VRE404C [ETC]

Precision Dual Reference; 精密双参考
VRE404C
型号: VRE404C
厂家: ETC    ETC
描述:

Precision Dual Reference
精密双参考

文件: 总20页 (文件大小:1029K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VRE402  
Precision  
Dual Reference  
THALER CORPORATION • 2015 N. FORBES BOULEVARD • TUCSON, AZ. 85745 • (520) 882-4000  
FEATURES  
PIN CONFIGURATION  
• ±2.500 V OUTPUT ± 0.250 mV (.01%)  
• TEMPERATURE DRIFT: 0.6 ppm/°C  
• LOW NOISE: 1.5µVpp (0.1-10Hz)  
1
2
3
14 N/C  
N/C  
- VOUT  
13  
12  
+VOUT  
N/C  
VRE402  
N/C  
TRACKING ERROR:0.2mVmax.  
TOP  
VIEW  
+VIN  
4
- VIN  
11  
5
6
7
N/C  
10  
9
N/C  
N/C  
N/C  
• EXCELLENT LINE REGULATION: 6ppm/V Typ.  
• SURFACE MOUNT AND DIP PACKAGES  
REF. GND  
GND  
8
FIGURE 1  
DESCRIPTION  
The VRE402 is a low cost, high precision, ±2.5V  
reference. Packaged in 14 pin DIP or SMT  
packages, the device is ideal for new designs that  
need a high performance reference.  
The VRE402 is recommended for use as a  
reference for high precision A/D and D/A  
converters which require an external precision  
reference. The device is ideal for calibrating  
scale factor on high resolution A/D converters.  
The VRE402 offers superior performance over  
monolithic references.  
The device provides ultrastable ±2.500V output  
with ±0.250 mV (.01%) initial accuracy and a  
temperature coefficient of 0.6 ppm/°C.  
This  
improvement in accuracy is made possible by a  
unique, patented multipoint laser compensation  
technique developed by Thaler Corporation.  
SELECTION GUIDE  
Temp.  
Range  
°C  
Temp.  
Coeff.  
ppm/°C  
Initial  
Error  
mV  
Another key feature of this reference is the 0.3 mV  
maximum tracking error between the positive and  
negative output voltages over the operating  
temperature range. This is extremely important in  
high performance systems for reducing overall  
system errors.  
Model  
VRE402A  
VRE402B  
VRE402C  
VRE402J  
VRE402K  
VRE402L  
0.25  
0.40  
0.50  
0.25  
0.40  
0.50  
0.6  
1.0  
2.0  
0.6  
1.0  
2.0  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
For designs which use the DIP package in a  
socket, there is a reference ground pin to  
eliminate reference ground errors.  
For package option add D for DIP or S for Surface  
Mount to end of model number.  
VRE402DS REV. A MAY 1996  
ELECTRICAL SPECIFICATIONS  
Vps =±15V, T = 25°C, RL = 10KW unless otherwise noted.  
VRE402  
MODEL  
A/J  
B/K  
C/L  
PARAMETER  
ABSOLUTE RATINGS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
±13.5  
0
-40  
-65  
±15  
±22  
+70  
+85  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
V
Operating Temp. (A,B,C)  
Operating Temp. (J,K,L)  
Storage Temperature  
Short Circuit Protection  
°C  
°C  
°C  
+150  
Continuous  
*
*
*
*
OUTPUT VOLTAGE  
VRE402  
±2.5  
V
OUTPUT VOLTAGE ERRORS  
Initial Error  
Warmup Drift  
Tmin - Tmax  
Tracking Error  
0.25  
0.40  
0.50  
mV  
ppm  
ppm/ °C  
mV  
(1)  
1
2
3
(2)  
0.6  
0.2  
1.0  
0.3  
2.0  
0.4  
(3)  
Long-Term Stability  
Noise (.1-10Hz)  
6
1.5  
*
*
*
*
ppm/1000hrs  
mVpp  
OUTPUT CURRENT  
Range  
±10  
*
*
mA  
REGULATION  
Line  
Load  
3
3
10  
*
*
*
*
*
*
ppm/V  
ppm/mA  
POWER SUPPLY CURRENTS (4)  
+PS  
-PS  
7
4
9
6
*
*
*
*
*
*
*
*
mA  
mA  
NOTES: *Same as A/J Models.  
4. The specified values are unloaded.  
1. The specified values are without external trim.  
2. The temperature coefficient (tc) is determined by the  
box method using the following formula:  
Vmax - Vmin  
tc =  
x 106  
Vnominal x (Tmax-Tmin  
)
3. The tracking error is the deviation between the  
positive and negative output over the operating temp.  
range.  
VRE402DS REV. A MAY 1996  
TYPICAL PERFORMANCE CURVES  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
o
o
o
Temperature C  
Temperature C  
Temperature C  
VRE402A  
VRE402B  
VRE402C  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
o
o
o
