VS1103B [ETC]

MIDI/ADPCM AUDIO CODEC; MIDI / ADPCM音频编解码器
VS1103B
型号: VS1103B
厂家: ETC    ETC
描述:

MIDI/ADPCM AUDIO CODEC
MIDI / ADPCM音频编解码器

解码器 编解码器 PC
文件: 总61页 (文件大小:561K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VS1103B  
VS1103b  
VS1103b - MIDI/ADPCM AUDIO  
CODEC  
Features  
Description  
Mixes three audio sources  
VS1103b is a single-chip MIDI/ADPCM/WAV au-  
dio decoder and ADPCM encoder that can handle  
upto three simultaneous audio streams. It can also  
act as a Midi synthesizer.  
General MIDI 1+ / SP-MIDI  
WAV (PCM + IMA ADPCM)  
Microphone or line input  
Encodes IMA ADPCM from microphone,  
line input or mixed output  
VS1103b contains a high-performance, proprietary  
low-power DSP processor core VS DSP4, work-  
ing data memory, 5 KiB instruction RAM and  
0.5 KiB data RAM for user applications, serial  
control and input data interfaces, 4 general pur-  
pose I/O pins, an UART, as well as a high-quality  
variable-sample-rate mono ADC and stereo DAC,  
followed by an earphone amplifier and a common  
buffer.  
Input streams can use different sample rates  
EarSpeaker Spatial Processing  
Bass and treble controls  
Operates with a single 12... 13 MHz clock  
Internal PLL clock multiplier  
Low-power operation  
High-quality on-chip stereo DAC with no  
phase error between channels  
Stereo earphone driver capable of driving a  
30 load  
VS1103b receives its input bitstreams through se-  
rial input buses, which it listens to as a system  
slave. The input streams are decoded and passed  
through digital volume controls to an 18-bit over-  
sampling, multi-bit, sigma-delta DAC. Decoding  
is controlled via a serial control bus. In addition  
to basic decoding, it is possible to add application  
specific features, like DSP effects, to user RAM  
memory.  
Separate operating voltages for analog, dig-  
ital and I/O  
5.5 KiB On-chip RAM for user code / data  
Serial control and data interfaces  
Can be used as a slave co-processor  
SPI flash boot for special applications  
UART for debugging purposes  
New functions may be added with software  
and 4 GPIO pins  
audio  
mic  
VS1103  
L
audio  
Mono  
ADC  
Stereo  
DAC  
Stereo Ear−  
phone Driver  
MIC AMP  
MUX  
R
line  
audio  
GPIO  
output  
4
GPIO  
X ROM  
X RAM  
Y ROM  
Y RAM  
DREQ  
SO  
SI  
Serial  
Data/  
4
SCLK  
XCS  
XDCS  
Control  
Interface  
VSDSP  
RX  
UART  
TX  
Clock  
multiplier  
Instruction  
RAM  
Instruction  
ROM  
Version 1.01, 2007-09-03  
1
VS1103B  
VLSI  
VS1103b  
y
Solution  
CONTENTS  
Contents  
1
2
3
Disclaimer  
8
8
9
Definitions  
Characteristics & Specifications  
3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9
9
3.3 Analog Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.4 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.5 Digital Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.6 Switching Characteristics - Boot Initialization . . . . . . . . . . . . . . . . . . . . . . . 11  
4
Packages and Pin Descriptions  
12  
4.1 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1.1 LQFP-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1.2 BGA-49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.2 LQFP-48 and BGA-49 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
SPI Buses  
15  
5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.2 SPI Bus Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.2.1 VS1002 Native Modes (New Mode) . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.2.2 VS1001 Compatibility Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.3 Data Request Pin DREQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.4 Serial Protocol for Serial Data Interface (SDI) . . . . . . . . . . . . . . . . . . . . . . . 16  
Version 1.01, 2007-09-03  
2
VS1103B  
VLSI  
VS1103b  
y
Solution  
CONTENTS  
5.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.4.2 SDI in VS1002 Native Modes (Recommended) . . . . . . . . . . . . . . . . . . 16  
5.4.3 SDI in VS1001 Compatibility Mode . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.4.4 Passive SDI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.5 Serial Protocol for Serial Command Interface (SCI) . . . . . . . . . . . . . . . . . . . . 17  
5.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.5.2 SCI Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.5.3 SCI Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.5.4 SCI Multiple Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.6 SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.7 SPI Examples with SM SDINEW and SM SDISHARED set . . . . . . . . . . . . . . . 21  
5.7.1 Two SCI Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.7.2 Two SDI Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.7.3 SCI Operation in Middle of Two SDI Bytes . . . . . . . . . . . . . . . . . . . . 22  
6
Functional Description  
23  
6.1 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.2 Supported Audio Codecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.2.1 Supported RIFF WAV Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.2.2 Supported MIDI Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.3 Data Flow of VS1103b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.3.1 Normal Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.3.2 Real-Time RT-Midi Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.4 Serial Data Interface (SDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.5 Serial Control Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Version 1.01, 2007-09-03  
3
VS1103B  
VLSI  
VS1103b  
y
Solution  
CONTENTS  
6.6 SCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.6.1 SCI MODE (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.6.2 SCI STATUS (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.6.3 SCI BASS (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.6.4 SCI CLOCKF (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.6.5 SCI DECODE TIME (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.6.6 SCI AUDATA (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.6.7 SCI WRAM (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.6.8 SCI WRAMADDR (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.6.9 SCI IN0 and SCI IN1 (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.6.10 SCI AIADDR (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.6.11 SCI VOL (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.6.12 SCI MIXERVOL (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.6.13 SCI ADPCMRECCTL (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.6.14 SCI AICTRL[x] (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7
Operation  
37  
7.1 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.2 Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.3 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.4 ADPCM Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.4.1 Activating ADPCM Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.4.2 Reading IMA ADPCM Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.4.3 Adding a RIFF Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.4.4 Playing ADPCM Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Version 1.01, 2007-09-03  
4
VS1103B  
VLSI  
VS1103b  
y
Solution  
CONTENTS  
