VRE204C [ETC]

Precision Surface Mount Reference Supply; 高精度表面贴装基准电源
VRE204C
型号: VRE204C
厂家: ETC    ETC
描述:

Precision Surface Mount Reference Supply
高精度表面贴装基准电源

文件: 总5页 (文件大小:200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VRE204  
Precision Surface Mount  
Reference Supply  
THALER CORPORATION • 2015 N. FORBES BOULEVARD • TUCSON, AZ. 85745 • (520) 882-4000  
FEATURES  
APPLICATIONS  
· VERY HIGH ACCURACY: 4.5000 V OUTPUT ±0.4 mV  
· EXTREMELY LOW DRIFT: 0.6 ppm/°C -55°C to +125°C  
· EXCELLENT STABILITY: 6ppm/1000 Hrs. Typ.  
· EXCELLENT LINE REGULATION: 6 ppm/V Typ.  
· WIDE SUPPLY RANGE: +13.5 V to +22.0 V  
· HERMETIC 20 TERMINAL CERAMIC LCC  
· MILITARY PROCESSING AVAILABLE  
· PRECISION A/D and D/A CONVERTERS  
· TRANSDUCER EXCITATION  
· ACCURATE COMPARATOR THRESHOLD  
REFERENCE  
· HIGH RESOLUTION SERVO SYSTEMS  
· DIGITAL VOLTMETERS  
· HIGH PRECISION TEST and  
MEASUREMENT INSTRUMENTS  
DESCRIPTION  
VRE204 Series Precision Voltage References  
provide ultrastable +4.500 V outputs with up to  
±0.4 mV initial accuracy and temperature  
coefficient as low as 0.6 ppm/°C over the full  
military temperature range.  
SELECTION GUIDE  
These references are specifically designed to be  
used with the Crystal Semiconductor line of  
successive-approximation type Analog-to-Digital  
Converters (ADCs). This line of ADCs sets new  
standards for temperature drift, which can only be  
as good as the external reference used. The  
Thaler VRE204 combined with a Crystal ADC will  
provide the lowest drift data conversion  
obtainable.  
Temperature  
Operating Range  
Max. Volt  
Deviation  
Output  
+4.5V  
Type  
VRE204C  
-25°C to +85°C  
-25°C to +85°C  
0.4mV  
0.2mV  
VRE204CA +4.5V  
VRE204M +4.5V  
VRE204MA +4.5V  
-55°C to +125°C  
-55°C to +125°C  
0.6mV  
0.3mV  
VRE204 series devices are available in two operating temperature ranges, -25°C to +85°C and -55°C to  
+125°C, and two performance grades. All devices are packaged in 20 terminal LCC ceramic packages  
for maximum long-term stability. "M" versions are screened for high reliability and quality.  
Superior stability, accuracy, and quality make the VRE204 ideal for all precision applications which may  
require a 4.5V reference. High-accuracy test and measurement instrumentation, and transducer  
excitation are some other applications which can benefit from the high accuracy of the VRE204.  
VRE204DS REV. C JUNE 1995  
ELECTRICAL SPECIFICATIONS  
VRE204  
Vps =±15V, T = 25°C, RL = 10KW unless otherwise noted.  
MODEL  
C
CA  
M
MA  
PARAMETERS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
ABSOLUTE MAXIMUM RATINGS  
Power Supply  
Operating Temperature -25  
Storage Temperature  
Short Circuit Protection  
+13.5  
+22  
85  
150  
*
*
*
*
*
*
*
-55  
*
*
*
*
125  
*
V
°C  
°C  
125 -55  
*
-65  
*
Continuous  
*
*
*
*
*
*
*
OUTPUT VOLTAGE  
VRE204  
+4.5  
2
V
OUTPUT VOLTAGE ERRORS  
Initial Error  
800  
400  
400  
200  
800  
600  
400  
300  
mV  
ppm  
mV  
Warmup Drift  
Tmin - Tmax  
1
2
(1)  
Long-Term Stability  
Noise (.1-10Hz)  
6
3
*
*
*
*
*
*
ppm/1000hrs  
mVpp  
OUTPUT CURRENT  
Range  
±10  
*
*
*
mA  
REGULATION  
Line  
Load  
6
3
10  
*
*
*
*
*
*
*
*
*
ppm/V  
ppm/mA  
OUTPUT ADJUSTMENT  
Range  
Temperature Coeff.  
10  
4
*
*
*
*
*
*
mV  
mV/°C/mV  
(2)  
POWER SUPPLY CURRENTS  
VRE204 +PS  
5
7
*
*
*
*
*
*
mA  
NOTES: *Same as C Models.  
1.Using the box method, the specified value is the  
maximum deviation from the output voltage at 25°C  
over the specified operating temperature range.  
2.The specified values are unloaded.  
VRE204DS REV. C JUNE 1995  
TYPICAL PERFORMANCE CURVES  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
o
o
Temperature C  
Temperature C  
VRE204CA  
VRE204C  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
o
o
Temperature C  
Temperature C  
VRE204M  
VRE204MA  
PSRR VS. FREQUENCY  
JUNCTION TEMP. RISE VS. OUTPUT CURRENT  
QUIESCENT CURRENT VS. TEMP  
o
Temperature C  
Output Current (mA)  
Frequency (Hz)  
VRE204DS REV. C JUNE 1995  
DISCUSSION OF PERFORMANCE  
THEORY OF OPERATION  
APPLICATION INFORMATION  
The following discussion refers to the schematic  
below. A FET current source is used to bias a 6.3  
zener diode. The zener voltage is divided by the  
resistor network R1 and R2. This voltage is then  
applied to the noninverting input of the operational  
amplifier which amplifies the voltage to produce a  
4.5000V output. The gain is determined by the  
resistor networks R3 and R4: G=1 + R4/R3. The 6.3  
zener diode is used because it is the most stable  
diode over time and temperature.  
Figure 2 shows the proper connection of the  
VRE204 series voltage references with the optional  
trim resistors. Pay careful attention to the circuit  
layout to avoid noise pickup and voltage drops in the  
lines.  
The VRE204 series voltage references have the  
ground terminal brought out on two pins (pin 9 and  
pin 10) which are connected together internally. This  
allows the user to achieve greater accuracy when  
using a socket. Voltage references have a voltage  
drop across their power supply ground pin due to  
quiescent current flowing through the contact  
resistance. If the contact resistance was constant  
with time and temperature, this voltage drop could be  
trimmed out. When the reference is plugged into a  
socket, this source of error can be as high as 20ppm.  
By connecting pin 10 to the power supply ground and  
pin 9 to a high impedance ground point in the  
measurement circuit, the error due to the contact  
resistance can be eliminated. If the unit is soldered  
into place, the contact resistance is sufficiently small  
that it does not effect performance.  
The current source provides a closely regulated  
zener current, which determines the slope of the  
references’ voltage vs. temperature function. By  
trimming the zener current a lower drift over  
temperature can be achieved. But since the voltage  
vs. temperature function is nonlinear this  
compensation technique is not well suited for wide  
temperature ranges.  
Thaler Corporation has developed a nonlinear  
compensation network of thermistors and resistors  
that is used in the VRE series voltage references.  
This proprietary network eliminates most of the  
nonlinearity in the voltage vs. temperature function.  
By then adjusting the slope, Thaler Corporation  
produces  
a
very stable voltage over wide  
temperature ranges. This network is less than 2% of  
the overall network resistance so it has a negligible  
effect on long term stability. By using highly stable  
resistors in our network, we produce a voltage  
reference that also has very good long term  
stability.  
VRE204  
FIGURE 1  
VRE204DS REV. C JUNE 1995  
EXTERNAL CONNECTIONS  
2
1
20  
3
19  
4
5
6
7
8
18  
17  
16  
15  
14  
+15V  
VOUT = +4.5V  
9
13  
10 11 12  
¯
Ref. Gnd.  
10kW  
FIGURE 2  
PIN CONFIGURATION  
NC NC NC NC NC  
1
20 19  
3
2
18 NC  
NC  
VIN  
4
5
6
7
8
NC  
17  
TOP VIEW  
NC  
16  
15  
14  
NC  
VRE204  
VOUT  
NC  
NC  
NC  
11 12 13  
9
10  
REF  
GND  
GND NC TRIM NC  
MECHANICAL  
MILLIMETER  
INCHES  
MIN  
MAX  
MIN  
2.29  
0.56  
8.68  
1.22  
8.68  
1.114  
DIM  
A
MAX  
0.090  
0.022  
0.342  
0.048  
0.342  
0.045  
0.110  
0.028  
0.358  
0.052  
0.358  
0.055  
2.79  
0.71  
9.09  
1.32  
9.09  
1.40  
B
D
D1  
E
E1  
j
0.010 REF  
0.040 REF  
0.045 0.055  
.254 REF  
1.02 REF  
1.14  
h
L
1.40  
VRE204DS REV. C JUNE 1995  

相关型号:

VRE204CA

Precision Surface Mount Reference Supply
ETC

VRE204M

Precision Voltage Reference
CIRRUS

VRE204MA

Precision Voltage Reference
CIRRUS

VRE204_1

Precision Voltage Reference
CIRRUS

VRE205

Precision Voltage Reference
CIRRUS

VRE205C

Precision Voltage Reference
CIRRUS

VRE205CA

Precision Voltage Reference
CIRRUS

VRE205M

Precision Voltage Reference
CIRRUS

VRE205MA

Precision Voltage Reference
CIRRUS

VRE205_10

Precision Voltage Reference
CIRRUS

VRE210

Precision Voltage Reference
CIRRUS

VRE210C

Precision Voltage Reference
CIRRUS