UT1760A-GC [ETC]

Telecommunication IC ; 电信IC\n
UT1760A-GC
型号: UT1760A-GC
厂家: ETC    ETC
描述:

Telecommunication IC
电信IC\n

电信
文件: 总48页 (文件大小:1043K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UTI760A RTS Remote Terminal for Stores  
Table I of MIL-STD-883, Method 5004, Class B, also  
Standard Military Drawing available  
FEATURES  
Complete MIL-STD-1760A Notice I through III  
Available in 68-pin pingrid array package  
remote terminal interface  
1K x 16 of on-chip static RAM for message data,  
INTRODUCTION  
completely accessible to host  
The UT1760A RTS is a monolithic CMOS VLSI solution  
totherequirementsofthedual-redundantMIL-STD-1553B  
interface as specified by MIL-STD-1760A. Designed to  
reduce cost and space in the mission stores interface, the  
RTS integrates the remote terminal logic with a user-  
configured 1K x 16 static RAM. In addition, the RTS has a  
flexible subsystem interface to permit use with most  
processors or controllers.  
Self-test capability, including continuous loop-back  
compare  
Programmable memory mapping via pointers for  
efficient use of internal memory, including buffering  
multiple messages per subaddress  
RT-RT Terminal Address Compare  
Command word stored with incoming data for  
enhanced data management  
The RTS provides all protocol, data handling, error  
checking, and memory control functions, as well as  
comprehensive self-test capabilities. The RTS’s memory  
meetsallofamissionstore’smessagestorageneedsthrough  
user-defined memory mapping. This memory-mapped  
architecture allows multiple message buffering at  
User selectable RAM Busy (RBUSY) signal for slow  
or fast processor interfacing  
Full military operating temperature range, -55°C to  
+125°C, screened to the specific test methods listed in  
RTA(4:0)  
REMOTE TERMINAL  
ADDRESS  
MCSA(4:0)  
CONTROL  
INPUTS  
MODE CODE/  
SUBADDRESS  
OUT  
STATUS  
OUTPUTS  
COMMAND  
RECOGNITION  
CONTROL AND  
ERROR LOGIC  
DECODER  
DECODER  
IN  
1K X 16 RAM  
ADDR(9:0)  
OUT  
MUX  
PTR REGISTER  
ENCODER  
IN  
12MHz  
RESET  
CLOCK AND RESET  
LOGIC  
DATA(15:0)  
2MHz  
Figure 1. UT1760A RTS Functional Block Diagram  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-1  
Table of Contents  
1.0 ARCHITECTURE AND OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.1 Memory Map and Host Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.2 RTS RAM Pointer Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.3 Internal Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.4 Mode Code and Subaddress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.5 MIL-STD-1760A Subaddress and Mode Code Definitions . . . . . . . . . . . . . . . 9  
1.6 Terminal Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
1.7 Internal Self-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
1.8 Power-up and Master Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
1.9 Encoder and Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
1.10 RT-RT Transfer Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
1.11 Illegal Command Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.0 MEMORY MAP EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.0 PIN IDENTIFICATION AND DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.0 MAXIMUM AND RECOMMENDED OPERATING CONDITIONS22  
5.0 DC ELECTRICAL CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6.0 AC ELECTRICAL CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
7.0 PACKAGE OUTLINE DRAWING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-2  
to its own internal RAM, it asserts the RBUSY signal to  
alert the host. The RBUSY signal is programmable via the  
internal Control Register to be asserted either 5.7ms or  
2.7ms prior to the RTS needing access to its internal RAM.  
1.0 ARCHITECTURE AND OPERATION  
The UT1760A RTS is an interface device linking a MIL-  
STD-1553serialdatabusandahostmicroprocessorsystem.  
The RTS’s MIL-STD-1553B interface includes encoding/  
decoding logic, error detection, command recognition, 1K  
x 16 of SRAM, pointer registers, clock, and reset circuits.  
Illegal subaddress circuitry makes the RTS MIL-STD-  
1760A-specific.  
The RTS stores MIL-STD-1760A messages in 1K x 16 of  
on-chip RAM. For efficient use of the 1K x 16 memory on  
the RTS, the host programs a set of pointers to map where  
the 1760A message is stored. The RTS uses the upper 64  
words (address 3C0 (hex) through 3FF (hex)) as pointers.  
The RTS provides pointers for all 30 receive subaddresses,  
all 30 transmit subaddresses, and four mode code  
commands with associated data words as defined in  
MIL-STD-1553B. The remaining 960 words of memory  
contain receive, transmit, and mode code data in a  
host-defined structure.  
1.1 Memory Map and Host Memory Interface  
The host can access the 1K x 16 RAM memory like a  
standard RAM device through the 10-bit address and 16-bit  
data buses. The host uses the Chip Select (CS), Read/Write  
(RD/WR), and Output Enable (OE) signals to control data  
transfer to and from memory.When the RTS requires access  
RTS Memory Map  
000 (hex)  
Message  
Storage  
Locations  
3BF(hex)  
15 MSB  
0 LSB  
0 LSB  
0 LSB  
XMIT VECTOR WORD MODE CODE (W/DATA)  
3C0 (hex)  
3C1 (hex)  
RCV SUBADDRESS 01  
Receive  
Message  
Pointers  
(3C1 TO 3DE)  
RCV SUBADDRESS 30  
SYNCHRONIZE MODE CODE (W/DATA)  
3DE (hex)  
3DF (hex)  
15 MSB  
XMIT LAST COMMAND MODE CODE (W/DATA)  
XMT SUBADDRESS 01  
3E0 (hex)  
3E1 (hex)  
Transmit  
Message  
Pointers  
(3E1 TO 3FE)  
XMT SUBADDRESS 30  
3FE (hex)  
3FF (hex)  
XMT BIT WORD MODE CODE (W/DATA)  
15 MSB  
Figure 2. RTS Memory Map  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-3  
MESSAGE INDEX  
15 (MSB)  
MESSAGE DATA ADDRESS  
10  
9
0 (LSB)  
Message Index:  
Message Data Address:  
Defines the maximum  
messages buffered for the  
given subaddress.  
Indicates the starting memory  
address for incoming message  
storage.  
Figure 3. Message Pointer Structure  
1.2 RTS RAM Pointer Structure  
TheTransmit Last Command Mode Code hasAddressField  
boundary conditions for the location of command word  
buffers. The host can allocate a maximum 63 sequential  
locations following the Address Field starting address. For  
proper operation, the Address Field must start on an I x 40  
(hex) address boundary, where I is greater than or equal to  
zero and less than or equal to 14. A list of valid Index and  
Address Fields follows:  
The RAM 16-bit pointers have a 6-bit index field and a  
10-bit address field. The 6-bit index field allows for the  
storage of up to 64 messages per subaddress. A message  
consists of the 1553 command word and its associated  
data words.  
The 16-bit pointer for Transmit Last Command Mode Code  
is located at memory location 3E0 (hex). The Transmit Last  
Command Mode Code pointer buffers up to 63 command  
words. An example of command word storage follows:  
I
Valid Index Fields  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
Valid Address Fields  
000 (hex) to 03F(hex)  
040 (hex) to 07F (hex)  
080 (hex) to 0BF(hex)  
0C0 (hex) to 0FF (hex)  
100 (hex) to 13F (hex)  
140 (hex) to 17F (hex)  
180 (hex) to 1BF (hex)  
1C0 (hex) to 1FF (hex)  
200 (hex) to 23F (hex)  
240 (hex) to 27F (hex)  
280 (hex) to 2BF (hex)  
2C0 (hex) to 2FF (hex)  
300 (hex) to 33F (hex)  
340 (hex) to 37F (hex)  
380 (hex) to 3BF (hex)  
0
Example:  
1
3E0 (hex) Contents = FC00 (hex)  
11 1111 00 0000 0000  
2
3
Address Field = 000 (hex)  
Index Field = 3F (hex)  
4
5
First command word storage location (3E0 = F801):  
6
Address Field = 001 (hex)  
Index Field = 3E (hex)  
7
8
Sixty-third command word storage location  
(3E0 = 003F):  
9
10  
11  
12  
13  
14  
Address Field = 03F (hex)  
Index Field = 00 (hex)  
Sixty-fourth command word storage location (3E0 = 003F)  
(previous command word overwritten):  
Address Field = 03F (hex)  
Index Field = 00 (hex)  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-4  
Subaddress/Mode Code  
RAM Location  
Subaddress/Mode Code  
RAM Location  
Transmit Vector Word Mode Code  
3C0 (hex)  
3C1 (hex)  
3C2 (hex)  
3C3 (hex)  
3C4 (hex)  
3C5 (hex)  
3C6 (hex)  
3C7 (hex)  
3C8 (hex)  
3C9 (hex)  
3CA (hex)  
3CB (hex)  
3CC (hex)  
3CD (hex)  
3CE (hex)  
3CF (hex)  
3D0 (hex)  
3D1 (hex)  
3D2 (hex)  
3D3 (hex)  
3D4 (hex)  
3D5 (hex)  
3D6 (hex)  
3D7 (hex)  
3D8 (hex)  
3D9 (hex)  
3DA (hex)  
3DB (hex)  
3DC (hex)  
3DD (hex)  
3DE (hex)  
3DF (hex)  
Transmit Last Command Mode Code  
3E0 (hex)  
3E1 (hex)  
3E2 (hex)  
3E3 (hex)  
3E4 (hex)  
3E5 (hex)  