7.4.5 Sample Rate Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.4.6 Example Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.5 SPI Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.6 Play/Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.7 Feeding PCM data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.8 SDI Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.8.1 Sine Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
7.8.2 Pin Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
7.8.3 Memory Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
7.8.4 SCI Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8
VS1103b Registers  
45  
8.1 Who Needs to Read This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
8.2 The Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
8.3 VS1103b Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
8.4 SCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
8.5 Serial Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
8.6 DAC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
8.7 GPIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
8.8 Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
8.9 A/D Modulator Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.10 Watchdog v1.0 2002-08-26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
8.10.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
8.11 UART v1.0 2002-04-23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
8.11.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Version 1.01, 2007-09-03  
5
VS1103B  
VLSI  
VS1103b  
y
Solution  
CONTENTS  
8.11.2 Status UARTx STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
8.11.3 Data UARTx DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
8.11.4 Data High UARTx DATAH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
8.11.5 Divider UARTx DIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
8.11.6 Interrupts and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
8.12 Timers v1.0 2002-04-23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
8.12.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
8.12.2 Configuration TIMER CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
8.12.3 Configuration TIMER ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
8.12.4 Timer X Startvalue TIMER Tx[L/H] . . . . . . . . . . . . . . . . . . . . . . . 55  
8.12.5 Timer X Counter TIMER TxCNT[L/H] . . . . . . . . . . . . . . . . . . . . . . 55  
8.12.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
8.13 System Vector Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
8.13.1 AudioInt, 0x20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
8.13.2 SciInt, 0x21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
8.13.3 DataInt, 0x22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
8.13.4 ModuInt, 0x23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
8.13.5 TxInt, 0x24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
8.13.6 RxInt, 0x25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
8.13.7 Timer0Int, 0x26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
8.13.8 Timer1Int, 0x27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
8.13.9 UserCodec, 0x0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
8.14 System Vector Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
8.14.1 WriteIRam(), 0x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Version 1.01, 2007-09-03  
6
VS1103B  
VLSI  
VS1103b  
y
Solution  
LIST OF FIGURES  
8.14.2 ReadIRam(), 0x4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
8.14.3 DataBytes(), 0x6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
8.14.4 GetDataByte(), 0x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
8.14.5 GetDataWords(), 0xa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
8.14.6 Reboot(), 0xc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9
Document Version Changes  
60  
61  
10 Contact Information  
List of Figures  
1
2
3
4
5
6
7
8
9
Pin Configuration, LQFP-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Configuration, BGA-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
BSYNC Signal - one byte transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
BSYNC Signal - two byte transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SCI Word Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SCI Word Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SCI Multiple Word Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SPI Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Two SCI Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10 Two SDI Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
11 Two SDI Bytes Separated By an SCI Operation. . . . . . . . . . . . . . . . . . . . . . . 22  
12 Normal Data Flow of VS1103b, Part 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
13 Normal Data Flow of VS1103b, Part 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
14 User’s Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
15 RS232 Serial Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Version 1.01, 2007-09-03  
7
VS1103B  
VLSI  
VS1103b  
y
Solution  
1. DISCLAIMER  
1 Disclaimer  
All properties and figures are subject to change.  
2 Definitions  
B Byte, 8 bits.  
b Bit.  
Ki “Kibi” = 10 = 1024 (IEC 60027-2).  
Mi “Mebi” = 20 = 1048576 (IEC 60027-2).  
VS DSP VLSI Solution’s DSP core.  
W Word. In VS DSP, instruction words are 32-bit and data words are 16-bit wide.  
Version 1.01, 2007-09-03  
8
VS1103B  
VLSI  
VS1103b  
y
Solution  
3. CHARACTERISTICS & SPECIFICATIONS  
3 Characteristics & Specifications  
3.1 Absolute Maximum Ratings  
Parameter  
Symbol Min  
Max  
Unit  
Analog Positive Supply  
Digital Positive Supply  
I/O Positive Supply  
AVDD -0.3  
CVDD -0.3  
IOVDD -0.3  
2.85  
2.7  
3.6  
V
V
V
Current at Any Digital Output  
Voltage at Any Digital Input  
Operating Temperature  
Storage Temperature  
±50  
mA  
V
-0.3 IOVDD+0.31  
-40  
-65  
+85  
+150  
C  
C  
1 Must not exceed 3.6 V  
3.2 Recommended Operating Conditions  
Parameter  
Symbol  
Min  
-40  
Typ  
Max Unit  
+85  
Ambient Operating Temperature  
Analog and Digital Ground 1  
Positive Analog  
C  
V
AGND DGND  
AVDD  
0.0  
2.8  
2.5  
2.6  
2.4  
2.85  
2.7  
3.6  
13  
V
V
V
MHz  
Positive Digital  
I/O Voltage  
CVDD  
IOVDD  
XTALI  
CVDD-0.6V  
2.8  
Input Clock Frequency2  
Internal Clock Frequency  
Internal Clock Multiplier3  
Master Clock Duty Cycle  
12  
12  
×
12.288  
CLKI  
36.864 52.04 MHz  
4
×
×
40  
50  
60  
%
1 Must be connected together as close the device as possible for latch-up immunity.  
2 The maximum sample rate that can be played with correct speed is XTALI/256.  
Thus, XTALI must be at least 12.288 MHz to be able to play 48 kHz at correct speed.  
For other implications rising from not using a 12.288 MHz clock, see Chapter 7.4.5.  
3 Reset value is  
Performance may be poor if SC MULT  
4 52.0 MHz is the maximum clock for the full CVDD range.  
MHz 49.152 MHz or MHz 45.5 MHz)  
×. Recommended SC MULT= ×.  
.
(
×
×
Version 1.01, 2007-09-03  
9
VS1103B  
VLSI  
VS1103b  
y
Solution  
3. CHARACTERISTICS & SPECIFICATIONS  
3.3 Analog Characteristics  
Unless otherwise noted: AVDD=2.5..2.85V, CVDD=2.4..2.7V, IOVDD=CVDD-0.6V..3.6V, TA=-25..+70C,  
XTALI=12..13MHz, Internal Clock Multiplier  
×. DAC tested with 1307.894 Hz full-scale output  
sinewave, measurement bandwidth 20..20000 Hz, analog output load: LEFT to GBUF 30 , RIGHT to  
GBUF 30 . Microphone test amplitude 50 mVpp, f =1 kHz, Line input test amplitude 1.1 V, f =1 kHz.  