Temperature C  
Temperature C  
Temperature C  
VRE402K  
VRE402J  
VRE402L  
POSITIVE OUTPUT (TYP)  
JUNCTION TEMP. RISE VS. OUTPUT CURRENT  
QUIESCENT CURRENT VS. TEMP  
PSRR VS. FREQUENCY  
o
Temperature C  
Output Current (mA)  
NEGATIVE OUTPUT (TYP)  
Frequency (Hz)  
JUNCTION TEMP. RISE VS. OUTPUT CURRENT  
QUIESCENT CURRENT VS. TEMP  
PSRR VS. FREQUENCY  
o
Temperature C  
Output Current (mA)  
Frequency (Hz)  
VRE402DS REV. A MAY 1996  
DISCUSSION OF PERFORMANCE  
THEORY OF OPERATION  
This network is less than 2% of the overall network  
resistance so it has a negligible effect on long term  
stability.  
The following discussion refers to the schematic in  
figure 2 below. A FET current source is used to bias  
a 6.3V zener diode. The zener voltage is divided by  
the resistor network R1 and R2. This voltage is then  
applied to the noninverting input of the operational  
amplifier which amplifies the voltage to produce a  
2.500V output. The gain is determined by the  
resistor networks R3 and R4: G=1 + R4/R3. The  
6.3V zener diode is used because it is the most  
stable diode over time and temperature.  
The VRE402 reference has it’s ground brought out  
on two pins (pin 6 and 7) which are connected  
internally. This allows the user to achieve greater  
accuracy when using a socket. Voltage references  
have a voltage drop across their power supply  
ground pin due to quiescent current flowing through  
the contact resistance. If the contact resistance was  
constant with time and temperature, this voltage  
drop could be trimmed out. When the reference is  
plugged into a socket, this source of error can be as  
high as 20ppm. By connecting pin 7 to the power  
supply ground and pin 6 to a high impedance  
ground point in the measurement circuit, the error  
due to the contact resistance can be eliminated. If  
the unit is soldered into place, the contact  
resistance is sufficiently small that it does not effect  
performance.  
The current source provides a closely regulated  
zener current, which determines the slope of the  
references’ voltage vs. temperature function. By  
trimming the zener current a lower drift over  
temperature can be achieved. But since the voltage  
vs. temperature function is nonlinear this  
compensation technique is not well suited for wide  
temperature ranges.  
Thaler Corporation has developed a nonlinear  
compensation network of thermistors and resistors  
that is used in the VRE series voltage references.  
This proprietary network eliminates most of the  
nonlinearity in the voltage vs. temperature function.  
By adjusting the slope, Thaler Corporation produces  
a very stable voltage over wide temperature ranges.  
VRE402  
FIGURE 2  
VRE402DS REV. A MAY 1996  
MECHANICAL  
FIGURE 3  
INCHES  
MIN  
MILLIMETER  
INCHES  
MILLIMETER  
DIM  
A
MAX MIN  
.136 2.90  
.103 2.48  
.056 1.19  
.118 2.62  
.020 0.22  
.062 1.37  
.715 17.5  
.680 16.9  
MAX  
3.45  
2.62  
1.42  
3.00  
0.51  
1.57  
18.1  
17.2  
DIM  
E
MIN  
.495  
.390  
.265  
.090  
.024  
.040  
MAX MIN MAX  
.526 12.5 13.3  
.415 9.91 10.5  
.270 6.73 6.86  
.110 2.29 2.79  
.035 0.61 .890  
.060 1.02 1.52  
.114  
.098  
.047  
.103  
.009  
.054  
.690  
.666  
B
E1  
E2  
P
B1  
C
C1  
C2  
D
Q
S
D1  
FIGURE 4  
INCHES  
MILLIMETER  
INCHES  
MILLIMETER  
MAX MIN MAX  
.435 10.4 11.0  
.415 9.91 10.5  
.270 6.73 6.86  
.315 7.24 8.00  
.225 4.95 5.72  
.110 2.29 2.79  
.070 1.27 1.79  
.060 1.02 1.52  
DIM  
A
MIN  
.114  
.018  
.047  
.097  
.009  
.690  
.666  
MAX MIN  
MAX  
3.45  
.690  
1.42  
2.62  
0.51  
18.1  
17.2  
DIM  
E
MIN  
.410  
.390  
.265  
.285  
.195  
.090  
.050  
.040  
.136 2.90  
.027 .460  
.056 1.19  
.103 2.46  
.020 0.22  
.715 17.5  
.680 16.9  
B
E1  
E2  
G1  
L
B1  
B2  
C
D
P
D 1  
Q
S
VRE402DS REV. A MAY 1996  
VRE404  
Precision  
Dual Reference  