3E6 (hex)  
3E7 (hex)  
3E8 (hex)  
3E9 (hex)  
3EA (hex)  
3EB (hex)  
3EC (hex)  
3ED (hex)  
3EE (hex)  
3EF (hex)  
3F0 (hex)  
3F1 (hex)  
3F2 (hex)  
3F3 (hex)  
3F4 (hex)  
3F5 (hex)  
3F6 (hex)  
3F7 (hex)  
3F8 (hex)  
3F9 (hex)  
3FA (hex)  
3FB (hex)  
3FC (hex)  
3FD (hex)  
3FE (hex)  
3FF (hex)  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Synchronize w/Data Word Mode Code  
Transmit Bit Word Mode Code  
1.3 Internal Registers  
enables the biphase inputs, recognizes broadcast  
commands, selects Notice I and II or III, determines RAM  
Busy(RBUSY)timing,selectsdisconnectorterminalactive  
flag, and puts the part in self-test mode. The Status Register  
supplies operational status of the UT1760A RTS to the host.  
These registers must be initialized before attempting RTS  
operation. Internal registers can be accessed while RBUSY  
is active.  
The RTS uses two internal registers to allow the host to  
control the RTS operation and monitor its status. The host  
usestheControl(CTRL)signalalongwithChipSelect(CS),  
Read/Write (RD/WR), and Output Enable (OE) to read the  
16-bitStatusRegisterorwritetothe13-bitControlRegister.  
No address data is needed to select a register. The Control  
Register toggles bits in the MIL-STD-1553B status word,  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-5  
Control Register (Write Only)  
The 13-bit write-only Control Register manages the operation of the RTS. Write to the Control Register by applying a logic  
one to OE, and a logic zero to CTRL, CS, and RD/WR. Data is loaded into the Control Register via I/O pins DATA(12:0).  
Control register write must occur 50ns before the rising edge of COMSTR to latch data into the outgoing status word.  
Bit  
Number  
Initial  
Condition  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
[1]  
[1]  
[0]  
[1]  
Channel A Enable. A logic 1 enables Channel A biphase inputs.  
Channel B Enable. A logic 1 enables Channel B biphase inputs.  
Terminal Flag. A logic 1 sets the Terminal Flag bit of the Status Word.  
System Busy. A logic 1 sets the Busy bit of the Status Word and limits RTS access to the  
memory. No data word can be retrieved or stored; command words will be stored.  
Bit 4  
Bit 5  
[0]  
[0]  
Subsystem Busy. A logic 1 sets the Subsystem Flag bit of the Status Word.  
Self-Test Channel Select. This bit selects which channel the self-test checks; a logic 1 selects  
Channel A and a logic 0 selects Channel B.  
Bit 6  
[0]  
Self-Test Enable. A logic 1 places the RTS in the internal self-test mode and inhibits normal  
operation. Channels A and B should be disabled if self-test is chosen.  
Bit 7  
[0]  
[0]  
[1]  
[1]  
[1]  
Service Request. A logic 1 sets the Service Request bit of the Status Word.  
Instrumentation. A logic 1 sets the Instrumentation bit of the Status Word.  
Broadcast Enable. A logic 1 enables the RTS to recognize broadcast commands.  
Notice Select. A logic 1 enables Notice III operation; logic 0 enables Notice I or II operation.  
Bit 8  
Bit 9  
Bit 10  
Bit 11  
DSCNCT/TERACT Pin Select. A logic 1 selects the “Disconnect” function; a logic 0 selects  
the “Terminal Active” function.  
Bit 12  
[1]  
RBUSY Time Select. A logic 1 selects a 5.7µs RBUSY alert; a logic 0 selects a 2.7µs  
RBUSY alert.  
[] - Values in parentheses indicate the initialized values of these bits.  
CONTROL REGISTER (WRITE ONLY):  
X
X
X
RBUSY PS NO  
BCEN INS SRQ ITST ITCS SUBS BUSY TF CH B CH A  
TS  
TICE  
EN  
EN  
[1]  
[1]  
[1]  
[1]  
[0]  
[0]  
[0]  
[0]  
[0]  
[1]  
[0]  
[1]  
[1]  
LSB  
MSB  
[ ] defines reset state  
Figure 4a. Control Register  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-6  
Status Register (Read Only):  
The 16-bit read-only Status Register provides the RTS system status. Read the Status Register by applying a logic 0 to CTRL,  
CS, and OE, and a logic 1 to RD/WR. The 16-bit contents of the Status Register are read from data I/O pins DATA(15:0).  
Bit  
Number  
Initial  
Condition  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
MCSA0. The LSB of the mode code or subaddress as indicated by the logic state of bit 5.  
MCSA1. Mode code or subaddress as indicated by the logic state of bit 5.  
MCSA2. Mode code or subaddress as indicated by the logic state of bit 5.  
MCSA3. Mode code or subaddress as indicated by the logic state of bit 5.  
MCSA4. Mode code or subaddress as indicated by the logic state of bit 5.  
MC/SA. A logic 1 indicates that bits 4 through 0 are the subaddress of the last command word,  
and that the last command word was a normal transmit or receive command. A logic 0 indicates  
that bits 4 through 0 are a mode code, and that the last command was a mode command.  
Bit 6  
Bit 7  
Bit 8  
Bit 9  
[1]  
[1]  
[1]  
[1]  
Channel A/B. A logic 1 indicates that the most recent command arrived on Channel A; a logic 0  
indicates that it arrived on Channel B.  
Channel B Enabled. A logic 1 indicates that Channel B is available for both reception and  
transmission.  
Channel A Enabled. A logic 1 indicates that Channel A is available for both reception and  
transmission.  
Terminal Flag Enabled. A logic 1 indicates that the Bus Controller has not issued an Inhibit  
Terminal Flag Mode Code. A logic 0 indicates that the Bus Controller, via the above mode  
code, is overriding the host system’s ability to set the Terminal Flag bit of the status word.  
Bit 10  
Bit 11  
Bit 12  
[1]  
[0]  
[0]  
Busy. A logic 1 indicates the Busy bit is set. This bit is reset when the System Busy bit in the  
Control Register is reset.  
Self-Test. A logic 1 indicates that the chip is in the internal self-test mode. This bit is reset  
when the self-test is terminated.  
TA Parity Error. A logic 1 indicates the wrong Terminal Address parity; it causes the biphase  
inputs to be disabled. TA Parity Error results in the Message Error bit being set to a logic one,  
and Channels A and B become disabled.  
Bit 13  
[0]  
Message Error. A logic 1 indicates that a message error has occurred since the last Status Reg-  
ister read. This bit is not reset until the Status Register has been examined. Message error con-  
dition must be removed before reading the Status Register to reset the Message Error bit.  
Bit 14  
Bit 15  
[0]  
[0]  
Valid Message. A logic 1 indicates that a valid message has been received since the last Status  
Register read. This bit is not reset until the Status Register has been examined.  
Terminal Active. A logic 1 indicates the device is executing a transmit or receive operation.  
Same as TERACT output except active high. (Always TERACT; never DSCNCT.)  
[] - Values in parentheses indicate the initialized values of these bits.  
STATUS REGISTER (READ ONLY):  
TERM VAL MESS TAPA  
ACTV MESS ERR ERR  
BUSY TFEN CH A CH B CHNL MC/ MCSAMCSAMCSA MCSA MCSA  
SELF-  
TEST  
EN  
EN  
A/B  
SA  
4
3
2
1
0
[0]  
MSB  
[0]  
[0]  
[0]  
[0]  
[1]  
[1]  
[1]  
[1]  
[1]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
LSB  
[ ] defines reset state  
Figure 4b. Status Register  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-7  
1.4 Mode Code and Subaddress  
The UT1760A RTS provides two modes of illegal  
will indicate whether the data on pins MCSA(4:0) is mode  
code or subaddress information. Status Register bits 0  
through 5 contain the same information as pins MCSA(4:0)  
and MC/SA. The system designer can use signals  
MCSA(4:0), MC/SA, BRDCST, RTRT, etc. to illegalize  
mode codes, subaddresses, and other message formats  
(broadcast and RT-to-RT) via the Illegal Command  
(ILLCOM) input to the part.  
subaddress decoding, one meeting MIL-STD-1760A  
Notices I and II, and the other meeting MIL-STD-1760A  
Notice III. In addition, the device has automatic internal  
illegal command decoding for reserved MIL-STD-1553B  
mode codes. These definitions are extracted from MIL-  
STD-1760A and reviewed in section 1.5 of this document.  
Upon command word validation and decode, status pins  
MCSA(4:0) and MC/SA become valid. Status pin MC/SA  
RTS MODE CODE HANDLING PROCEDURE  
T/R  
ModeCode  
Function  
Operation  
2
0
10100  
Selected Transmitter Shutdown  
1. Command word stored  
2. MERR pin asserted  
3. MERR bit set in Status Register  
4. Status word transmitted  
0
Override Selected Transmitter  
1. Command word stored  
2. MERR pin asserted  
3. MERR bit set in Status Register  
4. Status word transmitted  
10101  
2
Shutdown  
0
1
10001  
00000  
Synchronize (w/Data)  
1. Command word stored  
2. Data word stored  
3. Status word transmitted  
2
Dynamic Bus Control  
