UT22VP10E-15UCC [ETC]

Fuse-Programmable PLD ; 保险丝可编程PLD\n
UT22VP10E-15UCC
型号: UT22VP10E-15UCC
厂家: ETC    ETC
描述:

Fuse-Programmable PLD
保险丝可编程PLD\n

可编程逻辑 时钟
文件: 总19页 (文件大小:162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Standard Products  
UT22VP10 Universal RADPALTM  
Data Sheet  
November 2000  
FEATURES  
q High speed Universal RADPAL  
q Radiation-hardened process and design; total dose irradia-  
-
t
: 15.5ns, 20ns, 25ns maximum  
tion testing to MIL-STD-883, Method 1019  
PD  
-
-
-
Total dose: 1.0E6 rads(Si)  
-
f
: 33MHz maximum external frequency  
MAX1  
2
Upset threshold 50 MeV-cm /mg (min)  
-
-
Supported by industry-standard programmer  
Amorphous silicon anti-fuse  
2
Latchup immune(LET>109 MeV-cm /mg)  
q QML Q & V compliant  
q Packaging options:  
q Asynchronous and synchronous RADPAL operation  
-
-
Synchronous PRESET  
Asynchronous RESET  
-
-
-
24-pin 100-mil center DIP (0.300 x 1.2)  
24-lead flatpack (.45 x .64)  
28-lead quad-flatpack (.45 x .45)  
q Up to 22 input and 10 output drivers may be configured  
-
-
CMOS & TTL-compatible input and output levels  
Three-state output drivers  
q Standard Military Drawing 5962-94754 available  
q Variable product terms, 8 to 16 per output  
q 10 user-programmable output macrocells  
-
-
-
Registered or combinatorial operation  
Output driver polarity control selectable  
Two feedback paths available  
13  
11  
10  
9
8
7
6
5
4
3
2
1
12  
VSS  
Reset  
PROGRAMMABLE ARRAY LOGIC  
(132 X 44)  
8
10  
12  
14  
16  
16  
14  
12  
10  
8
Preset  
Macrocell  
Macrocell  
Macrocell  
Macrocell  
Macrocell  
Macrocell  
Macrocell  
Macrocell  
Macrocell  
Macrocell  
CP  
VDD  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Figure 1. Block Diagram  
PRODUCT DESCRIPTION  
QUAD-FLATPACK PIN CONFIGURATION  
The UT22VP10 RADPAL is a fuse programmable logic array  
device. The familiar sum-of-products (AND-OR) logic struc-  
ture is complemented with a programmable macrocell. The  
UT22VP10 is available in 24-pin DIP, 24-lead flatpack, and  
28-lead quad-flatpack package offerings providing up to 22  
inputs and 10 outputs. Amorphous silicon anti-fuse technology  
provides the programming of each output. The user specifies  
whether each of the potential outputs is registered or combina-  
torial. Output polarity is also individually selected, allowing for  
greater flexibility for output configuration. A unique output en-  
able function allows the user to configure bidirectional I/O on  
an individual basis.  
I
I
CK/I VDD VDD I/O0 I/O1  
4
3
2
1
28 27 26  
25  
I
I
5
6
7
8
I/O2  
I/O3  
I/O4  
VSS  
24  
23  
22  
I
VSS  
21  
20  
19  
I
I
I
9
I/O5  
I/O6  
I/O7  
10  
11  
The UT22VP10 architecture implements variable sum terms  
providing8to16producttermstooutputs. Thisfeatureprovides  
the user with increased logic function flexibility. Other features  
include common synchronous preset and asynchronous reset.  
These features eliminate the need for performing the initializa-  
tion function.  
12 13 14 15 16 17 18  
I
I
VSS VSS  
I
I/O9 I/O8  
The UT22VP10 provides a device with the flexibility to imple-  
ment logic functions in the 500 to 800 gate complexity. The  
flexible architecture supports the implementation of logic func-  
tions requiring up to 21 inputs and only a single output or down  
