TSC21020F-20MBSL2 [ETC]

DSP|32-BIT|CMOS| RAD HARD|QFL|256PIN|CERAMIC ; DSP | 32位| CMOS |抗辐射| QFL | 256PIN |陶瓷\n
TSC21020F-20MBSL2
型号: TSC21020F-20MBSL2
厂家: ETC    ETC
描述:

DSP|32-BIT|CMOS| RAD HARD|QFL|256PIN|CERAMIC
DSP | 32位| CMOS |抗辐射| QFL | 256PIN |陶瓷\n

外围集成电路 异步传输模式 ATM 时钟
文件: 总37页 (文件大小:484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSC21020F  
Radiation Tolerant 32/40–Bit IEEE Floating–Point  
DSP Microprocessor  
Introduction  
Atmel is manufacturing a radiation tolerant version of the The product is pin and code compatible with ADI  
Analog Devices ADSP–21020 32/40–Bit Floating–Point product, making system development straight forward  
DSP.  
and cost effective, using existing development tools and  
algorithms.  
Features  
D Superscalar IEEE Floating-Point-Processor  
D Off-Chip Harvard Architecture Maximizes Signal Processing  
Performance  
D Multiply with Add & Subtract for FFT Butterfly  
Computation  
D Efficient Program Sequencing with Zero-Overhead  
D 50 ns, 20 MIPS Instruction Rate, Single-Cycle Execution  
D 60 MFLOPS Peak, 40 MFLOPS Sustained Performance  
D 1024-Point Complex FFT Benchmark : 0.975 ms  
D Divide (y/x) : 300 ns  
Looping : Single-Cycle Loop Setup  
D Single-Cycle Register File Context Switch  
D 23 ns External RAM Access Time for Zero-Wait-State, 40 ns  
Instruction Execution  
D Inverse Square Root (1/x) : 450 ns  
D IEEE JTAG Standard 1149.1 Test Access Port and On-Chip  
D 32-Bit Single-Precision and 40-Bit Extended-Precision  
Emulation Circuitry  
IEEE Floating-Point Data Formats  
D 223 CPGA package for breadboarding  
D 256 Multi layer quad flat pack, flat leads, for flight models  
D Full compatible with Analog Devices ADSP-21020  
D Latch up immune  
D 32-Bit Fixed-Point Formats, Integer and Fractional, with  
80-Bit Accumulators  
D IEEE Exception Handling with Interrupt on Exception  
D Three Independent Computation Units : Multiplier, ALU,  
and Barrel Shifter  
D Dual Data Address Generators with Indirect, Immediate,  
Modulo, and Bit Reverse Addressing Modes  
D Two Off-Chip Memory Transfers in Parallel with Instruction  
Fetch and Single-Cycle Multiply & ALU Operations  
D Total dose better than 100 Krad (Si)  
D SEU immunity better than 50 MeV/mg/cm2  
D For 25 MHz specification, call factory  
– Design using patent from INPG–CNRS Denis BESSOT / Raoul VELAZCO  
– Product licensed from Analog Devices Inc.  
1
Rev. E – Oct. 05, 1998  
TSC21020F  
Functional Block Diagram  
General Description  
The TSC21020F is single-chip IEEE floating-point  
processor optimized for digital signal processing  
applications . Its architecture is similar to that of Analog  
DevicesADSP-2100 family of fixed-point DSP  
processors.  
shifter perform single-cycle instructions. The units  
are architecturally arranged in parallel, maximizing  
computational throughput. A single multifunction  
instruction executes parallel ALU and multiplier  
operations. These computation units support IEEE  
32-bit single-precision floating-point, extended  
precision 40-bit floating-point, and 32-bit fixed-point  
data formats.  
1
Fabricated in a high-speed, low-power and radiation  
tolerant CMOS process, the TSC21020F has a 50 ns  
instruction cycle time. With a high-performance on-chip  
instruction cache, the TSC21020F can execute every  
instruction in a single cycle.  
D Data Register File  
A general-purpose data register file is used for  
transferring data between the computation units and  
the data buses, and for storing intermediate results.  
This 10-port (16-register) register file, combined with  
the TSC21020Fs Harvard architecture, allows  
The TSC21020F features :  
D Independent Parallel Computation Units  
The arithmetic/logic unit (ALU), multiplier and  
2
Rev. E Oct. 05, 1998  
TSC21020F  
unconstrained data flow between computation units  
and off-chip memory.  
The TSC21020F includes a high performance  
instruction cache that enables three-bus operation for  
fetching an instruction and two data values. The cache  
is selective-only the instructions whose fetches  
conflict with program memory data accesses are  
cached. This allows full-speed execution of core,  
looped operations such as digital filter  
multiply-accumulates and FFT butterfly processing.  
D Single-Cycle Fetch of Instruction and Two  
Operands  
The TSC21020F uses a modified Harvard architecture  
in which data memory stores data and program  
memory stores both instructions and data. Because of  
its separate program and data memory buses and  
on-chip instruction cache, the processor can  
simultaneously fetch an operand from data memory,  
an operand from program memory, and an instruction  
from the cache, all in a single cycle.  
D Hardware Circular Buffers  
The TSC21020F provides hardware to implement  
circular buffers in memory, which are common in  
digital filters and Fourier transform implementations.  
It handles address pointer wraparound, reducing  
overhead (thereby increasing performance) and  
simplifying implementation. Circular buffers can  
start and end at any location.  
D Memory Interface  
Addressing of external memory devices by the  
TSC21020F is facilitated by on-chip decoding of  
high-order address lines to generate memory bank  
select signals. Separate control lines are also  
generated for simplified addressing of page-mode  
DRAM. The TSC21020F provides programmable  
memory wait states, and external memory  
acknowledge controls allow interfacing to peripheral  
devices with variable access times.  
D Flexible Instruction Set  
The TSC21020Fs 48-bit instruction word  
accommodates a variety of parallel operations, for  
concise programming. For example, the TSC21020F  
can conditionally execute a multiply, an add, a  
subtract and a branch in a single instruction.  
D Instruction Cache  
1. It is fully compatible with Analog Devices ADSP-21020  
3
Rev. E Oct. 05, 1998  
TSC21020F  
Development System  
The TSC21020F is supported with a complete set of  
software and hardware development tools from Analog  
Devices. The ADSP-21000 Family Development System  
from Analog Devices includes development software, an  
evaluation board and an in-circuit emulator.  
language architectural features and incorporates  
optimizing algorithms to speed up the execution of  
code. It includes an extensive runtime library with  
over 100 standard and DSP-specific functions.  
D C Source Level Debugger  
D Assembler  
A full-featured C source level debugger that works  
with the simulator or EZ-ICE emulator to allow  
debugging of assembler source, C source, or mixed  
assembler and C.  
Creates relocatable, COFF (Common Object File  
Format) object files from ADSP-21xxx assembly  
source code. It accepts standard C preprocessor  
directives for conditional assembly and macro  
processing. The algebraic syntax of the ADSP-21xxx  
assembly language facilitates coding and debugging  
of DSP algorithms.  
D Numerical C Compiler  
Supports ANSI Standard (X3J11.1) Numerical C as  
defined by the Numeric C Extensions Group. The  
compiler accepts  
C
source input containing  
D Linker/Librarian  
Numerical C extensions for array selection, vector  
math operations, complex data types, circular  
pointers, and variably dimensioned arrays, and  
outputs ADSP-21xxx assembly language source code.  
The Linker processes separately assembled object  
files and library files to create a single executable  
program. It assigns memory locations to code and to  
data in accordance with a user-defined architecture  
file that describes the memory and I/O configuration  
of the target system. The Librarian allows you to  
group frequently used object files into a single library  
file that can be linked with your main program.  
D ADSP- 21020 EZ-LAB Evaluation Board  
The EZ-LAB Evaluation Board is a general-purpose,  
standalone TSC21020F system that includes 32K  
words of program memory and 32K words of data  
memory as well as analog I/O. A PC RS-232  
download path enables the user to download and run  
programs directly on the EZ-LAB. In addition, it may  
be used in conjunction with the EZ-ICE Emulator to  
provide a powerful software debug environment.  
D Simulator  
The Simulator performs interactive, instruction-level  
simulation of ADSP-21xxx code within the hardware  
configuration described by a system architecture file.  
It flags illegal operations and supports full symbolic  
disassembly. It provides an easy-to-use, window  
oriented, graphical user interface that is identical to  
the one used by the ADSP- 21020 EZ-ICE Emulator.  
Commands are accessed from pull-down menus with  
a mouse.  
D ADSP- 21020 EZ-ICE Emulator  
This in-circuit emulator provides the system designer  
with a PC-based development environment that  
allows nonintrusive access to the TSC21020Fs  
internal registers through the processors 5-pin JTAG  
Test Access Port. This use of on-chip emulation  
circuitry enables reliable, full-speed performance in  
any target. The emulator uses the same graphical user  
interface as the ADSP- 21020 Simulator, allowing an  
easy transition from software to hardware debug. (See  
Target System Requirements for Use of EZ-ICE  
Emulatoron page 27.)  
D PROM Splitter  
Formats an executable file into files that can be used  
with an industry-standard PROM programmer.  
D C Compiler and Runtime Library  
The C Compiler complies with ANSI specifications.  
It takes advantage of the TSC21020Fs high-level  
REZ-LAB and EZ-ICE are registered trademarks of Analog Devices, Inc.  
Additional Information  
This data sheet provides a general overview of system and programming reference information, refer to  
TSC21020F functionality. For additional information on the ADSP-21000 Family Development Software Manuals  
the architecture and instruction set of the processor, refer and the ADSP-21020 Programmers Quick Reference.  
to the ADSP-21020 Users Manual. For development  
4
Rev. E Oct. 05, 1998  
TSC21020F  
Architecture Overview  
Figure 1 shows a block diagram of the TSC21020F. The multiplication as well as fixed-point multiply/add and  
processor features:  
multiply/subtract operations. Integer products are 64 bits  
wide, and the accumulator is 80 bits wide. The ALU  
performs 45 standard arithmetic and logic operations,  
supporting both fixed-point and floating-point formats.  
The shifter performs 19 different operations on 32-bit  
operands. These operations include logical and  
arithmetic shifts, bit manipulation, field deposit, and  
