results in unspecified operation.  
Product Name Datasheet  
39  
Reset  
Figure 11.  
Powerup Reset Waveforms  
Notes:  
1. CLKOUT synchronization occurs approximately 1½ CLKIN periods after RESIN# is sampled low.  
2. Pin names in parentheses apply to the 80C188EA.  
40  
Product Name Datasheet  
Reset  
Figure 12.  
Warm Reset Waveforms  
Notes:  
1. CLKOUT resynchronization occurs approximately 1½ CLKIN periods after RESIN# is sampled low. If RESIN# is  
sampled low while transitioning high, then CLKOUT will remain high for two CLKIN periods. If RESIN# is  
sampled low while CLKOUT is transitioning high, the CLKOUT will not be affected.  
2. Pin names in parentheses apply to the 80C188EA.  
Product Name Datasheet  
41  
Bus Cycle Waveforms  
14.0  
Bus Cycle Waveforms  
Figure 13 through Figure 19 present the various bus cycles that are generated by the processor.  
What is shown in the figure is the relationship of the various bus signals to CLKOUT. These  
figures along with the information present in AC Specifications allow the user to determine all the  
critical timing analysis needed for a given application.  
Figure 13.  
Read, Fetch and Refresh Cycle Waveform  
Notes:  
1. During the data phase of the bus cycle, A19/S6 is driven high for a DMA or refresh cycle.  
2. Pin names in parentheses apply to the 80C188EA.  
42  
Product Name Datasheet  
Bus Cycle Waveforms  
Figure 14.  
Write Cycle Waveform  
Notes:  
1. During the data phase of the bus cycle, A19/S6 is driven high for a DMA cycle.  
2. Pin names in parentheses apply to the 80C188EA.  
Product Name Datasheet  
43  
Bus Cycle Waveforms  
Figure 15.  
Halt Cycle Waveform  
Notes:  
1. The processor drives these pins to 0 during Idle and Powerdown Modes.  
2. Pin names in parentheses apply to the 80C188EA.  
44  
Product Name Datasheet  
Bus Cycle Waveforms  
Figure 16.  
INTA Cycle Waveform  
Notes:  
1. INTA# occurs one clock later in Slave Mode.  
2. Pin names in parentheses apply to the 80C188EA.  
Product Name Datasheet  
45  
Bus Cycle Waveforms  
Figure 17.  
HOLD/HLDA Waveform  
Note: Pin names in parentheses apply to the 80C188EA.  
46  
Product Name Datasheet  
Bus Cycle Waveforms  
Figure 18.  
DRAM Refresh Cycle During Hold Acknowledge  
Note: Pin names in parentheses apply to the 80C188EA.  
Product Name Datasheet  
47  
Bus Cycle Waveforms  
Figure 19.  
Ready Waveform  
Notes:  
1. Generalized diagram for READ or WRITE.  
2. ARDY low by either edge causes a wait state. Only rising ARDY is fully synchronized.  
3. SRDY low causes a wait state. SRDY must meet setup and hold times to ensure correct device operation.  
4. Either ARDY or SRDY active high will terminate a bus cycle.  
5. Pin names in parentheses apply to the 80C188EA.  
48  
Product Name Datasheet  
Product Name Execution Timings  
15.0  
Product Name Execution Timings  
