TS61ID [ETC]

Voltage-Feedback Operational Amplifier ; 电压反馈运算放大器\n
TS61ID
型号: TS61ID
厂家: ETC    ETC
描述:

Voltage-Feedback Operational Amplifier
电压反馈运算放大器\n

运算放大器
文件: 总9页 (文件大小:103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS613  
DUAL WIDE BAND OPERATIONAL AMPLIFIER  
WITH HIGH OUTPUT CURRENT  
LOW NOISE : 3nV/Hz, 1.2pA/Hz  
HIGH OUTPUT CURRENT : 200mA  
VERY LOW HARMONIC AND INTERMODU-  
LATION DISTORTION  
HIGH SLEW RATE : 40V/µs  
SPECIFIED FOR 25LOAD  
D
SO-8  
DESCRIPTION  
(Plastic Micropackage)  
The TS613 is a dual operational amplifier featur-  
ing a high output current (200mA min.), large  
gain-bandwidth product (130MHz) and capable of  
driving a 25load with a 160mA output current at  
±6V power supply.  
PIN CONNECTIONS (top view)  
This device is particularly intended for applications  
where multiple carriers must be amplified simulta-  
neously with very low intermodulation products.  
The TS613 is housed in a SO8 package.  
APPLICATION  
UPSTREAM line driver for Assymetric Digital  
Subscriber Line (ADSL) (NT).  
ORDER CODE  
Package  
Part Number  
Temperature Range  
D
TS613ID  
-40, +85°C  
D = Small Outline Package (SO) - also available in Tape & Reel (DT)  
May 2000  
1/9  
TS613  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
1)  
V
±7  
±2  
V
V
Supply voltage  
CC  
2)  
V
Differential Input Voltage  
id  
in  
3)  
V
±6  
V
Input Voltage Range  
T
Operating Free Air Temperature Range TS612ID  
Storage Temperature  
-40 to + 85  
-65 to +150  
150  
°C  
oper  
T
°C  
std  
T
Maximum Junction Temperature  
°C  
j
R
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient Area  
Maximum Power Dissipation (@25°C)  
Output Short Circuit Duration  
28  
°C/W  
°C/W  
mW  
thjc  
R
175  
tha  
Pmax.  
715  
4)  
1. All voltages values, except differential voltage are with respect to network terminal.  
2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal.  
3. The magnitude of input and output voltages must never exceed V  
CC  
+0.3V.  
4. An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating.  
Destructive dissipation can result from short circuit on amplifiers.  
OPERATING CONDITIONS  
Symbol  
Parameter  
Value  
±2.5 to ±6  
Unit  
V
V
Supply Voltage  
Common Mode Input Voltage  
CC  
+
V
V
(V ) +2 to (V  
) -1  
CC  
icm  
CC  
2/9  
TS613  
ELECTRICAL CHARACTERISTICS. VCC = ±6V, Tamb = 25°C (unless otherwise specified).  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max  
Unit  
DC PERFORMANCE  
Tamb  
-6  
-1  
6
10  
6
Vio  
Vio  
Iio  
Input Offset Voltage  
mV  
mV  
µA  
Tmin. < Tamb < Tmax.  
Tamb = 25°C  
Tamb  
Differential Input Offset Voltage  
Input Offset Current  
0.2  
5
3
T
min. < Tamb < Tmax.  
5
Tamb  
15  
30  
Iib  
Input Bias Current  
µA  
T
min. < Tamb < Tmax.  
V
ic = 2V to 2V, Tamb  
min. < Tamb < Tmax.  
ic = ±6V to ±4V, Tamb  
min. < Tamb < Tmax.  
No load, Vout = 0  
90  
70  
70  
50  
108  
88  
11  
CMR  
Common Mode Rejection Ratio  
dB  
T
V
SVR  
ICC  
Supply Voltage Rejection Ratio  
Total Supply Current per Operator  
dB  
T
15  
-4  
mA  
DYNAMIC PERFORMANCE  
VOH  
I
I
out = 160mA, RL to GND  
out = 160mA, RL to GND  
High Level Output Voltage  
4
4.5  
V
V
VOL  
Low Level Output Voltage  
-4.5  
Vout = 7V peak  
RL = 25, Tamb  
6500  
5000  
11000  
130  
AVD  
Large Signal Voltage Gain  
Gain Bandwidth Product  
V/V  
T
min. < Tamb < Tmax.  
A
VCL = +11, f = 20MHz  
GBP  
80  
23  
MHz  
RL = 100Ω  
AVCL = +7, RL = 50Ω  
SR  
Iout  
Slew Rate  
40  
V/µs  