Parameter  
Symbol Min Typ  
Max Unit  
DAC Resolution  
18  
bits  
Total Harmonic Distortion  
Dynamic Range (DAC unmuted, A-weighted)  
S/N Ratio (full scale signal)  
THD  
IDR  
SNR  
0.1  
90  
0.3  
%
dB  
dB  
dB  
dB  
dB  
dB  
70  
50  
Interchannel Isolation (Cross Talk)  
Interchannel Isolation (Cross Talk), with GBUF  
Interchannel Gain Mismatch  
Frequency Response  
Full Scale Output Voltage (Peak-to-peak)  
Deviation from Linear Phase  
Analog Output Load Resistance  
Analog Output Load Capacitance  
Microphone input amplifier gain  
Microphone input amplitude  
Microphone Total Harmonic Distortion  
Microphone S/N Ratio  
75  
40  
-0.5  
-0.1  
1.3  
0.5  
0.1  
1.7  
5
1.51  
302  
Vpp  
AOLR  
MICG  
16  
100  
pF  
dB  
26  
50  
0.02  
62  
1403 mVpp AC  
0.10  
MTHD  
MSNR  
%
dB  
50  
60  
Line input amplitude  
Line input Total Harmonic Distortion  
Line input S/N Ratio  
2200 28003 mVpp AC  
LTHD  
LSNR  
0.06  
68  
100  
0.10  
%
dB  
k
Line and Microphone input impedances  
1 3.0 volts can be achieved with +-to-+ wiring for mono difference sound.  
2 AOLR may be much lower, but below Typical distortion performance may be compromised.  
3 Harmonic Distortion increases above typical amplitude.  
Version 1.01, 2007-09-03  
10  
VS1103B  
VLSI  
VS1103b  
y
Solution  
3. CHARACTERISTICS & SPECIFICATIONS  
3.4 Power Consumption  
TBD  
3.5 Digital Characteristics  
Parameter  
High-Level Input Voltage  
Low-Level Input Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
V
V
V
V
A
MHz  
ns  
×IOVDD  
IOVDD+0.31  
-0.2  
×IOVDD  
High-Level Output Voltage at I = -1.0 mA  
Low-Level Output Voltage at I = 1.0 mA  
Input Leakage Current  
×IOVDD  
×IOVDD  
-1.0  
1.0  
SPI Input Clock Frequency 2  
6
50  
Rise time of all output pins, load = 50 pF  
1 Must not exceed 3.6V  
2 Value for SCI reads. SCI and SDI writes allow  
.
4
3.6 Switching Characteristics - Boot Initialization  
Parameter  
XRESET active time  
XRESET inactive to software ready  
Power on reset, rise time to CVDD  
Symbol Min  
Max  
Unit  
XTALI  
2
16600 500001 XTALI  
10  
V/s  
1 DREQ rises when initialization is complete. You should not send any data or commands before that.  
Version 1.01, 2007-09-03  
11  
VS1103B  
VLSI  
VS1103b  
y
Solution  
4. PACKAGES AND PIN DESCRIPTIONS  
4 Packages and Pin Descriptions  
4.1 Packages  
Both LPQFP-48 and BGA-49 are lead (Pb) free and also RoHS compliant packages. RoHS is a short  
name of Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical  
and electronic equipment.  
4.1.1 LQFP-48  
48  
1
Figure 1: Pin Configuration, LQFP-48.  
LQFP-48 package dimensions are at http://www.vlsi.fi/ .  
4.1.2 BGA-49  
A1 BALL PAD CORNER  
4
5
3
6
7
1
2
A
B
C
D
E
F
G
1.10 REF  
0.80 TYP  
4.80  
7.00  
TOP VIEW  
Figure 2: Pin Configuration, BGA-49.  
BGA-49 package dimensions are at http://www.vlsi.fi/ .  
Version 1.01, 2007-09-03  
12  
VS1103B  
VLSI  
VS1103b  
y
Solution  
4. PACKAGES AND PIN DESCRIPTIONS  
4.2 LQFP-48 and BGA-49 Pin Descriptions  
Pin Name  
LQFP- BGA49 Pin  
48 Pin Ball Type  
Function  
MICP  
MICN  
1
2
3
4
5
6
7
8
9
C3  
C2  
B1  
D2  
C1  
D3  
D1  
E2  
E1  
F2  
E3  
F3  
G2  
F4  
G3  
E4  
G4  
F5  
AI  
AI  
DI  
DGND  
CPWR  
IOPWR  
CPWR  
DO  
DIO  
DIO  
DI  
IOPWR  
DO  
DGND  
AO  
AI  
IOPWR  
IOPWR  
DGND  
DGND  
DGND  
DI  
Positive differential microphone input, self-biasing  
Negative differential microphone input, self-biasing  
Active low asynchronous reset  
Core & I/O ground  
Core power supply  
I/O power supply  
Core power supply  
Data request, input bus  
General purpose IO 2 / serial input data bus clock  
General purpose IO 3 / serial data input  
Data chip select / byte sync  
I/O power supply  
For testing only (Clock VCO output)  
Core & I/O ground  
Crystal output  
Crystal input  
I/O power supply  
XRESET  
DGND0  
CVDD0  
IOVDD0  
CVDD1  
DREQ  
GPIO2 / DCLK1  
GPIO3 / SDATA1 10  
XDCS / BSYNC1 13  
IOVDD1  
VCO  
14  
15  
16  
17  
18  
19  
DGND1  
XTALO  
XTALI  
IOVDD2  
IOVDD3  
DGND2  
DGND3  
DGND4  
XCS  
I/O power supply  
20  
21  
22  
23  
24  
Core & I/O ground  
Core & I/O ground  
Core & I/O ground  
Chip select input (active low)  