A determination of program execution timing must consider the bus cycles necessary to prefetch  
instructions as well as the number of execution unit cycles necessary to execute instructions. The  
following instruction timings represent the minimum execution time in clock cycle for each  
instruction. The timings given are based on the following assumptions:  
The opcode, along with any data or displacement required for execution of a particular  
instruction, has been prefetched and resides in the queue at the time it is needed.  
No wait states or bus HOLDs occur.  
All word-data is located on even-address boundaries. (80C186EA only)  
All jumps and calls include the time required to fetch the opcode of the next instruction at the  
destination address.  
All instructions which involve memory accesses can require one or two additional clocks above the  
minimum timings shown due to the asynchronous handshake between the bus interface unit (BIU)  
and execution unit.  
With a 16-bit BIU, the 80C186EA has sufficient bus performance to endure that an adequate  
number of prefetched bytes will reside in the queue (6 bytes) most of the time. Therefore, actual  
program execution time will not be substantially greater than that derived from adding the  
instruction timings shown.  
The 80C188EA 8-bit BIU is limited in its performance relative to the execution unit. A sufficient  
number of prefetched bytes may not reside in the prefetch queue (4 bytes) much of the time.  
Therefore, actual program execution time will be substantially greater than that derived from  
adding the instruction timings shown.  
Product Name Datasheet  
49  
Product Name Execution Timings  
Figure 20.  
Instruction Set Summary  
80C186EA 80C188EA  
Function  
Format  
Comments  
Clock  
Clock  
Cycles  
Cycles  
DATA TRANSFER  
e
MOV  
Move%  
Register to Register-Memory  
Register-memory to register  
Im m ediate to register-m em ory  
Im m ediate to register  
1 0 0 0 1 0 0 w  
1 0 0 0 1 0 1 w  
1 1 0 0 0 1 1 w  
1 0 1 1 w reg  
1 0 1 0 0 0 0 w  
1 0 1 0 0 0 1 w  
1 0 0 0 1 1 1 0  
1 0 0 0 1 1 0 0  
m od reg r-m  
2-12  
2-9  
1213  
3–4  
8
2-12  
2-9  
m od reg r-m  
m od 000 r-m  
data  
e
data if w1  
data  
1213  
3–4  
8ꢀ  
8-16ꢂbit  
8-16ꢂbit  
e
data if w  
1
Memory to accumulator  
addrꢂlow  
addrꢂhigh  
addrꢂhigh  
Accumulator to memory  
addrꢂlow  
9
9ꢀ  
Register-memory to segment register  
Segment register to register-memory  
m od 0 reg r-m  
m od 0 reg r-m  
2-9  
2-11  
2-13  
2-15  
e
PUSH  
Push%  
Mem ory  
Register  
1 1 1 1 1 1 1 1  
0 1 0 1 0 reg  
0 0 0 reg 1 1 0  
0 1 1 0 1 0 s 0  
m od 1 1 0 r-m  
16  
10  
9
20  
14  
Segment register  
Im m ediate  
13  
e
data if s  
data  
0
10  
14  
e
PUSHA  
Push All  
0 1 1 0 0 0 0 0  
36  
68  
e
POP  
Pop%  
Mem ory  
1 0 0 0 1 1 1 1  
0 1 0 1 1 reg  
0 0 0 reg 1 1 1  
m od 0 0 0 r-m  
(regi01)  
20  