1. Command word stored  
2. MERR pin asserted  
3. MERR bit set in Status Register  
4. Status word transmitted  
1
1
1
1
1
00001  
00010  
00011  
00100  
Synchronize  
1. Command word stored  
2. Status word transmitted  
3
Transmit Status Word  
1. Command word stored  
2. Status word transmitted  
1
Initiate Self-Test  
1. Command word stored  
2. Status word transmitted  
Transmitter Shutdown  
1. Command word stored  
2. Alternate bus shutdown  
3. Status word transmitted  
1
1
1
00101  
00110  
00111  
Override Transmitter Shutdown  
Inhibit Terminal Flag Bit  
Override Inhibit Terminal Flag  
1. Command word stored  
2. Alternate bus enabled  
3. Status word transmitted  
1. Command word stored  
2. Terminal Flag bit set to zero and disabled  
3. Status word transmitted  
1. Command word stored  
2. Terminal Flag bit enabled, but not set to logic one  
3. Status word transmitted  
1
1
1
1
01000  
10010  
10000  
Reset Remote Terminal  
1. Command word stored  
2. Status word transmitted  
Transmit Last Command  
1. Status word transmitted  
2. Last command word transmitted  
3
Word  
Transmit Vector Word  
1. Command word stored  
2. Status word transmitted  
3. Data word transmitted  
1
10011  
Transmit BIT Word  
1. Command word stored  
2. Status word transmitted  
3. Data word transmitted  
Notes:  
1. Further host interaction required for mode code operation.  
2. Reserved mode code; A) MERR pin asserted, B) MESS ERR bit set, C) status word transmitted (ME bit set to logic one).  
3. Status word not affected.  
4. Undefined mode codes are treated as reserved mode codes.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-8  
1.5 MIL-STD-1760A Subaddress and Mode Code Definitions  
Table 1. Subaddress and Mode Code Definitions Per MIL-STD-1760A Notice I  
Message Format  
Subaddress Field  
Binary (Decimal)  
Description  
Receive  
Transmit  
1
00000 (00)  
00001 (01)  
00010 (02)  
00011 (03)  
00100 (04)  
00101 (05)  
00110 (06)  
00111 (07)  
01000 (08)  
01001 (09)  
01010 (10)  
01011 (11)  
01100 (12)  
01101 (13)  
01110 (14)  
01111 (15)  
10000 (16)  
10001 (17)  
10010 (18)  
10011 (19)  
10100 (20)  
10101 (21)  
10110 (22)  
10111 (23)  
11000 (24)  
11001 (25)  
11010 (26)  
11011 (27)  
11100 (28)  
11101 (29)  
11110 (30)  
11111 (31)  
B.40.1.1.3  
B.40.1.1.3  
Mode Code Indicator  
2
Reserved B.40.2.1  
User Defined  
Reserved  
Store Description  
User Defined  
Reserved  
User Defined  
Reserved  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
Reserved  
User Defined  
User Defined  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
User Defined  
Reserved  
Nuclear Weapon  
User Defined  
Reserved  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
Reserved  
Nuclear Weapon  
User Defined  
User Defined  
User Defined  
B.40.1.1.3  
User Defined  
User Defined  
User Defined  
B.40.1.1.3  
Mode Code Indicator  
Notes:  
1. Refer to section B.40.1.1.3 of the MIL-STD-1760A specification for definition.  
2. Refer to section B.40.2.1 of the MIL-STD-1760A specification for definition.  
3. Reserved subaddresses illegalized; Message Error bit and pin set; SW transmitted.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-9  
Table 2. Subaddress and Mode Code Definitions Per MIL-STD-1760A Notice II  
Message Format  
Subaddress Field  
Binary (Decimal)  
Description  
Receive  
1
Transmit  
B.40.1.1.3  
00000 (00)  
00001 (01)  
00010 (02)  
00011 (03)  
00100 (04)  
00101 (05)  
00110 (06)  
00111 (07)  
01000 (08)  
01001 (09)  
01010 (10)  
01011 (11)  
01100 (12)  
01101 (13)  
01110 (14)  
01111 (15)  
10000 (16)  
10001 (17)  
10010 (18)  
10011 (19)  
10100 (20)  
10101 (21)  
10110 (22)  
10111 (23)  
11000 (24)  
11001 (25)  
11010 (26)  
11011 (27)  
11100 (28)  
11101 (29)  
11110 (30)  
11111 (31)  
B.40.1.1.3  
Mode Code Indicator  
2
Reserved B.40.2.1  
User Defined  
Reserved  
Store Description  
User Defined  
Reserved  
User Defined  
Reserved  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
Reserved  
Reserved  
User Defined  
User Defined  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
User Defined  
Reserved  
Nuclear Weapon  
User Defined  
Reserved  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
Reserved  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
Reserved  
Nuclear Weapon  
User Defined  
User Defined  
User Defined  
B.40.1.1.3  
User Defined  
User Defined  
User Defined  
B.40.1.1.3  
Mode Code Indicator  
Notes:  
1. Refer to section B.40.1.1.3 of the MIL-STD-1760A specification for definition.  
2. Refer to section B.40.2.1 of the MIL-STD-1760A specification for definition.  
3. Reserved subaddresses illegalized; Message Error bit and pin set; SW transmitted.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-10  
Table 3. Subaddress and Mode Code Definitions Per MIL-STD-1760A Notice III  
Subaddress Field Message Format  
Binary (Decimal)  
Description  
Receive  
Transmit  
1
00000 (00) B.40.1.1.3  
B.40.1.1.3  
Mode Code Indicator  
2
00001 (01)  
00010 (02)  
00011 (03)  
00100 (04)  
00101 (05)  
00110 (06)  
00111 (07)  
01000 (08)  
01001 (09)  
01010 (10)  
01011 (11)  
01100 (12)  
01101 (13)  
01110 (14)  
01111 (15)  
10000 (16)  
10001 (17)  
10010 (18)  
10011 (19)  
10100 (20)  
10101 (21)  
10110 (22)  
10111 (23)  
11000 (24)  
11001 (25)  
11010 (26)  
11011 (27)  
11100 (28)  
11101 (29)  
11110 (30)  
11111 (31)  
Reserved B.40.2.1  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
Reserved  
Store Description  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
Reserved  
Test Only  
User Defined  
User Defined  
User Defined  
User Defined  
B.40.2.2.1  
3
B.40.2.2.1  
Mission Store Control/Monitor  
Mass Data Transfer  
User Defined  
User Defined  
User Defined  
User Defined  
B.40.1.5.8  
4
B.40.1.1.5.8  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
5
6
B.40.2.2.4  
B.40.2.2.5  
Nuclear Weapon  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
B.40.2.2.4  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
B.40.2.2.5  
Nuclear Weapon  
User Defined  
User Defined  
User Defined  
B.40.1.1.3  
User Defined  
User Defined  
User Defined  
B.40.1.1.3  
Mode Code Indicator  
Notes:  
1. Refer to section B.40.1.1.3 of the MIL-STD-1760A specification for definition.  
2. Refer to section B.40.2.1 of the MIL-STD-1760A specification for definition.  
3. Refer to section B.40.2.2.1 of the MIL-STD-1760A specification for definition.  
4. Refer to section B.40.1.1.5.8 of the MIL-STD-1760A specification for definition.  
5. Refer to section B.40.2.2.4 of the MIL-STD-1760A specification for definition.  
6. Refer to section B.40.2.2.5 of the MIL-STD-1760A specification for definition.  
7. Reserved subaddresses illegalized; Message Error bit and pin set; SW transmitted.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-11  
1.6 Terminal Address  
1.8 Power-up and Master Reset  
The Terminal Address of the RTS is programmed via five  
input pins: RTA(4:0) and RTPTY. Asserting MRST latches  
the RTS’s TerminalAddress from pins RTA(4:0) and parity  
bit RTPTY. The address and parity cannot change until the  
next assertion of the MRST. The parity of the Terminal  
Address is odd; input pin RTPTY is set to a logic state to  
satisfy this requirement. A logic 1 on Status Register  
bit 12 indicates incorrect Terminal Address parity. An  
example follows:  
After power-up, reset initializes the part with its biphase  
ports enabled, latches the Terminal Address, selects Notice  
III subaddress decoding, and turns on the busy option. The  
device is ready to accept commands from the MIL-STD-  
1553Bbus.Thebusyagisassertedwhilethehostisloading  
the message pointers and messages. After this task is  
completed, the host removes the busy condition via a  
Control Register write to the RTS. On power-up if the  
terminal address parity (odd) is incorrect, the biphase inputs  
are disabled and the message error pin (MERR) is asserted.  
This condition can also be monitored via bit 12 of the Status  
Register. The MERR pin is negated on reception of first  
valid command.  
RTA(4:0) = 05 (hex) = 00101  
RTPTY = 1 (hex) = 1  
Sum of 1’s = 3 (odd), Status Register bit 12 = 0  
RTA(4:0) = 04 (hex) = 00100  
RTPTY = 0 (hex) = 0  
1.9 Encoder and Decoder  
Sum of 1’s = 1 (odd), Status Register bit 12 = 0  
The RTS interfaces directly to a bus transmitter/ receiver via  
the RTS Manchester II encoder/decoder. The UT1760A  
RTS receives the command word from the MIL-STD-  
1553B bus and processes it either by the primary or  