Core power supply  
G5  
F6  
G6  
G7  
CVDD2  
CPWR  
RX  
TX  
SCLK  
SI  
SO  
CVDD3  
TEST  
GPIO0 / SPIBOOT 33  
26  
27  
28  
29  
30  
31  
32  
E6  
F7  
D6  
E7  
D5  
D7  
C6  
C7  
DI  
DO  
DI  
UART receive, connect to IOVDD if not used  
UART transmit  
Clock for serial bus  
Serial input  
Serial output  
DI  
DO3  
CPWR  
DI  
Core power supply  
Reserved for test, connect to IOVDD  
General purpose IO 0 / SPIBOOT, use 100 k pull-down  
resistor2  
DIO  
GPIO1  
34  
B6  
DIO  
General purpose IO 1  
AGND0  
AVDD0  
RIGHT  
AGND1  
AGND2  
GBUF  
AVDD1  
RCAP  
AVDD2  
LEFT  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
C5  
B5  
A6  
B4  
A5  
C4  
A4  
B3  
A3  
B2  
A2  
A1  
APWR  
APWR  
AO  
APWR  
APWR  
AO  
APWR  
AIO  
APWR  
AO  
Analog ground, low-noise reference  
Analog power supply  
Right channel output  
Analog ground  
Analog ground  
Common buffer for headphones  
Analog power supply  
Filtering capacitance for reference  
Analog power supply  
Left channel output  
AGND3  
LINEIN  
APWR  
AI  
Analog ground  
Line input  
1 First pin function is active in New Mode, latter in Compatibility Mode.  
2 Unless pull-down resistor is used, SPI Boot is tried. See Chapter 7.5 for details.  
Version 1.01, 2007-09-03  
13  
VS1103B  
VLSI  
VS1103b  
y
Solution  
4. PACKAGES AND PIN DESCRIPTIONS  
Pin types:  
Type  
AO  
AIO  
APWR  
DGND  
Description  
Analog output  
Analog input/output  
Analog power supply pin  
Core or I/O ground pin  
Core power supply pin  
Type Description  
DI  
Digital input, CMOS Input Pad  
DO  
DIO  
Digital output, CMOS Input Pad  
Digital input/output  
DO3 Digital output, CMOS Tri-stated Output Pad  
AI Analog input  
CPWR  
IOPWR I/O power supply pin  
In BGA-49, no-connect balls are A7, B7, D4, E5, F1, G1.  
In LQFP-48, no-connect pins are 11, 12, 25, 35, 36.  
Version 1.01, 2007-09-03  
14  
VS1103B  
VLSI  
VS1103b  
y
Solution  
5. SPI BUSES  
5 SPI Buses  
5.1 General  
The SPI Bus - that was originally used in some Motorola devices - has been used for both VS1103b’s  
Serial Data Interface SDI (Chapters 5.4 and 6.4) and Serial Control Interface SCI (Chapters 5.5 and 6.5).  
5.2 SPI Bus Pin Descriptions  
5.2.1 VS1002 Native Modes (New Mode)  
These modes are active on VS1103b when SM SDINEW is set to 1 (default at startup). DCLK, SDATA  
and BSYNC are replaced with GPIO2, GPIO3 and XDCS, respectively.  
SDI Pin SCI Pin Description  
XDCS  
XCS  
Active low chip select input. A high level forces the serial interface into  
standby mode, ending the current operation. A high level also forces serial  
output (SO) to high impedance state. If SM SDISHARE is 1, pin  
XDCS is not used, but the signal is generated internally by inverting  
XCS.  
SCK  
Serial clock input. The serial clock is also used internally as the master  
clock for the register interface.  
SCK can be gated or continuous. In either case, the first rising clock edge  
after XCS has gone low marks the first bit to be written.  
Serial input. If a chip select is active, SI is sampled on the rising CLK edge.  
Serial output. In reads, data is shifted out on the falling SCK edge.  
In writes SO is at a high impedance state.  
SI  
-
SO  
5.2.2 VS1001 Compatibility Mode  
This mode is active when SM SDINEW is set to 0. In this mode, DCLK, SDATA and BSYNC are active.  
SDI Pin SCI Pin Description  
-
XCS  
Active low chip select input. A high level forces the serial interface into  
standby mode, ending the current operation. A high level also forces serial  
output (SO) to high impedance state.  
BSYNC  
DCLK  
-
SDI data is synchronized with a rising edge of BSYNC.  
Serial clock input. The serial clock is also used internally as the master  
clock for the register interface.  
SCK  
SCK can be gated or continuous. In either case, the first rising clock edge  
after XCS has gone low marks the first bit to be written.  
Serial input. SI is sampled on the rising SCK edge, if XCS is low.  
Serial output. In reads, data is shifted out on the falling SCK edge.  
In writes SO is at a high impedance state.  
SDATA  
-
SI  
SO  
Version 1.01, 2007-09-03  
15  
VS1103B  
VLSI  
VS1103b  
y
Solution  
5. SPI BUSES  
5.3 Data Request Pin DREQ  
The DREQ pin/signal is used to signal if VS1103b’s SDI FIFO is capable of receiving data. If DREQ is  
high, VS1103b can take at least 32 bytes of SDI data or one SCI command.  
Because of a 32-byte safety area, the sender may send upto 32 bytes of SDI data at a time without  
checking the status of DREQ, making controlling VS1103b easier for low-speed microcontrollers. If  
SARC DREQ512 is set, the safety area is 512 bytes (see Chapter 6.6.13).  
Note: DREQ may turn low or high at any time, even during a byte transmission. Thus, DREQ should  
only be used to decide whether to send more bytes. It should not abort a transmission that has already  
started.  
Note: In VS10XX products upto VS1002, DREQ was only used for SDI. In VS1103b DREQ is also  
used to tell the status of SCI.  
5.4 Serial Protocol for Serial Data Interface (SDI)  
5.4.1 General  
The serial data interface operates in slave mode so the DCLK signal must be generated by an external  
circuit.  
Data (SDATA signal) can be clocked in at either the rising or falling edge of DCLK (Chapter 6.6).  
VS1103b assumes its data input to be byte-sychronized. SDI bytes may be transmitted either MSb or  
LSb first, depending of SCI MODE (Chapter 6.6.1).  
5.4.2 SDI in VS1002 Native Modes (Recommended)  
In VS1002 native modes (SM NEWMODE is 1), byte synchronization is achieved by XDCS. The state of  
XDCS may not change while a data byte transfer is in progress. To always maintain data synchronization  
even if there may be glitches in the boards using VS1103b, it is recommended to turn XDCS every now  
and then, for instance once after every flash data block or a few kilobytes, just to keep sure the host and  
VS1103b are in sync.  
If SM SDISHARE is 1, the XDCS signal is internally generated by inverting the XCS input.  
For new designs, using VS1002 native modes are recommended.  