Output Short Circuit Current  
±320  
mA  
Vic = ±6V, Tamb  
+200  
+180  
Isink  
Output Sink Current  
mA  
mA  
Tmin. < Tamb < Tmax.  
Vic = ±6V, Tamb  
-200  
-180  
Isource  
Output Source Current  
Tmin. < Tamb < Tmax.  
RL = 25//15pF  
RL = 25//15pF  
Phase Margin at AVCL = 14dB  
Phase Margin at AVCL = 6dB  
ΦM14  
ΦM6  
60  
40  
°
°
NOISE AND DISTORTION  
en  
Equivalent Input Noise Voltage  
f = 100kHz  
3
nV/Hz  
pA/Hz  
in  
Equivalent Input Noise Current  
Total Harmonic Distorsion  
f = 100kHz  
Vout = 4Vpp, f = 100kHz  
AVCL = -10  
1.2  
THD  
HD2-10  
HD2+2  
HD3+2  
IM2-10  
IM3-10  
-69  
dB  
RL = 25//15pF  
Vout = 4Vpp, f = 100kHz  
AVCL = -10  
Load =25//15pF  
Vout = 4Vpp, f = 100kHz  
AVCL = +2  
Load =25//15pF  
Vout = 4Vpp, f = 100kHz  
AVCL = +2  
2nd Harmonic Distorsion  
-70  
-74  
-79  
-77  
-77  
dBc  
dBc  
dBc  
dBc  
dBc  
2nd Harmonic Distorsion  
3rd Harmonic Distorsion  
Load =25//15pF  
F1 = 80kHz, F2 = 70kHz  
Vout = 8Vpp, AVCL = -10  
Load = 25//15pF  
2nd Order Intermodulation Product  
3rd Order Intermodulation Product  
F1 = 80kHz, F2 = 70kHz  
Vout = 8Vpp, AVCL = -10  
Load = 25//15pF  
3/9  
TS613  
INTERMODULATION DISTORTION  
The curves shown below are the measurements results of a single operator wired as an adder with a gain  
of 15dB.  
The operational amplifier is supplied by a symmetric ±6V and is loaded with 25.  
Two synthesizers (Rhode & Schwartz SME) generate two frequencies (tones) (70 & 80kHz ; 180 &  
280kHz).  
An HP3585 spectrum analyzer measures the spurious level at different frequencies.  
The curves are traced for different output levels (the value in the X ax is the value of each tone).  
The output levels of the two tones are the same.  
The generators and spectrum analyzer are phase locked to enhance measurement precision.  
3rd ORDER INTERMODULATION  
Gain=15dB, Vcc=±6V, RL=25, 2 tones 70kHz/  
80kHz  
3rd ORDER INTERMODULATION  
Gain=15dB, Vcc=±6V, RL=25, 2 tones 180kHz/  
280kHz  
0
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
90kHz  
-50  
-50  
80kHz  
-60  
230kHz  
-60  
380kHz  
-70  
-70  
-80  
-80  
640kHz  
60kHz  
-90  
-90  
740kHz  
220kHz  
-100  
-100  
1
1,5  
2
2,5  
3
3,5  
4
4,5  
1
1,5  
2
2,5  
3
3,5  
4
4,5  
Vout peak (V)  
Vout peak (V)  
2nd ORDER INTERMODULATION  
Gain=15dB, Vcc=±6V, RL=25, 2 tones 180kHz/  
280kHz, Spurious measurement @100kHz  
-55  
-60  
-65  
-70  
1,5  
2
2,5  
3
3,5  
4
4,5  
Vout peak (V)  
4/9  
TS613  
Closed Loop Gain and Phase vs. Frequency  
Closed Loop Gain and Phase vs. Frequency  
Gain=+2, Vcc=±6V, RL=25Ω  
Gain=+6, Vcc=±6V, RL=25Ω  
10  
0
200  
20  
200  
100  
0
Gain  
Gain  
15  
100  
0
10  
5
Phase  
0
Phase  
-10  
-20  
-30  
-5  
-10  
-15  
-20  
-100  
-200  
-100  
-200  
10kHz  
100kHz  
1MHz  
10MHz  
100MHz  
10kHz  
100kHz  
1MHz  
10MHz  
100MHz  
Frequency  
Frequency  
Closed Loop Gain and Phase vs. Frequency  
Equivalent Input Voltage Noise  
Gain=+11, Vcc=±6V, RL=25Ω  
Gain=+100, Vcc=±6V, no load  
30  
20  
10  
0
200  
20  
15  
10  
5
Gain  
+
_
100  
0
10k  
Phase  
100  
-10  
-20  
-30  
-100  
-200  
0
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10kHz  
100kHz  
1MHz  
10MHz  
100MHz  
Frequency  
Frequency  
Maximum Output Swing  
Channel Separation (Xtalk) vs. Frequency  
Vcc=±6V, RL=25Ω  
XTalk=20Log(V2/V1), Vcc=±6V, RL=25Ω  
-20  
5
4
3
2
VIN  
+
49.9Ω  
output  
_
V1  
-30  
-40  
-50  
-60  
-70  
-80  
1kΩ  
1kΩ  
100Ω  
100Ω  
25Ω  
input  
1
+
49.9Ω  
0
_
V2  
-1  
-2  
-3  