THALER CORPORATION • 2015 N. FORBES BOULEVARD • TUCSON, AZ. 85745 • (520) 882-4000  
FEATURES  
PIN CONFIGURATION  
• ±4.500 V OUTPUT ± 0.400 mV (.01%)  
• TEMPERATURE DRIFT: 0.6 ppm/°C  
• LOW NOISE: 3µVpp (0.1-10Hz)  
1
2
3
14 N/C  
N/C  
- VOUT  
13  
12  
+VOUT  
N/C  
VRE404  
N/C  
TRACKING ERROR:0.3mVmax.  
TOP  
VIEW  
+VIN  
4
- VIN  
11  
5
6
7
N/C  
10  
9
N/C  
N/C  
N/C  
• EXCELLENT LINE REGULATION: 6ppm/V Typ.  
• SURFACE MOUNT AND DIP PACKAGES  
REF. GND  
GND  
8
FIGURE 1  
DESCRIPTION  
The VRE404 is a low cost, high precision, ±4.5V  
reference. Packaged in 14 pin DIP or SMT  
packages, the device is ideal for new designs that  
need a high performance reference.  
The VRE404 is recommended for use as a  
reference for high precision D/A and A/D  
converters which require an external precision  
reference. The device is ideal for calibrating  
scale factor on high resolution A/D converters.  
The VRE404 offers superior performance over  
monolithic references.  
The device provides ultrastable ±4.500V output  
with ±0.450 mV (.01%) initial accuracy and a  
temperature coefficient of 0.6 ppm/°C.  
This  
improvement in accuracy is made possible by a  
unique, patented multipoint laser compensation  
technique developed by Thaler Corporation.  
SELECTION GUIDE  
Temp.  
Range  
°C  
Temp.  
Coeff.  
ppm/°C  
Initial  
Error  
mV  
Another key feature of this reference is the 0.3 mV  
maximum tracking error between the positive and  
negative output voltages over the operating  
temperature range. This is extremely important in  
high performance systems for reducing overall  
system errors.  
Model  
VRE404A  
VRE404B  
VRE404C  
VRE404J  
VRE404K  
VRE404L  
0.45  
0.70  
0.90  
0.45  
0.70  
0.90  
0.6  
1.0  
2.0  
0.6  
1.0  
2.0  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
For designs which use the DIP package in a  
socket, there is a reference ground pin to  
eliminate reference ground errors.  
For package option add D for DIP or S for Surface  
Mount to end of model number.  
VRE404DS REV. A MAY 1996  
ELECTRICAL SPECIFICATIONS  
Vps =±15V, T = 25°C, RL = 10KW unless otherwise noted.  
VRE404  
MODEL  
A/J  
B/K  
C/L  
PARAMETER  
ABSOLUTE RATINGS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
±13.5  
0
-40  
-65  
±15  
±22  
+70  
+85  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
V
Operating Temp. (A,B,C)  
Operating Temp. (J,K,L)  
Storage Temperature  
Short Circuit Protection  
°C  
°C  
°C  
+150  
Continuous  
*
*
*
*
OUTPUT VOLTAGE  
VRE404  
±4.5  
V
OUTPUT VOLTAGE ERRORS  
Initial Error  
Warmup Drift  
Tmin - Tmax  
Tracking Error  
0.45  
0.70  
0.90  
mV  
ppm  
ppm/ °C  
mV  
(1)  
1
2
3
(2)  
0.6  
0.3  
1.0  
0.4  
2.0  
0.5  
(3)  
Long-Term Stability  
Noise (.1-10Hz)  
6
3
*
*
*
*
ppm/1000hrs  
mVpp  
OUTPUT CURRENT  
Range  
±10  
*
*
mA  
REGULATION  
Line  
Load  
3
3
10  
*
*
*
*
*
*
ppm/V  
ppm/mA  
POWER SUPPLY CURRENTS (4)  
+PS  
-PS  
7
4
9
6
*
*
*
*
*
*
*
*
mA  
mA  
NOTES: *Same as A/J Models.  
4. The specified values are unloaded.  
1. The specified values are without external trim.  
2. The temperature coefficient (tc) is determined by the  
box method using the following formula:  
Vmax - Vmin  
tc =  
x 106  
Vnominal x (Tmax-Tmin  
)
3. The tracking error is the deviation between the  
positive and negative output over the operating temp.  
range.  
VRE404DS REV. A MAY 1996  
TYPICAL PERFORMANCE CURVES  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
o
o
o
Temperature C  
Temperature C  
Temperature C  
VRE404A  
VRE404B  
VRE404C  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
o
o
o
Temperature C  
Temperature C  
Temperature C  
VRE404J  
VRE404K  
VRE404L  
POSITIVE OUTPUT (TYP)  
JUNCTION TEMP. RISE VS. OUTPUT CURRENT  
QUIESCENT CURRENT VS. TEMP  
PSRR VS. FREQUENCY  
o
Temperature C  
Output Current (mA)  
NEGATIVE OUTPUT (TYP)  