extract and derive exponent operations.  
D Three Computation Units (ALU, Multiplier, and  
Shifter) with a Shared Data Register File  
D Two Data Address Generators (DAG 1, DAG 2)  
D Program Sequencer with Instruction Cache  
D 32-Bit Timer  
D Memory Buses and Interface  
D JTAG Test Access Port and On-Chip Emulation Support  
The computation units perform single-cycle operations ;  
there is no computation pipeline. The three units are  
connected in parallel rather than serially, via multiple-bus  
connections with the 10-port data register file. The output  
of any computation unit may be used as the input of any  
unit on the next cycle. In a multifunction computation, the  
ALU and multiplier perform independent, simultaneous  
operations.  
Computation Units  
The TSC21020F contains three independent computation  
units : an ALU,  
a
multiplier with fixed-point  
accumulator, and a shifter. In order to meet a wide variety  
of processing needs, the computation units process data  
in three formats : 32-bit fixed-point, 32-bit floating-point  
and 40-bit floating-point. The floating-point operations  
are single-precision IEEE-compatible (IEEE Standard  
754/854). The 32-bit floating-point format is the standard  
IEEE format, whereas the 40-bit IEEE extended-  
precision format has eight additional LSBs of mantissa  
for greater accuracy.  
Data Register File  
The TSC21020Fs general-purpose data register file is  
used for transferring data between the computation units  
and the data buses, and for storing intermediate results.  
The register file has two sets (primary and alternate) of  
The multiplier performs floating-point and fixed-point sixteen 40-bit registers each, for fast context switching.  
Figure 1. TSC21020F Block Diagram  
5
Rev. E Oct. 05, 1998  
TSC21020F  
With a large number of buses connecting the registers to counter and loop stack. No explicit jump or decrement  
the computation units, data flow between computation instructions are required to maintain the loop.  
units and from/to off-chip memory is unconstrained and  
free from bottlenecks. The 10-port register file and  
Harvard architecture of the TSC21020F allow the  
The TSC21020F derives its high clock rate from  
pipelined fetch, decode and execute cycles.  
Approximately 70% of the machine cycle is available for  
following nine data transfers to be performed every  
memory accesses ; consequently, TSC21020F systems  
cycle :  
can be built using slower and therefore less expensive  
D Off-chip read/write of two operands to or from the  
memory chips.  
register file  
D Two operands supplied to the ALU  
Instruction Cache  
D Two operands supplied to the multiplier  
The program sequencer includes a high performance,  
selective instruction cache that enables three-bus  
operation for fetching an instruction and two data values.  
This two-way, set-associative cache holds 32  
instructions. The cache is selective (only the instructions  
whose fetches conflict with program memory data  
accesses are cached), so the TSC21020F can perform a  
program memory data access and can execute the  
corresponding instruction in the same cycle. The program  
sequencer fetches the instruction from the cache instead  
of from program memory, enabling the TSC21020F to  
simultaneously access data in both program memory and  
data memory.  
D Two results received from the ALU and multiplier  
(three, if the ALU operation is a combined  
addition/subtraction).  
The processors 48-bit orthogonal instruction word  
supports fully parallel data transfer and arithmetic  
operations in the same instruction.  
Address Generators and Program Sequencer  
Two dedicated address generators and a program  
sequencer supply addresses for memory accesses.  
Because of this, the computation units need never be used  
to calculate addresses. Because of its instruction cache,  
the TSC21020F can simultaneously fetch an instruction  
and data values from both off-chip program memory and  
off-chip data memory in a single cycle.  
Context Switching  
Many of the TSC21020Fs registers have alternate  
register sets that can be activated during interrupt  
servicing to facilitate a fast context switch. The data  
registers in the register file, DAG registers and the  
multiplier result register all have alternate sets. Registers  
active at reset are called primary registers ; the others are  
called alternate registers. Bits in the MODE1 control  
register determine which registers are active at any  
particular time.  
The data address generators (DAGs) provide memory  
addresses when external memory data is transferred over  
the parallel memory ports to or from internal registers.  
Dual data address generators enable the processor to  
output two simultaneous addresses for dual operand reads  
and writes. DAG 1 supplies 32-bit addresses to data  
memory. DAG 2 supplies 24-bit addresses to program  
memory for program memory data accesses.  
The primary/alternate select bits for each half of the  
register file (top eight or bottom eight registers) are  
independent. Likewise, the top four and bottom four  
register sets in each DAG have independent  
primary/alternate select bits. This scheme allows passing  
of data between contexts.  
Each DAG keeps track of up to eight address pointers,  
eight modifiers, eight buffer length values and eight base  
values. A pointer used for indirect addressing can be  
modified by a value in a specified register, either before  
(premodify) or after (post-modify) the access. To  
implement automatic modulo addressing for circular  
buffers, the TSC21020F provides buffer length registers  
that can be associated with each pointer. Base values for  
pointers allow circular buffers to be placed at arbitrary  
locations. Each DAG register has an alternate register that  
can be activated for fast context switching.  
Interrupts  
The TSC21020F has four external hardware interrupts,  
nine internally generated interrupts, and eight software  
interrupts. For the external interrupts and the internal  
The program sequencer supplies instruction addresses to timer interrupt, the TSC21020F automatically stacks the  
program memory. It controls loop iterations and evaluates arithmetic status and mode (MODE1) registers when  
conditional instructions. To execute looped code with servicing the interrupt, allowing five nesting levels of fast  
zero overhead, the TSC21020F maintains an internal loop service for these interrupts.  
6
Rev. E Oct. 05, 1998  
TSC21020F  
An interrupt can occur at any time while the TSC21020F program memory data (PMD) and data memory data  
is executing a program. Internal events that generate (DMD) buses are used for data associated with the two  
interrupts include arithmetic exceptions, which allow for memory spaces. These buses are extended off chip. Four  
fast trap handling and recovery.  
data memory select (DMS) signals select one of four  
user-configurable banks of data memory. Similarly, two  
program memory select (PMS) signals select between  
two user-configurable banks of program memory. All  
banks are independently programmable for 0-7 wait  
states.  
Timer  
The programmable interval timer provides periodic  
interrupt generation. When enabled, the timer  
decrements a 32-bit count register every cycle. When this  
count register reaches zero, the TSC21020F generates an  
interrupt and asserts its TIMEXP output. The count  
register is automatically reloaded from a 32-bit period  
register and the count resumes immediately.  
The PX registers permit passing data between program  
memory and data memory spaces. They provide a bridge  
between the 48-bit PMD bus and the 40-bit DMD bus or  
between the 40-bit register file and the PMD bus.  
The PMA bus is 24 bits wide allowing direct access of up  
to 16M words of mixed instruction code and data. The  
PMD is 48 bits wide to accommodate the 48-bit  
instruction width. For access of 40-bit data the lower 8  
bits are unused. For access of 32-bit data the lower 16 bits  
are ignored.  
System Interface  
Figure 2 shows an TSC21020F basic system configuration.  
The external memory interface supports memory-  
mapped peripherals and slower memory with a  
user-defined combination of programmable wait states  
and hardware acknowledge signals. Both the program  
memory and data memory interfaces support addressing  
of page-mode DRAMs.  
The DMA bus is 32 bits wide allowing direct access of up  
to 4 Gigawords of data. The DMD bus is 40 bits wide. For  
32-bit data, the lower 8 bits are unused. The DMD bus  
provides a path for the contents of any register in the  
processor to be transferred to any other register or to any  
external data memory location in a single cycle. The data  
The TSC21020Fs internal functions are supported by memory address comes from one of two sources : an  
four internal buses : the program memory address (PMA) absolute value specified in the instruction code (direct  
and data memory address (DMA) buses are used for addressing) or the output of a data address generator  
addresses associated with program and data memory. The (indirect addressing).  
Figure 2. Basic System Configuration.  
7
Rev. E Oct. 05, 1998  
TSC21020F  
External devices can gain control of the processors  
memory buses from the TSC21020F by means of the bus  
request/grant signals (BR and BG). To grant its buses in  
response to a bus request, the TSC21020F halts internal  
operations and places its program and data memory  
interfaces in a high impedance state. In addition,  
three-state controls (DTMS and PMTS) allow an external  
device to place either the program or data memory  
interface in a high impedance state without affecting the  
other interface and without halting the TSC21020F unless  
it requires a memory access from the affected interface.  
The three-state controls make it easy for an external cache  
controller to hold the TSC21020F off the bus while it  
updates an external cache memory.  
JTAG Test and Emulation Support  
The TSC21020F implements the boundary scan testing  
provisions specified by IEEE Standard 1149.1 of the Joint  
Testing Action Group (JTAG). The TSC21020Fs test  
access port and on-chip JTAG circuitry is fully compliant  
with the IEEE 1149.1 specification. The test access port  
enables boundary scan testing of circuitry connected to  
the TSC21020Fs I/O pins.  
The TSC21020F also implements on-chip emulation  
through the JTAG test access port. The processors eight  