10  
8
24  
14  
Register  
Segment register  
12  
e
e
POPA  
Pop All  
0 1 1 0 0 0 0 1  
51  
83  
XCHG  
Exchange%  
Register-memory with register  
Register with accumulator  
1 0 0 0 0 1 1 w  
1 0 0 1 0 reg  
m od reg r-m  
4-17  
3
4-17ꢀ  
3
e
IN  
Input from%  
Fixed port  
1 1 1 0 0 1 0 w  
1 1 1 0 1 1 0 w  
port  
port  
10  
8
10ꢀ  
7ꢀ  
Variable port  
e
OUT  
Output to%  
Fixed port  
1 1 1 0 0 1 1 w  
1 1 1 0 1 1 1 w  
1 1 0 1 0 1 1 1  
1 0 0 0 1 1 0 1  
1 1 0 0 0 1 0 1  
1 1 0 0 0 1 0 0  
1 0 0 1 1 1 1 1  
1 0 0 1 1 1 1 0  
1 0 0 1 1 1 0 0  
1 0 0 1 1 1 0 1  
9
7
9ꢀ  
7ꢀ  
15  
6
Variable port  
e
XLAT  
Translate byte to AL  
11  
6
e
LEA  
LDS  
LES  
Load EA to register  
Load pointer to DS  
Load pointer to ES  
m od reg r-m  
m od reg r-m  
m od reg r-m  
(m oid 11)  
(m oid 11)  
18  
18  
2
26  
26  
2
e
e
e
LAHF  
SAHF  
Load AH with flags  
Store AH into flags  
e
3
3
e
PUSHF  
Push flags  
Pop flags  
9
13  
12  
e
POPF  
8
Shaded areas indicate instructions not available in 8086-8088 microsystemsꢀ  
NOTE%  
Clock cycles shown for byte transfersꢀ For word operationsꢁ add 4 clock cycles for all memory transfersꢀ  
50  
Product Name Datasheet  
Product Name Execution Timings  
Figure 20.  
Instruction Set Summary (Continued)  
80C186EA 80C188EA  
Function  
Format  
Comments  
Clock  
Clock  
Cycles  
Cycles  
DATA TRANSFER (Continued)  
e
SEGMENT  
Segment Override%  
CS  
0 0 1 0 1 1 1 0  
0 0 1 1 0 1 1 0  
0 0 1 1 1 1 1 0  
0 0 1 0 0 1 1 0  
2
2
2
2
2
2
2
2
SS  
DS  
ES  
ARITHMETIC  
e
ADD  
Add%  
Reg-memory with register to either  
Im m ediate to register-m em ory  
Immediate to accumulator  
0 0 0 0 0 0 d w  
1 0 0 0 0 0 s w  
0 0 0 0 0 1 0 w  
m od reg r-m  
m od 0 0 0 r-m  
data  
3-10  
4-16  
3-4  
3-10  
4-16  
3-4  
e
data if s w01  
data  
e
data if w  
1
8-16ꢂbit  
8-16ꢂbit  
e
ADC  
Add with carry%  
Reg-memory with register to either  
Im m ediate to register-m em ory  
Immediate to accumulator  
0 0 0 1 0 0 d w  
1 0 0 0 0 0 s w  
0 0 0 1 0 1 0 w  
m od reg r-m  
m od 0 1 0 r-m  
data  
3-10  
4-16  
3-4  
3-10  
4-16  
3-4  
e
data if s w01  
data  
e
data if w  
1
e
INC  
Increment%  
Register-memory  
Register  
1 1 1 1 1 1 1 w  
0 1 0 0 0 reg  
m od 0 0 0 r-m  
3-15  
3
3-15  
3
e
SUB  
Subtract%  
Reg-memory and register to either  
Im m ediate from register-m em ory  
Immediate from accumulator  
0 0 1 0 1 0 d w  
1 0 0 0 0 0 s w  
0 0 1 0 1 1 0 w  
m od reg r-m  
m od 1 0 1 r-m  
data  
3-10  
4-16  
3-4  
3-10  
4-16  
3-4  
e
data if s w01  
data  
e
data if w  
1
8-16ꢂbit  
8-16ꢂbit  
e
SBB  
Subtract with borrow%  
Reg-memory and register to either  
Im m ediate from register-m em ory  
Immediate from accumulator  
0 0 0 1 1 0 d w  
1 0 0 0 0 0 s w  
0 0 0 1 1 1 0 w  
m od reg r-m  
m od 0 1 1 r-m  
data  
3-10  
4-16  
3-4  
3-10  
4-16  
e
data if s w01  
data  
e
data if w  