Frequency (Hz)  
JUNCTION TEMP. RISE VS. OUTPUT CURRENT  
QUIESCENT CURRENT VS. TEMP  
PSRR VS. FREQUENCY  
o
Temperature C  
Output Current (mA)  
Frequency (Hz)  
VRE404DS REV. A MAY 1996  
DISCUSSION OF PERFORMANCE  
THEORY OF OPERATION  
This network is less than 2% of the overall network  
resistance so it has a negligible effect on long term  
stability.  
The following discussion refers to the schematic in  
figure 2 below. A FET current source is used to bias  
a 6.3V zener diode. The zener voltage is divided by  
the resistor network R1 and R2. This voltage is then  
applied to the noninverting input of the operational  
amplifier which amplifies the voltage to produce a  
4.500V output. The gain is determined by the  
resistor networks R3 and R4: G=1 + R4/R3. The  
6.3V zener diode is used because it is the most  
stable diode over time and temperature.  
The VRE404 reference has it’s ground brought out  
on two pins (pin 6 and 7) which are connected  
internally. This allows the user to achieve greater  
accuracy when using a socket. Voltage references  
have a voltage drop across their power supply  
ground pin due to quiescent current flowing through  
the contact resistance. If the contact resistance was  
constant with time and temperature, this voltage  
drop could be trimmed out. When the reference is  
plugged into a socket, this source of error can be as  
high as 20ppm. By connecting pin 7 to the power  
supply ground and pin 6 to a high impedance  
ground point in the measurement circuit, the error  
due to the contact resistance can be eliminated. If  
the unit is soldered into place, the contact  
resistance is sufficiently small that it does not effect  
performance.  
The current source provides a closely regulated  
zener current, which determines the slope of the  
references’ voltage vs. temperature function. By  
trimming the zener current a lower drift over  
temperature can be achieved. But since the voltage  
vs. temperature function is nonlinear this  
compensation technique is not well suited for wide  
temperature ranges.  
Thaler Corporation has developed a nonlinear  
compensation network of thermistors and resistors  
that is used in the VRE series voltage references.  
This proprietary network eliminates most of the  
nonlinearity in the voltage vs. temperature function.  
By adjusting the slope, Thaler Corporation produces  
a very stable voltage over wide temperature ranges.  
VRE404  
FIGURE 2  
VRE404DS REV. A MAY 1996  
MECHANICAL  
FIGURE 3  
INCHES  
MIN  
MILLIMETER  
INCHES  
MILLIMETER  
DIM  
A
MAX MIN  
.136 2.90  
.103 2.48  
.056 1.19  
.118 2.62  
.020 0.22  
.062 1.37  
.715 17.5  
.680 16.9  
MAX  
3.45  
2.62  
1.42  
3.00  
0.51  
1.57  
18.1  
17.2  
DIM  
E
MIN  
.495  
.390  
.265  
.090  
.024  
.040  
MAX MIN MAX  
.526 12.5 13.3  
.415 9.91 10.5  
.270 6.73 6.86  
.110 2.29 2.79  
.035 0.61 .890  
.060 1.02 1.52  
.114  
.098  
.047  
.103  
.009  
.054  
.690  
.666  
B
E1  
E2  
P
B1  
C
C1  
C2  
D
Q
S
D1  
FIGURE 4  
INCHES  
MILLIMETER  
INCHES  
MILLIMETER  
MAX MIN MAX  
.435 10.4 11.0  
.415 9.91 10.5  
.270 6.73 6.86  
.315 7.24 8.00  
.225 4.95 5.72  
.110 2.29 2.79  
.070 1.27 1.79  
.060 1.02 1.52  
DIM  
A
MIN  
.114  
.018  
.047  
.097  
.009  
.690  
.666  
MAX MIN  
MAX  
3.45  
.690  
1.42  
2.62  
0.51  
18.1  
17.2  
DIM  
E
MIN  
.410  
.390  
.265  
.285  
.195  
.090  
.050  
.040  
.136 2.90  
.027 .460  
.056 1.19  
.103 2.46  
.020 0.22  
.715 17.5  
.680 16.9  
B
E1  
E2  
G1  
L
B1  
B2  
C
D
P
D 1  
Q
S
VRE404DS REV. A MAY 1996  
VRE405  
Precision  
Dual Reference  
THALER CORPORATION • 2015 N. FORBES BOULEVARD • TUCSON, AZ. 85745 • (520) 882-4000  
FEATURES  
PIN CONFIGURATION  
• ±5.000 V OUTPUT ± 0.500 mV (.01%)  
• TEMPERATURE DRIFT: 0.6 ppm/°C  
• LOW NOISE: 3µVpp (0.1-10Hz)  
1
2
3
14 N/C  
N/C  
- VOUT  
13  
12  
+VOUT  