sets of breakpoint range registers enable program  
execution at full speed until reaching a desired breakpoint  
address range. The processor can then halt and allow  
reading/writing of all the processors internal registers  
and external memories through the JTAG port.  
Pin Descriptions  
This section describes the pins of the TSC21020F. When  
groups of pins are identified with subscripts, e.g.  
Pin  
Name  
Type  
Function  
PMD , the highest numbered pin is the MSB (in this  
47-0  
PMACK  
I/S  
Program Memory Acknowledge. An external  
device deasserts this input to add wait states  
to a memory access.  
case, PMD ). Inputs identified as synchronous (S) must  
47  
meet timing requirements with respect to CLKIN (or with  
respect to TCK for TMS, TDI, and TRST). Those that are  
asynchronous (A) can be asserted asynchronously to  
CLKIN.  
PMPAGE  
PMTS  
O
Program Memory Page Boundary. The  
TSC21020F asserts this pin to signal that a  
program memory page boundary has been  
crossed. Memory pages must be defined in  
the memory control registers.  
O = Output ; I = Input ; S = Synchronous ; A = Asynchronous ;  
P = Power Supply ; G = Ground.  
I/S  
Program Memory Three-State Control. PMTS  
places the program memory address, data,  
selects, and strobes in a high-impedance state.  
If PMTS is asserted while a PM access is  
occurring, the processor will halt and the  
memory access will not be completed.  
PMACK must be asserted for at least one  
cycle when PMTS is deasserted to allow any  
pending memory access to complete properly.  
PMTS should only be asserted (low) during  
an active memory access cycle.  
Pin  
Name  
Type  
Function  
PMA  
O
Program Memory Address. The TSC21020F  
outputs an address in program memory on  
these pins.  
23-0  
PMD  
I/O  
O
Program Memory Data. The TSC21020F  
inputs and outputs data and instructions on  
these pins. 32-bit fixed-point data and 32-bit  
single-precision floating-point data is  
47-0  
transferred over bits 47-16 of the PMD bus.  
DMA  
DMD  
O
Data Memory Address. The TSC21020F  
outputs an address in data memory on these  
pins.  
31-0  
PMS  
Program Memory Select lines. These pins are  
asserted as chip selects for the corresponding  
banks of program memory. Memory banks  
must be defined in the memory control  
registers. These pins are decoded program  
memory address lines and provide an early  
indication of a possible bus cycle.  
1-0  
I/O  
Data Memory Data. The TSC21020F inputs  
and outputs data on these pins. 32-bit  
fixed-point data and 32-bit single-precision  
floating-point data is transferred over bits  
39-8 of the DMD bus.  
39-0  
PMRD  
PMWR  
O
O
Program Memory Read strobe. This pin is  
asserted when the TSC21020F reads from  
program memory.  
DMS  
O
Data Memory Select lines. These pins are  
asserted as chip selects for the corresponding  
banks of data memory. Memory banks must  
be defined in the memory control registers.  
These pins are decoded data memory address  
lines and provide an early indication of a  
possible bus cycle.  
3-0  
Program Memory Write strobe. This pin is  
asserted when the TSC21020F writes to  
program memory.  
8
Rev. E Oct. 05, 1998  
TSC21020F  
Pin  
Name  
Pin  
Name  
Type  
Function  
Type  
Function  
DMRD  
O
Data Memory Read strobe. This pin is  
asserted when the TSC21020F reads from  
data memory.  
BG  
O
Bus Grant. Acknowledges a bus request (BR),  
indicating that the external device may take  
control of the memory interface. BG is  
asserted (held low) until BR is released.  
DMWR  
DMACK  
DMPAGE  
O
I/S  
O
Data Memory Write strobe. This pin is  
asserted when the TSC21020F writes to data  
memory.  
TIMEXP  
RCOMP  
EVDD  
EGND  
IVDD  
IGND  
TCK  
O
Timer Expired. Asserted for four cycles when  
the value of TCOUNT is decremented to zero.  
Data Memory Acknowledge. An external  
device deasserts this input to add wait states  
to a memory access.  
Not available  
Can be set to any voltage level.  
P
G
P
Power supply (for output drivers), nominally  
+ 5 V dc (10 pins).  
Data Memory Page Boundary. The  
TSC21020F asserts this pin to signal that a  
data memory page boundary has been  
crossed. Memory pages must be defined in  
the memory control registers.  
Power supply return (for output drivers) ; (16  
pins).  
Power supply (for internal circuitry),  
nominally + 5 V dc (4 pins).  
DMTS  
I/S  
Data Memory Three-State Control. DMTS  
places the data memory address, data, selects,  
and strobes in a high-impedance state. If  
DMTS is asserted while à DM access is  
occurring, the processor will halt and the  
memory access will not be completed.  
DMACK must be asserted for at least one  
cycle when DMTS is deasserted to allow any  
pending memory access to complete properly.  
DMTS should only be asserted (low) during  
an active memory access cycle.  
G
I
Power supply return (for internal circuitry) ;  
(7 pins).  
Test Clock. Provides an asynchronous clock  
for JTAG boundary scan.  
TMS  
I/S  
Test Mode Select. Used to control the test  
state machine. TMS has a 20 kinternal  
pullup resistor.  
TDI  
I/S  
Test Data Input. Provides serial data for the  
boundary scan logic. TDI has a 20 kinternal  
pullup resistor.  
CLKIN  
RESET  
I
External clock input to the TSC21020F. The  
instruction cycle rate is equal to CLKIN.  
CLKIN may not be halted, changed, or  
operated below the specified frequency.  
TDO  
O
Test Data Output. Serial scan output of the  
boundary scan path.  
I/A  
Sets the TSC21020F to a known state and  
begins execution at the program memory  
location specified by the hardware reset  
vector (address). This input must be asserted  
(low) at power-up.  
TRST  
I/A  
Test Reset. Resets the test state machine.  
TRST must be asserted (pulsed low) after  
power-up or held low for proper operation of  
the TSC21020F. TRST has a 20 kinternal  
pullup resistor.  
IRQ  
I/A  
Interrupt request lines ; may be either  
edgeriggered or level-sensitive.  
3-0  
NC  
No Connect. No Connects are reserved pins  
that must be left open and unconnected.  
FLAG  
I/O/A External Flags. Each is configured via control  
bits as either an input or output. As an input, it  
can be tested as a condition. As an output, it  
can be used to signal external peripherals.  
3-0  
BR  
I/A  
Bus Request. Used by an external device to  
request control of the memory interface.  
When BR is asserted, the processor halts  
execution after completion of the current  
cycle, places all memory data, addresses,  
selects, and strobes in a high-impedance state,  
and asserts BG. The processor continues  
normal operation when BR is released.  
9
Rev. E Oct. 05, 1998  
TSC21020F  
Instruction Set Summary  
Because of the width and orthogonality of the instruction  
word, there are many possible instructions. For example,  
the ALU supports 21 fixed-point operations and 24  
floating-point operations ; each of these operations can be  
the compute portion of an instruction.  
The TSC21020F instruction set provides a wide variety  
of programming capabilities. Every instruction  
assembles into a single word and can execute in a single  
processor cycle. Multifunction instructions enable  
simultaneous multiplier and ALU operations, as well as  
computations executed in parallel with data transfers.  
The addressing power of the TSC21020F gives flexibility  
in moving data both internally and externally. The  
TSC21020F assembly language uses an algebraic syntax  
for ease of coding and readability.  
The following pages provide an overview and summary  
of the TSC21020F instruction set. For complete  
information, see the ADSP-21020 Users Manual from  
Analog Devices. For additional reference information,  
see the ADSP- 21020 Programmers Quick Reference  
from Analog Devices.  
This section also contains several reference tables for  
using the instruction set.  
The instruction types are grouped into four categories :  
Compute and Move or Modify  
Program Flow Control  
Immediate Move  
D Table 1 describes the notation and abbreviations used.  
D Table 2 lists all condition and termination code  
Miscellaneous  
mnemonics.  
The instruction types are numbered ; there are 22 types. D Table 3 lists all register mnemonics.  
Some instructions have more than one syntactical form ;  
D Tables 4 through 7 list the syntax for all compute  
for example, Instruction 4 has four distinct forms. The  
instruction number itself has no bearing on programming,  
but corresponds to the opcode recognized by the  
TSC21020F device.  
(ALU, multiplier, shifter or multifunction)  
operations.  
D Table 8 lists interrupts and their vector addresses.  
Compute and Move or Modify Instructions  
1.  
compute,  
DM(Ia, Mb) + dreg1  
dreg1 + DM(Ia, Mb)  
,
Ť Ť  
PM(Ic, Md) + dreg2  
dreg2 + PM(Ic, Md)  
Ť
Ť
2.  
3a.  
IF condition  
IF condition  
compute ;  
compute,  
= ureg ;  
= ureg ;  
DM(Ia, Mb)  
PM(Ic, Md)  
Ť Ť  
DM(Mb, Ia)  
3b.  
3c.  
3d.  
4a.  
4b.  
4c.  
4d.  
IF condition  
IF condition  
IF condition  
IF condition  
IF condition  
IF condition  
IF condition  
compute,  
compute,  
compute,  
compute,  
compute,  
compute,  
compute,  
Ť Ť  
PM(Md, Ic)  
ureg =  
ureg =  
;
;
DM(Ia, Mb)  
PM(Ic, Md)  
Ť Ť  
DM(Mb, Ia)  
Ť Ť  
PM(Md, Ic)  
= dreg ;  
= dreg ;  
DM(Ia, t data6 u)  
PM(Ic, t data6 u)  
Ť
Ť
Ť
DM(t data6 u, Ia)  
Ť
PM(t data6 u, Ic)  
dreg =  
dreg =  
;
DM(Ia, t data6 u)  
PM(Ic, t data6 u)  
Ť
Ť
Ť
;
DM(t data6 u, Ia)  
PM(t data6 u, Ic)  
Ť
5.  
6a.  
IF condition  
IF condition  
compute,  
shiftimm,  
ureg1 = ureg2 ;  
= dreg ;  
DM(Ia, Mb)  
Ť Ť  
PM(Ic, Md)  
10  
Rev. E Oct. 05, 1998  
TSC21020F  
6b.  
7.  
IF condition  
IF condition  
shiftimm,  
dreg =  
;
DM(Ia, Mb)  
PM(Ic, Md)  
Ť Ť  
;
(Ia, Mb)  
compute,  
MODIFY  
Ť Ť  
(Ic, Md)  
Program Flow Control Instructions  
8.  
IF condition  
IF condition  
IF condition  
LCNTR =  
JUMP  
Ť Ť  
CALL  
t addr24 u  
Ť(PC, t reladdr24 u)  
(
(
DB ) ;  
Ť
LA  
Ť Ť  
DB, LA  
9.  
JUMP  
Ť Ť  
CALL  
DB ) , compute  
;
(Md, Ic)  
Ť(PC, t reladdr6 u)  
Ť
LA  
Ť Ť  
DB, LA  
11.  
RTS  
Ť Ť  
RTI  
(
DB ) , compute  
;
LA  
Ť Ť  
DB, LA  
DO  
12.  
13.  
,
t addr24 u  
Ť(PC, t reladdr24 u)  
t addr24 u  
Ť(PC, t reladdr24 u)  
UNTIL LCE ;  
t data16 u  
Ť
Ť
Ť
Ť
ureg  
DO  
UNTIL termination ;  
(DB) Delayed branch  
(LA) Loop abort (pop loop PC stacks on branch)  
Immediate Move Instructions  
14a.  
= ureg ;  
DM(t addr32 u)  
PM(t addr24 u)  
Ť
Ť
14b. ureg =  
;
DM(t addr32 u)  