Version 1.01, 2007-09-03  
16  
VS1103B  
VLSI  
VS1103b  
y
Solution  
5. SPI BUSES  
5.4.3 SDI in VS1001 Compatibility Mode  
BSYNC  
SDATA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DCLK  
Figure 3: BSYNC Signal - one byte transfer.  
When VS1103b is running in VS1001 compatibility mode, a BSYNC signal must be generated to ensure  
correct bit-alignment of the input bitstream. The first DCLK sampling edge (rising or falling, depending  
on selected polarity), during which the BSYNC is high, marks the first bit of a byte (LSB, if LSB-first  
order is used, MSB, if MSB-first order is used). If BSYNC is ’1’ when the last bit is received, the receiver  
stays active and next 8 bits are also received.  
BSYNC  
SDATA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DCLK  
Figure 4: BSYNC Signal - two byte transfer.  
5.4.4 Passive SDI Mode  
If SM NEWMODE is 0 and SM SDISHARE is 1, the operation is otherwise like the VS1001 compat-  
ibility mode, but bits are only received while the BSYNC signal is ’1’. Rising edge of BSYNC is still  
used for synchronization.  
5.5 Serial Protocol for Serial Command Interface (SCI)  
5.5.1 General  
The serial bus protocol for the Serial Command Interface SCI (Chapter 6.5) consists of an instruction  
byte, address byte and one 16-bit data word. Each read or write operation can read or write a single  
register. Data bits are read at the rising edge, so the user should update data at the falling edge. Bytes are  
always sent MSb first. XCS should be low for the full duration of the operation, but you can have pauses  
between bits if needed.  
The operation is specified by an 8-bit instruction opcode. The supported instructions are read and write.  
See table below.  
Instruction  
Name  
Opcode  
Operation  
READ  
0b0000 0011 Read data  
WRITE 0b0000 0010 Write data  
Note: VS1103b sets DREQ low after each SCI operation. The duration depends on the operation. It is  
not allowed to finish a new SCI/SDI operation before DREQ is high again.  
Version 1.01, 2007-09-03  
17  
VS1103B  
VLSI  
VS1103b  
y
Solution  
5. SPI BUSES  
5.5.2 SCI Read  
XCS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
30 31  
SCK  
3
2
1
0
SI  
don’t care  
data out  
don’t care  
0
0
0
0
0
0
1
1
0
0
0
0
instruction (read)  
address  
15 14  
1
0
SO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
execution  
DREQ  
Figure 5: SCI Word Read  
VS1103b registers are read from using the following sequence, as shown in Figure 5. First, XCS line is  
pulled low to select the device. Then the READ opcode (0x3) is transmitted via the SI line followed by  
an 8-bit word address. After the address has been read in, any further data on SI is ignored by the chip.  
The 16-bit data corresponding to the received address will be shifted out onto the SO line.  
XCS should be driven high after data has been shifted out.  
DREQ is driven low for a short while when in a read operation by the chip. This is a very short time and  
doesn’t require special user attention.  
5.5.3 SCI Write  
XCS  
0
0
0
1
2
3
4
5
6
1
0
7
0
0
8
0
0
9
0
0
10 11 12 13 14 15 16 17  
30 31  
SCK  
15 14  
1
0
3
2
1
0
X
SI  
0
0
0
0
0
0
0
data out  
instruction (write)  
address  
X
SO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
execution  
DREQ  
Figure 6: SCI Word Write  
VS1103b registers are written from using the following sequence, as shown in Figure 6. First, XCS line  
is pulled low to select the device. Then the WRITE opcode (0x2) is transmitted via the SI line followed  
by an 8-bit word address.  
Version 1.01, 2007-09-03  
18  
VS1103B  
VLSI  
VS1103b  
y
Solution  
5. SPI BUSES  
After the word has been shifted in and the last clock has been sent, XCS should be pulled high to end the  
WRITE sequence.  
After the last bit has been sent, DREQ is driven low for the duration of the register update, marked  
“execution” in the figure. The time varies depending on the register and its contents (see table in Chap-  
ter 6.6 for details). If the maximum time is longer than what it takes from the microcontroller to feed  
the next SCI command or SDI byte, status of DREQ must be checked before finishing the next SCI/SDI  
operation.  
5.5.4 SCI Multiple Write  
XCS  
30  
0
0
0
1
2
3
4
5
6
1
0
7
0
0
8
0
0
9
0
0
10 11 12 13 14 15 16 17  
29  
31  
32 33  
15 14  
m−2m−1  
SCK  
15 14  
1
1
0
3
2
1
0
0
X
X
SI  
0
0
0
0
0
0
0
data out 1  
instruction (write)  
address  
data out 2 d.out n  
X
SO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
execution  
execution  
DREQ  
Figure 7: SCI Multiple Word Write  
VS1103b allows for the user to send multiple words to the same SCI register, which allows fast SCI  
uploads, shown in Figure 7. The main difference with a single write is that instead of bringing XCS up  
after sending the last bit of a data word, the next data word is sent immediately. After the last data word,  
XCS is driven high as with a single word write.  
After the last bit of a word has been sent, DREQ is driven low for the duration of the register update,  
marked “execution” in the figure. The time varies depending on the register and its contents (see table  
in Chapter 6.6 for details). If the maximum time is longer than what it takes from the microcontroller  
to feed the next SCI command or SDI byte, status of DREQ must be checked before finishing the next  
SCI/SDI operation.  
Version 1.01, 2007-09-03  
19  
VS1103B  
VLSI  
VS1103b  
y
Solution  
5. SPI BUSES  
5.6 SPI Timing Diagram  
tWL tWH  
tXCSH  
tXCSS  
XCS  
tXCS  
30  
0
1
14  
15  
16  
31  
SCK  
SI  
tH  
tSU  
SO  
tZ  
tV  
tDIS  
Figure 8: SPI Timing Diagram.  
Symbol Min  
Max Unit  
tXCSS  
tSU  
tH  
5
-26  
2
ns  
ns  
CLKI cycles  
tZ  
0
2
2
ns  
CLKI cycles  
CLKI cycles  
2 (+ 25ns1) CLKI cycles  
ns  
tWL  
tWH  
tV  
tXCSH  
tXCS  
tDIS  
-26  
2
CLKI cycles  
10 ns  
1 25ns is when pin loaded with 100pF capacitance. The time is shorter with lower capacitance.  