N/C  
VRE405  
N/C  
TRACKING ERROR:0.3mVmax.  
TOP  
VIEW  
+VIN  
4
- VIN  
11  
5
6
7
N/C  
10  
9
N/C  
N/C  
N/C  
• EXCELLENT LINE REGULATION: 6ppm/V Typ.  
• SURFACE MOUNT AND DIP PACKAGES  
REF. GND  
GND  
8
FIGURE 1  
DESCRIPTION  
The VRE405 is a low cost, high precision, ±5.0V  
reference. Packaged in 14 pin DIP or SMT  
packages, the device is ideal for new designs that  
need a high performance reference.  
The VRE405 is recommended for use as a  
reference for high precision D/A and A/D  
converters which require an external precision  
reference. The device is ideal for calibrating  
scale factor on high resolution A/D converters.  
The VRE405 offers superior performance over  
monolithic references.  
The device provides ultrastable ±5.000V output  
with ±0.500 mV (.01%) initial accuracy and a  
temperature coefficient of 0.6 ppm/°C.  
This  
improvement in accuracy is made possible by a  
unique, patented multipoint laser compensation  
technique developed by Thaler Corporation.  
SELECTION GUIDE  
Temp.  
Range  
°C  
Temp.  
Coeff.  
ppm/°C  
Initial  
Error  
mV  
Another key feature of this reference is the 0.3 mV  
maximum tracking error between the positive and  
negative output voltages over the operating  
temperature range. This is extremely important in  
high performance systems for reducing overall  
system errors.  
Model  
VRE405A  
VRE405B  
VRE405C  
VRE405J  
VRE405K  
VRE405L  
0.5  
0.8  
1.0  
0.5  
0.8  
1.0  
0.6  
1.0  
2.0  
0.6  
1.0  
2.0  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
For designs which use the DIP package in a  
socket, there is a reference ground pin to  
eliminate the reference ground errors.  
For package option add D for DIP or S for Surface  
Mount to end of model number.  
VRE405DS REV. A MAY 1996  
ELECTRICAL SPECIFICATIONS  
Vps =±15V, T = 25°C, RL = 10KW unless otherwise noted.  
VRE405  
MODEL  
A/J  
B/K  
C/L  
PARAMETER  
ABSOLUTE RATINGS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
±13.5  
0
-40  
-65  
±15  
±22  
+70  
+85  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
V
Operating Temp. (A,B,C)  
Operating Temp. (J,K,L)  
Storage Temperature  
Short Circuit Protection  
°C  
°C  
°C  
+150  
Continuous  
*
*
*
*
OUTPUT VOLTAGE  
VRE405  
±5.00  
V
OUTPUT VOLTAGE ERRORS  
Initial Error  
Warmup Drift  
Tmin - Tmax  
Tracking Error  
0.50  
0.80  
1.00  
mV  
ppm  
ppm/ °C  
mV  
(1)  
1
2
3
(2)  
0.6  
0.3  
1.0  
0.4  
2.0  
0.5  
(3)  
Long-Term Stability  
Noise (.1-10Hz)  
6
3
*
*
*
*
ppm/1000hrs  
mVpp  
OUTPUT CURRENT  
Range  
±10  
*
*
mA  
REGULATION  
Line  
Load  
3
3
10  
*
*
*
*
*
*
ppm/V  
ppm/mA  
POWER SUPPLY CURRENTS (4)  
+PS  
-PS  
7
4
9
6
*
*
*
*
*
*
*
*
mA  
mA  
NOTES: *Same as A/J Models.  
4. The specified values are unloaded.  
1. The specified values are without external trim.  
2. The temperature coefficient (tc) is determined by the  
box method using the following formula:  
Vmax - Vmin  
tc =  
x 106  
Vnominal x (Tmax-Tmin  
)
3. The tracking error is the deviation between the  
positive and negative output over the operating temp.  
range.  
VRE405DS REV. A MAY 1996  
TYPICAL PERFORMANCE CURVES  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
o
o
o
Temperature C  
Temperature C  
Temperature C  
VRE405A  
VRE405B  
VRE405C  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
o
o
o
Temperature C  
Temperature C  
Temperature C  
VRE405K  
VRE405J  
VRE405L  
POSITIVE OUTPUT (TYP)  
JUNCTION TEMP. RISE VS. OUTPUT CURRENT  
QUIESCENT CURRENT VS. TEMP  
PSRR VS. FREQUENCY  
o
Temperature C  
Output Current (mA)  
NEGATIVE OUTPUT (TYP)  
Frequency (Hz)  
JUNCTION TEMP. RISE VS. OUTPUT CURRENT  
QUIESCENT CURRENT VS. TEMP  
PSRR VS. FREQUENCY  
o
Temperature C  
Output Current (mA)  
Frequency (Hz)  
VRE405DS REV. A MAY 1996  
DISCUSSION OF PERFORMANCE  
THEORY OF OPERATION  