1
3-4  
e
DEC  
Decrement  
Register-memory  
Register  
1 1 1 1 1 1 1 w  
0 1 0 0 1 reg  
m od 0 0 1 r-m  
3-15  
3
3-15  
3
e
CMP  
Compare%  
Register-memory with register  
Register with register-memory  
Im m ediate with register-m em ory  
Immediate with accumulator  
0 0 1 1 1 0 1 w  
0 0 1 1 1 0 0 w  
1 0 0 0 0 0 s w  
0 0 1 1 1 1 0 w  
1 1 1 1 0 1 1 w  
0 0 1 1 0 1 1 1  
0 0 1 0 0 1 1 1  
0 0 1 1 1 1 1 1  
0 0 1 0 1 1 1 1  
m od reg r-m  
m od reg r-m  
m od 1 1 1 r-m  
data  
3-10  
3-10  
3-10  
3-4  
3-10  
3-10  
3-10  
3-4  
3-10  
8
e
data if s w01  
data  
e
data if w  
1
8-16ꢂbit  
e
e
e
e
e
NEG  
AAA  
DAA  
AAS  
DAS  
Change sign register-memory  
ASCII adjust for add  
m od 0 1 1 r-m  
3-10  
8
4
7
4
Decimal adjust for add  
4
ASCII adjust for subtract  
Decimal adjust for subtract  
7
4
e
MUL  
Multiply (unsigned)@  
1 1 1 1 0 1 1 w  
m od 100 r-m  
RegisterꢂByte  
RegisterꢂWord  
MemoryꢂByte  
MemoryꢂWord  
2628  
3537  
3234  
4143  
2628  
3537  
3234  
4148  
Shaded areas indicate instructions not available in 8086-8088 microsystemsꢀ  
NOTE%  
Clock cycles shown for byte transfersꢀ For word operationsꢁ add 4 clock cycles for all memory transfersꢀ  
Product Name Datasheet  
51  
Product Name Execution Timings  
Figure 20.  
Instruction Set Summary (Continued)  
80C186EA 80C188EA  
Function  
Format  
Comments  
Clock  
Clock  
Cycles  
Cycles  
ARITHMETIC (Continued)  
e
IMUL  
Integer multiply (signed)@  
1 1 1 1 0 1 1 w  
m od 1 0 1 r-m  
RegisterꢂByte  
RegisterꢂWord  
MemoryꢂByte  
MemoryꢂWord  
2528  
3437  
3134  
4043  
2528  
3437  
3234  
4043  
e
(signed)  
e
0
IMUL  
Integer Immediate multiply  
0 1 1 0 1 0 s 1  
1 1 1 1 0 1 1 w  
m od reg r-m  
data  
data if s  
2225  
2932  
22ꢂ25  
2932  
e
DIV  
Divide (unsigned)@  
m od 1 1 0 r-m  
RegisterꢂByte  
RegisterꢂWord  
MemoryꢂByte  
MemoryꢂWord  
29  
38  
35  
44  
29  
38  
35  
44  
e
IDIV  
Integer divide (signed)@  
1 1 1 1 0 1 1 w  
m od 1 1 1 r-m  
RegisterꢂByte  
RegisterꢂWord  
MemoryꢂByte  
MemoryꢂWord  
4452  
5361  
5058  
5967  
4452  
5361  
5058  
5967ꢀ  
e
e
e
e
AAM  
AAD  
CBW  
CWD  
ASCII adjust for multiply  
ASCII adjust for divide  
Convert byte to word  
1 1 0 1 0 1 0 0  
1 1 0 1 0 1 0 1  
1 0 0 1 1 0 0 0  
1 0 0 1 1 0 0 1  
0 0 0 0 1 0 1 0  
0 0 0 0 1 0 1 0  
19  
15  
2
19  
15  
2
Convert word to double word  
4
4
LOGIC  
ShiftꢀRotate Instructions%  
Register-Memory by 1  
1 1 0 1 0 0 0 w  
1 1 0 1 0 0 1 w  
1 1 0 0 0 0 0 w  
m od TTT r-m  
m od TTT r-m  
m od TTT r-m  
TTT Instruction  
2-15  
2-15  
a
a
a
a
Register-Memory by CL  
5
n-17  
n-17  
n
n
5
5
n-17  
n-17  
n
n
a
5
a
a
a
Register-Memory by Count  
count  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
ROL  
ROR  
RCL  
RCR  
1 0 0 SHL-SAL  
1 0 1  
1 1 1  
SHR  
SAR  
e
AND  
And%  
Reg-memory and register to either  
Immediate to register-memory  