-4  
-5  
25Ω  
0
2
4
6
Time (µs)  
8
10  
100kHz  
1MHz  
10MHz  
10kHz  
Frequency  
5/9  
TYPICAL APPLICATION : TS613 AS DRIVER  
FOR ADSL LINE INTERFACES  
A SINGLE SUPPLY IMPLEMENTATION WITH PASSIVE  
OR ACTIVE IMPEDANCE MATCHING  
by C. PRUGNE  
ADSL CONCEPT  
The TS613 is used as a dual line driver for the up-  
stream signal.  
Asymmetric Digital Subscriber Line (ADSL), is a  
new modem technology, which converts the exist-  
ing twisted-pair telephone lines into access paths  
for multimedia and high speed data communica-  
tions.  
For the remote terminal it is required to create an  
ADSL modem easy to plug in a PC. In such an ap-  
plication, the driver should be implemented with a  
+12 volts single power supply. This +12V supply is  
available on PCI connector of purchase.  
The figure 2 shows a single +12V supply circuit  
that uses the TS613 as a remote terminal trans-  
mitter in differential mode.  
ADSL transmits more than 8 Mbps to a subscriber,  
and can reach 1Mbps from the subscriber to the  
central office. ADSL can literally transform the ac-  
tual public information network by bringing mov-  
ies, television, video catalogs, remote CD-ROMs,  
LANs, and the Internet into homes.  
Figure 2 : TS613 as a differential line driver with  
a +12V single supply  
An ADSL modem is connected to a twisted-pair  
telephone line, creating three information chan-  
nels: a high speed downstream channel (up to  
1.1MHz) depending on the implementation of the  
ADSL architecture, a medium speed upstream  
channel (up to 130kHz) and a POTS (Plain Old  
Telephone Service), split off from the modem by  
filters.  
1µ  
100n  
8
3
+12V  
1
+
10n  
12.5  
_
2
+12V  
1k  
1:2  
Vi  
Vi  
R2  
47k  
Vo  
Vo  
Hybrid  
&
R1  
25  
100Ω  
Transformer  
10µ  
100n  
47k  
R3  
1k  
_
+
6
5
GND  
12.5  
7
GND  
THE LINE INTERFACE - ADSL Remote  
Terminal (RT):  
4
100n  
The Figure1 shows a typical analog line interface  
used for ADSL. The upstream and downstream  
signals are separated from the telephone line by  
using an hybrid circuit and a line transformer. On  
this note, the accent will be made on the emission  
path.  
The driver is biased with a mid supply (nominaly  
+6V), in order to maintain the DC component of  
the signal at +6V. This allows the maximum dy-  
namic range between 0 and +12 V. Several op-  
tions are possible to provide this bias supply (such  
as a virtual ground using an operational amplifier),  
such as a two-resistance divider which is the  
cheapest solution. A high resistance value is re-  
quired to limit the current consumption. On the  
other hand, the current must be high enough to  
bias the inverting input of the TS613. If we consid-  
er this bias current (5µA) as the 1% of the current  
through the resistance divider (500µA) to keep a  
stable mid supply, two 47kresistances can be  
used.  
Figure 1 : Typical ADSL Line Interface  
high output  
current  
upstream  
LPfilter  
digital to  
analog  
emission  
(analog)  
impedance  
matching  
TS613  
Line Driver  
digital  
treatment  
HYBRID  
CIRCUIT  
twisted-pair  
telephone  
line  
The input provides two high pass filters with a  
break frequency of about 1.6kHz which is neces-  
sary to remove the DC component of the input sig-  
nal. To avoid DC current flowing in the primary of  
the transformer, an output capacitor is used. The  
analogto  
digital  
reception  
circuits  
downstream  
reception  
(analog)  
6/9  
TS613  
1µF capacitance provides a path for low frequen-  