PM(t addr24 u)  
Ť
Ť
15a.  
= ureg ;  
DM(t data32 u, Ia)  
PM(t data24 u, Ic)  
Ť
Ť
15b. ureg =  
;
DM(t data32 u, Ia)  
PM(t data24 u, Ic)  
Ť
Ť
16.  
= < data32 > ;  
DM(Ia, Mb)  
Ť Ť  
ureg = < data 32 > ;  
PM(Ic, Md)  
17.  
Miscellaneous Instructions  
18.  
BIT  
sreg < data32 > ;  
SET  
ȧ ȧ  
CLR  
ȧ ȧ  
TGL  
ȧ ȧ  
ȧTSTȧ  
XOR  
ȧ ȧ  
19a. MODIFY  
19b. BITREV  
;
;
(Ia, t data32 u  
Ic, t data32 u  
Ť
Ť
(Ia, < data32 >)  
20.  
PUSH  
Ť Ť  
POP  
LOOP  
,
PUSH  
POP  
STS  
;
Ť Ť  
21.  
22.  
NOP ;  
IDLE ;  
11  
Rev. E Oct. 05, 1998  
TSC21020F  
Table 1 : Syntax Notation Conventions  
Table 3 : Universal Registers  
Notation  
Meaning  
Name  
Function  
UPPERCASE  
Explicit syntax assembler keyword (notation only ;  
assembler is not case-sensitive and lowercase is  
the preferred programming convention)  
Instruction terminator  
Separates parallel operations in an instruction  
Optional part of instruction  
List of options (choose one)  
n-bit immediate data value  
n-bit immediate address value  
n-bit immediate PC-relative address value  
ALU, multiplier, shifter or multifunction  
operation (from Tables 4-7)  
Shifter immediate operation (from Table 6)  
Status condition (from Table 2)  
Termination condition (from Table 2)  
Universal register (from Table 3)  
System register (from Table 3)  
R15-R0, F15-F0 ; register file location  
I7-I0 ; DAG1 index register  
Register file  
R15-R0  
Program Sequencer  
PC*  
Register file locations  
;
,
Program counter ; address of instruction currently  
executing  
Top of PC stack  
PC stack pointer  
Fetch address  
Decode address  
Loop termination address, code ; top of loop  
address stack  
Current loop counter ; top of loop count stack  
Loop count for next nested counter-controlled loop  
italics  
PCSTK  
between lines  
<datan>  
<addrn>  
<reladdrn>  
compute  
PCSTKP  
FADDR*  
DADDR*  
LADDR  
CURLCNTR  
LCNTR  
Data Address Generators  
I7-I0  
M7-M0  
L7-L0  
B7-B0  
I15-I8  
M15-M8  
L15-L8  
shiftimm  
condition  
termination  
ureg  
sreg  
dreg  
Ia  
Mb  
Ic  
Md  
DAG1 index registers  
DAG1 modify registers  
DAG1 length registers  
DAG1 base registers  
DAG2 index registers  
DAG2 modify registers  
DAG2 length registers  
DAG2 base registers  
M7-M0 ; DAG1 modify register  
I15-I8 ; DAG2 index register  
M15-M8 ; DAG2 modify register  
B15-B8  
Bus Exchange  
PX1  
PX2  
Table 2 : Condition and Termination Codes  
PMD-DMD bus exchange 1 (16 bits)  
PMD-DMD bus exchange 2 (32 bits)  
48-bit PX1 and PX2 combination  
Name  
Description  
PX  
Timer  
eq  
ne  
ge  
lt  
le  
gt  
ac  
not ac  
av  
not av  
mv  
not mv  
ms  
not ms  
sv  
ALU equal to zero  
TPERIOD  
TCOUNT  
Memory Interface  
DMWAIT  
DMBANK1  
DMBANK2  
DMBANK3  
DMADR*  
PMWAIT  
Timer period  
Timer counter  
ALU not equal to zero  
ALU greater than or equal to zero  
ALU less than zero  
ALU less than or equal to zero  
ALU greater than zero  
ALU carry  
Wait state and page size control for data memory  
Data memory bank 1 upper boundary  
Data memory bank 2 upper boundary  
Data memory bank 3 upper boundary  
Copy of last data memory address  
Wait state and page size control for program  
memory  
Not ALU carry  
ALU overflow  
Not ALU overflow  
Multiplier overflow  
Not multiplier overflow  
Multiplier sign  
Not multiplier sign  
Shifter overflow  
Not shifter overflow  
Shifter zero  
Not shifter zero  
Flag 0  
Not Flag 0  
Flag 1  
Not Flag 1  
Flag 2  
Not Flag 2  
Flag 3  
Not Flag 3  
Bit test flag  
Not bit test flag  
PMBANK1  
PMADR*  
System Register  
MODE1  
Program memory bank 1 upper boundary  
Copy of last program memory address  
Mode control bits for bit-reverse, alternate  
registers, interrupt nesting and enable, ALU  
saturation, floating-point rounding mode and  
boundary  
Mode control bits for interrupt sensitivity, cache  
disable and freeze, timer enable, and I/O flag  
configuration  
not sv  
sz  
not sz  
flag0_in  
not flag0_in  
flag1_in  
not flag1_in  
flag2_in  
not flag2_in  
flag3_in  
not flag3_in  
tf  
not tf  
lce  
not lce  
forever  
true  
MODE2  
IRPTL  
Interrupt latch  
Interrupt mask  
IMASK  
IMASKP  
ASTAT  
Interrupt mask pointer (for nesting)  
Arithmetic status flags, bit test, I/O flag values, and  
compare accumulator  
Sticky arithmetic status flags, circular buffer  
overflow flags, stack status flags (not sticky)  
User status register 1  
STKY  
USTAT1  
USTAT2  
Loop counter expired (DO UNTIL)  
Loop counter not expired (IF)  
Always False (DO UNTIL)  
Always True (IF)  
User status register 2  
* read-only  
Refer to Users Manual for bit-level definitions of each register.  
In a conditional instruction, the execution of the entire instruction is  
based on the specified condition.  
12  
Rev. E Oct. 05, 1998  
TSC21020F  
Table 4 : ALU Compute Operations  
Fixed-Point  
Floating-Point  
Rn = Rx + Ry  
Rn = Rx Ry  
Fn = Fx + Fy  
Fn = Fx Fy  
Rn = Rx + Ry, Rm = Rx Ry  
Rn = Rx + Ry + CI  
Rn = Rx Ry + CI 1  
Rn = (Rx + Ry)/2  
COMP(Rx, Ry)  
Rn = Rx  
Fn = Fx + Fy, Fm = Fx Fy  
Fn = ABS (Fx + Fy)  
Fn = ABS (Fx Fy)  
Fn = (Fx + Fy)/2  
COMP(Fx, Fy)  
Fn = Fx  
Rn = ABS Rx  
Fn = ABS Fx  
Rn = PASS Rx  
Fn = PASS Fx  
Rn = MIN(Rx, Ry)  
Rn = MAX(Rx, Ry)  
Rn = CLIP Rx BY Ry  
Rn = Rx + CI  
Fn = MIN(Fx, Fy)  
Fn = MAX(Fx, Fy)  
Fn = CLIP Fx BY Fy  
Fn = RND Fx  
Rn = Rx + CI 1  
Rn = Rx + 1  
Fn = SCALB Fx BY Ry  
Rn = MANT Fx  
Rn = Rx 1  
Rn = LOGB Fx  
Rn = Rx AND Ry  
Rn = Rx OR Ry  
Rn = Rx XOR Ry  
Rn = NOT Rx  
Rn = FIX Fx BY Ry  
Rn = FIX Fx  
Fn = FLOAT Rx BY Ry  
Fn = FLOAT Rx  
Fn = RECIPS Fx  
Fn = RSQRTS Fx  
Fn = Fx COPYSIGN Fy  
Rn, Rx, Ry R15-R0 ; register file location, fixed-point  
Fn, Fx, Fy F15-F0 ; register file location, floating point  
Table 5 : Multiplier Compute Operations  
Rn  
F
I
FR  
= Rx * Ry ( S S  
)
Fn  
= Fx * Fy  
Ť ŤŤ Ť  
MRF  
U U  
Ť Ť Ť Ť  
MRB  
F
F
+ Rx * Ry ( S S  
)
Rx * Ry ( S S  
Rn + MRF  
)
Rn + MRF  
Ť ŤŤ Ť  
Ť ŤŤ Ť  
ȧ
ȧ
ȧ
ȧ
Rn + MRB  
I
I
U U  
U U  
Rn + MRB  
MRF + MRF  
MRB + MRB  
Ť Ť  
Ť Ť  
ȧ
ȧ
ȧ
ȧ
FR  
FR  
MRF + MRF  
MRB + MRB  
ȧ
ȧ
ȧ
ȧ
ȧ
ȧ
ȧ
ȧ
(SF)  
Rn + RND MRF  
+ SAT MRFȧ(SI)ȧ  
MRF + SAT MRFȧ ȧ  
ȧ(SF)  
ȧ
ȧ
ȧRn  
ȧ
+ RND MRB Ť(UF)Ť  
ȧ
MRF + RND MRF  
Rn  
ȧRn  
+ SAT MRB  
ȧ ȧ  
ȧ(UI)  
ȧ
ȧ
ȧ
ȧ
MRB + SAT MRBȧ ȧ  
MRB + RND MRB  
ȧ
ȧ
ȧ
ȧ(UF)  
ȧ ȧ  
= 0  
MRF  
Ť Ť  
MRB  
= Rn  
Rn  
=
MRxF  
MRxF  
Ť Ť  
Ť Ť  
MRxB  
MRxB  
Rn, Rx, Ry R15-R0 ; register file location, fixed-point  
Fn, Fx, Fy F15-F0 ; register file location, floating-point  
MRxF  
MRxB  
MR2F, MR1F, MR0F ; multiplier result accumulators, foreground  
MR2B, MR1B, MR0B ; multiplier result accumulators, background  
)
(Ťx-inputŤ Ťy-input  
Ť
data format,  
Ť rounding Ť  
S
Signed input  
U
I
F
Unsigned input  
Integer input(s)  
Fractional input(s)  
FR  
(SF)  
Fractional inputs, Rounded output  
Default format for 1-input operations  
(SSF) Default format for 2-input operations  
13  
Rev. E Oct. 05, 1998  
TSC21020F  
Table 6 : Shifter and Shifter Immediate Compute Operations  
Shifter  
Shifter Immediate  
Rn = LSHIFT Rx BY Ry  
Rn = Rn OR LSHIFT Rx BY Ry  
Rn = ASHIFT Rx BY Ry  
Rn = Rn OR ASHIFT Rx BY Ry  
Rn = ROT Rx BY RY  
Rn = BCLR Rx BY Ry  
Rn = BSET Rx BY Ry  
Rn = BTGL Rx BY Ry  
BTST Rx BY Ry  
Rn = LSHIFT Rx BY<data8>  
Rn = Rn OR LSHIFT Rx BY<data8>  
Rn = ASHIFT Rx BY<data8>  
Rn = Rn OR ASHIFT Rx BY<data8>  
Rn = ROT Rx BY<data8>  
Rn = BCLR Rx BY<data8>  
Rn = BSET Rx BY<data8>  
Rn = BTGL Rx BY<data8>  
BTST Rx BY<data8>  
Rn = FDEP Rx BY Ry  
Rn = Rn OR FDEP Rx BY Ry  
Rn = FDEP Rx BY Ry (SE)  
Rn = Rn OR FDEP Rx BY Ry (SE)  
Rn = FEXT Rx BY Ry  
Rn = FEXT Rx BY Ry (SE)  
Rn = EXP Rx  
Rn = FDEP Rx BY <bit6> : <len6>  
Rn = Rn OR FDEP Rx BY <bit6> : <len6>  
Rn = FDEP Rx BY <bit6> : <len6> (SE)  
Rn = Rn OR FDEP Rx BY (bit6> : <len6> (SE)  
Rn = FEXT Rx BY <bit6> : <len6>  
Rn = FEXT Rx BY <bit6> : <len6> (SE)  
Rn = EXP Rx (EX)  
Rn = LEFTZ Rx  
Rn = LEFTO Rx  
Rn, Rx, Ry  
R15-R0 ; register file location, fixed-point  
<bit6> : <len6> 6-bit immediate bit position and length values (for shifter immediate operations)  
Table 7 : Multifunction Compute Operations  
Fixed-Point  
Floating-Point  
Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12  
Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 R15-12  
Fm = F3-0 * F7-4, Fa = F11-8 + F15-12  
Fm = F3-0 * F7-4, Fa = F11-8 F15-12  
Fm = F3-0 * F7-4, Fa = FLOAT R11-8 by R15-12  
Fm = F3-0 * F7-4, Fa = FIX R11-8 by R15-12  
Fm = F3-0 * F7-4, Fa = (F11-8 + F15-12)/2  
Fm = F3-0 * F7-4, Fa = ABS F11-8  
Fm = F3-0 * F7-4, Fa = MAX (F11-8, F15-12)  
Fm = F3-0 * F7-4, Fa = MIN (F11-8 + F15-12)  
Fm = F3-0 * F7-4, Fa = F11-8 + F15-12,  
Fs = F11-8 F15-12  
Rm = R3-0 * R7-4 (SSFR), Ra = (R11-8 + R15-12)/2  
MRF = MRF + R3-0 * R7-4 (SSF), Ra = R11-8 + R15-12  
MRF = MRF + R3-0 * R7-4 (SSF), RA = R11-8 R15-12  
MRF = MRF + R3-0 * R7-4 (SSF), Ra = (R11-8 + R15-12)/2  
Rm = MRF + R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12  
Rm = MRF + R3-0 * R7-4 (SSFR), Ra = R11-8 R15-12  
Rm = MRF + R3-0 * R7-4 (SSFR), Ra = (R11-8 + R15-12)/2  
MRF = MRF R3-0 * R7-4 (SSF), Ra = R11-8 + R15-12  
MRF = MRF R3-0 * R7-4 (SSF), Ra = R11-8 R15-12  
MRF = MRF R3-0 * R7-4 (SSF), Ra = R11-8 + R15-12)/2  
Rm = MRF R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12  
Rm = MRF R3-0 * R7-4 (SSFR), Ra = R11-8 R15-12  
Rm = MRF R3-0 * R7-4 (SSFR), Ra = (R11-8 + R15-12)/2  
Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12,  
Rs = R11-8 R15-12  
Ra, Rm  
R3-0  
Any register file location (fixed-point)  
R3, R2, R1, R0  
R7-4  
R7, R6, R5, R4  
R11-8  
R15-12  
Fa, Fm  
F3-0  
R11, R10, R9, R8  
R15, R14, R13, 12  
Any register file location (floating-point)  
F3, F2, F1, F0  
F7-4  
F7, F6, F5, F4  
F11-8  
F15-12  
(SSF)  
(SSFR)  
F11, F10, F9, F8  
F15, F14, F13, F12  
X-input signed, Y-input signed, fractional inputs  
X-input signed, Y-input signed, fractional inputs,  
rounded output  
14  
Rev. E Oct. 05, 1998  
TSC21020F  
Table 8 : Interrupt Vector Addresses and Priorities  
Vector  
No  
Address  
(Hex)  
Function  
0
0x00  
0x08  
0x10  
0x18  
Reserved  
Reset  
1*  
2
Reserved  
3
Status stack or loop stack overflow or PC  
stack full  
4
0x20  
0x28  
0x30  
0x38  
0x40  
0x48  
0x50  
0x58  
0x60  
0x68  
0x70  
0x78  
0x80  
0x88  
0x90  
Timer = 0 (high priority option)  
IRQ3 asserted  
5
6
IRQ2 asserted  
7
IRQ1 asserted  
8
IRQ0 asserted  
9
Reserved  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Reserved  
DAG 1 circular buffer 7 overflow  