Immediate to accumulator  
0 0 1 0 0 0 d w  
1 0 0 0 0 0 0 w  
0 0 1 0 0 1 0 w  
m od reg r-m  
m od 1 0 0 r-m  
data  
3-10  
4-16  
3-4  
3-10ꢀ  
4-16ꢀ  
3-4ꢀ  
e
e
e
data  
data if w  
data if w  
data if w  
1
1
1
e
data if w  
1
1
1
8-16ꢂbit  
8-16ꢂbit  
8-16ꢂbit  
e
TEST And function to flagsꢁ no result%  
3-10  
Register-memory and register  
1 0 0 0 0 1 0 w  
1 1 1 1 0 1 1 w  
1 0 1 0 1 0 0 w  
m od reg r-m  
m od 0 0 0 r-m  
data  
3-10  
4-10  
3-4  
Immediate data and register-memory  
Immediate data and accumulator  
data  
4-10ꢀ  
e
e
data if w  
3-4  
e
OR Or%  
Reg-memory and register to either  
Immediate to register-memory  
Immediate to accumulator  
0 0 0 0 1 0 d w  
1 0 0 0 0 0 0 w  
0 0 0 0 1 1 0 w  
m od reg r-m  
m od 0 0 1 r-m  
data  
3-10  
4-16  
3-4  
3-10ꢀ  
data  
4-16  
data if w  
3-4ꢀ  
Shaded areas indicate instructions not available in 8086-8088 microsystemsꢀ  
NOTE%  
Clock cycles shown for byte transfersꢀ For word operationsꢁ add 4 clock cycles for all memory transfersꢀ  
52  
Product Name Datasheet  
Product Name Execution Timings  
Figure 20.  
Instruction Set Summary (Continued)  
80C186EA 80C188EA  
Function  
Format  
Comments  
Clock  
Clock  
Cycles  
Cycles  
LOGIC (Continued)  
e
XOR  
Exclusive or%  
Reg-memory and register to either  
Immediate to register-memory  
Immediate to accumulator  
0 0 1 1 0 0 d w  
1 0 0 0 0 0 0 w  
0 0 1 1 0 1 0 w  
1 1 1 1 0 1 1 w  
m od reg r-m  
m od 1 1 0 r-m  
data  
3-10  
4-16  
3-4  
3-10  
4-16ꢀ  
3-4  
e
1
data  
data if w  
e
data if w  
1
8-16ꢂbit  
e
NOT  
Invert register-memory  
m od 0 1 0 r-m  
3-10  
3-10ꢀ  
STRING MANIPULATION  
e
e
e
e
e
MOVS  
CMPS  
SCAS  
LODS  
STOS  
Move byte-word  
1 0 1 0 0 1 0 w  
1 0 1 0 0 1 1 w  
1 0 1 0 1 1 1 w  
1 0 1 0 1 1 0 w  
1 0 1 0 1 0 1 w  
0 1 1 0 1 1 0 w  
0 1 1 0 1 1 1 w  
14  
22  
15  
12  
10  
14  
14  
14ꢀ  
22ꢀ  
15ꢀ  
12ꢀ  
10ꢀ  
14  
Compare byte-word  
Scan byte-word  
Load byte-wd to AL-AX  
Store byte-wd fromAL-AX  
e
INS  
Input byte-wd fromDX port  
e
OUTS  
Output byte-wd to DX port  
14  
Repeated by count in CX (REP-REPE-REPZ-REPNE-REPNZ)  
e
e
e
e
e
a
a
a
MOVS  
CMPS  
SCAS  
LODS  
STOS  
Move string  
Compare string  
Scan string  
Load string  
1 1 1 1 0 0 1 0  
1 1 1 1 0 0 1 z  
1 1 1 1 0 0 1 z  
1 1 1 1 0 0 1 0  
1 1 1 1 0 0 1 0  
1 1 1 1 0 0 1 0  
1 0 1 0 0 1 0 w  
1 0 1 0 0 1 1 w  
1 0 1 0 1 1 1 w  
1 0 1 0 1 1 0 w  
1 0 1 0 1 0 1 w  
0 1 1 0 1 1 0 w  
8
8n  
8
8n  
a
5
5
6
22n  
15n  
11n  
5
22n  
a
a
a
5
6
15nꢀ  
11nꢀ  
a
a
a
Store string  
6
9n  
8n  
6
9nꢀ  
8nꢀ  
e
a
a
a
a
INS  
Input string  
8
8
8
8
e
OUTS  
Output string  
1 1 1 1 0 0 1 0  
0 1 1 0 1 1 1 w  
8n  
8nꢀ  
CONTROL TRANSFER  
e
CALL  
Call%  
Direct within segment  
1 1 1 0 1 0 0 0  
1 1 1 1 1 1 1 1  
dispꢂlow  
dispꢂhigh  
15  
19  
Register-memory  
m od 0 1 0 r-m  
13-19  
17-27  
indirect within segment  