cies, the 10nF capacitance provides a path for  
high end of the spectrum.  
Component calculation:  
Let us consider the equivalent circuit for a single  
ended configuration, figure4.  
In differential mode the TS613 is able to deliver a  
typical amplitude signal of 18V peak to peak.  
Figure 4 : Single ended equivalent circuit  
The dynamic line impedance is 100. The typical  
value of the amplitude signal required on the line  
is up to 12.4V peak to peak. By using a 1:2 trans-  
former ratio the reflected impedance back to the  
primary will be a quarter (25) and therefore the  
amplitude of the signal required with this imped-  
ance will be the half (6.2 V peak to peak). Assum-  
ing the 25series resistance (12.5for both out-  
puts) necessary for impedance matching, the out-  
put signal amplitude required is 12.4 V peak to  
peak. This value is acceptable for the TS613. In  
this case the load impedance is 25for each driv-  
er.  
+
Rs1  
Vi  
_
Vo°  
Vo  
R2  
-1  
R3  
1/2  
R1  
1/2  
RL  
Let us consider the unloaded system. Assuming  
the currents through R1, R2 and R3  
as respectively:  
For the ADSL upstream path, a lowpass filter is  
absolutely necessary to cutoff the higher frequen-  
cies from the DAC analog output. In this simple  
non-inverting amplification configuration, it will be  
easy to implement a Sallen-Key lowpass filter by  
using the TS613. For ADSL over POTS, a maxi-  
mum frequency of 135kHz is reached. For ADSL  
over ISDN, the maximum frequency will be  
276kHz.  
2Vi (Vi Vo°)  
(Vi + Vo)  
-------- --------------------------  
-----------------------  
and  
,
R1  
R2  
R3  
As Vo° equals Vo without load, the gain in this  
case becomes :  
2 R 2 R 2  
1 + ---------- + ------  
Vo(noload)  
R 1 R 3  
R2  
R3  
G = ------------------------------ = ----------------------------------  
Vi  
1 ------  
The gain, for the loaded system will be (1):  
INCREASING THE LINE LEVEL BY USING AN  
ACTIVE IMPEDANCE MATCHING  
2 R 2 R 2  
1 + ---------- + ------  
1
2
R 1 R 3  
Vo(withload)  
-- ----------------------------------  
GL = ----------------------------------- =  
,(1 )  
With passive matching, the output signal ampli-  
tude of the driver must be twice the amplitude on  
the load. To go beyond this limitation an active  
maching impedance can be used. With this tech-  
nique it is possible to keep good impedance  
matching with an amplitude on the load higher  
than the half of the ouput driver amplitude. This  
concept is shown in figure3 for a differential line.  
R2  
Vi  
1 ------  
R3  
As shown in figure5, this system is an ideal gener-  
ator with a synthesized impedance as the internal  
impedance of the system. From this, the output  
voltage becomes:  
Vo = (ViG) (RoIout),(2)  
Figure 3 : TS613 as a differential line driver with  
with Ro the synthesized impedance and Iout the  
output current. On the other hand Vo can be ex-  
pressed as:  
an active impedance matching  
2R2 R 2  
1µ  
Vi 1 + ---------- + ------  
100n  
R1 R 3  
8
Rs1Iout  
3
2
+12V  
1
+
_
10n  
12.5  
---------------------  
Vo = ---------------------------------------------- –  
,(3 )  
R2  
R2  
+12V  
1 ------  
1 ------  
1k  
R3  
R3  
Vo°  
1:2  
Vi  
Vi  
R2  
47k  
Vo  
Hybrid  
&
Transformer  
R3  
R5  
25  
100Ω  
R1  
10µ  
100n  
47k  
Vo  
R4  
Vo°  
12.5  
1k  
_
+
6
5
GND  
7
GND  
4
100n  
7/9  
TS613  
By identification of both equations (2) and (3), the  
synthesized impedance is, with Rs1=Rs2=Rs:  