This network is less than 2% of the overall network  
resistance so it has a negligible effect on long term  
stability.  
The following discussion refers to the schematic in  
figure 2 below. A FET current source is used to bias  
a 6.3V zener diode. The zener voltage is divided by  
the resistor network R1 and R2. This voltage is then  
applied to the noninverting input of the operational  
amplifier which amplifies the voltage to produce a  
5.000V output. The gain is determined by the  
resistor networks R3 and R4: G=1 + R4/R3. The  
6.3V zener diode is used because it is the most  
stable diode over time and temperature.  
The VRE405 reference has it’s ground terminal  
brought out on two pins (pin 6 and 7) which are  
connected internally. This allows the user to achieve  
greater accuracy when using a socket. Voltage  
references have a voltage drop across their power  
supply ground pin due to quiescent current flowing  
through the contact resistance. If the contact  
resistance was constant with time and temperature,  
this voltage drop could be trimmed out. When the  
reference is plugged into a socket, this source of  
error can be as high as 20ppm. By connecting pin 7  
to the power supply ground and pin 6 to a high  
impedance ground point in the measurement circuit,  
the error due to the contact resistance can be  
eliminated. If the unit is soldered into place, the  
contact resistance is sufficiently small that it does  
not effect performance.  
The current source provides a closely regulated  
zener current, which determines the slope of the  
references’ voltage vs. temperature function. By  
trimming the zener current a lower drift over  
temperature can be achieved. But since the voltage  
vs. temperature function is nonlinear this  
compensation technique is not well suited for wide  
temperature ranges.  
Thaler Corporation has developed a nonlinear  
compensation network of thermistors and resistors  
that is used in the VRE series voltage references.  
This proprietary network eliminates most of the  
nonlinearity in the voltage vs. temperature function.  
By adjusting the slope, Thaler Corporation produces  
a very stable voltage over wide temperature ranges.  
VRE405  
FIGURE 2  
VRE405DS REV. A MAY 1996  
MECHANICAL  
FIGURE 3  
INCHES  
MIN  
MILLIMETER  
INCHES  
MILLIMETER  
DIM  
A
MAX MIN  
.136 2.90  
.103 2.48  
.056 1.19  
.118 2.62  
.020 0.22  
.062 1.37  
.715 17.5  
.680 16.9  
MAX  
3.45  
2.62  
1.42  
3.00  
0.51  
1.57  
18.1  
17.2  
DIM  
E
MIN  
.495  
.390  
.265  
.090  
.024  
.040  
MAX MIN MAX  
.526 12.5 13.3  
.415 9.91 10.5  
.270 6.73 6.86  
.110 2.29 2.79  
.035 0.61 .890  
.060 1.02 1.52  
.114  
.098  
.047  
.103  
.009  
.054  
.690  
.666  
B
E1  
E2  
P
B1  
C
C1  
C2  
D
Q
S
D1  
FIGURE 4  
INCHES  
MILLIMETER  
INCHES  
MILLIMETER  
MAX MIN MAX  
.435 10.4 11.0  
.415 9.91 10.5  
.270 6.73 6.86  
.315 7.24 8.00  
.225 4.95 5.72  
.110 2.29 2.79  
.070 1.27 1.79  
.060 1.02 1.52  
DIM  
A
MIN  
.114  
.018  
.047  
.097  
.009  
.690  
.666  
MAX MIN  
MAX  
3.45  
.690  
1.42  
2.62  
0.51  
18.1  
17.2  
DIM  
E
MIN  
.410  
.390  
.265  
.285  
.195  
.090  
.050  
.040  
.136 2.90  
.027 .460  
.056 1.19  
.103 2.46  
.020 0.22  
.715 17.5  
.680 16.9  
B
E1  
E2  
G1  
L
B1  
B2  
C
D
P
D 1  
Q
S
VRE405DS REV. A MAY 1996  
VRE410  
Precision  
Dual Reference  
THALER CORPORATION • 2015 N. FORBES BOULEVARD • TUCSON, AZ. 85745 • (520) 882-4000  
FEATURES  
PIN CONFIGURATION  
• ±10.000 V OUTPUT ± 1.000 mV (.01%)  
• TEMPERATURE DRIFT: 0.6 ppm/°C  
• LOW NOISE: 6µVpp (0.1-10Hz)  
1
2
3
14 N/C  
N/C  
- VOUT  
13  
12  
+VOUT  
N/C  
VRE410  
N/C  
TRACKING ERROR:0.5mVmax.  
TOP  
VIEW  
+VIN  
4
- VIN  
11  
5
6
7
N/C  
10  
9
N/C  
N/C  
N/C  
• EXCELLENT LINE REGULATION: 6ppm/V Typ.  
• SURFACE MOUNT AND DIP PACKAGES  
REF. GND  
GND  
8
FIGURE 1  
DESCRIPTION  