Direct intersegment  
1 0 0 1 1 0 1 0  
1 1 1 1 1 1 1 1  
segment offset  
segment selector  
23  
31  
i
(m od 11)  
Indirect intersegment  
m od 0 1 1 r-m  
38  
54  
e
JMP  
Unconditional jump%  
Short-long  
1 1 1 0 1 0 1 1  
1 1 1 0 1 0 0 1  
1 1 1 1 1 1 1 1  
dispꢂlow  
dispꢂlow  
14  
14  
14  
14  
Direct within segment  
dispꢂhigh  
Register-memory  
m od 1 0 0 r-m  
11-17  
11-21  
indirect within segment  
Direct intersegment  
Indirect intersegment  
1 1 1 0 1 0 1 0  
segment offset  
segment selector  
14  
26  
14  
34  
i
(m od 11)  
1 1 1 1 1 1 1 1  
m od 1 0 1 r-m  
Shaded areas indicate instructions not available in 8086-8088 microsystemsꢀ  
NOTE%  
Clock cycles shown for byte transfersꢀ For word operationsꢁ add 4 clock cycles for all memory transfersꢀ  
Product Name Datasheet  
53  
Product Name Execution Timings  
Figure 20.  
Instruction Set Summary (Continued)  
80C186EA  
Clock  
80C188EA  
Clock  
Function  
Format  
Comments  
Cycles  
Cycles  
CONTROL TRANSFER (Continued)  
e
RET  
Returnfrom CALL%  
Within segment  
1 1 0 0 0 0 1 1  
1 1 0 0 0 0 1 0  
1 1 0 0 1 0 1 1  
1 1 0 0 1 0 1 0  
0 1 1 1 0 1 0 0  
0 1 1 1 1 1 0 0  
0 1 1 1 1 1 1 0  
0 1 1 1 0 0 1 0  
0 1 1 1 0 1 1 0  
0 1 1 1 1 0 1 0  
0 1 1 1 0 0 0 0  
0 1 1 1 1 0 0 0  
0 1 1 1 0 1 0 1  
0 1 1 1 1 1 0 1  
0 1 1 1 1 1 1 1  
0 1 1 1 0 0 1 1  
0 1 1 1 0 1 1 1  
0 1 1 1 1 0 1 1  
0 1 1 1 0 0 0 1  
0 1 1 1 1 0 0 1  
1 1 1 0 0 0 1 1  
1 1 1 0 0 0 1 0  
1 1 1 0 0 0 0 1  
1 1 1 0 0 0 0 0  
16  
20  
Within seg adding immed to SP  
Intersegment  
dataꢂlow  
dataꢂhigh  
dataꢂhigh  
18  
22  
22  
30  
Intersegment adding immediate to SP  
dataꢂlow  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
25  
33  
e
JEꢀJZ  
Jump on equal-zero  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
5-15  
6-16  
6-16  
6-16  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
4-13  
5-15  
6-16  
6-16  
6-16  
JMP not  
taken-JMP  
taken  
e
e
e
e
JLꢀJNGE  
JLEꢀJNG  
JBꢀJNAE  
JBEꢀJNA  
Jump on less-not greater or equal  
Jump on less or equal-not greater  
Jump on below-not above or equal  
Jump on below or equal-not above  
e
JPꢀJPE  
Jump on parity-parity even  
Jump on overflow  
Jum p on sign  
e
e
JO  
JS  
e
e
e
e
e
e
JNEꢀJNZ  
JNLꢀJGE  
JNLEꢀJG  
JNBꢀJAE  
JNBEꢀJA  
JNPꢀJPO  
Jump on not equal-not zero  
Jump on not less-greater or equal  
Jump on not less or equal-greater  
Jump on not below-above or equal  
Jump on not below or equal-above  
Jump on not par-par odd  
e
e
JNO  
JNS  
Jump on not overflow  
Jum p on not sign  
e
JCXZ  
LOOP  
Jump on CX zero  
Loop CX times  
e
LOOP not  
taken-LOOP  
taken  
e
LOOPZꢀLOOPE  
LOOPNZꢀLOOPNE  
Loop while zero-equal  
e
Loop while not zero-equal  
e
ENTER  
Enter Procedure  
1 1 0 0 1 0 0 0  
dataꢂlow  
dataꢂhigh  
L
e
e
l
L
L
L
0
1
1
15  
25  
19  
29  
a
b
a
b
22 16(n 1) 26 20(n 1)  
e
LEAVE  