GL (gain for the  
loaded system)  
GL is fixed for the application requirements  
Rs  
GL=Vo/Vi=0.5(1+2R2/R1+R2/R3)/(1-R2/R3)  
2R2/[2(1-R2/R3)GL-1-R2/R3]  
Abritrary fixed  
----------------  
Ro =  
,(4 )  
R2  
R1  
1 ------  
R3  
R2 (=R4)  
R3 (=R5)  
Rs  
R2/(1-Rs/0.5RL)  
Figure 5 : Equivalent schematic. Ro is the syn-  
0.5RL(k-1)  
thesized impedance  
CAPABILITIES  
The table below shows the calculated compo-  
nents for different values of k. In this case  
R2=1000and the gain=16dB. The last column  
displays the maximum amplitude level on the line  
regarding the TS613 maximum output capabilities  
(18Vpp diff.) and a 1:2 line transformer ratio.  
Iout  
Ro  
Vi.Gi  
1/2RL  
Active matching  
TS613 Output  
Level to get  
12.4Vpp on  
the line  
Maximum  
Line level  
(Vpp diff)  
R1  
()  
R3  
()  
Rs  
()  
Unlike the level Vo° required for a passive imped-  
ance, Vo° will be smaller than 2Vo in our case. Let  
us write Vo°=kVo with k the matching factor vary-  
ing between 1 and 2. Assuming that the current  
through R3 is negligeable, it comes the following  
resistance divider:  
k
(Vpp diff)  
1.3  
1.4  
1.5  
1.6  
1.7  
820 1500 3.9  
490 1600 5.1  
360 2200 6.2  
270 2400 7.5  
240 3300 9.1  
Passive matching  
8
27.5  
25.7  
25.3  
23.7  
22.3  
18  
8.7  
9.3  
kVoRL  
Ro = ---------------------------  
9.9  
RL + 2Rs1  
After choosing the k factor, Rs will equal to  
1/2RL(k-1).  
10.5  
12.4  
MEASUREMENT OF THE POWER  
CONSUMPTION IN THE ADSL APPLICATION  
A good impedance matching assumes:  
1
--  
Ro = RL,(5)  
Conditions:  
2
Passive impedance matching  
Transformer turns ratio: 2  
From (4) and (5) it becomes:  
2 Rs  
RL  
R2  
R3  
Maximun level required on the line: 12.4Vpp  
Maximum output level of the driver: 12.4Vpp  
Crest factor: 5.3 (Vp/Vrms)  
The TS613 power consumption during emission  
on 900 and 4550 meter twisted pair telephone  
lines: 360mW  
---------  
------ = 1 –  
,(6 )  
By fixing an arbitrary value for R2, (6) gives:  
R2  
R3 = -------------------  
2Rs  
1 ---------  
RL  
Finally, the values of R2 and R3 allow us to extract  
R1 from (1), and it comes:  
2 R 2  
---------------------------------------------------------  
R 1 =  
,(7 )  
R2  
R2  
2 1 ------ GL 1 ------  
R3 R3  
with GL the required gain.  
8/9  
TS613  
PACKAGE MECHANICAL DATA  
8 PINS - PLASTIC MICROPACKAGE (SO)  
Millimeters  
Dim.  
Inches  
Typ.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
a1  
a2  
a3  
b
1.75  
0.25  
1.65  
0.85  
0.48  
0.25  
0.5  
0.069  
0.010  
0.065  
0.033  
0.019  
0.010  
0.020  
0.1  
0.004  
0.65  
0.35  
0.19  
0.25  
0.026  
0.014  
0.007  
0.010  
b1  
C
c1  
D
45° (typ.)  
4.8  
5.8  
5.0  
6.2  
0.189  
0.228  
0.197  
0.244  
E
e
1.27  
3.81  
0.050  
0.150  
e3  
F
3.8  
0.4  
4.0  
1.27  
0.6  
0.150  
0.016  
0.157  
0.050  
0.024  
L
M
S
8° (max.)  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
2000 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco  
Singapore - Spain - Sweden - Switzerland - United Kingdom  
http://www.st.com  
9/9  

相关型号:

TS61N20CXRF

Voltage Detector
TSC

TS61N23CXRF

Voltage Detector
TSC

TS61N24CXRF

Voltage Detector
TSC

TS61N25CXRF

Voltage Detector
TSC

TS61N27CXRF

Voltage Detector
TSC

TS61N30CXRF

Voltage Detector
TSC

TS61N33CXRF

Voltage Detector
TSC

TS61N40CXRF

Voltage Detector
TSC

TS61N42CXRF

Voltage Detector
TSC

TS61N44CXRF

Voltage Detector
TSC

TS61N45CXRF

Voltage Detector
TSC

TS6250

10 BASE-T ISOLATION TRANSFORMER
BOTHHAND