DAG 2 circular buffer 15 overflow  
Reserved  
Timer = 0 (low priority option)  
Fixed-point overflow  
Floating-point overflow  
Floating-point underflow  
Floating-point invalid operation  
19-23 0x98-0xB8  
24-31 0xC0-OxF8  
Reserved  
User software interrupts  
* Nonmaskable  
15  
Rev. E Oct. 05, 1998  
TSC21020F  
TSC21020F Specifications  
Recommended Operating Conditions  
Parameter  
Mil Range  
Unit  
Min  
4.50  
55  
Max  
5.50  
V
Supply Voltage  
V
DD  
T
AMB  
Ambient Operating Temperature  
+125  
°C  
Electrical Characteristics  
Parameter  
Test Conditions  
Min  
Max  
Unit  
1
V
V
V
V
V
V
Hi-Level Input Voltage  
Hi-Level Input Voltage  
V
V
V
V
V
V
V
V
V
V
V
= max  
= max  
= min  
= min  
= min, I = 1.0 mA  
= min, I = 4.0 mA  
= max, V = V max  
= max, V = 0 V  
= max, V = 0 V  
= max, V = V max  
2.0  
3.0  
V
V
V
V
V
IH  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
2, 12  
1, 12  
IHCR  
IL  
Lo-Level Input Voltage  
Lo-Level Input Voltage  
0.8  
0.6  
2
ILC  
OH  
OL  
3, 11  
3, 11  
Hi-Level Output Voltage  
2.4  
OH  
Lo-Level Output Voltage  
0.4  
10  
10  
350  
10  
10  
V
OL  
4, 5  
I
I
I
I
I
I
Hi-Level Input Current  
Lo-Level Input Current  
Lo-Level Input Current  
µA  
µA  
µA  
µA  
µA  
mA  
IH  
IN  
DD  
4
5
IL  
IN  
ILT  
IN  
6
6
Tristate Leakage Current  
Tristate Leakage Current  
Supply Current (Internal)  
OZH  
OZL  
DDIN  
IN DD  
= max, V = 0 V  
= 50 ns, V = max, V = 3.0 V,  
IN  
7
t
430  
CK  
DD  
IHCR  
V
V
= 2.4 V, V = V  
= 0.4 V  
IH  
IL  
ILC  
8
I
C
Supply Current (Idle)  
Input Capacitance  
= max, V = 0 V or V max  
100  
10  
mA  
pF  
DDIDLE  
DD  
IN  
DD  
9, 10  
f
= 1 MHz, T  
= 25°C, V = 2.5 V  
CASE IN  
IN  
IN  
NOTES  
1. Applies to : PMD47-0, PMACK, PMTS, DMD39-0, DMACK, DMTS, IRQ3-0, FLAG3-0, BR, TMS, TDI.  
2. Applies to : CLKIN, TCK.  
3. Applies to : PMA23-0, PMD47-0, PMS1-0, PMRD, PMWR, PMPAGE, DMA31-0, DMD39-0, DMS3-0, DMRD, DMWR, DMPAGE,  
FLAG3-0, TIMEXP, BG.  
4. Applies to : PMACK, PMTS, DMACK, DMTS, IRQ3-0, BR, CLKIN, RESET, TCK.  
5. Applies to : TMS, TDI, TRST.  
6. Applies to : PMA23-0, PMD47-0, PMS1-0, PMRD, PMWR, PMPAGE, DMA31-0, DMD39-0, DMS3-0, DMRD, DMWR, DMPAGE,  
FLAG3-0, TDO.  
7. Applies to IVDD pins. At t = 50 ns, I  
(typical) = 350 mA. See Power Dissipationfor calculation of external (EVDD) supply current  
CK  
DDIN  
for total supply current.  
8. Applies to IVDD pins. Idle refers to TSC21020F state of operation during execution of the IDLE instruction.  
9. Guaranteed but not tested.  
10. Applies to all signal pins.  
11. Although specified for TTL outputs, all TSC21020F outputs are CMOS-compatible and will drive to V and GND assuming no dc loads.  
DD  
12. Applies to RESET, TRST.  
Absolute Maximum Ratings*  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to + 7 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to VDD + 0.5 V  
Output Voltage Swing . . . . . . . . . . . . . . . . . . . -0.5 V to VDD + 0.5 V  
Load Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 pF  
Operating Temperature Range (Ambient) . . . . . . . . -55°C to + 125°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . . . -65°C to + 150°C  
* Stresses above those listed under Absolute Maximum Ratingsmay  
cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
16  
Rev. E Oct. 05, 1998  
TSC21020F  
ESD Sensitivity  
The TSC21020F features proprietary input protection avoid functional damage or performance degradation.  
circuitry to dissipate highenergy discharges (Human Charges readily accumulate on the human body and test  
Body Model). Per method 3015 of MILSTD883, the equipment and discharge without detection. Unused  
TSC21020F has been classified as a Class 2 devices, with devices must be stored in conductive foam or shunts, and  
the ability to withstand up to 2000V ESD.  
the foam should be discharged to the destination socket  
before devices are removed.  
Prosper ESD precautions are strongly recommended to  
TIMING PARAMETERS  
others. While addition or subtraction would yield  
meaningful results for an individual device, the values  
General Notes  
See Figure 15 on page 25 for voltage reference levels. Use given in this data sheet reflect statistical variations and  
the exact timing information given. Do not attempt to worst cases. Consequently, you cannot meaningfully add  
derive parameters from the addition or subtraction of parameters to derive other specifications.  
Clock Signal  
20 MHz  
Parameter  
Unit  
Min  
Max  
Timing Requirement  
T
t
t
CLKIN Period  
CLKIN Width High  
CLKIN Width Low  
50  
10  
10  
150  
ns  
ns  
ns  
CK  
CKH  
CKL  
Figure 3. Clock  
17  
Rev. E Oct. 05, 1998  
TSC21020F  
Reset  
Frequency  
Dependency*  
20 MHz  
Min  
Parameter  
Unit  
Max  
Min  
Max  
Timing Requirement  
1
t
t
RESET Width Low  
RESET Setup before CLKIN High  
200  
29  
4t  
ns  
ns  
WRST  
CK  
2
50  
29 + DT/2  
30  
SRST  
NOTES  
*
DT = t 50 ns  
CK  
1. Applies after the power-up sequence is complete. At power up, the Internal Phase Locked Loop requires no more than 1000 CLKIN cycles  
while RESET is low, assuming stable V and CLKIN (not including clock oscillator start-up time).  
DD  
2. Specification only applies in cases where multiple TSC21020F processors are required to execute in program counter lock-step (all  
processors start execution at location 8 in the same cycle). See the Hardware Configuration chapter of the ADSP-21020 Users Manual from  
Analog Devices for reset sequence information.  
Figure 4. Reset  
Interrupts  
Frequency  
Dependency*  
Parameter  
20 MHz  
Min  
Unit  
Timing Requireent  
t
t
t
IRQ3-0 Setup before CLKIN High  
IRQ3-0 Hold after CLKIN High  
IRQ3-0 Pulse Width  
38  
0
55  
38 + 3DT/4  
ns  
ns  
ns  
SIR  
HIR  
IPW  
t
+ 5  
CK  
NOTES  
*
DT = t 50 ns  
CK  
Meeting setup and hold guarantees interrupts will be latched in that cycle. Meeting the pulse width is not necessary if the setup and hold is met.  
Likewise, meeting the setup and hold is not necessary if the pulse width is met. See the Hardware Configuration chapter of the ADSP-21020  
Users Manual from Analog Devices for interrupt servicing information.  
Figure 5. Interrupts  
18  
Rev. E Oct. 05, 1998  
TSC21020F  
Timer  
Frequency  
Dependency*  
20 MHz  
Max  
Parameter  
Unit  
Min  
Max  
Switching Characteristic :  
t
CLKIN High to TIMEXP  
24  
ns  
DTEX  
NOTES  
DT = t 50 ns  
*
CK  
Figure 6. TIMEXP  
19  
Rev. E Oct. 05, 1998  
TSC21020F  
Flags  
Frequency  
Dependency*  
20 MHz  
Parameter  
Unit  
Min  
Max  
Min  
Max  
1
Timing Requirement  
t
t
t
t
FLAG3-0 Setup before CLKIN High  
19  
0
19 + 5DT/16  
ns  
ns  
ns  
ns  
SFI  
IN  
FLAG3-0 Hold after CLKIN High  
12 + 7DT/16  
HFI  
IN  
FLAG3-0 Delay from xRD, xWR Low  
12  
DWRFI  
HFIWR  
IN  
FLAG3-0 Hold after xRD, xWR  
0
IN  
Deasserted  
Switching Characteristic  
t
t
t
t
FLAG3-0  
FLAG3-0  
CLKIN High to FLAG3-0  
CLKIN High to FLAG3-0  
Delay from CLKIN High  
24  
24  
ns  
ns  
ns  
ns  
DFO  
OUT  
Hold after CLKIN High  
5
1
HFO  
OUT  
(2)  
Enable  
DFOE  
DFOD  
OUT  
OUT  
Disable  
NOTES  
*
DT = t 50 ns  
CK  
1. Flag inputs meeting these setup and hold times will affect conditional operations in the next instruction cycle. See the Hardware  
Configuration chapter of the ADSP-21020 Users Manual from Analog Devices for additional flag servicing information.  
2. guaranteed by design  
Figure 7. Flags  
20  
Rev. E Oct. 05, 1998  
TSC21020F  
Bus Request/Bus Grant  
Frequency  
Dependency*  
20 MHz  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Timing Requirement  
t
t
BR Hold after CLKIN High  
BR Setup before CLKIN High  
0
18  
ns  
ns  
HBR  
SBR  
18+5DT/16  
25 + DT/2  
Switching Characteristic  
(1)  
t
t
Memory Interface Disable to BG Low  
CLKIN High to Memory Interface  
Enable  
2  
25  
ns  
ns  
DMDBGL  
DME  
t
t
CLKIN High to BG Low  
CLKIN High to BG High  
22  
22  
ns  
ns  
DBGL  
DBGH  
NOTES  
*
DT = t 50 ns  
CK  
Memory Interface = PMA23-0, PMD47-0, PMS1-0, PMRD, PMWR, PMPAGE, DMA31-0, DMD39-0, DMS3-0, DMRD, DMWR, DMPAGE.  
Buses are not granted until completion of current memory access.  
See the Memory Interface chapter of the ADSP-21020 Users Manual from Analog Devices for BG, BR cycle relationships.  
1. guaranteed by design  
Figure 8. Bus Request/Bus Grant  
21  
Rev. E Oct. 05, 1998  
TSC21020F  
External Memory Three-State Control  
Frequency  
Dependency*  
20 MHz  
Max  
Parameter  
Unit  
Min  
Min  
Max  
Timing Requirement  
t
t
t
xTS, Setup before CLKIN High  
xTS Delay after Address, Select  
xTS Delay after XRD, XWR Low  
14  
50  
28  
16  
14 +DT/4  
t
ns  
ns  
ns  
STS  
CK  
28 + 7DT/8  
16 + DT/2  
DADTS  
DSTS  
Switching Characteristic  
t
Memory Interface Disable before  
CLKIN High  
xTS High to Address, Select Enable  
0
0
DT/4  
ns  
ns  
DTSD  
t
DTSAE  
NOTES  
*
DT = t 50 ns  
CK  
xTS should only be asserted (low) during an active memory access cycle.  
Memory Interface = PMA23-0, PMD47-0, PMS1-0, PMRD, PMWR, PMPAGE, DMA31-0, DMD39-0, DMS3-0, DMRD, DMWR, DMPAGE.  
Address = PMA23-0, DMA31-0, Select = PMS1-0, DMS3-0.  
x = PM or DM.  
Figure 9. External Memory Three-State Control  
22  
Rev. E Oct. 05, 1998  
TSC21020F  
Memory Read  
Frequency  
Dependency*  
20 MHz  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Timing Requirement  
t
t
t
t
t
t
t
t
Address, Select to Data Valid  
xRD Low to Data Valid  
37  
24  
37 + DT  
24 + 5DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DAD  
DRLD  
HDA  
Data Hold from Address, Select  
Data Hold from xRD High  
xACK Delay from Address  
xACK Delay from xRD Low  
xACK Setup before CLKIN High  
xACK Hold after CLKIN High  
0
1  
HDRH  
DAAK  
DRAK  
SAK  
27  
15  
27 + 7DT/8  
15 + DT/2  
14  
0
14 + DT/4  
8 + 3DT/8  
HAK  
Switching Characteristic  
t
t
t
t
t
Address, Select to xRD Low  
xPAGE Delay from Address, Select  
CLKIN High to xRD Low  
xRD Pulse Width  
8
ns  
ns  
ns  
ns  
ns  
DARL  
DAP  
1
26  
16  
26  
17  
16 + DT/4  
26 + 5DT/8  
17 + 3DT/8  
26 + DT/4  
DCKRL  
RW  
xRD High to xRD, xWR Low  
RWR  
NOTES  
*
DT = t 50 ns  
CK  
x = PM or DM ; Address = PMA23-0, DMA31-0 ; Data = PMD47-0, DMD39-0 ; Select = PMS1-0, DMS3-0.  
Figure 10. Memory Read  
23  
Rev. E Oct. 05, 1998  
TSC21020F  
Memory Write  
Frequency  
Dependency*  
20 MHz  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Timing Requirement  
t
t
t
t
xACK Delay from Address, Select  
xACK Delay from xWR Low  
xACK Setup before CLKIN High  
xACK Hold after CLKIN High  