Leave Procedure  
1 1 0 0 1 0 0 1  
8
8
e
INT  
Interrupt%  
Type specified  
Type 3  
1 1 0 0 1 1 0 1  
1 1 0 0 1 1 0 0  
1 1 0 0 1 1 1 0  
type  
47  
45  
47  
45  
if INTꢀ taken-  
if INTꢀ not  
taken  
e
INTO  
Interrupt on overflow  
48-4  
48-4  
e
IRET  
Interrupt return  
1 1 0 0 1 1 1 1  
0 1 1 0 0 0 1 0  
28  
28  
e
BOUND  
Detect value out of range  
m od reg r-m  
3335  
3335  
Shaded areas indicate instructions not available in 8086-8088 microsystemsꢀ  
NOTE%  
Clock cycles shown for byte transfersꢀ For word operationsꢁ add 4 clock cycles for all memory transfersꢀ  
54  
Product Name Datasheet  
Product Name Execution Timings  
Figure 20.  
Instruction Set Summary (Continued)  
80C186EA 80C188EA  
Function  
Format  
Comments  
Clock  
Clock  
Cycles  
Cycles  
PROCESSOR CONTROL  
e
e
e
e
e
CLC  
CMC  
STC  
CLD  
STD  
Clear carry  
1 1 1 1 1 0 0 0  
1 1 1 1 0 1 0 1  
1 1 1 1 1 0 0 1  
1 1 1 1 1 1 0 0  
1 1 1 1 1 1 0 1  
1 1 1 1 1 0 1 0  
1 1 1 1 1 0 1 1  
1 1 1 1 0 1 0 0  
1 0 0 1 1 0 1 1  
1 1 1 1 0 0 0 0  
2
2
2
2
2
2
2
2
6
2
3
2
2
2
2
2
2
2
2
6
2
3
Complement carry  
Set carry  
Clear direction  
Set direction  
e
CLI  
STI  
Clear interrupt  
Set interrupt  
e
e
HLT  
Halt  
e
e
0
WAIT  
LOCK  
Wait  
if TEST  
e
Bus lock prefix  
e
NOP  
No Operation  
1 0 0 1 0 0 0 0  
(TTT LLL are opcode to processor extension)  
Shaded areas indicate instructions not available in 8086-8088 microsystemsꢀ  
NOTE%  
Clock cycles shown for byte transfersꢀ For word operationsꢁ add 4 clock cycles for all memory transfersꢀ  
The Effective Address (EA) of the memory operand  
is computed according to the mod and r-m fields@  
reg is assigned according to the following@  
Segment  
e
e
if mod  
if mod  
11 then r-mis treated as a REG field  
e
reg  
00  
01  
10  
11  
Register  
ES  
CS  
00 then DISP  
high are absent  
0ꢁ dispꢂlow and dispꢂ  
e
e
tended to 16ꢂbitsꢁ dispꢂhigh is absent  
if mod  
01 then DISP  
dispꢂlow signꢂexꢂ  
SS  
DS  
e
e
e
e
e
e
e
e
e
e
if mod  
if r-m  
if r-m  
if r-m  
if r-m  
if r-m  
if r-m  
if r-m  
if r-m  
10 then DISP  
dispꢂhigh@ dispꢂlow  
e
a
a
a
a
a
a
a
a
000 then EA  
001 then EA  
010 then EA  
011 then EA  
100 then EA  
101 then EA  
110 then EA  
111 then EA  
(BX)  
(SI)  
(DI)  
(SI)  
(DI)  
DISP  
DISP  
DISP  
DISP  
e
e
e
e
e
e
e
REG is assigned according to the following table@  
e
0)  
(BX)  
(BP)  
(BP)  
e
16-Bit (w  
1)  
8-Bit (w  
000 AL  
000 AX  
001 CX  
010 DX  
011 BX  
100 SP  
101 BP  
110 SI  
a
(SI)  
DISP  
001 CL  
010 DL  
011 BL  
100 AH  
101 CH  
110 DH  
111 BH  
a
(DI)  
(BP)  
(BX)  
DISP  
DISPꢀ  
DISP  
a
a
DISP follows 2nd byte of instruction (before data if  
required)  
111 DI  
e
e
e
110 then EA  
except if mod  
dispꢂhigh@ dispꢂlowꢀ  
00 and r-m  
The physical addresses of all operands addressed  
by the BP register are computed using the SS segꢂ  