to 12 inputs and 10 outputs. Development and programming  
support for the UT22VP10 is provided by DATA I/O.  
PIN NAMES  
CK/I  
Clock/Data Input  
Data Input  
I
I/O  
Data Input/Output  
Power  
V
DD  
DIP & FLATPACK PIN CONFIGURATION  
V
Ground  
SS  
FUNCTION DESCRIPTION  
1
2
24  
23  
CK/I  
I
VDD  
I/O0  
The UT22VP10 RADPAL implements logic functions as sum-  
of-products expressions in a one-time programmable-AND/  
fixed-OR logic array. User-defined functions are created by  
programming the connections of input signals into the array.  
User-configurable output structures in the form of I/O macro-  
cells further increase logic flexibility.  
3
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
I
I
I
I
I
I
I
I
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
I/O8  
I/O9  
I
4
5
6
7
8
9
10  
11  
12  
I
VSS  
2
1, 2, 3  
Table 1. Macrocell Configuration Table  
C
C
C
0
Output Type  
Polarity  
Feedback  
2
1
0
0
0
Registered  
Registered  
Active LOW  
Active HIGH  
Active LOW  
Active HIGH  
Active LOW  
Active HIGH  
Registered  
Registered  
I/O  
0
X
X
1
0
1
1
0
0
1
0
1
0
1
Combinatorial  
Combinatorial  
Registered  
I/O  
I/O  
1
Registered  
I/O  
Notes:  
1. 0 equals programmed low or programmed.  
2. 1 equals programmed high or unprogrammed.  
3. X equals don’t care.  
a Don’t Care state exists and that term will always be a logical  
one.  
OVERVIEW  
The UT22VP10 RADPAL architecture (see figure 1) has 12 ded-  
icated inputs and 10 I/Os to provide up to 22 inputs and 10  
outputs for creating logic functions. At the core of the device  
is a one-time programmable anti-fuse AND array that drives a  
fixed OR array. With this structure, the UT22VP10 can imple-  
ment up to 10 sum-of-products logic expressions.  
PRODUCT TERMS  
The UT22VP10 provides 120 product terms that drive the 10  
OR functions. The 120 product terms connect to the outputs in  
two groups of 8, 10, 12, 14, and 16 to form logical sums.  
MACROCELL ARCHITECTURE  
Associated with each of the 10 OR functions is a macrocell  
which is independently programmed to one of six different con-  
figurations. The one-time programmable macro cells allow  
each I/O to create sequential or combinatorial logic functions  
with either Active-High or Active-Low polarity.  
The output macrocell provides complete control over the archi-  
tecture of each output. Configuring each output independently  
permits users to tailor the configuration of the UT22VP10 to  
meet design requirements.  
Each I/O macrocell (see figure 2) consists of a D flip-flop and  
two signal-select multiplexers. Three configuration select bits  
controlling the multiplexers determine the configuration of  
each UT22VP10 macrocell (see table 1). The configuration se-  
lect bits determine output polarity, output type (registered or  
combinatorial) and input feedback type (registered or I/O). See  
figure 3 for equivalent circuits for the macrocell configurations.  
LOGIC ARRAY  
The one-time programmable AND array of the UT22VP10  
RADPAL is formed by input lines intersecting product terms.  
The input lines and product terms are used as follows:  
44 input lines:  
• 24 input lines carry the true and complement of the signals  
applied to the input pins  
OUTPUT FUNCTIONS  
• 20 lines carry the true and complement values of feedback  