27  
15  
27 + 7DT/8  
15 + DT/2  
ns  
ns  
ns  
ns  
DAAK  
DWAK  
SAK  
14  
0
14 + DT/4  
HAK  
Switching Characteristic  
t
t
t
t
t
Address, Select to xWR Deasserted  
Address, Select to xWR Low  
xWR Pulse Width  
37  
11  
26  
23  
37 + 15DT/16  
11 + 3DT/8  
26 + 9DT/16  
23 + DT/2  
ns  
ns  
ns  
ns  
DAWH  
DAWL  
WW  
Data Setup before xWR High  
Address, Select Hold after xWR  
Deasserted  
DDWH  
DWHA  
1
0
1 + DT/16  
DT/16  
ns  
ns  
ns  
ns  
ns  
1
t
t
t
t
t
Data Hold after xWR Deasserted  
HDWH  
DAP  
xPAGE Delay from Address, Select  
CLKIN High to xWR Low  
xWR High to xWR or xRD Low  
Data Disable before xWR or xRD  
Low  
1
26  
16  
17  
16 + DT/4  
17 + 7DT/16  
26 + DT/4  
DCKWL  
WWR  
DDWR  
13  
0
13 + 3DT/8  
DT/16  
ns  
ns  
t
xWR Low to Data Enabled  
WDE  
NOTES  
DT = t 50 ns  
*
C
1. See System Hold Time Calculationin Test Conditionssection for calculating hold times given capacitive and DC loads.  
x = PM or DM ; Address = PMA23-0, DMA31-0 ; Data = PMD47-0, DMD39-0 ; Select = PMS1-0, DMS3-0; guaranteed by design.  
Figure 11. Memory Write  
24  
Rev. E Oct. 05, 1998  
TSC21020F  
IEEE 1149.1 Test Access Port  
Frequency  
Dependency*  
20 MHz  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Timing Requirement  
t
t
t
t
t
t
TCK Period  
50  
5
6
7
9
t
ns  
ns  
ns  
ns  
ns  
ns  
TCK  
CK  
TDI, TMS Setup before TCK High  
TDI, TMS Hold after TCK High  
System Inputs Setup before TCK High  
System Inputs Hold after TCK High  
TRST Pulse Width  
STAP  
HTAP  
SSYS  
HSYS  
TRSTW  
200  
Switching Characteristic  
t
t
TDO Delay from TCK Low  
System Outputs Delay from TCK Low  
15  
26  
ns  
ns  
DTDO  
DSYS  
NOTES  
*
DT = t 50 ns  
CK  
System Inputs = PMD47-0, PMACK, PMTS, DMD39-0, DMACK, DMTS, CLKIN, IRQ3-0, RESET, FLAG3-0, BR.  
System Outputs = PMA23-0, PMS1-0, PMRD, PMWR, PMD47-0, PMPAGE, DMA31-0, DMS3-0, DMRD, DMWR, DMPAGE, FLAG3-0, BG,  
TIMEXP.  
See the IEEE 1149.1 Test Access Port chapter of the ADSP-21020 Users Manual from Analog Devices for further detail.  
Figure 12. IEEE 1149.1 Test Access Port  
25  
Rev. E Oct. 05, 1998  
TSC21020F  
Figure 13. Output Enable/Disable  
Test Conditions  
interval from when a reference signal reaches a high or  
Output Disable Time  
low voltage level to when the output has reached a  
specified high or low trip point, as shown in the Output  
Enable /Disable diagram. If multiple pins (such as the  
data bus) are enabled, the measurement value is that of the  
first pin to start driving.  
Output pins are considered to be disable when they stop  
driving, go into a high-impedance state, and start to decay  
from their output high or low voltage. The time for the  
voltage on the bus to decay by V is dependent on the  
capacitive load, C , and the load current, I . It can be  
L
L
Figure 14. Equivalent Device Loading for AC  
Measurements (Includes all Fixtures)  
approximated by the following equation :  
CL DV  
IL  
tDECAY  
+
The output disable time (t ) is the difference between  
DIS  
t
t
and t  
as shown in Figure 13. The time  
MEASURED  
DECAY  
is the interval from when the reference signal  
MEASURED  
switches to when the output voltage decays V from the  
measured output high or output low voltage. t is  
DECAY  
calculated with V equal to 0.5 V, and test loads C and  
L
I .  
L
Output Enable Time  
Output pins are considered to be enabled when they have  
made a transition from a high-impedance state to when  
they start driving. The output enable time (t  
) is the  
ENA  
26  
Rev. E Oct. 05, 1998  
TSC21020F  
Figure 17. Typical Output Rise Time vs. Load  
Capacitance (at Maximum Case  
Temperature)  
Example System Hold Time Calculation  
To determine the data output hold time in a particular  
system, first calculate t  
using the above equation.  
DECAY  
Choose V to be the difference between the  
TSC21020Fs output voltage and the input threshold for  
the device requiring the hold time. A typical V will be  
5
4.8  
4
0.4 V. C is the total bus capacitance (per data line), and  
L
I is the total leakage or three-state current (per data line).  
L
3
The hold time will be t  
plus the minimum disable  
DECAY  
(1)  
time (i.e. t  
for the write cycle).  
HDWD  
2
Figure 15. Voltage Reference Levels  
for AC Measurements  
1
(Except Output Enable/Disable)  
1
0
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE pF  
Capacitive Loading  
Note:  
(1) OUTPUT PINS PMA230, PMS10, PMPAGE, DMA310,  
DMS30, DMPAGE, TDO, PMRD, PMWR, DMRD, DMWR  
Output delays are based on standard capacitive loads :  
100 pF on address, select, page and strobe pins, and 50 pF  
on all others (see Figure 14). For different loads, these  
timing parameters should be derated. See the Hardware  
Configuration chapter of the ADSP-21020 Users Manual  
from Analog Devices for further information on derating  
of timing specifications.  
Figure 18. Typical Output Delay or Hold vs. Load  
Capacitance (at Maximum Case  
Temperature)  
12  
10  
Figures 16 and 17 show how the output rise time varies  
with capacitance. Figures 18 and 19 show how output  
delays vary with capacitance. Note that the graphs may  
not be linear outside the ranges shown.  
8.3  
8
6
4
Figure 16. Typical Output Rise Time vs. Load  
Capacitance (at Maximum Case  
Temperature)  
(1)  
2
10  
9.9  
9
0
1.7  
2  
8
7
6
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE pF  
Note:  
(1)  
(1) OUTPUT PINS BG, TIMEXP, FLAG30,  
PMD470, DMD390  
5
4
3
2
1.6  
1
0
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE pF  
Note:  
(1) OUTPUT PINS BG, TIMEXP, PMD470,  
DMD390, FLAG30  
27  
Rev. E Oct. 05, 1998  
TSC21020F  
package (Ceramic). The package uses a cavity-up  
configuration.  
Figure 19. Typical Output Delay or Hold vs. Load  
Capacitance (at Maximum Case  
Temperature)  
Table 9 : Maximum θ for Various Airflow Values  
CA  
4
Airflow (m/s)  
0
0.5  
1
1.5  
3
MQFPF  
31.5°C/W 25°C/W 21.5°C/W 19°C/W  
14.5°C/W 11.2°C/W 8.8°C/W 7.8°C/W  
2.8  
2
CPGA  
NOTES  
1
θ
θ
is 1°C/W for CPGA.  
is 0.3°C/W for MQFPF.  
(1)  
JC  
JC  
0
1  
2  
Maximum recommended T is 130°C.  
As per method 1012 MIL-STD-883. Ambient temperature : 25°C.  
Power : 3.5 W.  
J
2.2  
3  
25  
Power Dissipation  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE pF  
Total power dissipation has two components : one due to  
internal circuitry and one due to the switching of external  
output drivers. Internal power dissipation is dependent on  
the instruction execution sequence and the data values  
involved. Internal power dissipation is calculated in the  
following way :  
Note:  
(1) OUTPUT PINS PMA23, PMS10, PMPAGE, DMA310,  
DMS30, DMPAGE, TDO, PMRD, PMWR, DMRD, DMWR  
Environmental Conditions  
P
= I  
× V  
DDIN DD  
INT  
The TSC21020F is available in a Ceramic Pin Grid Array  
(CPGA) and in a multilayer quad flat package with flat  
leads (MQFPF).  
The external component of total power dissipation is  
caused by the switching of output pins. Its magnitude  
depends on :  
The CPGA package uses a cavity-down configuration  
which gives it favorable thermal characteristics. The top 1) the number of output pins that switch during each  
surface of the package contains a raised copper slug from cycle (O),  
which much of the die heat is dissipated. The slug 2) the maximum frequency at which they can switch (f),  
provides a surface for mounting a heat sink (if required).  
3) their load capacitance (C), and  
4) their voltage swing (V ).  
DD  
The military range TSC21020F is specified for operation  
at T  
of 55°C to + 125°C. Maximum T  
(case  
CASE  
AMB  
It is calculated by :  
temperature) can be calculated from the following  
equation :  
2
P
= O × C × V  
× f  
EXT  
DD  
The load capacitance should include the processors  
T
= T  
+ (PD × θ  
)
CASE  
AMB  
CA  
package capacitance (C ). The switching frequency  
IN  
where PD is power dissipation and θ  
case-to-ambient thermal resistance. The value of PD  
depends on your application ; the method for calculating  
PD is shown under Power Dissipationbelow. θ  
varies with airflow. Table 9 shows a range of θ values.  
is the  
CA  
includes driving the load high and then back low. Address  
and data pins can drive high and low at a maximum rate  
of 1/(2t ). The write strobes can switch every cycle at  
CK  
CA  
a frequency of 1/tCK. Select pins switch at 1/(2t ), but  
CK  
CA  
2 DM and 2 PM selects can switch on each cycle. If only  
The TSC 21020F is also available in a 256-pin MQFPF one bank is accessed, no select line will switch.  
28  
Rev. E Oct. 05, 1998  
TSC21020F  
Example :  
power lines, especially when many output drivers are  
simultaneously charging or discharging their load  
capacitances. These transient currents can cause  
disturbances on the power and ground lines. To minimize  
these effects, the TSC21020F provides separate supply  
pins for its internal logic (IGND and IVDD) and for its  
external drivers (EGND and EVDD).  
Estimate P  
with the following assumptions :  
EXT  
D A system with one RAM bank each of PM (48 bits)  
and DM (32 bits).  
D 32 K × 8 RAM chips are used, each with a load of  
10 pF.  
D Single-precision mode is enabled so that only 32 data  
All GND pins should have a low impedance path to  
ground. A ground plane is required in TSC21020F  
systems to reduce this impedance, minimizing noise.  
pins can switch at once.  
D PM and DM writes occur every other cycle, with 50 %  
of the pins switching.  
The EVDD and IVDD pins should be bypassed to the  
ground plane using approximately 14 high-frequency  
capacitors (0.1 µF ceramic). Keep each capacitors lead  
and trace length to the pins as short as possible. This low  
inductive path provides the TSC21020F with the peak  
currents required when its output drivers switch. The  
capacitorsground leads should also be short and connect  
directly to the ground plane. This provides a low  
impedance return path for the load capacitance of the  
TSC21020Fs output drivers.  
D The instruction cycle rate is 20 MHz (t = 50 ns) and  
CK  
V
DD  
= 5.0 V.  
The P  
equation is calculated for each class of pins that  
EXT  
can drive :  
Pin  
Type  
#
%
2
×C  
×f  
×VDD PEXT  
Pins Switch  
PMA  
PMS  
15  
2
50  
0
68 pF  
68 pF  
5 MHz  
5 MHz  
25 V 0.064 W  
25 V 0.000 W  
If  
a
V
plane is not used, the following  
DD  
PMWR  
PMD  
DMA  
DMS  
1
68 pF 10 MHz 25 V 0.017 W  
recommendations apply. Traces from the + 5 V supply to  
the 10 EVDD pins should be designed to satisfy the  