ment registerꢀ The physical addresses of the destiꢂ  
nation operands of the string primitive operations  
(those addressed by the DI register) are computed  
using the ES segmentꢁ which may not be overriddenꢀ  
EA calculation time is 4 clock cycles for all modesꢁ  
and is included in the execution times given whenevꢂ  
er appropriateꢀ  
Segment Override Prefix  
0
0
1
reg  
1
1
0
Product Name Datasheet  
55  
Revision History  
16.0  
Revision History  
Intel 80C186EA/80L186EA devices are marked with a 9-character alphanumeric Intel FPO  
number underneath the product number. This data sheet update is valid for devices with an “A”,  
“B”, “C”, “D”, or “E” as the ninth character in the FPO number, as illustrated in Figure 3 for the  
68-lead PLCC package, and as also illustrated in diagrams of the 84-lead QFP (EIAJ) package in  
previous revisions of this datasheet. Such devices may also be identified by reading a value of 01H,  
02H, 03H from the STEPID register.  
This data sheet replaces the following data sheets:  
272019-002—80C186EA  
272020-002—80C188EA  
272021-002—80L186EA  
272022-002—80L188EA  
272307-001—SB80C186EA/SB80L186EA  
272308-001—SB80C188EA/SB80L188EA  
17.0  
Errata  
An 80C186EA/80L186EA with a STEPID value of 01H or 02H has the following known errata. A  
device with a STEPID of 01H or 02H can be visually identified by noting the presence of an “A,”  
“B”, or “C” alpha character, next to the FPO number. The FPO number location is shown in  
Figure 3.  
1. An internal condition with the interrupt controller can cause no acknowledge cycle on the  
INTA1 line in response to INT1. This errata only occurs when Interrupt 1 is configured in  
cascade mode and a higher priority interrupt exists. This errata will not occur consistently, it is  
dependent on interrupt timing.  
An 80C186EA/80L186EA with a STEPID value of 03H has no known errata. A device with a  
STEPID of 03H can be visually identified by noting the presence of a “D” or “E” alpha character  
next to the FPO number. The FPO number location is shown in Figure 3.  
56  
Product Name Datasheet  

相关型号:

TN80C186EB-13

16-BIT, 13MHz, MICROPROCESSOR, PQCC84, PLASTIC, LCC-84
INTEL

TN80C186EB-16

RISC Microprocessor, 16-Bit, 16MHz, CMOS, PQCC84
INTEL

TN80C186EB-20

16-Bit Microprocessor
ETC

TN80C186EB-8

RISC Microprocessor, 16-Bit, 8MHz, CMOS, PQCC84
INTEL

TN80C186EB13

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS
INTEL

TN80C186EB13

8-Bit/16-Bit Microcontrollers
INNOVASIC

TN80C186EB20

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS
INTEL

TN80C186EB20

8-Bit/16-Bit Microcontrollers
INNOVASIC

TN80C186EB25

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS
INTEL

TN80C186EB25

8-Bit/16-Bit Microcontrollers
INNOVASIC

TN80C186EBXX

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS
INTEL

TN80C186XL-10

16-Bit Microprocessor
ETC