or input signals from the 10 I/Os  
The signal from the OR array may be fed directly to the output  
pin (combinatorial function) or latched in the D flip-flop (reg-  
istered function). The D flip-flop latches data on the rising edge  
of the clock. When the synchronous preset term is satisfied, the  
Q output of the D flip-flop output will be set logical one at the  
next rising edge of the clock input. Satisfying the asynchronous  
clear term sets Q logical zero, regardless of the clock state. If  
both terms are satisfied simultaneously, the clear will override  
the preset.  
132 product terms:  
• 120 product terms (arranged in 2 groups of 8, 10, 12, 14, and  
16) used to form logic sums  
• 10 output enable terms (one for each I/O)  
• 1 global synchronous preset term  
• 1 global asynchronous reset term  
At each input-line/product-term intersection there is an anti-  
fuse cell which determines whether or not there is a logical  
connection at that intersection. A product term which is con-  
nected to both the true and complement of an input signal will  
always be logical zero, and thus will not effect the OR function  
that it drives. When there are no connections on a product term  
3
OUTPUT  
SELECT  
MUX  
AR  
D
Q
Q
C1 C0  
CK  
SP  
INPUT/  
FEEDBACK  
MUX  
C1 C2  
C1  
C0  
C2  
Figure 2. Macrocell  
OUTPUT POLARITY  
BIDIRECTIONAL I/O  
Each macrocell can be configured to implement Active-High  
or Active-Low logic. Programmable polarity eliminates the  
need for external inverters.  
The feedback signal is taken from the I/O pin when the macro-  
cell implements a combinatorial function (C = 1) or a regis-  
1
tered function (C = 1, C = 0). In this case, the pin can be used  
2
1
as a dedicated input, a dedicated output, or a bidirectional I/O.  
OUTPUT ENABLE  
POWER-ON RESET  
The output of each I/O macrocell can be enabled or disabled  
under the control a programmable output enable product term.  
The output signal is propagated to the I/O pin when the logical  
conditions programmed on the output enable term are satisfied.  
Otherwise, the output buffer is driven to the high-impedance  
state.  
To ease system initialization, all D flip-flops will power-up to  
a reset condition and the Q output will be low. The actual output  
of the UT22VP10 will depend on the programmed output po-  
larity. The reset delay time is 5ms maximum. See the Power-up  
Reset section for a more descriptive list of POR requirements.  
The output enable term allows the I/O pin to function as a ded-  
icated input, dedicated output, or bidirectional I/O. When every  
connection is unprogrammed, the output enable product term  
permanently enables the output buffer and yields a dedicated  
output. If every connection is programmed, the enable term is  
logically low and the I/O functions as a dedicated input.  
ANTI-FUSE SECURITY  
The UT22VP10 provides a security bit that prevents unautho-  
rized reading or copying of designs programmed into the de-  
vice. The security bit is set by the PLD programmer at the con-  
clusion of the programming cycle. Once the security bit is set  
it is no longer possible to verify (read) or program the  
UT22VP10. NOTE: UTMC does not recommend using the  
UT22VP10 unless the security fuse has been programmed.  