The VRE410 is a low cost, high precision, ±10.0V  
reference. Packaged in 14 pin DIP or SMT  
packages, the device is ideal for new designs that  
need a high performance reference.  
The VRE410 is recommended for use as a  
reference for high precision D/A and A/D  
converters which require an external precision  
reference. The device is also ideal for calibrating  
scale factor on high resolution A/D converters.  
The VRE410 offers superior performance over  
monolithic references.  
The device provides ultrastable ±10.000V output  
with ±1.000 mV (.01%) initial accuracy and a  
temperature coefficient of 0.6 ppm/°C.  
This  
improvement in accuracy is made possible by a  
unique, patented multipoint laser compensation  
technique developed by Thaler Corporation.  
SELECTION GUIDE  
Temp.  
Range  
°C  
Temp.  
Coeff.  
ppm/°C  
Initial  
Error  
mV  
Another key feature of this reference is the 0.5 mV  
maximum tracking error between the positive and  
negative output voltages over the full operating  
temperature range. This is extremely important in  
high performance systems for reducing overall  
system errors.  
Model  
VRE410A  
VRE410B  
VRE410C  
VRE410J  
VRE410K  
VRE410L  
1.0  
1.6  
2.0  
1.0  
1.6  
2.0  
0.6  
1.0  
2.0  
0.6  
1.0  
2.0  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
For designs which use the DIP package in a  
socket, there is a reference ground pin to  
eliminate reference ground errors.  
For package option add D for DIP or S for Surface  
Mount to end of model number.  
VRE410DS REV. A MAY 1996  
ELECTRICAL SPECIFICATIONS  
Vps =±15V, T = 25°C, RL = 10KW unless otherwise noted.  
VRE410  
MODEL  
A/J  
B/K  
C/L  
PARAMETER  
ABSOLUTE RATINGS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
±13.5  
0
-40  
-65  
±15  
±22  
+70  
+85  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
V
Operating Temp. (A,B,C)  
Operating Temp. (J,K,L)  
Storage Temperature  
Short Circuit Protection  
°C  
°C  
°C  
+150  
Continuous  
*
*
*
*
OUTPUT VOLTAGE  
VRE410  
±10.00  
V
OUTPUT VOLTAGE ERRORS  
Initial Error  
Warmup Drift  
Tmin - Tmax  
Tracking Error  
1.00  
1.60  
2.00  
mV  
ppm  
ppm/ °C  
mV  
(1)  
1
2
3
(2)  
0.6  
0.5  
1.0  
0.7  
2.0  
1.0  
(3)  
Long-Term Stability  
Noise (.1-10Hz)  
6
6
*
*
*
*
ppm/1000hrs  
mVpp  
OUTPUT CURRENT  
Range  
±10  
*
*
mA  
REGULATION  
Line  
Load  
3
3
10  
*
*
*
*
*
*
ppm/V  
ppm/mA  
POWER SUPPLY CURRENTS (4)  
+PS  
-PS  
7
4
9
6
*
*
*
*
*
*
*
*
mA  
mA  
NOTES: *Same as A/J Models.  
4. The specified values are unloaded.  
1. The specified values are without external trim.  
2. The temperature coefficient (tc) is determined by the  
box method using the following formula:  
Vmax - Vmin  
tc =  
x 106  
Vnominal x (Tmax-Tmin  
)
3. The tracking error is the deviation between the  
positive and negative output over the operating temp.  
range.  
VRE410DS REV. A MAY 1996  
TYPICAL PERFORMANCE CURVES  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
o
o
o
Temperature C  
Temperature C  
Temperature C  
VRE410B  
VRE410C  
VRE410A  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
VOUT vs. TEMPERATURE  
o
o
o
Temperature C  
Temperature C  
Temperature C  
VRE410K  
VRE410J  
VRE410L  
POSITIVE OUTPUT (TYP)  
JUNCTION TEMP. RISE VS. OUTPUT CURRENT  
QUIESCENT CURRENT VS. TEMP  
PSRR VS. FREQUENCY  
o
Temperature C  
Output Current (mA)  
NEGATIVE OUTPUT (TYP)  
Frequency (Hz)  
JUNCTION TEMP. RISE VS. OUTPUT CURRENT  
QUIESCENT CURRENT VS. TEMP  
PSRR VS. FREQUENCY  
o
Temperature C  
Output Current (mA)  
Frequency (Hz)  
VRE410DS REV. A MAY 1996  
DISCUSSION OF PERFORMANCE  
THEORY OF OPERATION  
The VRE400 series voltage references have the  
ground terminal brought out on two pins (pin 6 and 7)  
which are connected together internally. This allows  
the user to achieve greater accuracy when using a  