Note: As tWL and tWH, as well as tH require at least 2 clock cycles, the maximum speed for the SPI  
bus that can easily be used is 1/6 of VS1103b’s internal clock speed CLKI. Slightly higher speed can be  
achieved with very careful timing tuning. For details, see Application Notes for VS10XX.  
Note: Although the timing is derived from the internal clock CLKI, the system always starts up in  
mode, thus CLKI XTALI.  
×
Note: Negative numbers mean that the signal can change in different order from what is shown in the  
diagram.  
Version 1.01, 2007-09-03  
20  
VS1103B  
VLSI  
VS1103b  
y
Solution  
5. SPI BUSES  
5.7 SPI Examples with SM SDINEW and SM SDISHARED set  
5.7.1 Two SCI Writes  
SCI Write 1  
SCI Write 2  
XCS  
0
1
2
3
30  
31  
32  
33  
61  
62  
63  
SCK  
1
0
2
1
0
SI  
0
0
0
0
X
0
0
X
DREQ up before finishing next SCI write  
DREQ  
Figure 9: Two SCI Operations.  
Figure 9 shows two consecutive SCI operations. Note that xCS must be raised to inactive state between  
the writes. Also DREQ must be respected as shown in the figure.  
5.7.2 Two SDI Bytes  
SDI Byte 1  
SDI Byte 2  
XCS  
0
1
2
3
6
7
8
9
13  
14  
15  
SCK  
SI  
7
6
5
4
3
1
0
7
6
5
2
1
0
X
DREQ  
Figure 10: Two SDI Bytes.  
SDI data is synchronized with a raising edge of xCS as shown in Figure 10. However, every byte doesn’t  
need separate synchronization.  
Version 1.01, 2007-09-03  
21  
VS1103B  
VLSI  
VS1103b  
y
Solution  
5. SPI BUSES  
5.7.3 SCI Operation in Middle of Two SDI Bytes  
SDI Byte  
SDI Byte  
SCI Operation  
XCS  
0
1
7
8
9
39  
40  
41  
46  
47  
SCK  
7
6
5
1
0
7
6
5
1
0
X
SI  
0
0
DREQ high before end of next transfer  
DREQ  
Figure 11: Two SDI Bytes Separated By an SCI Operation.  
Figure 11 shows how an SCI operation is embedded in between SDI operations. xCS edges are used to  
synchronize both SDI and SCI. Remember to respect DREQ as shown in the figure.  
Version 1.01, 2007-09-03  
22  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
6 Functional Description  
6.1 Main Features  
VS1103b is based on a proprietary digital signal processor, VS DSP. It contains all the code and data  
memory needed for WAV PCM + ADPCM audio decoding, MIDI synthesizer, together with serial in-  
terfaces, a multirate stereo audio DAC and analog output amplifiers and filters. Also ADPCM audio  
encoding is supported using a microphone amplifier and A/D converter. A UART is provided for debug-  
ging purposes.  
6.2 Supported Audio Codecs  
6.2.1 Supported RIFF WAV Formats  
The most common RIFF WAV subformats are supported.  
Format Name  
Supported Comments  
0x01  
0x02  
0x03  
0x06  
0x07  
0x10  
0x11  
0x15  
0x16  
0x30  
0x31  
0x3b  
0x3c  
0x40  
0x41  
0x50  
0x55  
0x64  
0x65  
PCM  
ADPCM  
IEEE FLOAT  
ALAW  
MULAW  
OKI ADPCM  
IMA ADPCM  
DIGISTD  
DIGIFIX  
DOLBY AC2  
GSM610  
ROCKWELL ADPCM  
ROCKWELL DIGITALK  
G721 ADPCM  
G728 CELP  
MPEG  
MPEGLAYER3  
G726 ADPCM  
G722 ADPCM  
+
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
16 and 8 bits, any sample rate 48kHz  
Any sample rate 48kHz  
Version 1.01, 2007-09-03  
23  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
6.2.2 Supported MIDI Formats  
General MIDI and SP-MIDI format 0 files are played. Format 1 and 2 files must be converted to format  
0 by the user. The maximum simultaneous polyphony is 40 (peak polyphony 64). Actual polyphony  
depends on the internal clock rate (which is user-selectable), the instruments used, and the possible  
postprocessing effects enabled, such as bass and treble enhancers. The polyphony restriction algorithm  
makes use of the SP-MIDI MIP table, if present. MIDI implements click-avoiding smooth note removal.  
When run in Real Time RT-Midi mode without other signal paths, 36.86 MHz ( × input clock)  
achieves 16-26 simultaneous sustained notes. The instantaneous amount of notes can be larger. 36 MHz  
is a fair compromise between power consumption and quality, but higher clocks can be used to increase  
polyphony. They are also needed if multiple signal paths are used.  
Reverb effect can be controlled by the user. In addition to reverb automatic and reverb off modes, 14  
different decay times can be selected. These roughly correspond to different room sizes. Also, each  
midi song decides how much effect each instrument gets. Because the reverb effect uses about 4 MHz of  
processing power the automatic control enables reverb only when the internal clock is at least  
×.  
When EarSpeaker spatial processing is active, MIDI reverb is not used.  
VS1103b supports unique instruments in the whole GM1 instrument set and one bank of GM2 percus-  
sions.  