The security bit must be blown to ensure proper function-  
ality of the UT22VP10.  
REGISTER FEEDBACK  
The feedback signal to the AND array is taken from the Q output  
when the I/O macrocell implements a registered function  
(C = 0, C = 0).  
2
1
4
AR  
D
Q
Q
CK  
SP  
Registered Feedback, Registered, Active-Low Output (C = 0, C = 0, C = 0)  
2
1
0
AR  
D
Q
Q
CK  
SP  
Registered Feedback, Registered, Active-High Output (C = 0, C = 0, C = 1)  
2
1
0
I/O Feedback, Combinatorial, Active-Low Output (C = X, C = 1, C = 0)  
2
1
0
Figure 3. Macrocell Configuration (continued on next page)  
5
I/O Feedback, Combinatorial, Active-High Output (C = X, C = 1, C = 1)  
2
1
0
AR  
D
Q
Q
CK  
SP  
I/O Feedback, Registered, Active-Low Output (C = 1, C = 0, C = 0)  
2
1
0
AR  
D
Q
Q
CK  
SP  
I/O Feedback, Registered, Active-High Output (C = 1, C = 0, C = 1)  
2
1
0
Figure 3. Macrocell Configuration  
6
1
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
LIMIT  
UNITS  
V
Supply voltage  
-0.3 to 7.0  
V
DD  
2
Input voltage any pin  
-0.3 to +7.0  
V
V
I/O  
T
Storage Temperature range  
Maximum junction temperature  
Lead temperature (soldering 10 seconds)  
Thermal resistance junction to case  
DC input current  
-65 to +150  
+175  
+300  
20  
°C  
°C  
STG  
T
J
T
°C  
S
Q
°C/W  
mA  
W
JC  
I
±10  
I
3
Maximum power dissipation  
1.6  
P
D
I
Output sink current  
12  
mA  
O
Notes:  
1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the  
device at these or any other conditions beyond limits indicated in the operational sections is not recommended. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2. Minimum voltage is -0.6VDD which may undershoot to -2.0VDD for pulses of less than 20ns. Maximum output pin voltage is VDD +0.75VDD which may  
overshoot to +7.0VDD for pulses of less than 20ns.  
3. (ICC max + IOS) 5.5V.  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
LIMIT  
UNITS  
1
Supply voltage  
4.5 to 5.5  
V
V
DD  
V
Input voltage any pin  
Temperature range  
0 to V  
V
IN  
DD  
T
-55 to + 125  
°C  
C
Notes:  
1. See page 12 for minimum VDD requirements at power-up.  
7
1, 7  
DC ELECTRICAL CHARACTERISTICS  
2
3,  
(V  
= 5.0V ±10%; V = 0V -55°C < T < +125°C)  
SS C  
DD  
SYMBOL  
PARAMETER  
Low-level input voltage  
CONDITION  
MINIMUM  
MAXIMUM  
UNIT  
V
TTL  
--  
.8  
V
IL  
V
High-level input voltage  
Low-level input voltage  
High-level input voltage  
Low-level output voltage  
High-level output voltage  
Low-level output voltage  
High-level output voltage  
Input leakage current  
TTL  
2.2  
--  
--  
V
V
IH  
V
CMOS  
CMOS  
.3*V  
--  
IL  
IH  
DD  
V
.7*V  
V
DD  
V
V
V
V
I
I
I
I
I
= 12.0mA, V = 4.5V (TTL)  
.4  
V
OL  
OH  
OL  
OH  
IN  
OL  
OH  
OL  
OH  
DD  
= -12.0mA, V = 4.5V (TTL)  
2.4  
--  
--  
V
DD  
= 200mA, V = 4.5V (CMOS)  
V
+0.05  
--  
V
DD  
SS  
= -200mA, V = 4.5V (CMOS)  
V
-0.05  
DD  
V
DD  
V
= V and V  
SS  
-10  
-10  
10  
10  
mA  
mA  
IN  
DD  
I
Three-stateoutputleakage V = V and V , V = 5.5V  
OZ  
O
DD  
SS  
DD  
current  
4,5  
Short-circuit output cur-  
rent  
V
V
= 5.5V, V = V  
DD  
-160  
160  
mA  
DD  
DD  
O
I
OS  
= 5.5V, V = 0V  
O
5,6  
5,6  
Input capacitance  
=1MHz @0V  
=1MHz @0V  
--  
--  
--  
15  
15  
pF  
pF  
C
IN  
Bidirectional capacitance  
C
I/O  
5
Supply current: Output  
three-state, worst-case pat-  