socket. Voltage references have a voltage drop  
across their power supply ground pin due to  
quiescent current flowing through the contact  
resistance. If the contact resistance was constant  
with time and temperature, this voltage drop could be  
trimmed out. When the reference is plugged into a  
socket, this source of error can be as high as 20ppm.  
By connecting pin 7 to the power supply ground and  
pin 6 to a high impedance ground point in the  
measurement circuit, the error due to the contact  
resistance can be eliminated. If the unit is soldered  
into place the contact resistance is sufficiently small  
that it doesn't effect performance.  
The following discussion refers to the schematic  
below. In operation, approximately 6.3 volts is  
applied to the noninverting input of the op amp. The  
voltage is amplified by the op amp to produce a  
10.000V output. The gain is determined by the  
networks R1 and R2: G=1 + R2/R1. The 6.3V zener  
diode is used because it is the most stable diode  
over time and temperature.  
The zener operating current is derived from the  
regulated output voltage through R3. This feedback  
arrangement provides a closely regulated zener  
current. This current determines the slope of the  
references' voltage vs. temperature function. By  
trimming the zener current a lower drift over  
temperature can be achieved. But since the voltage  
vs. temperature function is nonlinear this  
compensation technique is not well suited for wide  
temperature ranges.  
Thaler Corporation has developed a nonlinear  
compensation network of thermistors and resistors  
that is used in the VRE series voltage references.  
This proprietary network eliminates most of the  
nonlinearity in the voltage vs. temperature function.  
By then adjusting the slope, Thaler Corporation  
produces  
a
very stable voltage over wide  
temperature ranges.  
VRE410  
FIGURE 2  
VRE410DS REV. A MAY 1996  
MECHANICAL  
FIGURE 3  
INCHES  
MIN  
MILLIMETER  
INCHES  
MILLIMETER  
DIM  
A
MAX MIN  
.136 2.90  
.103 2.48  
.056 1.19  
.118 2.62  
.020 0.22  
.062 1.37  
.715 17.5  
.680 16.9  
MAX  
3.45  
2.62  
1.42  
3.00  
0.51  
1.57  
18.1  
17.2  
DIM  
E
MIN  
.495  
.390  
.265  
.090  
.024  
.040  
MAX MIN MAX  
.526 12.5 13.3  
.415 9.91 10.5  
.270 6.73 6.86  
.110 2.29 2.79  
.035 0.61 .890  
.060 1.02 1.52  
.114  
.098  
.047  
.103  
.009  
.054  
.690  
.666  
B
E1  
E2  
P
B1  
C
C1  
C2  
D
Q
S
D1  
FIGURE 4  
INCHES  
MILLIMETER  
INCHES  
MILLIMETER  
MAX MIN MAX  
.435 10.4 11.0  
.415 9.91 10.5  
.270 6.73 6.86  
.315 7.24 8.00  
.225 4.95 5.72  
.110 2.29 2.79  
.070 1.27 1.79  
.060 1.02 1.52  
DIM  
A
MIN  
.114  
.018  
.047  
.097  
.009  
.690  
.666  
MAX MIN  
MAX  
3.45  
.690  
1.42  
2.62  
0.51  
18.1  
17.2  
DIM  
E
MIN  
.410  
.390  
.265  
.285  
.195  
.090  
.050  
.040  
.136 2.90  
.027 .460  
.056 1.19  
.103 2.46  
.020 0.22  
.715 17.5  
.680 16.9  
B
E1  
E2  
G1  
L
B1  
B2  
C
D
P
D 1  
Q
S
VRE410DS REV. A MAY 1996  

相关型号:

VRE404CD

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VRE404CS

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VRE404J

Precision Dual Reference

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VRE404JD

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VRE404JS

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VRE404K

Precision Dual Reference

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VRE404KD

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VRE404KS

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VRE404L

Precision Dual Reference

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VRE404LD

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VRE404LS

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VRE405

Precision Dual Voltage Reference

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CIRRUS