32  
15  
2
50  
50  
0
18 pF  
48 pF  
48 pF  
5 MHz  
5 MHz  
5 MHz  
25 V 0.036 W  
25 V 0.045 W  
25 V 0.000 W  
minimum V  
specification while carrying average dc  
DD  
currents of [I  
/10 × (number of EVDD pins per  
DDEX  
DMWR  
DMD  
1
32  
50  
48 pF 10 MHz 25 V 0.012 W  
18 pF 5 MHz 25 V 0.036 W  
trace)]. I  
is the calculated external supply current. A  
DDEX  
similar calculation should be made for the four IVDD pins  
using the I specification. The traces connecting  
P
EXT  
= 0.210 W  
DDIN  
+ 5 V to the IVDD pins should be separate from those  
A typical power consumption can now be calculated for connecting to the EVDD pins.  
this situation by adding a typical internal power  
A low frequency bypass capacitor (20 µF tantalum)  
located near the junction of the IVDD and EVDD traces  
is also recommended.  
dissipation :  
P
= P  
+ (5 V × I  
(typ)) = 0.210 + 1.15  
TOTAL  
EXT  
DDIN  
= 1.36 W  
Target System Requirements For Use Of  
EZ-ICE Emulator  
Note that the conditions causing a worst case P  
are  
EXT  
different from those causing a worst case P . Maximum  
INT  
P
INT  
cannot occur while 100 % of the output pins are  
The ADSP-21020 EZ-ICE uses the IEEE 1149.1 JTAG  
test access port of the TSC21020F to monitor and control  
the target board processor during emulation. The EZ-ICE  
probe requires that CLKIN, TMS, TCK, TRST, TDI,  
TDO, and GND be made accessible on the target system  
via a 12-pin connector (pin strip header) such as that  
shown in Figure 20. The EZ-ICE probe plugs directly  
switching from all ones to all zeros. Also note that it is not  
common for a program to have 100 % or even 50 % of the  
outputs switching simultaneously.  
Power and Ground Guidelines  
To achieve its fast cycle time, including instruction fetch, onto this connector for chip-on-board emulation ; you  
data access, and execution, the TSC21020F is designed must add this connector to your target board design if you  
with high speed drivers on all output pins. Large peak intend to use the ADSP-21020 EZ-ICE. Figure 21 shows  
currents may pass through a circuit boards ground and the dimensions of the EZ-ICE probe ; be sure to allow  
29  
Rev. E Oct. 05, 1998  
TSC21020F  
enough space in your system to fit the probe onto the must be 0.025 inch square and at least 0.20 inch in length.  
12-pin connector.  
Pin spacing is 0.1 × 0.1 inches.  
The tip of the pins must be at least 0.10 inch higher than  
the tallest component under the probe to allow clearance  
for the bottom of the probe. Pin strip headers are available  
from vendors such as 3M, Mc Kenzie, and Samtec.  
Figure 20. Target Board Connector for EZ-ICE  
Emulator (Jumpers In Place)  
The length of the traces between the EZ-ICE probe  
connector and the TSC21020F test access port pins  
should be less than 1 inch. Note that the EZ-ICE probe  
adds two TTL loads to the CLKIN pin of the TSC21020F.  
The BMTS, BTCK, BTRST, and BTDI signals are  
provided so that the test access port can also be used for  
board-level testing. When the connector is not being used  
for emulation, place jumpers between the BXXX pins and  
the XXX pins as shown in Figure 20. If you are not going  
to use the test access port for board test, tie BTRST to  
GND and tie or pull up BTCK to VDD. The TRST pin  
must be asserted (pulsed low) after power up (through  
BTRST on the connector) or held low for proper  
operation of the TSC21020F.  
Figure 21. EZ-ICE Probe  
The 12-pin, 2-row pin strip header is keyed at the Pin 1  
location you must clip Pin 1 off of the header. The pins  
30  
Rev. E Oct. 05, 1998  
TSC21020F  
31  
Rev. E Oct. 05, 1998  
TSC21020F  
32  
Rev. E Oct. 05, 1998  
TSC21020F  
PGA  
PIN  
PGA  
PIN  
PGA  
PIN  
PGA  
PIN  
LOCATION  
NAME  
LOCATION  
NAME  
LOCATION  
NAME  
LOCATION  
NAME  
G16  
G17  
F18  
F17  
F16  
F15  
E18  
E17  
E16  
D18  
E15  
D17  
D16  
C18  
C17  
D15  
B18  
B17  
C16  
D14  
C15  
B16  
A16  
D13  
C14  
B15  
B14  
D12  
C13  
A14  
B13  
C12  
H3  
DMA0  
B5  
DMD25  
K1  
L3  
L2  
PMD9  
L16  
U12  
T11  
T14  
R12  
S13  
U16  
U14  
H18  
A3  
TIMEXP  
DMA1  
DMA2  
B6  
D6  
DMD26  
DMD27  
DMD28  
DMD29  
DMD30  
DMD31  
DMD32  
DMD33  
DMD34  
DMD35  
DMD36  
DMD37  
DMD38  
DMD39  
DMS0  
PMD10  
PMD11  
PMD12  
PMD13  
PMD14  
PMD15  
PMD16  
PMD17  
PMD18  
PMD19  
PMD20  
PMD21  
PMD22  
PMD23  
PMD24  
PMD25  
PMD26  
PMD27  
PMD28  
PMD29  
PMD30  
PMD31  
PMD32  
PMD33  
PMD34  
PMD35  
PMD36  
PMD37  
PMD38  
PMD39  
PMD40  
PMD41  
PMD42  
PMD43  
PMD44  
PMD45  
PMD46  
PMD47  
PMS0  
RCOMP  
CLKIN  
TRST  
TD0  
DMA3  
DMA4  
C6  
A8  
M1  
M2  
M3  
M4  
N2  
N3  
P1  
DMA5  
DMA6  
C7  
D7  
TDI  
TMS  
DMA7  
DMA8  
B7  
B8  
TCK  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
EGND  
IGND  
IGND  
IGND  
IGND  
IGND  
IGND  
IGND  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
IVDD  
IVDD  
IVDD  
IVDD  
NC  
DMA9  
A10  
C8  
DMA10  
DMA11  
DMA12  
DMA13  
DMA14  
DMA15  
DMA16  
DMA17  
DMA18  
DMA19  
DMA20  
DMA21  
DMA22  
DMA23  
DMA24  
DMA25  
DMA26  
DMA27  
DMA28  
DMA29  
DMA30  
DMA31  
DMD0  
P2  
A7  
D8  
B9  
N4  
S1  
A11  
A15  
E1  
C9  
P3  
R2  
B10  
D10  
C11  
A12  
B11  
T13  
S11  
B12  
S12  
T12  
L17  
M18  
M15  
M16  
M17  
N17  
N16  
N15  
P18  
P17  
R17  
S18  
P15  
P16  
S17  
R16  
R15  
U18  
S16  
T17  
U17  
R14  
S15  
T16  
F2  
G1  
P4  
R3  
L1  
L18  
R1  
R18  
T18  
U5  
DMS1  
DMS2  
DMS3  
S2  
T1  
DMWR  
DMRD  
DMPAGE  
DMTS  
DMACK  
PMA0  
S3  
R4  
T2  
U1  
T3  
U7  
U11  
U15  
D11  
G4  
G15  
L4  
L15  
R7  
R11  
A5  
R5  
PMA1  
PMA2  
S4  
U2  
S5  
PMA3  
PMA4  
T4  
PMA5  
PMA6  
R6  
U3  
U4  
S6  
PMA7  
PMA8  
A9  
H4  
E2  
DMD1  
DMD2  
PMA9  
T6  
S7  
A13  
J1  
PMA10  
PMA11  
PMA12  
PMA13  
PMA14  
PMA15  
PMA16  
PMA17  
PMA18  
PMA19  
PMA20  
PMA21  
PMA22  
PMA23  
PMD0  
G3  
D1  
DMD3  
DMD4  
U6  
T7  
J18  
N1  
D2  
F3  
DMD5  
DMD6  
R8  
S8  
N18  
U9  
C1  
C2  
DMD7  
DMD8  
R13  
T15  
U8  
S9  
U13  
K18  
D9  
PMS1  
F4  
E3  
DMD9  
PMWR  
PMRD  
PMPAGE  
PMTS  
DMD10  
DMD11  
DMD12  
DMD13  
DMD14  
DMD15  
DMD16  
DMD17  
DMD18  
DMD19  
DMD20  
DMD21  
DMD22  
DMD23  
DMD24  
J4  
D3  
B1  
S14  
T8  
J15  
R9  
E4  
B2  
U10  
A17  
A18  
H16  
H15  
H17  
G18  
J17  
J16  
K16  
K15  
R10  
PMACK  
BG  
C10  
S10  
T10  
T9  
NC  
C3  
A2  
BR  
NC  
NC  
FLAG0  
FLAG1  
FLAG2  
FLAG3  
IRQ0  
D4  
B3  
F1  
J3  
PMD1  
PMD2  
K17  
T5  
NC  
NC  
A4  
C4  
H2  
H1  
PMD3  
PMD4  
G2  
NC  
B4  
D5  
J2  
K4  
PMD5  
PMD6  
IRQ1  
IRQ2  
A6  
C5  
K3  
K2  
PMD7  
PMD8  
IRQ3  
RESET  
33  
Rev. E Oct. 05, 1998  
TSC21020F  
MQFP_F  
PIN  
MQFP_F  
PIN  
MQFP_F  
PIN  
MQFP_F  
PIN  
LOCATION  
NAME  
LOCATION  
NAME  
LOCATION  
NAME  
LOCATION  
NAME  
1
IGND  
65  
IGND  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
IGND  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
IGND  
2
3
IVDD  
66  
67  
IVDD  
IVDD  
IVDD  
DMD19  
DMD18  
DMD17  
DMD16  
EGND  
DMD15  
DMD14  
DMD13  
DMD12  
EVDD  
DMD11  
DMD10  
DMD9  
DMD8  
IGND  
PMD25  
PMD26  
PMD27  
EVDD  
PMD28  
PMD29  
PMD30  
PMD31  
EGND  
PMD32  
PMD33  
PMD34  
PMD35  
EVDD  
IGND  
PMA19  
PMA18  
PMA17  
PMA16  
EGND  
PMA15  
PMA14  
PMA13  
PMA12  
EVDD  
PMA11  
PMA10  
PMA9  
PMA8  
IGND  
DMA15  
EGND  
DMA16  
DMA17  
DMA18  
DMA19  
EVDD  
DMA20  
DMA21  
DMA22  
DMA23  
EGND  
DMA24  
DMA25  
IGND  
4
5
68  
69  
6
7
70  
71  
8
9
72  
73  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
74  
75  
76  
77  
78  
79  
80  
81  
IVDD  
82  
83  
IVDD  
IVDD  
IVDD  
EGND  
DMD7  
DMD6  
DMD5  
DMD4  
EVDD  
DMD3  
DMD2  
DMD1  
DMD0  
EGND  
PMD0  
PMD1  
PMD2  
IGND  
PMD36  
PMD37  
PMD38  
PMD39  
EGND  
PMD40  
PMD41  
PMD42  
PMD43  
EVDD  
PMD44  
PMD45  
PMD46  
PMD47  
IGND  
EGND  
PMA7  
PMA6  
PMA5  
PMA4  
EVDD  
PMA3  
PMA2  
PMA1  
PMA0  
EGND  
TIMEXP  
EVDD  
EGND  
IGND  
DMA26  
DMA27  
EVDD  
DMA28  
DMA29  
DMA30  
DMA31  
EGND  
DMPAGE  
BR  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
BG  
94  
95  
DMS0  
DMS1  
96  
97  
EVDD  
IGND  
IVDD  
98  
99  
IVDD  
EGND  
PMTS  
IVDD  
IRQ3  
IVDD  
DMS2  
PMD3  
EVDD  
PMD4  
PMD5  
PMD6  
PMD7  
EGND  
PMD8  
PMD9  
PMD10  
PMD11  
EVDD  
PMD12  
PMD13  
IGND  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
IRQ2  
IRQ1  
DMS3  
PMWR  
PMACK  
PMRD  
RCMP  
EVDD  
RESET  
CLKIN  
DMRD  
DMACK  
DMWR  
EVDD  
DMTS  
IGND  
DMD39  
DMD38  
EGND  
DMD37  
DMD36  
DMD35  
DMD34  
EVDD  
DMD33  
DMD32  
DMD31  
DMD30  
IGND  
IRQ0  
EVDD  
FLAG0  
FLAG1  
FLAG2  
FLAG3  
EGND  
DMA0  
DMA1  
DMA2  
DMA3  
IGND  
IVDD  
IVDD  
TCK  
IVDD  
IVDD  
PMD14  
PMD15  
EGND  
PMD16  
PMD17  
PMD18  
PMD19  
EVDD  
PMD20  
PMD21  
PMD22  
PMD23  
EGND  
PMD24  
EVDD  
DMA4  
DMA5  
DMA6  
DMA7  
EGND  
DMA8  
DMA9  
DMA10  
DMA11  
EVDD  
DMA12  
DMA13  
DMA14  
EGND  
DMD29  
DMD28  
DMD27  
DMD26  
EVDD  
DMD25  
DMD24  
DMD23  
EGND  
DMD22  
DMD21  
DMD20  
EVDD  
TMS  
TDI  
TDO  
TRST  
PMPAGE  
PMS0  
PMS1  
EGND  
PMA23  
PMA22  
PMA21  
PMA20  
EVDD  
34  
Rev. E Oct. 05, 1998  
TSC21020F  
223-pin Ceramic Pin Grid Array  
Bottom View  
MM  
INCHES  
MAX  
.130  
SYMBOL  
MIN  
MAX  
MIN  
A
C
D
E
H
L
2.54  
3.30  
.100  
2.54 BSC  
.100 BSC  
46.74  
46.74  
0.41  
47.75  
47.75  
0.51  
1.840  
1.840  
0.16  
1.880  
1.880  
0.20  
3.05  
3.56  
.120  
.140  
Q
1.14  
1.40  
0.45  
.055  
35  
Rev. E Oct. 05, 1998  
TSC21020F  
256-pin MQFP-F Package  
TOP VIEW  
MILS  
MM  
SYMBOL  
MIN  
MAX  
0.125  
0.008  
2.195  
1.470  
2.195  
1.470  
MIN  
2.41  
MAX  
3.18  
A
C
D
0.095  
0.004  
2.095  
1.450  
2.095  
1.450  
0.10  
0.20  
53.23  
36.83  
53.23  
36.83  
55.74  
37.34  
55.74  
37.34  
D
1
E
E
1
e
f
0.020 BSC  
0.508 BSC  
0.006  
0.081  
0.002  
0.323  
0.010  
0.101  
0.014  
0.362  
0.15  
2.06  
0.05  
8.20  
0.25  
2.56  
0.36  
9.20  
A
1
2
A
L
N
1
N
2
64  
64  
64  
64  
36  
Rev. E Oct. 05, 1998  
TSC21020F  
Ordering information  
TSC  
21020F  
20  
M
A
/883  
Packaging  
A: 223P PGA  
B: 256L MQFPF  
C: Die Form  
Temperature Range  
M: Military 55 C to 125 C  
S: Spatial 55 C to 125 C  
E: Engineering Sample  
20: 20 MHz version  
Blank: Standard Military  
/883: MIL 883 Compliant B or S  
P883: MIL 883 Compliant B+ PIND Test  
SB: SCC9000 Level B  
SC: SCC9000 Level C  
SL3: LAT3  
Part number  
From ADSP21020  
(Analog Devices)  
SL2: LAT2  
SL1: LAT1  
F: Radiation Tolerant  
Hxxx: Customer Code  
37  
Rev. E Oct. 05, 1998  