Version 1.01, 2007-09-03  
24  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
VS1103b Melodic Intruments (GM1)  
1 Acoustic Grand Piano  
2 Bright Acoustic Piano  
3 Electric Grand Piano  
4 Honky-tonk Piano  
5 Electric Piano 1  
6 Electric Piano 2  
7 Harpsichord  
33 Acoustic Bass  
34 Electric Bass (finger) 66 Alto Sax  
35 Electric Bass (pick)  
36 Fretless Bass  
37 Slap Bass 1  
38 Slap Bass 2  
39 Synth Bass 1  
40 Synth Bass 2  
65 Soprano Sax  
97 Rain (FX 1)  
98 Sound Track (FX 2)  
99 Crystal (FX 3)  
100 Atmosphere (FX 4)  
101 Brightness (FX 5)  
102 Goblins (FX 6)  
103 Echoes (FX 7)  
104 Sci-fi (FX 8)  
67 Tenor Sax  
68 Baritone Sax  
69 Oboe  
70 English Horn  
71 Bassoon  
8 Clavi  
72 Clarinet  
9 Celesta  
41 Violin  
73 Piccolo  
105 Sitar  
10 Glockenspiel  
11 Music Box  
12 Vibraphone  
13 Marimba  
14 Xylophone  
15 Tubular Bells  
16 Dulcimer  
42 Viola  
43 Cello  
74 Flute  
106 Banjo  
107 Shamisen  
108 Koto  
109 Kalimba  
110 Bag Pipe  
111 Fiddle  
112 Shanai  
75 Recorder  
76 Pan Flute  
77 Blown Bottle  
78 Shakuhachi  
79 Whistle  
44 Contrabass  
45 Tremolo Strings  
46 Pizzicato Strings  
47 Orchestral Harp  
48 Timpani  
80 Ocarina  
17 Drawbar Organ  
18 Percussive Organ  
19 Rock Organ  
20 Church Organ  
21 Reed Organ  
49 String Ensembles 1  
50 String Ensembles 2  
51 Synth Strings 1  
52 Synth Strings 2  
53 Choir Aahs  
81 Square Lead (Lead 1)  
82 Saw Lead (Lead)  
83 Calliope Lead (Lead 3) 115 Pitched Percussion  
84 Chiff Lead (Lead 4) 116 Woodblock  
85 Charang Lead (Lead 5) 117 Taiko Drum  
113 Tinkle Bell  
114 Agogo  
22 Accordion  
23 Harmonica  
24 Tango Accordion  
54 Voice Oohs  
55 Synth Voice  
56 Orchestra Hit  
86 Voice Lead (Lead 6)  
87 Fifths Lead (Lead 7)  
88 Bass + Lead (Lead 8)  
118 Melodic Tom  
119 Synth Drum  
120 Reverse Cymbal  
25 Acoustic Guitar (nylon) 57 Trumpet  
89 New Age (Pad 1)  
90 Warm Pad (Pad 2)  
91 Polysynth (Pad 3)  
92 Choir (Pad 4)  
93 Bowed (Pad 5)  
94 Metallic (Pad 6)  
95 Halo (Pad 7)  
121 Guitar Fret Noise  
122 Breath Noise  
123 Seashore  
124 Bird Tweet  
125 Telephone Ring  
126 Helicopter  
127 Applause  
26 Acoustic Guitar (steel)  
27 Electric Guitar (jazz)  
28 Electric Guitar (clean)  
29 Electric Guitar (muted)  
30 Overdriven Guitar  
58 Trombone  
59 Tuba  
60 Muted Trumpet  
61 French Horn  
62 Brass Section  
63 Synth Brass 1  
64 Synth Brass 2  
31 Distortion Guitar  
32 Guitar Harmonics  
96 Sweep (Pad 8)  
128 Gunshot  
VS1103b Percussion Intruments (GM1+GM2)  
27 High Q  
43 High Floor Tom  
59 Ride Cymbal 2  
75 Claves  
28 Slap  
44 Pedal Hi-hat [EXC 1] 60 High Bongo  
45 Low Tom 61 Low Bongo  
46 Open Hi-hat [EXC 1] 62 Mute Hi Conga  
76 Hi Wood Block  
77 Low Wood Block  
78 Mute Cuica [EXC 4]  
79 Open Cuica [EXC 4]  
80 Mute Triangle [EXC 5]  
81 Open Triangle [EXC 5]  
82 Shaker  
29 Scratch Push [EXC 7]  
30 Scratch Pull [EXC 7]  
31 Sticks  
32 Square Click  
33 Metronome Click  
34 Metronome Bell  
47 Low-Mid Tom  
48 High Mid Tom  
49 Crash Cymbal 1  
50 High Tom  
63 Open Hi Conga  
64 Low Conga  
65 High Timbale  
66 Low Timbale  
35 Acoustic Bass Drum  
36 Bass Drum 1  
37 Side Stick  
51 Ride Cymbal 1  
52 Chinese Cymbal  
53 Ride Bell  
67 High Agogo  
68 Low Agogo  
69 Cabasa  
83 Jingle bell  
84 Bell tree  
85 Castanets  
38 Acoustic Snare  
39 Hand Clap  
40 Electric Snare  
41 Low Floor Tom  
54 Tambourine  
55 Splash Cymbal  
56 Cowbell  
70 Maracas  
86 Mute Surdo [EXC 6]  
71 Short Whistle [EXC 2] 87 Open Surdo [EXC 6]  
72 Long Whistle [EXC 2]  
73 Short Guiro [EXC 3]  
57 Crash Cymbal 2  
42 Closed Hi-hat [EXC 1] 58 Vibra-slap  
74 Long Guiro [EXC 3]  
Version 1.01, 2007-09-03  
25  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
6.3 Data Flow of VS1103b  
6.3.1 Normal Data Flow  
Gain 1  
Gain 2  
Gain 3  
UART  
SCI  
MIDI stream  
Buffer 1  
Buffer 2  
SDI  
ADPCM stream  
AGC/Gain 4  
Audio stream  
Mixer  
SM_ICONF  
A/D stream  
A/D  
GAIN3 != 0  
44.1 kHz  
SM_RECORD_PATH=1  
Stream 4  
8 kHz  
SM_RECORD_PATH=0  
ADPCM  
encode  
Buffer 3  
SCI  
SM_ADPCM=1  
* Only one MIDI and one ADPCM stream may be active at the time  
**UART can only be used for real−time MIDI  
Figure 12: Normal Data Flow of VS1103b, Part 1.  
Generation of the Audio stream and recording A/D stream is presented in Figure 12.  
Stream 1, which is the MIDI stream, may be fed either through SDI, SCI or UART. If it is fed through  
UART, real-time MIDI, or RT-MIDI is assumed. The buffer size is 1024 bytes.  
Stream 2, which is the ADPCM stream, may be fed either through SDI or SCI. The buffer size is 1024  
bytes.  
Stream 3, which is the A/D stream, running always at 8 kHz, is active if register SM ADPCM is set.  
The outputs of the three streams are forwarded to the Mixer, which resamples all data to 44.1 kHz, and  
forwards the data.  