secondarydecoder. Eachdecoderchecksforthepropersync  
pulseandManchesterwaveform,edgeskew,correctnumber  
of bits, and parity. If the command is a receive command,  
the RTS processes each incoming data word for correct  
format and checks the control logic for correct word count  
and contiguous data. If an invalid message error is detected,  
the message error pin is asserted, the RTS ceases processing  
the remainder (if any) of the message, and it then suppresses  
status word transmission. Upon command validation  
recognition, the external status outputs are enabled.  
Reception of illegal commands does not suppress status  
word transmission.  
RTA(4:0) = 04 (hex) = 00100  
RTPTY = 1 (hex) = 1  
Sum of 1’s = 2 (even), Status Register bit 12 = 1  
The RTS checks the TerminalAddress and parity on Master  
Reset. The state of the DSCNCT signal indicates the mated  
status of the store. When all six Terminal Address pins  
(RTA(4:0), RTPTY) go to a logic one, the DSCNCT pin is  
asserted. To enable the disconnect function (DSCNCT pin)  
bit 11 of the Control Register is set to a logic one. With  
broadcast disabled, RTA (4:0) = 11111 operates as a normal  
RT address.  
1.7 Internal Self-Test  
Setting bit 6 of the Control Register to a logic one enables  
the internal self-test. Disable ChannelsA and B at this time  
to prevent bus activity during self-test by setting bits 0 and  
1 of the Control Register to a logic zero. Normal operation  
is inhibited when internal self-test is enabled. The self-test  
capability of the RTS is based on the fact that the MIL-STD-  
1553B status word sync pulse is identical to the command  
word sync pulse. Thus, if the status word from the encoder  
is fed back to the decoder, the RTS will recognize the  
incoming status word as a command word and thus cause  
the RTS to transmit another status word. After the host  
invokes self-test, the RTS self-test logic forces a status word  
transmission even though the RTS has not received a valid  
command. The status word is sent to decoder A or B  
depending on the channel the host selected for self-test. The  
self-test is controlled by the host periodically changing the  
bit patterns in the status word being transmitted. Writing to  
the Control Register bits 2, 3, 4, 7, 8, and 10 changes the  
status word. Monitor the self-test by sampling either the  
Status Register or the external status pins (i.e., Command  
Strobe (COMSTR), Transmit/Receive (T/R)). For more  
detailed explanation of internal self-test, consult UTMC  
publication RTR/RTS Internal Self-Test Routine.  
The RTS automatically compares the transmitted word  
(encoder word) to the reflected decoder word by way of the  
continuous loop-back feature. If the encoder word and  
reflected word do not match, the transmitter error pin  
(TXERR) is asserted. In addition to the loop-back compare  
test, a timer precludes a transmission greater than 760µs by  
the assertion of Fail-safe Timer (TIMERON). This timer is  
reset upon receipt of another command. (RT-to-RT transfer  
time-out = 57µs).  
1.10 RT-RT Transfer Compare  
The RT-to-RT TerminalAddress compare logic makes sure  
that the incoming status word’s Terminal Address matches  
the TerminalAddress of the transmitting RT specified in the  
command word. An incorrect match results in setting the  
message error bit and suppressing transmission of the  
status word.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-12  
1.11 Illegal Command Decoding  
2.0 MEMORY MAP EXAMPLE  
The host has the option of asserting the ILLCOM pin to  
illegalize a received command word. On receipt of an illegal  
command, the RTS sets the Message Error bit in the status  
word, sets the message error output, and sets the message  
error latch in the Status Register.  
Figures 5 and 6 illustrate the UT1760A RTS buffering three  
receive command messages to Subaddress 4. The receive  
message pointer for Subaddress 4 is located at 03C4 (hex)  
in the 1K x 16 RAM. The 16-bit contents of location 03C4  
(hex) point to the memory location where the first receive  
message is stored. The Address Field defined as bits 0  
through 9 of address 03C4 (hex) contain address  
information. The Index Field defined as bits 10 through 15  
ofaddress03C4(hex)containthemessagebufferindex(i.e.,  
number of messages buffered).  
The following RTS outputs may be used to externally  
decode an illegal command, Mode Code or Subaddress  
indicator (MC/SA), Mode Code or Subaddress bus  
MCSA(4:0), Command Strobe (COMSTR), Broadcast  
(BRDCST), and Remote Terminal to Remote Terminal  
transfer (RTRT) (see figure 21 on page 34.)  
Figure 5 demonstrates the updating of the message pointer  
aseachmessageisreceivedandstored.Thememorystorage  
of these three messages is shown in figure 6.After receiving  
the third message for Subaddress 4 (i.e., Index Field equals  
zero) the Address Field of the message pointer is not  
incremented. If the host does not update the receive  
message pointer for Subaddress 4 before the next receive  
command for Subaddress 4 is accepted, the third message  
will be overwritten.  
To illegalize a transmit command, the ILLCOM pin must  
be asserted within 3.3µs after VALMSG goes to a logic 1 if  
theRTSistorespondwiththeMessageErrorbitofthestatus  
word at a logic 1. If the illegal command is mode code 2, 4,  
5,6,7,or18,theILLCOMpinmustbeassertedwithin664ns  
after Command Strobe (COMSTR) transitions to logic 0.  
Asserting the ILLCOM pin within the 664ns inhibits the  
modecodefunction. Formodecodeillegalization, assertthe  
ILLCOM pin until the VALMSG signal is asserted.  
Figures 7 and 8 show an example of multiple message  
retrieval from Subaddress 16 upon reception of a MIL-STD-  
1553Btransmitcommand.Themessagepointerfortransmit  
Subaddress 16 is located at 03F0 (hex) in the 1K x 16 RAM.  
The 16-bit contents of location 03F0 (hex) point to the  
memory location where the first message data words  
are stored.  
For an illegal receive command, the ILLCOM pin must be  
asserted within 18.2µs after the COMSTR transitions to a  
logic 0 in order to suppress data words from being stored.  
Inaddition, theILLCOMpinmustbeatalogic1throughout  
the reception of the message until VALMSG is asserted.  
This does not apply to illegal transmit commands since the  
status word is transmitted first.  
Figure 7 demonstrates the updating of the message pointer  
as each message is received and stored. The data memory  
for these three messages is shown in figure 8.  
The above timing conditions also apply when the host  
externally decodes an illegal broadcast command. The host  
must remove the illegal command condition so that the next  
command is not falsely decoded as illegal.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-13  
Example:  
Remote terminal will receive and buffer three MIL-STD-1553 receive commands  
of various word lengths to Subaddress 4.  
MIL-STD-1553 Bus Activity:  
CMD WORD #1 DW0 DW1 DW2 DW3  
SA = 4  
T/R = 0  
WC = 4  
CMD WORD #2 DW0 DW1  
SA = 4  
T/R = 0  
WC = 2  
CMD WORD #3 DW0 DW1 DW2 DW3  
SA = 4  
T/R = 0  
WC = 4  
Receive Subaddress 4;  
data pointer at 03C4  
(hex). (Initial condition)  
INDEX = 0000 10  
ADDRESS = 00 0100 0000  
03C4 (hex)  
03C4 (hex)  
03C4 (hex)  
03C4 (hex)  
0840 (hex)  
After message #1,  
4 data words plus  
command word.  
INDEX = 0000 01  
ADDRESS = 00 0100 0101  
0445 (hex)  
0048 (hex)  
0048 (hex)  
After message #2,  
2 data words plus  
command word.  
INDEX = 0000 00  
ADDRESS = 00 0100 1000  
After message #3,  
4 data words plus  
command word.  
INDEX = 0000 00  
ADDRESS = 00 0100 1000  
Figure 5. RTS Message Handling  
03C4 (hex)  
0840 (hex)  
COMMAND WORD #1  
DATA WORD 0  
040 (hex)  
041 (hex)  
042 (hex)  
043 (hex)  
044 (hex)  
045 (hex)  
046 (hex)  
047 (hex)  
048 (hex)  
049 (hex)  
04A (hex)  
04B (hex)  
04C (hex)  
DATA WORD 1  
DATA WORD 2  
DATA WORD 3  
0445 (hex)  
0048 (hex)  
03C4 (hex)  
03C4 (hex)  
COMMAND WORD #2  
DATA WORD 0  
DATA WORD 1  
COMMAND WORD #3  
DATA WORD 0  
DATA WORD 1  
DATA WORD 2  
0048 (hex)  
DATA WORD 3  
03C4 (hex)  
Figure 6. Memory Storage Subaddress 4  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-14  
Example:  
Remote terminal will transmit and buffer three MIL-STD-1553 transmit commands  
of various word lengths to Subaddress 16.  
MIL-STD-1553 Bus Activity:  
CMD WORD #1  
DW3  
SW DW0  
DW1 DW2  
SA = 16  
T/R = 1  
WC = 4  
CMD WORD #2  
DW1  
SW SW0  
SA = 16  
T/R = 1  
WC = 2  
CMD WORD #3  
SW DW0 DW1 DW2 DW3  
SA = 16  
T/R = 1  
WC = 4  
Transmit Subaddress 16;  
data pointer at 03F0  
03F0 (hex)  
03F0 (hex)  
0830 (hex)  
INDEX = 0000 10  
ADDRESS = 00 0011 0000  
(hex). (Initial condition)  
After message #1,  
4 data words.  
0434 (hex)  
0036 (hex)  
INDEX = 0000 01  
ADDRESS = 00 0011 0100  
03F0 (hex)  
03F0 (hex)  
After message #2,  
2 data words.  
INDEX = 0000 00  
ADDRESS = 00 0011 0110  
0036 (hex)  
After message #3,  
4 data words.  
INDEX = 0000 00  
ADDRESS = 00 0011 0110  
Figure 7. RTS Message Handling  
03F0(hex)  
DATA WORD 0  
DATA WORD 1  
DATA WORD 2  
DATA WORD 3  
DATA WORD 0  
DATA WORD 1  
DATA WORD 0  
DATA WORD 1  
DATA WORD 2  
DATA WORD 3  
0830 (hex)  
030 (hex)  
031 (hex)  
032 (hex)  
033 (hex)  
034 (hex)  
035 (hex)  
036 (hex)  
037 (hex)  
038 (hex)  
039 (hex)  
0434 (hex)  
0036 (hex)  
03F0 (hex)  
03F0 (hex)  
0036(hex)  
03F0 (hex)  
Note:  
Example is valid only if message structure is known in advance.  
Figure 8. Memory Storage Subaddress 16  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-15  
3.0 PIN IDENTIFICATION AND DESCRIPTION  
BIPHASE OUT  
TAZ  
TAO  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDRESS  
BUS  
A10  
B10  
J2  
H1  
H2  
G1  
G2  
F1  
E2  
D1  
D2  
C1  
ADDR(9:0)  
TBZ  
TBO  
A9  
B9  
BIPHASE IN  
RAZ  
RAO  
L7  
K8  
L6  
RBZ  
RBO  
K7  
TERMINAL  
ADDRESS  
RTA0  
RTA1  
RTA2  
RTA3  
RTA4  
RTPTY  
L5  
K5  
L4  
K4  
L3  
K6  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DATA BUS  
DATA(15:0)  
L10  
K10  
K11  
J10  
J11  
H10  
H11  
G10  
F11  
E10  
E11  
D10  
D11  
C10  
MODE/CODE  
SUBADDRESS  
MCSA0  
MCSA1  
MCSA2  
MCSA3  
MCSA4  
B2  
A2  
A3  
B3  
A4  
UT1760A  
RTS  
STATUS  
SIGNALS  
MERR  
A5  
A6  
B5  
B6  
B8  
B1  
A7  
B4  
B7  
L8  
C2  
DSCNCT/TERACT  
TXERR  
TIMERON  
COMSTR  
MC/SA  
C11  
B11  
BRDCST  
T/R  
V
F10  
E1  
DD  
POWER  
V
DD  
RTRT  
F2  
V
V
GROUND  
SS  
SS  
VALMSG  
RBUSY  
G11  
L2  
A8  
12MHZ  
2MHZ  
CLOCK  
RESET  
CONTROL  
SIGNALS  
CS  
RD/WR  
CTRL  
K2  
K1  
J1  
L9  
K9  
K3  
MRST  
OE  
ILLCOM  
Figure 9. UT1760A RTS Pin Description  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-16  
Legend for TYPE and ACTIVE Fields:  
TTO = Three-state TTL output  
TTB = Three-state TTL bidirectional  
AL = Active low  
AH = Active high  
[] - Value in parentheses indicates initial state of  
these pins.  
TI = TTL input  
TUI = TTL input (pull-up)  
TDI = TTL input (pull-down)  
TO = TTL output  
DATA BUS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
DATA15  
B11  
C11  
C10  
D11  
D10  
E11  
E10  
F11  
G10  
H11  
H10  
J11  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Bit 15 (MSB) of the bidirectional Data bus.  
Bit 14 of the bidirectional Data bus.  
Bit 13 of the bidirectional Data bus.  
Bit 12 of the bidirectional Data bus.  
Bit 11 of the bidirectional Data bus.  
Bit 10 of the bidirectional Data bus.  
Bit 9 of the bidirectional Data bus.  
Bit 8 of the bidirectional Data bus.  
Bit 7 of the bidirectional Data bus.  
Bit 6 of the bidirectional Data bus.  
Bit 5 of the bidirectional Data bus.  
Bit 4 of the bidirectional Data bus.  
Bit 3 of the bidirectional Data bus.  
Bit 2 of the bidirectional Data bus.  
Bit 1 of the bidirectional Data bus.  
Bit 0 (LSB) of the bidirectional Data bus.  
DATA14  
DATA13  
DATA12  
DATA11  
DATA10  
DATA9  
DATA8  
DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
J10  
K11  
K10  
L10  
ADDRESS BUS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
ADDR9  
ADDR8  
ADDR7  
ADDR6  
ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
C1  
D2  
D1  
E2  
F1  
G2  
G1  
H2  
H1  
J2  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Bit 9 (MSB) of the Address bus.  
Bit 8 of the Address bus.  
Bit 7 of the Address bus.  
Bit 6 of the Address bus.  
Bit 5 of the Address bus.  
Bit 4 of the Address bus.  
Bit 3 of the Address bus.  
Bit 2 of the Address bus.  
Bit 1 of the Address bus.  
Bit 0 (LSB) of the Address bus.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-17  
CONTROL INPUTS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
CS  
K2  
TI  
AL  
Chip Select. The host processor uses the CS signal for  
RTS Status Register reads, Control Register writes, or  
host access to the RTS internal RAM.  
RD/WR  
K1  
TI  
--  
Read/Write. The host processor uses a high level on this  
input in conjunction with CS to read the RTS Status  
Register or the RTS internal RAM. A low level on this  
input is used in conjunction with CS to write to the RTS  
Control Register or the RTS internal RAM.  
CTRL  
OE  
J1  
L9  
K9  
TI  
TI  
AL  
AL  
AH  
Control. The host processor uses the active low CTRL  
input signal in conjunction with CS and  
RD/WR to access the RTS registers. A high level on this  
input means access is to RTS internal RAM only.  
Output Enable. The active low OE signal is used to  
control the direction of data flow from the RTS.  
For OE = 1, the RTS Data bus is three-state; for  
OE = 0, the RTS Data bus is active.  
ILLCOM  
TDI  
Illegal Command. The host processor uses the  
ILLCOM input to inform the RTS that the present  
command is illegal.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-18  
STATUS OUTPUTS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
MERR  
[0]  
A5  
B5  
B6  
TO  
AH  
Message Error. The active high MERR output signals that  
the Message Error bit in the Status Register has been set  
due to receipt of an illegal command, or an error during  
message sequence. MERR will reset to logic zero on the  
receipt of the next valid command.  
TXERR  
[0]  
TO  
TO  
AH  
AL  
Transmission Error. The active high TXERR output is  
asserted when the RTS detects an error in the reflected  
word versus the transmitted word, using the continuous  
loop-back compare feature. Reset on next COMSTR  
assertion.  
TIMERON  
[1]  
Fail-safe Timer. The TIMERON output pulses low for  
760µs when the RTS begins transmitting (i.e., rising edge  
of VALMSG) to provide a fail-safe timer meeting the  
requirements of MIL-STD-1553B. This pulse is reset  
when COMSTR goes low or during a Master Reset.  
COMSTR  
[1]  
B8  
A7  
B7  
TO  
TO  
TO  
AL  
AL  
AH  
Command Strobe. COMSTR is an active low output of  
500ns duration identifying receipt of a valid command.  
BRDCST  
[1]  
Broadcast. BRDCST is an active low output that identifies  
receipt of a valid broadcast command.  
RTRT  
[0]  
Remote Terminal to Remote Terminal. RTRT is an active  
high output indicating that the RTS is processing a remote  
terminal to remote terminal command.  
DSCNCT or  
TERACT  
[X]  
A6  
TO  
--  
Disconnect or Terminal Active. Bit 11 of the Control  
Register selects the mode of this dual-function pin. In the  
“Disconnect” mode (bit 11 = 1), the active high DSCNCT  
output is asserted when all six Terminal Address pins  
(RTA0 - RTA4, RTPTY) go high, indicating a disconnect  
condition. In the “Terminal Active” mode (bit 11 = 0), the  
active low TERACT output is asserted at the beginning of  
the RTS access to internal RAM for a given command and  
negated after the last access for that command.  
VALMSG  
[0]  
L8  
C2  
TO  
TO  
AH  
AH  
Valid Message. VALMSG is an active high output  
indicating a valid message (including Broadcast) has  
been received. VALMSG goes high prior to transmitting  
the 1553 status word and is reset upon receipt of the  
next command.  
RBUSY  
[0]  
RTS Busy. RBUSY is asserted high while the RTS is  
accessing its own internal RAM either to read or update  
the pointers or to store or retrieve data words. RBUSY  
becomes active either 2.7µs or 5.7µs before RTS requires  
RAM access. This timing is controlled by Control Register  
bit 12 (see section 1.3).  
T/R  
[0]  
B4  
TO  
--  
Transmit/Receive. A high level on this pin indicates a  
transmit command message transfer is being or was  
processed, while a low level indicates a receive command  
message transfer is being or was processed.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-19  
MODE CODE/SUBADDRESS OUTPUTS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
MC/SA  
[0]  
B1  
TO  
--  
Mode Code/Subaddress Indicator. If MC/SA is low, it indi-  
cates that the most recent command word is a mode code  
command. If MC/SA is high, it indicates that the most  
recent command word is for a subaddress. This output  
indicates whether the mode code/subaddress ouputs (i.e.,  
MCSA(4:0)) contain mode code or subaddress information.  
MCSA0  
[0]  
B2  
TO  
--  
Mode Code/Subaddress Output 0. If MC/SA is low, this pin  
represents the least significant bit of the most recent  
command word (the LSB of the mode code). If MC/SA is  
high, this pin represents the LSB of the subaddress.  
MCSA1  
[0]  
A2  
A3  
B3  
A4  
TO  
TO  
TO  
TO  
--  
--  
--  
--  
Mode Code/Subaddress Output 1.  
Mode Code/Subaddress Output 2.  
Mode Code/Subaddress Output 3.  
MCSA2  
[0]  
MCSA3  
[0]  
MCSA4  
[0]  
Mode Code/Subaddress Output 4. If MC/SA is low, this pin  
represents the most significant bit of the mode code. If MC/  
SA is high, this pin represents the MSB of the subaddress.  
REMOTE TERMINAL ADDRESS INPUTS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
RTA4  
L3  
K4  
L4  
K5  
L5  
K6  
TUI  
TUI  
TUI  
TUI  
TUI  
TUI  
--  
--  
--  
--  
--  
--  
Remote Terminal Address bit 4 (MSB).  
Remote Terminal Address bit 3.  
Remote Terminal Address bit 2.  
Remote Terminal Address bit 1.  
Remote Terminal Address bit 0 (LSB).  
RTA3  
RTA2  
RTA1  
RTA0  
RTPTY  
Remote Terminal Address Parity. This input must provide  
odd parity for the Remote Terminal Address.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-20  
1
BIPHASE INPUTS  
NAME  
PIN NUMBER  
TYPE  
TI  
ACTIVE  
DESCRIPTION  
(PGA)  
RAZ  
RAO  
RBZ  
RBO  
L7  
--  
--  
--  
--  
Receiver - Channel A, Zero Input. Idle low Manchester  
input form the 1553 bus receiver.  
K8  
L6  
K7  
TI  
Receiver - Channel A, One Input. This input is the  
complement of RAZ.  
TI  
Receiver - Channel B, Zero Input. Idle low Manchester  
input from the 1553 bus receiver.  
TI  
Receiver - Channel B, One Input. This input is the  
complement of RBZ.  
Note:  
1. For uniphase operation, tie RAZ (or RBZ) toVDD and apply true uniphase input signal to RAO (or RBO).  
BIPHASE OUTPUTS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
TAZ  
[0]  
A10  
TO  
--  
Transmitter - Channel A, Zero Output. This Manchester  
encoded data output is connected to the 1553 bus  
transmitter input. The output is idle low.  
TAO  
[0]  
B10  
A9  
TO  
TO  
--  
--  
Transmitter - Channel A, One Output. This output is the  
complement of TAZ. The output is idle low.  
TBZ  
[0]  
Transmitter - Channel B, Zero Output. This Manchester  
encoded data output is connected to the 1553 bus  
transmitter input. The output is idle low.  
TBO  
[0]  
B9  
TO  
--  
Transmitter - Channel B, One Output. This output is the  
complement of TBZ. The output is idle low.  
MASTER RESET AND CLOCK  
NAME  
MRST  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
K3  
L2  
A8  
TUI  
AL  
Master Reset. Initializes all internal functions of the RTS.  
MRST must be asserted 500ns before normal RTS  
operation (500ns minimum). Does not reset RAM.  
12MHz  
2MHz  
TI  
--  
--  
12 MHz Input Clock. This is the RTS system clock that  
requires an accuracy greater than 0.01% with a duty cycle  
of 50% ± 10%.  
TO  
2MHz Clock Output. This is a 2MHz clock output  
generated by the 12MHz input clock. This clock is  
stopped when MRST is low.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-21  
POWER AND GROUND  
NAME  
PIN NUMBER  
TYPE  
ACTIVE  
DESCRIPTION  
(PGA)  
V
V
F10  
E1  
PWR  
PWR  
--  
--  
+5 V Power. Power supply must be +5 V  
DC  
DD  
DC  
± 10%.  
F2  
G11  
GND  
GND  
--  
--  
Reference ground. Zero V logic ground.  
SS  
DC  
4.0 OPERATING CONDITIONS  
ABSOLUTE MAXIMUM RATINGS*  
(referenced to VSS  
)
SYMBOL  
PARAMETER  
LIMITS  
UNIT  
V
V
V
DC supply voltage  
-0.3 to +7.0  
DD  
IO  
Voltage on any pin  
-0.3 to V +0.3  
V
DD  
I
DC input current  
±10  
mA  
°C  
I
T
Storage temperature  
Maximum power dissipation  
-65 to +150  
300  
STG  
1
P
mW  
°C  
D
T
Maximum junction temperature  
+175  
20  
J
Θ
Thermal resistance, junction-to-case  
°C/W  
JC  
Note:  
1. Does not reflect the added PD due to an output short-circuited.  
*
Stressesoutsidethelistedabsolutemaximumratingsmaycausepermanentdamagetothedevice.Thisisastressratingonly,  
and functional operation of the device at these or any other conditions beyond limits indicated in the operational  
sections of this specification is not recommended. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
LIMITS  
4.5 to 5.5  
0 to V  
UNIT  
V
V
V
DC supply voltage  
DC input voltage  
Temperature range  
Operating frequency  
DD  
V
IN  
C
DD  
T
-55 to +125  
°C  
F
12 ±.01%  
MHz  
O
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-22  
5.0 DC ELECTRICAL CHARACTERISTICS  
= 5.0V ± 10%; -55°C < T <+125°C)  
V
DD  
C
SYMBOL  
PARAMETER  
Low-level input voltage  
High-level input voltage  
CONDITION  
MINIMUM MAXIMUM  
UNIT  
V
V
V
0.8  
IL  
2.0  
V
IH  
I
Input leakage current  
TTL inputs  
Inputs with pull-down resistors  
Inputs with pull-up resistors  
IN  
V
V
V
= V or V  
-1  
110  
-2000  
1
2000  
-110  
µA  
µA  
µA  
IN  
IN  
IN  
DD  
SS  
= V  
= V  
DD  
SS  
V
V
Low-level output voltage  
High-level output voltage  
I
I
= 3.2µA  
0.4  
V
OL  
OL  
OH  
= -400µA  
2.4  
-10  
V
OH  
I
Three-state output  
leakage current  
V
= V or V  
SS  
+10  
µA  
OZ  
O
DD  
1, 2  
I
Short-circuit output current  
V
V
= 5.5V, V = V  
DD  
90  
mA  
mA  
OS  
DD  
DD  
O
-90  
= 5.5V, V = 0V  
O
3
C
C
C
Input capacitance  
ƒ = 1MHz @ 0V  
ƒ = 1MHz @ 0V  
ƒ = 1MHz @ 0V  
ƒ = 12MHz, CL = 50pF  
Note 5  
10  
15  
20  
50  
1.5  
pF  
IN  
3
Output capacitance  
pF  
OUT  
IO  
3
Bidirect I/O capacitance  
pF  
1, 4  
I
Average operating current  
mA  
mA  
DD  
QI  
Quiescent current  
DD  
Notes:  
1. Supplied as a design limit but not guaranteed or tested.  
2. Not more than one output may be shorted at a time for a maximum duration of one second.  
3. Measured only for initial qualification, and after process or design changes that could affect input/output capacitance.  
4. Includes current through input pull-ups. Instantaneous surge currents on the order of 1 ampere can occur during output switching.  
Voltage supply should be adequately sized and decoupled to handle a large surge current.  
5. All inputs with internal pull-ups or pull-downs should be left open circuit. All other inputs tied high or low.  
BIT TIMES  
1 2 3  
4 5 6 7 8  
5
9
10 11 12 13 14  
5
15 16 17 18 19  
5
20  
1
1
COMMAND  
WORD  
P
T/R  
DATA WORD COUNT/  
MODE CODE  
SYNC REMOTE TERMINAL  
ADDRESS  
SUBADDRESS/MODE  
CODE  
1
P
1
16  
DATA WORD  
DATA  
SYNC  
1
1
1
1
1
5
1
1
1
STATUS WORD  
REMOTE TERMINAL  
SYNC  
RESERVED  
ADDRESS  
Figure 10. MIL-STD-1553B Word Formats  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-23  
6.0 AC ELECTRICAL CHARACTERISTICS  
(Over recommended operating conditions)  
V
V
MIN  
MAX  
V
V
MIN  
MAX  
IH  
IL  
IH  
IL  
1
t
1
INPUT  
t
b
a
c
V
MIN  
MAX  
IN-PHASE  
OUTPUT  
OH  
2
2
2
V
OL  
t
d
V
MIN  
MAX  
OH  
OUT-OF-PHASE  
OUTPUT  
2
t
V
OL  
t
e
V
MIN  
MAX  
OH  
BUS  
V
OL  
t
f
t
g
t
h
SYMBOL  
PARAMETER  
t
t
t
t
t
t
t
t
INPUT to response  
INPUT to response  
INPUT to response  
a
b
c
to response  
INPUT  
d
e
f
INPUT to data valid  
INPUT to high Z  
to high Z  
INPUT  
g
h
INPUT to data valid  
Notes:  
1. Timing measurements made at (VIH MIN + VIL MAX)/2.  
2. Timing measurements made at (VOL MAX + VOH MIN)/2.  
3. Based on 50pf load.  
4. Unless otherwise noted, allAC electrical characteristics are guaranteed by design or characterization.  
Figure 11a. Typical Timing Measurements  
5V  
I
(source)  
V
REF  
3V  
90%  
90%  
REF  
D
10%  
10%  
50pF  
0V  
< 2ns  
< 2ns  
I
(sink)  
REF  
Input Pulses  
Note:  
50pF including scope probe and test socket  
Figure 11b. AC Test Loads and Input Waveforms  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-24  
12MHz  
CS  
t
12i  
t
12j  
t
12a  
t
t
12f  
CTRL  
t
12b  
RD/WR  
ADDR(9:0)  
12k  
t
t
12c  
12g  
t
12d  
t
12l  
DATA(15:0)  
OE  
DATA VALID  
t
1h  
t
12e  
t
12m  
Figure 12. Microprocessor RAM Read  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
1
10  
10  
10  
--  
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
CTRLset up wrt CS↓  
12a  
12b  
12c  
12d  
12e  
12f  
RD/WR set up wrt CS↓  
--  
ADDR(9:0) Valid to CS(Address Set up)  
CSto DATA(15:0) Valid  
155  
65  
--  
--  
OEto DATA(15:0) Don’t Care (Active)  
CSto CTRL Don’t Care  
0
0
--  
CSto ADDR(9:0) Don’t Care  
OEto DATA(15:0) High Impedance  
12g  
12h  
12i  
--  
40  
5500  
--  
2
220  
85  
0
CSto CS↑  
CSto CS↓  
12j  
--  
CSto RD/WR Don’t Care  
12k  
12l  
3
25  
65  
--  
CSto DATA(15:0) Invalid  
--  
OEto OE↑  
12m  
Notes:  
1. “wrt” defined as “with respect to.”  
2. The maximum amount of time that CS can be held low is 5500ns if the user has selected the 5.7µs RBUSY option. For the 2.7µs  
RBUSY option, the maximum CS low time is 2500ns.  
3. Assumes OE is asserted.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-25  
12MHz  
CS  
t
13i  
t
13j  
t
13a  
13b  
13c  
t
13k  
CTRL  
t
RD/WR  
ADDR(9:0)  
DATA(15:0)  
OE  
t
13f  
t
t
t
13g  
t
13d  
VALID DATA  
13h  
t
13e  
Figure 13. Microprocessor RAM Write  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
10  
10  
10  
0
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
CTRLset up wrt CS↓  
13a  
13b  
13c  
13d  
13e  
13f  
RD/WR set up wrt CS↓  
--  
ADDR(9:0) Valid to CS(Address set up)  
CSto DATA(15:0) Valid CS(DATA set up)  
OEto DATA(15:0) High Impedance  
CSto RD/WR Don’t Care  
--  
40  
0
--  
--  
0
--  
CSto ADDR(9:0) Don’t Care  
13g  
13h  
13i  
20  
180  
85  
0
--  
CSto DATA(15:0) Don’t Care (Hold-time)  
1
5500  
--  
CSto CS↑  
CSto CS↓  
13j  
--  
CSto CTRL Don’t Care  
13k  
Note:  
1. The maximum amount of time that CS can be held low is 5500ns if the user has selected the 5.7µs RBUSY option. For the 2.7µs  
RBUSY option, the maximum CS low time is 2500ns.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-26  
12MHz  
CS  
t
14c  
t
t
14a  
14b  
t
14e  
CTRL  
RD/WR  
t
14f  
t
14h  
DATA(15:0)  
VALID DATA  
t
14d  
OE  
t
14g  
Figure 14. Control Register Write  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
0
0
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
CTRLset up wrt CS↓  
RD/WR set up wrt CS↓  
14a  
14b  
14c  
14d  
14e  
14f  
1
50  
0
5500  
--  
CSto CS↑  
CSto DATA(15:0) Don’t Care (Hold-time)  
CSto CTRL Don’t Care  
0
--  
0
--  
CSto RD/WR Don’t Care  
40  
0
--  
OEto Data(15:0) High Impedance  
DATA (15:0) Valid to CS(DATA set up)  
14g  
14h  
--  
Note:  
1. The maximum amount of time that CS can be held low is 5500ns if the user has selected the 5.7µs RBUSY option. For the 2.7µs  
RBUSY option, the maximum CS low time is 2500ns.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-27  
12MHz  
CS  
t
15b  
t
t
15a  
15c  
t
15e  
CTRL  
RD/WR  
t
15f  
t
15d  
t
15j  
VALID DATA  
DATA(15:0)  
t
15h  
t
15g  
t
15i  
OE  
Figure 15. Status Register Read  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
0
65  
0
--  
5500  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
CTRLset up wrt CS↓  
15a  
15b  
15c  
15d  
15e  
15f  
1
CSto CS↑  
RD/WRset up wrt CS↓  
--  
65  
--  
CSto DATA(15:0) Valid  
5
CSto CTRL Don’t Care  
5
--  
CSto RD/WR Don’t Care  
OEto DATA(15:0) Don’t Care (Active)  
OEto DATA(15:0) High Impedance  
OEto OE↑  
--  
65  
40  
--  
15g  
15h  
15i  
--  
65  
25  
--  
CSto DATA(15:0) Don’t Care (Active)  
15j  
Note:  
1. The maximum amount of time thatCS can be held low is 5500ns if the user has selected the 5.7µs RBUSY option. For the 2.7µs RBUSY  
option, the maximum CS low time is 2500ns.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-28  
VALMSG  
TIMERON  
t
16a  
t
16c  
A/B  
BIPHASE  
OUTPUT ZERO  
t
16b  
COMSTR  
ILLCOM  
t
16d  
t
16g  
t
t
16f  
16e  
Figure 16. RT Fail-Safe Timer Signal Relationships  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
0
1.2  
727.3  
--  
35  
--  
ns  
µs  
µs  
ns  
µs  
ns  
µs  
ns  
t
t
t
t
t
t
t
t
VALMSGbefore TIMERON↓  
TIMERONbefore first BIPHASE OUT O↑  
TIMERON low pulse width (time-out)  
COMSTRto TIMERON↑  
16a  
16b  
16c  
16d  
16e  
16f  
727.4  
25  
--  
3.3  
664  
18.2  
--  
VALMSGto ILLCOM↑  
1
--  
COMSTRto ILLCOM↑  
2
--  
COMSTRto ILLCOM↑  
16f  
3
500  
ILLCOMto ILLCOM↓  
16g  
Notes:  
1. Mode code 2, 4, 5, 6, 7, or 18 received.  
2. To suppress data word storage.  
3. For transmit command illegalization.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-29  
12MHz  
CS COMMAND WORD  
P
1
BIPHASE IN  
t
17a  
MC/SA  
and MCSA(4:0)  
t
t
17b  
17c  
t
17l  
COMSTR  
t
t
17d  
17e  
BRDCST  
T/R  
t
t
17f  
17g  
t
t
17h  
17i  
VALMSG  
t
17j  
t
17k  
MERR  
Note:  
1. Measured from the mid-bit parity crossing.  
Figure 17. Status Output Timing  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
4
0
2.1  
0
14  
2.8  
17  
ns  
µs  
ns  
µs  
ns  
µs  
ns  
µs  
ns  
µs  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
12Mhzto MC/SA Valid  
Command Word to MC/SA Valid  
12MHzto COMSTR↓  
17a  
17b  
3
4
17c  
17d  
17e  
17f  
17g  
17h  
17i  
3
3.2  
0
3.7  
32  
Command Word to COMSTR↓  
4
4
4
4
12MHzto BRDCST↓  
3
2.6  
0
3.2  
57  
Command Word to BRDCST↓  
12MHzto T/R Valid  
3
2.2  
0
2.7  
32  
Command Word toT/R Valid  
12MHzto VALMSG↑  
1,2,3  
6.2  
0
6.7  
37  
Command Word toVALMSG↑  
12MHzto MERR↑  
17j  
17k  
17l  
485  
500  
COMSTRTO COMSTR↑  
Notes:  
1. Receive last data word to Valid Message active (VALMSG).  
2. Transmit command word to Valid Message active (VALMSG).  
3. Command word measured from mid-bit crossing.  
4. Guaranteed by test.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-30  
12MHz  
CS COMMAND WORD  
P
t
18a  
BIPHASE IN  
t
18i  
RBUSY  
t
18h  
t
t
18b  
18c  
TERACT  
t
18d  
t
t
18e  
RTRT  
18f  
t
18g  
MRST  
Note:  
1. Measured from mid-bit parity crossing.  
Figure 18. Status Output Timing  
PARAMETER MIN  
SYMBOL  
MAX  
UNITS  
--  
3.2  
0
37  
3.8  
37  
3.7  
32  
22  
--  
ns  
µs  
ns  
µs  
ns  
µs  
ns  
µs  
µs  
µs  
ns  
t
t
t
t
t
t
t
12MHzto RBUSY↑  
18a  
18b  
3
Command Word toRBUSY↑  
12MHzto TERACT↓  
2
18c  
18d  
18e  
18f  
1,3  
3.1  
0
Command Word to TERACT↓  
12MHzto RTRT↑  
2
3
21.0  
500  
--  
Command Word to RTRT↑  
MRSTto MRST↑  
18g  
5.5  
8.5  
--  
RBUSYto RBUSY(2.7µs)  
(5.7µs)  
t
t
18h  
18i  
--  
3.10  
240  
RBUSYto RBUSY(2.7µs)  
(5.7µs)  
--  
Notes:  
1. TERACT enabled via Control Register.  
2. Guaranteed by test.  
3. Command word measured from mid-bit crossing  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-31  
BIPHASE IN  
DS DATA WORD  
P
P
DS DATA WORD  
CS COMMAND WORD  
COMSTR  
T/R  
RBUSY  
1
2
3
TERACT  
SS STATUS WORD  
P
BIPHASE OUT  
VALMSG  
Notes:  
1. Burst of 5 DMAs: read command pointer, store command word, update command pointer, read data word pointer, store  
command word.  
2. Burst of 1 DMA: store data word.  
3. Burst of 2 DMAs: store data word, update data word pointer.  
4. Approximately 560ns per DMA access.  
Figure 19a. Receive Command with Two Data Words  
CS COMMAND WORD  
P
BIPHASE IN  
COMSTR  
T/R  
RBUSY  
1
2
3
TERACT  
BIPHASE OUT  
SS STATUS WORD  
P
DS DATA WORD  
P
DS DATA WORD  
P
VALMSG  
CS = Command sync  
SS = Status sync  
DS = Data sync  
P = Parity  
Notes:  
1. Burst of 4 DMAs: read command pointer, store command word, update command pointer, read data word pointer.  
2. Burst of 1 DMA: read data word.  
3. Burst of 2 DMAs: read data word, update data word pointer.  
4. Approximately 560ns per DMA access.  
Figure 19b. Transmit Command with Two Data Words  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-32  
ADDR(9:0)  
DATA(15:0)  
CONTROL  
HOST  
SUBSYSTEM  
UT1760A  
RTS  
UT63M125  
1553 TRANSCEIVER  
1553 BUS A  
1553 BUS B  
Figure 20a. RTS General System Diagram (Idle low interface)  
RAO  
RXOUT  
RXOUT  
RAZ  
CHANNEL A  
TXINHB  
CHANNEL A  
TXIN  
TXIN  
TAO  
TAZ  
UTMC  
63M125  
RTS  
RBO  
RBZ  
RXOUT  
RXOUT  
CHANNEL B  
TXINHB  
CHANNEL B  
TBO  
TBZ  
TXIN  
TXIN  
TIMERON  
Figure 20b. RTS Transceiver Interface Diagram  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-33  
MC/SA  
MCSA0  
MCSA1  
ILLEGAL  
COMMAND  
DECODER  
MCSA2  
MCSA3  
MCSA4  
RTS  
COMSTR  
BRDCST  
T/R  
RTRT  
ILLCOM  
Figure 21. Mode Code/Subaddress Illegalization Circuit  
7.0 PACKAGE OUTLINE DRAWING  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-34  
L
K
J
L10  
L2  
K2  
J2  
L3  
K3  
L4  
K4  
L5  
K5  
L6  
K6  
L7  
K7  
L8  
K8  
L9  
K9  
K10 K11  
K1  
J1  
J10  
H10  
G10  
J11  
H11  
G11  
F11  
E11  
D11  
C11  
B11  
H
H2  
G2  
H1  
G1  
G
F
F2  
E2  
D2  
C2  
B2  
A2  
F10  
E10  
D10  
C10  
B10  
F1  
E1  
E
D
D1  
C1  
B1  
C
B
A
B3  
A3  
B4  
A4  
B5  
A5  
B6  
A6  
B7  
A7  
B8  
A8  
B9  
A9  
A10  
10  
1
2
3
4
5
6
7
8
9
11  
C1 ADDR9  
C2 RBUSY  
C10 DATA13  
C11 DATA14  
A2 MCSA1  
A3 MCSA2  
A4 MCSA4  
A5 MERR  
A6 TERACT or  
DSCNCT  
G1 ADDR3  
G2 ADDR4  
G10 DATA7  
K1 RD/WR  
K2 CS  
K3 MRST  
K4 RTA3  
K5 RTA1  
K6 RTPTY  
K7 RBO  
G11  
V
SS  
D1 ADDR7  
D2 ADDR8  
D10 DATA11  
D11 DATA12  
H1 ADDR1  
H2 ADDR2  
H10 DATA5  
H11 DATA6  
A7 BRDCST  
A8 2MHz  
A9 TBZ  
K8 RAO  
K9 ILLCOM  
K10 DATA1  
K11 DATA2  
A10 TAZ  
E1  
V
DD  
J1  
J2  
CTRL  
ADDR0  
B1 MC/SA  
B2 MCSA0  
B3 MCSA3  
B4 T/R  
E2 ADDR6  
E10 DATA9  
E11 DATA10  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
12MHz  
RTA4  
RTA2  
RTA0  
RBZ  
B5 TXERR  
B6 TIMERON  
B7 RTRT  
F1  
ADDR5  
RAZ  
VALMSG  
B8 COMSTR  
Figure 22. UT1760A RTS Pingrid Array Configuration (Bottom View)  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
RTS-35  
Package Selection Guide  
Product  
RTI RTMP RTR BCRT BCRTM BCRTMP RTS XCVR  
X
24-pin DIP  
(single cavity)  
36-pin DIP  
X
(dual cavity)  
68-pin PGA  
84-pin PGA  
144-pin PGA  
84-lead LCC  
36-lead FP  
(dual cavity)  
(50-mil ctr)  
X
X
1
1
X
X
X
X
X
X
X
X
X
X
84-lead FP  
132-lead FP  
X
X
X
NOTE:  
1. 84LCC package is not available radiation-hardened.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Packaging-1  
A
D
0.130 MAX.  
1.565 ± 0.025  
-A-  
Q
0.040 REF.  
0.050 ± 0.010  
A
0.080 REF.  
(2 Places)  
L
0.130 ±0.010  
0.100 REF.  
(4 Places)  
E
1.565 ± 0.025  
-B-  
PIN 1 I.D.  
(Geometry Optional)  
-C-  
(Base Plane)  
A
e
b
TOP VIEW  
0.100  
TYP.  
0.018 ± 0.002  
0.030 C A  
1
B
0.010  
C
2
R
SIDE VIEW  
P
N
M
L
K
J
D1/E1  
1.400  
H
G
F
E
D
1
2
3
4 5 6 7 8 9 10 11 12 13 14 15  
PIN 1 I.D.  
(Geometry Optional)  
Powered by ICminer.com Electronic-Library Service CopyRightB2O003TTOM VIEW  
Notes:  
0.003 MIN. TYP.  
1. True position applies to pins at base plane (datum C).  
2. True position applies at pin tips.  
3. All package finishes are per MIL-M-38510.  
4. Letter designations are for cross-reference to MIL-M-38510.  
144-Pin Pingrid Array  
Packaging-2  
D/E  
A
0.110  
0.006  
1.525 ± 0.015 SQ.  
D1/E1  
0.950 ± 0.015 SQ.  
PIN 1 I.D.  
A
(Geometry  
Optional)  
e
0.025  
SEE DETAIL A  
A
LEAD KOVAR  
TOP VIEW  
C
0.005  
+ 0.002  
- 0.001  
L
S1  
0.250  
MIN.  
REF.  
SIDE VIEW  
0.005 MIN. TYP.  
0.018 MAX. REF.  
0.014 MAX. REF.  
(At Braze Pads)  
DETAIL A  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
BOTTOM VIEW A-A  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. Letter designations are for cross-reference to MIL-M-38510.  
132-Lead Flatpack (25-MIL Lead Spacing)  
Packaging-3  
A
0.115 MAX.  
D/E  
1.150 ± 0.015 SQ.  
A1  
A
0.080 ± 0.008  
A
PIN 1 I.D.  
(Geometry Optional)  
TOP VIEW  
SIDE VIEW  
L/L1  
0.050 ± 0.005 TYP.  
h
0.040 x 45_  
REF. (3 Places)  
B1  
0.025 ± 0.003  
e
0.050  
e1  
0.015 MIN.  
J
0.020 X 455 REF.  
PIN 1 I.D.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
(Geometry Optional)  
BOTTOM VIEW A-A  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. Letter designations are for cross-reference to MIL-M-38510.  
84-LCC  
Packaging-4  
D/E  
A
1.810 ± 0.015 SQ.  
0.110  
0.060  
D1/E1  
1.150 ± 0.012 SQ.  
PIN 1 I.D.  
(Geometry  
Optional)  
A
e
0.050  
b
0.016 ± 0.002  
SEE DETAIL A  
LEAD KOVAR  
A
C
TOP VIEW  
0.007 ± 0.001  
L
SIDE VIEW  
0.260  
MIN.  
REF.  
S1  
0.005 MIN. TYP.  
0.018 MAX. REF.  
0.014 MAX.  
REF.  
(At Braze Pads)  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
DETAIL A  
BOTTOM VIEW A-A  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. Letter designations are for cross-reference to MIL-M-38510.  
84-Lead Flatpack (50-MIL Lead Spacing)  
Packaging-5  
A
D
0.130 MAX.  
-A-  
1.100 ± 0.020  
Q
A
0.050 ± 0.010  
L
0.130 ± 0.010  
E
1.100 ± 0.020  
PIN 1 I.D.  
(Geometry Optional)  
-B-  
-C-  
TOP VIEW  
(Base Plane)  
A
b
0.018 ± 0.002  
e
0.100  
TYP.  
1
0.030 C A  
B
0.010  
C
2
L
SIDE VIEW  
K
J
H
G
F
E
D
D1/  
1.000  
1
2
3
4
5
6
7
8 9 10 11  
PIN 1 I.D.  
(Geometry Optional)  
0.003 MIN.  
BOTTOM VIEW A-A  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Notes:  
1. True position applies to pins at base plane (datum C).  
2. True position applies at pin tips.  
3. All packages finishes are per MIL-M-38510.  
4. Letter designations are for cross-reference to MIL-M-38510.  
84-Pin Pingrid Array  
Packaging-6  
A
0.130 MAX.  
Q
D
0.050 ± 0.010  
-A-  
1.100 ± 0.020  
A
L
0.130 ± 0.010  
E
1.100 ± 0.020  
-B-  
PIN 1 I.D.  
(Geometry Optional)  
A
-C-  
(Base Plane)  
TOP  
b
0.010 ± 0.002  
e
0.100  
1
0.030  
0.010  
Æ
Æ
A
2
C
C
B
TYP.  
SIDE VIEW  
L
K
J
H
G
F
E
D
C
B
A
D1/E1  
1.00  
1
2
3
4
5
6
7
8
9
10 11  
PIN 1 I.D.  
(Geometry Optional)  
0.003 MIN. TYP.  
BOTTOM VIEW A-A  
Powered by ICminer.com ElectroNnioct-eLsi:brary Service CopyRight 2003  
1
2
True position applies to pins at base plane (datum C).  
True position applies at pin tips.  
3. All packages finishes are per MIL-M-38510.  
4. Letterdesignationsareforcross-referencetoMIL-M-38510.  
68-Pin Pingrid Array  
Packaging-7  
L
E
0.490  
MIN.  
0.750 ± 0.015  
b
0.015 ± 0.002  
D
1.800 ± 0.025  
e
0.10  
PIN 1 I.D.  
(Geometry Optional)  
TOP VIEW  
c
+ 0.002  
- 0.001  
0.008  
A
0.130 MAX.  
Q
END VIEW  
0.080 ± 0.010  
(At Ceramic Body)  
Notes:  
All package finishes are per MIL-M-38510.  
1
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
2. It is recommended that package ceramic be mounted to  
aheatremovalraillocatedontheprintedcircuitboard.  
A thermally conductive material such as MERECO XLN-589 or  
equivalent should be used.  
3. Letter designations are for cross-reference to MIL-M-38510.  
36-Lead Flatpack, Dual Cavity (100-MIL Lead Spacing)  
Packaging-8  
E
L
0.700 + 0.015  
0.330  
MIN.  
b
0.016 + 0.002  
D
1.000 ± 0.025  
e
0.050  
PIN 1 I.D  
(Geometry Optional)  
TOP  
+ 0.002  
c
- 0.001  
0.007  
A
0.100 MAX.  
Q
0.070 + 0.010  
(At Ceramic Body)  
END  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. It is recommended that package ceramic be mounted to  
a heat removal rail located on the printed circuit board.  
A thermally conductive material such as MERECO XLN-589  
or equivalent should be used.  
3. Letter designations are for cross-reference to MIL-M-38510.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
36-Lead Flatpack, Dual Cavity (50-MIL Lead Spacing)  
Packaging-9  
E
S1  
0.005 MIN.  
S2  
0.590 ± 0.012  
e
0.005 MAX.  
0.100  
D
1.800 ± 0.025  
b
0.018 ± 0.002  
PIN 1 I.D.  
(Geometry Optional)  
A
L/L1  
0.150 MIN.  
0.155 MAX.  
TOP VIEW  
SIDE VIEW  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. It is recommended that package ceramic be mounted to  
a heat removal rail located on the printed circuit board.  
A thermally conductive material such as MERECO XLN-589  
or equivalent should be used.  
C
+ 0.002  
0.010  
- 0.001  
E1  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
0.600 + 0.010  
3. Letter designations are for cross-reference to MIL-M-38510.  
(At Seating Plane)  
END VIEW  
36-Lead Side-Brazed DIP, Dual Cavity  
Packaging-10  
E
S1  
0.005 MIN.  
S2  
0.590 ± 0.015  
0.005 MAX.  
e
0.100  
D
1.200 ± 0.025  
b
0.018 ± 0.002  
L/L1  
0.150 MIN.  
PIN 1 I.D.  
(Geometry Optional)  
A
0.140 MAX.  
SIDE VIEW  
TOP VIEW  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. It is recommended that package ceramic be mounted to  
a heat removal rail located on the printed circuit board.  
A thermally conductive material such as MERECO XLN-589 or  
equivalent should be used.  
+ 0.002  
- 0.001  
C
0.010  
E1  
0.600 + 0.010  
3. Letter designations are for cross-reference to MIL-M-38510.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
(At Seating Plane)  
END VIEW  
24-Lead Side-Brazed DIP, Single Cavity  
Packaging-11  
ORDERING INFORMATION  
UT1553B RTS Remote Terminal for Stores: S  
5962  
*
*
*
*
*
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Case Outline:  
(X) 68 pin PGA  
=
Class Designator:  
(-) Blank or No field is QML Q  
=
Drawing Number: 8957501  
Total Dose:  
(-)  
=
None  
Federal Stock Class Designator: No options  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).  
3. For QML Q product, the Q designator is intentionally left blank in the SMD number (e.g. 5962-8957501XC).  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
UT1553B RTS Remote Terminal for Stores  
No UT Part  
Number-  
*
*
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Package Type:  
(G) 68 pin PGA  
=
UTMC Core Part Number  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  

相关型号:

UT1760A-GX

Telecommunication IC
ETC

UT1760ARTSG

MIL-STD-1553/ARINC Bus Controller/RTU
ETC

UT180020

Diffuse reflection sensor (analogue/digital)
ETC

UT180021

Diffuse reflection sensor (analogue/digital)
ETC

UT180022

Diffuse reflection sensor (analogue/digital)
ETC

UT18002A

Diffuse reflection sensor (analogue/digital)
ETC

UT18002B

Diffuse reflection sensor (analogue/digital)
ETC

UT18002C

Diffuse reflection sensor (analogue/digital)
ETC

UT1801-7

AC-DC Regulated Power Supply Module
BEL

UT1801-7FB1

AC-DC Regulated Power Supply Module
BEL

UT1802-7DB1

AC-DC Regulated Power Supply Module
BEL

UT1802-7FB1

AC-DC Regulated Power Supply Module
BEL