tern programmed,  
V
= 5.5V  
120  
mA  
I
DD  
DD  
=f  
MAX1  
I
Supply current:  
Unprogrammed  
V
= 5.5V  
--  
25  
mA  
DDQ  
DD  
Notes:  
1. All specifications valid for radiation dose < 1E6 rads(Si).  
2. See page 12 for minimum VDD requirements at power-up.  
3. Maximum allowable relative shift equals 50mV.  
4. Duration not to exceed 1 second, one output at a time.  
5. Tested initially and after any design or process changes that affect that parameter and, therefore, shall be guaranteed to the limit specified.  
6. All pins not being tested are to be open.  
7. CMOS levels only tested on CMOS devices. TTL levels only tested on TTL devices.  
8
1,2  
AC CHARACTERISTICS READ CYCLE (Post-Radiation)  
3
(V  
= 5.0V ±10%; -55°C < T < +125°C)  
C
DD  
22VP10-15.5  
22VP10-20  
MIN MAX  
22VP10-25  
MIN MAX  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX  
4,5,6  
Input to output propagation delay  
Input to output enable delay  
Input to output disable delay  
Clock to output delay  
15.5  
20  
25  
ns  
ns  
ns  
ns  
ns  
t
PD  
4
23  
23  
15  
24  
23  
23  
15  
24  
25  
25  
15  
28  
t
t
EA  
4
ER  
4,6  
t
CO  
4
Clock to combinatorial output delay via internal  
registered feedback  
t
CO2  
4,6  
Input or feedback setup time  
Input or feedback hold time  
15  
15  
18  
ns  
ns  
t
S
4,6  
4
2
2
2
t
H
External clock period (t + t )  
30  
12  
30  
12  
33  
14  
ns  
t
CO  
S
P
4
Clock width, clock high time, clock low time  
External maximum frequency (1/(t + t ))  
ns  
t
WH, WL  
4,6  
4,6  
4,6  
33  
42  
32  
13  
33  
42  
32  
13  
30  
36  
32  
13  
MHz  
MHz  
MHz  
ns  
CO  
S
f
f
f
MAX1  
MAX2  
Data path maximum frequency (1/(t  
+ t ))  
WL  
WH  
Internal feedback maximum frequency (1/(t + t ))  
CO  
CF  
MAX3  
4
Register clock to feedback input  
Asynchronous reset width  
t
CF  
4
20  
20  
20  
20  
25  
25  
ns  
t
AW  
4
Asynchronous reset recovery time  
Input to asynchronous reset  
Synchronous preset recovery time  
Power up reset time  
ns  
t
AR  
4
20  
20  
25  
ns  
t
AP  
4,6  
20  
20  
25  
ns  
t
SPR  
4,6  
PR  
1.0  
1.0  
1.0  
ms  
t
Notes:  
1. Post-radiation performance guaranteed at 25°C per MIL-STD-883 Method 1019 at 1.0E6 rads(Si).  
2. Guaranteed by characterization.  
3. See page 12 for minimum VDD requirements for power-up.  
4. Tested initially and after any design or process changes that affect.  
5. Device 22VP10-15 tested at -55°C, +25°C and +50°C. At 125°C, tested to 20ns limit.  
6. Tested on Programmed Test Ring only.  
9
INPUT OR  
BIDIRECTIONAL  
INPUT OR  
BIDIRECTIONAL  
VT  
INPUT  
VT  
tS  
INPUT  
tH  
tPD  
CLOCK  
VT  
tCO  
COMBINATIONAL  
OUTPUT  
VT  
REGISTERED  
OUTPUT  
VT  
tp  
Combinatorial Output  
Registered Output  
INPUT OR  
BIDIRECTIONAL  
tWH  
VT  
INPUT  
tER  
tEA  
VT  
OUTPUT  
VT  
tWL  
Clock Width  
Combinatorial Output  
(V - 0.5V, V + 0.5V)  
OH  
OL  
tAW  
INPUT ASSERTING  
ASYNCHRONOUS  
RESET  
INPUT ASSERTING  
SYNCHRONOUS  
PRESET  
VT  
VT  
tH  
tAP  
tS  
tSPR  
CLOCK  
REGISTERED  
OUTPUT  
VT  
VT  
VT  
tCO  
tAR  
CLOCK  
REGISTERED  
OUTPUT  
VT  
VT  
Asynchronous Reset  
Synchronous Preset  
1,2,3  
Notes:  
1. VT = 1.5V.  
Figure 4. AC Electrical  
2. Input pulse amplitude 0V to 3.0V.  
3. Input rise and fall times 3ns maximum.  
10  
CLK  
CLK  
PRODUCT  
TERMS  
D
Q
Q
PRODUCT  
TERMS  
D
Q
Q
REGISTER  
REGISTER  
1
tCF  
PRODUCT  
TERMS  
OUTPUT  
PRODUCT  
TERMS  
CLK  
D
OUTPUT  
Q
REGISTER  
Clock to Combinatorial Output (t  
)
CO2  
Note:  
1. tCF defined as the propagation delay from Q to D register input.  
1
+ t  
f
; Internal Feedback  
MAX3  
t
CO  
CF  
Figure 5. Signal Paths  
11  
POWER-UP RESET  
4. Following reset, the clock input must not be driven from  
LOW to HIGH until all applicable input and feedback setup  
times are met.  
The power-up reset feature ensures that all flip-flops will be  
reset to LOW after the device has been powered up. The output  
state will depend on the programmed pattern. This feature is  
valuable in simplifying state machine initialization. See figure  
6 for a timing diagram. Due to the synchronous operation of the  
5. The power-up voltage must meet the minimum V require-  
DD  
ments described by the following device dependent and tem-  
perature dependent equations:  
power-up reset and the wide range of ways V can rise to its  
DD  
SMD Device types 01, 02, 03, 04, 08  
CMOS and TTL  
CMOS  
steady state, the following five conditions are required to ensure  
a valid power-up reset.  
o
V
=4.61V -0.0090*( C)  
DD  
SMD Device types 05, 06, 07  
o
V
=4.41 -0.0090* ( C)  
1. The voltage supplied to the V pin(s) must be equal to 0V  
DD  
DD  
Note: The minimum V requirement above is not applicable  
if the UT22VP10 application is purely combinatorial (i.e. no  
registered outputs).  
prior to the intended power-up sequence.  
DD  
2. The voltage on V must rise from 0V to 1V at a rate of  
DD  
0.1V/s or faster.  
3. The V rise must be continuously increasing with respect  
DD  
to time, through 3V, and monotonic thereafter.  
VDD  
VDD min  
VDD  
tPR  
REGISTERED  
ACTIVE-LOW  
OUTPUT  
tS  
CLOCK  
tWL  
Figure 6. Power-Up Reset Waveform  
RADIATION HARDNESS  
The UT22VP10 RADPAL incorporates special design and layout features which allow operation in high-level radiation environments.  
UTMC has developed special low-temperature processing techniques designed to enhance the total-dose radiation hardness of both  
the gate oxide and the field oxide while maintaining the circuit density and reliability. For transient radiation hardness and latchup  
immunity, UTMC builds radiation-hardened products on epitaxial wafers using an advanced twin-tub CMOS process.  
1
RADIATION HARDNESS DESIGN SPECIFICATIONS  
PARAMETER  
CONDITION  
+25°C per MIL-STD-883 Method 1019  
-55°C to +125°C  
MINIMUM  
1.0E6  
UNIT  
Total Dose  
rads(Si)  
2
LET Threshold  
Neutron Fluence  
50  
MeV-cm /mg  
2
1MeV equivalent  
1.0E14  
n/cm  
Note:  
1. The RADPAL will not latchup during radiation exposure under recommended operating conditions.  
12  

相关型号:

UT22VP10E-15UCX

Fuse-Programmable PLD
ETC

UT22VP10E-15WCA

Fuse-Programmable PLD
ETC

UT22VP10E-15WCC

Fuse-Programmable PLD
ETC

UT22VP10E-15WCX

Fuse-Programmable PLD
ETC

UT22VP10E-20PCA

Fuse-Programmable PLD
ETC

UT22VP10E-20PCC

Fuse-Programmable PLD
ETC

UT22VP10E-20PCX

Fuse-Programmable PLD
ETC

UT22VP10E-20UCA

Fuse-Programmable PLD
ETC

UT22VP10E-20UCC

Fuse-Programmable PLD
ETC

UT22VP10E-20UCX

Fuse-Programmable PLD
ETC

UT22VP10E-20WCA

Fuse-Programmable PLD
ETC

UT22VP10E-20WCC

Fuse-Programmable PLD
ETC