相关型号:

TSC21020F-20MBSL3

DSP|32-BIT|CMOS| RAD HARD|QFL|256PIN|CERAMIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TSC21020F-20MC

Floating Point Processor, 40-Bit, CMOS, DIE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC21020F-20MC-E

Rad. Hard 32/40-bit IEEE Floating Point DSP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TSC21020F-20MC-SV

Rad. Hard 32/40-bit IEEE Floating Point DSP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TSC21020F-20MC/883

Floating Point Processor, 40-Bit, CMOS, DIE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC21020F-20MCHXXX

Floating Point Processor, 40-Bit, CMOS, DIE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TSC21020F-20MCP883

Floating Point Processor, 40-Bit, CMOS, DIE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

TSC21020F-20MCSL2

Floating Point Processor, 40-Bit, CMOS, DIE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TSC21020F-20SA

DSP|32-BIT|CMOS| RAD HARD|PGA|223PIN|CERAMIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TSC21020F-20SA-E

Digital Signal Processor, 32-Bit Size, CMOS, CPGA223,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

TSC21020F-20SA/883

DSP|32-BIT|CMOS| RAD HARD|PGA|223PIN|CERAMIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TSC21020F-20SAP833

DSP|32-BIT|CMOS| RAD HARD|PGA|223PIN|CERAMIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC