VRE302-6LS [ETC]

Analog IC ; 模拟IC\n
VRE302-6LS
型号: VRE302-6LS
厂家: ETC    ETC
描述:

Analog IC
模拟IC\n

模拟IC 光电二极管
文件: 总5页 (文件大小:435K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VRE302  
Low Cost  
Precision Reference  
THALER CORPORATION • 2015 N. FORBES BOULEVARD • TUCSON, AZ. 85745 • (520) 882-4000  
FEATURES  
2.500 V OUTPUT ± 0.250 mV (.01%)  
PIN CONFIGURATION  
TEMPERATURE DRIFT: 0.6 ppm/°C  
8
7
6
1
2
3
N.C.  
+VIN  
NOISE  
REF. GND  
VOUT  
LOW NOISE: 1.5µV p-p (0.1-10Hz)  
VRE302  
INDUSTRY STD PINOUT- 8 PIN DIP OR  
TOP  
TEMP  
SURFACE MOUNT PACKAGE  
VIEW  
4
5
GND  
TRIM  
EXCELLENT LINE REGULATION: 6ppm/V Typ.  
OUTPUT TRIM CAPABILITY  
FIGURE 1  
DESCRIPTION  
The VRE302 is a low cost, high precision 2.5V  
reference. Packaged in the industry standard 8  
pin DIP, the device is ideal for upgrading systems  
that use lower performance references.  
The VRE302 is recommended for use as a  
reference for 14, 16, or 18 bit D/A converters  
which require an external precision reference.  
The device is also ideal for calibrating scale factor  
on high resolution A/D converters. The VRE302  
offers superior performance over monolithic  
references.  
The device provides ultrastable +2.500V output  
with ±0.2500 mV (.01%) initial accuracy and a  
temperature coefficient of 0.6 ppm/°C.  
This  
improvement in accuracy is made possible by a  
unique, patented multipoint laser compensation  
technique developed by Thaler Corporation.  
Significant improvements have been made in  
other performance parameters as well, including  
initial accuracy, warm-up drift, line regulation, and  
long-term stability, making the VRE302 series the  
most accurate reference available in the standard  
8 pin DIP package.  
SELECTION GUIDE  
Temp.  
Range  
°C  
Temp.  
Coeff.  
Initial  
Error  
mV  
Model  
ppm/°C  
VRE302A  
VRE302B  
VRE302C  
VRE302J  
VRE302K  
VRE302L  
0.25  
0.40  
0.50  
0.25  
0.40  
0.50  
0.6  
1.0  
2.0  
0.6  
1.0  
2.0  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
For enhanced performance, the VRE302 has an  
external trim option for users who want less than  
0.01% initial error. A reference ground pin is  
provided to eliminate socket contact resistance  
errors.  
For package option add D for DIP or S for Surface Mount  
to end of model number.  
VRE302DS REV. F MAY 2001  
ELECTRICAL SPECIFICATIONS  
VRE302  
Vps =+15V, T = 25°C, RL = 10Kunless otherwise noted.  
MODEL  
A/J  
B/K  
C/L  
PARAMETER  
ABSOLUTE RATINGS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
+13.5 +15  
+22  
+70  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
V
Operating Temp. (A,B,C)  
Operating Temp. (J,K,L)  
Storage Temperature  
Short Circuit Protection  
0
°C  
°C  
°C  
-40  
-65  
+85  
+150  
Continuous  
OUTPUT VOLTAGE  
VRE302  
2.500  
630  
*
*
*
*
V
(1)  
Temp. Sensor Voltage  
mV  
OUTPUT VOLTAGE ERRORS  
(2)  
Initial Error  
0.25  
0.6  
0.40  
1.0  
0.50  
2.0  
mV  
ppm  
Warmup Drift  
1
2
3
(3)  
Tmin - Tmax  
ppm/°C  
ppm/1000hrs  
µVpp  
Long-Term Stability  
6
*
*
*
*
(4)  
Noise (.1-10Hz)  
1.5  
OUTPUT CURRENT  
Range  
±10  
*
*
mA  
REGULATION  
Line  
6
3
10  
*
*
*
*
*
*
*
*
ppm/V  
Load  
ppm/mA  
OUTPUT ADJUSTMENT  
Range  
10  
5
*
*
*
*
mV  
mA  
(5)  
POWER SUPPLY CURRENTS  
VRE302 +PS  
7
4. The specified values are without the external  
noise reduction capacitor.  
NOTES: *Same as A/J Models.  
1. The temp. reference TC is 2.1mV/ °C  
2. The specified values are without external trim.  
5. The specified values are unloaded.  
3. The temperature coefficient is determined by the box  
method using the following formula:  
Vmax - Vmin  
T.C. =  
x 106  
Vnominal x (Tmax-Tmin  
)
VRE302DS REV. F MAY 2001  
TYPICAL PERFORMANCE CURVES  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
Temperature oC  
VRE302A  
Temperature oC  
VRE302B  
Temperature oC  
VRE302C  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
Temperature oC  
VRE302K  
Temperature oC  
VRE302J  
Temperature oC  
VRE302L  
POSITIVE OUTPUT (TYP)  
JUNCTION TEMP. RISE VS. OUTPUT CURRENT  
QUIESCENT CURRENT VS. TEMP  
PSRR VS. FREQUENCY  
Temperature oC  
Output Current (mA)  
Frequency  
(Hz)  
VRE302DS REV. F MAY 2001  
DISCUSSION OF PERFORMANCE  
THEORY OF OPERATION  
The following discussion refers to the schematic in  
figure 2 below. A FET current source is used to bias a  
6.3V zener diode. The zener voltage is divided by the  
resistor network R1 and R2. This voltage is then applied  
to the noninverting input of the operational amplifier which  
amplifies the voltage to produce a 2.500V output. The  
gain is determined by the resistor networks R3 and R4:  
G=1 + R4/R3. The 6.3V zener diode is used because it is  
the most stable diode over time and temperature.  
This network is less than 2% of the overall network  
resistance so it has a negligible effect on long term  
stability.  
Figure 3 shows the proper connection of the VRE302  
series voltage references with the optional trim resistor for  
initial error. The VRE302 reference has the ground  
terminal brought out on two pins (pin 4 and pin 7) which  
are connected together internally. This allows the user to  
achieve greater accuracy when using a socket. Voltage  
references have a voltage drop across their power supply  
ground pin due to quiescent current flowing through the  
contact resistance. If the contact resistance was constant  
with time and temperature, this voltage drop could be  
trimmed out. When the reference is plugged into a socket,  
this source of error can be as high as 20ppm. By  
connecting pin 4 to the power supply ground and pin 7 to  
a high impedance ground point in the measurement  
circuit, the error due to the contact resistance can be  
eliminated. If the unit is soldered into place, the contact  
resistance is sufficiently small that it does not effect  
performance. Pay careful attention to the circuit layout to  
avoid noise pickup and voltage drops in the lines.  
The current source provides a closely regulated zener  
current, which determines the slope of the references’  
voltage vs. temperature function. By trimming the zener  
current a lower drift over temperature can be achieved.  
But since the voltage vs. temperature function is nonlinear  
this compensation technique is not well suited for wide  
temperature ranges.  
Thaler Corporation has developed  
a
nonlinear  
compensation network of thermistors and resistors that is  
used in the VRE series voltage references. This  
proprietary network eliminates most of the nonlinearity in  
the voltage vs. temperature function. By adjusting the  
slope, Thaler Corporation produces a very stable voltage  
over wide temperature ranges.  
VRE302  
FIGURE 2  
EXTERNAL CONNECTIONS  
+ VIN  
V TEMP OUT  
2
3
8
+ VOUT  
6
VRE302  
OPTIONAL  
CN  
OPTIONAL  
FINE TRIM  
10kΩ  
5
NOISE REDUCTION  
CAPACITOR  
1µF  
ADJUSTMENT  
4
7
REF. GND  
FIGURE 3  
VRE302DS REV. F MAY 2001  
MECHANICAL  
FIGURE 3  
D
D1  
INCHES  
MILLIMETER  
INCHES  
MILLIMETER  
D2  
DIM MIN  
MAX MIN MAX  
DIM  
D2  
E
MIN  
.018  
.507  
.397  
.264  
.085  
.020  
.045  
MAX MIN MAX  
.023 0.46 0.58  
.513 12.8 13.0  
.403 10.0 10.2  
.270 6.70 6.85  
.095 2.15 2.41  
.030 .508 .762  
.055 1.14 1.39  
A
.115 .125 2.92 3.17  
.098 .102 2.48 2.59  
.046 .051 1.14 1.29  
.107 .113 2.71 2.89  
.009 .012 0.22 0.30  
.052 .058 1.32 1.47  
.397 .403 10.0 10.2  
.372 .380 9.44 9.65  
B
B1  
C
E1  
E2  
P
E1  
E2  
E
C1  
C2  
D
Q
S
D1  
PIN 1 IDENTIFIER  
E1  
Q
A
P
BASE  
SEATING  
C1  
C2  
B
C
S
B1  
FIGURE 4  
INCHES  
MILLIMETER  
MAX  
INCHES  
MILLIMETER  
DIM MIN MAX MIN  
DIM  
E
MIN  
.397  
.264  
.290  
.195  
.085  
.055  
.045  
MAX MIN  
MAX  
10.2  
6.85  
7.87  
5.46  
2.41  
1.65  
1.39  
A
.115 .125 2.92 3.17  
.018 .022 .457 .558  
.046 .051 1.14 1.29  
.098 .102 2.48 2.59  
.009 .012 0.22 0.30  
.397 .403 10.0 10.2  
.372 .380 9.44 9.65  
.403 10.0  
.270 6.70  
.310 7.36  
.215 4.95  
.095 2.15  
.065 1.39  
.055 1.14  
B
E1  
G1  
L
B1  
B2  
C
P
D
Q
D 1  
S
VRE302DS REV. F MAY 2001  

相关型号:

VRE3021

Low Cost Precision Reference
ETC

VRE3021A

Low Cost Precision Reference
ETC

VRE3021AD

Analog IC
ETC

VRE3021AS

Analog IC
ETC

VRE3021B

Low Cost Precision Reference
ETC

VRE3021BD

Analog IC
ETC

VRE3021BS

Analog IC
ETC

VRE3021C

Low Cost Precision Reference
ETC

VRE3021CD

Voltage Reference
CIRRUS

VRE3021CS

Voltage Reference
CIRRUS

VRE3021J

Low Cost Precision Reference
ETC

VRE3021JD

Analog IC
ETC