Either one of the A/D stream and the output of the Mixer can be fed to ADPCM encoding. If the data  
is read from the A/D stream, it will be encoded as 8 kHz mono and if it is read from the Mixer, it will  
encode as 44.1 kHz mono. The ADPCM compressed data may be read from SCI registers SCI IN0 and  
SCI IN1. The buffer size is 1024 bytes.  
Version 1.01, 2007-09-03  
26  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
AIADDR=0  
SB_AMPLITUE=0  
ST_AMPLITUDE=0  
ST_EARSPEAKER=0  
Audio  
stream  
User  
application  
Bass  
enhancer  
Treble  
enhancer  
Earspeaker  
AIADDR!=0  
SB_AMPLITUDE!=0  
ST_AMPLITUDE!=0  
ST_EARSPEAKER!=0  
L
Volume  
control  
Audio  
FIFO  
S.rate.conv  
and DAC  
R
SCI_VOL  
512 stereo  
samples  
Figure 13: Normal Data Flow of VS1103b, Part 2.  
Figure 13 presents the data flow of the Audio stream generated in Figure 12.  
If SCI AIADDR is non-zero, application code is executed from the address pointed to by that register.  
For more details, see Application Notes for VS10XX.  
Then data may be sent to the Bass and Treble Enhancer depending on the SCI BASS register, followed  
by Earspeaker Spatial Processing, depending on ST EARSPEAKER.  
After that the signal is fed to the volume control unit, which also copies the data to the Audio FIFO.  
The Audio FIFO holds the data, which is read by the Audio interrupt (Chapter 8.13.1) and fed to the  
sample rate converter and DACs. The size of the audio FIFO is 1024 stereo (2×16-bit) samples, or  
4 KiB.  
The sample rate converter converts all different sample rates to XTALI/2, or 128 times the highest us-  
able sample rate. This removes the need for complex PLL-based clocking schemes and allows almost  
unlimited sample rate accuracy with one fixed input clock frequency. With a 12.288 MHz clock, the DA  
converter operates at  
×
kHz, i.e. 6.144 MHz, and creates a stereo in-phase analog signal. The  
oversampled output is low-pass filtered by an on-chip analog filter. This signal is then forwarded to the  
earphone amplifier.  
6.3.2 Real-Time RT-Midi Mode  
If GPIO1 is 1 and GPIO0 is 0 at startup, RT-Midi Mode is activated. In this mode RT-Midi data is read  
through the UART at the default MIDI speed 31250 bit/s. The generated audio is sent to the audio path  
as shown in Figure 13.  
When RT-MIDI mode is activated, GPIO2 and GPIO3 are read and their contents are copied to register  
bits SCIMB EARSPEAKER0 and SCIMB EARSPEAKER1, respectively. This way it is possible to  
activate EarSpeaker in this mode without writing to any SCI registers. Also, if SCI CLOCKF has not  
been set to a non-zero value, the clock multiplier is automatically set to 3.5X.  
This mode is intended for connecting a MIDI keyboard or sequencer to VS1103b.  
Version 1.01, 2007-09-03  
27  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
6.4 Serial Data Interface (SDI)  
The serial data interface is meant for transferring ADPCM or MIDI data.  
If the input of the decoder is invalid or it is not received fast enough, analog outputs are automatically  
muted.  
Also several different tests may be activated through SDI as described in Chapter 7.  
6.5 Serial Control Interface (SCI)  
The serial control interface is compatible with the SPI bus specification. Data transfers are always 16  
bits. VS1103b is controlled by writing and reading the registers of the interface.  
The main controls of the control interface are:  
control of the operation mode, clock, and builtin effects  
access to status information and header data  
access to encoded digital data  
uploading user programs  
6.6 SCI Registers  
SCI registers, prefix SCI  
Reg Type Reset  
Time1 Abbrev[bits]  
Description  
Mode control  
Status of VS1103b  
Built-in bass/treble enhancer  
Clock freq + multiplier  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
0x800  
200 CLKI4 MODE  
40 CLKI STATUS  
0x3C3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2100 CLKI BASS  
11000 XTALI5 CLOCKF  
40 CLKI DECODE TIME Stream 0 decode time  
3200 CLKI AUDATA  
80 CLKI WRAM  
80 CLKI WRAMADDR  
90 CLKI IN0  
Misc. audio data  
RAM write/read  
Base address for RAM write/read  
Input 0  
Input 1  
Start address of application  
Volume control  
90 CLKI IN1  
3200 CLKI2 AIADDR  
2100 CLKI VOL  
70 CLKI2 MIXERVOL  
Mixer volume  
50 CLKI2 ADPCMRECCTL IMA ADPCM record control  
50 CLKI2 AICTRL2  
50 CLKI2 AICTRL3  
Application control register 2  
Application control register 3  
1
This is the worst-case time that DREQ stays low after writing to / reading from this register. The user  
may choose to skip the DREQ check for those register writes that take less than 100 clock cycles to  
execute.  
Version 1.01, 2007-09-03  
28  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
2 In addition, the cycles spent in the user application routine must be counted.  
3 Firmware changes the value of this register immediately after reset to 0x38, and in less than 100 ms to  
0x30.  
4 When mode register write specifies a software reset the worst-case time is 16600 XTALI cycles.  
5
Writing to this register may force internal clock to run at  
× XTALI for a while. Thus it is not a  
good idea to send SCI or SDI bits while this register update is in progress.  
Note: it is not allowed to do an SCI operation while DREQ is low. If this is done, however, DREQ stays  
low even after the SCI operation has been processed.  
6.6.1 SCI MODE (RW)  
SCI MODE is used to control the operation of VS1103b and defaults to 0x0800 (SM SDINEW set).  
SCI MODE bits  
Name  
SM DIFF  
Bit Function  
Value Description  
normal in-phase audio  
0
1
2
3
4
5
Differential  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
0
1
0
1
0
1
0
1
0
1
2
3
0
1
0
1
left channel inverted  
A/D stream  
Mixer output  
no reset  
reset  
no  
yes  
power on  
powerdown  
not allowed  
allowed  
SDI MIDI, SCI ADPCM  
SCI MIDI, SDI ADPCM  
UART RT-MIDI, SCI ADPCM  
UART RT-MIDI, SDI ADPCM  
rising  
falling  
MSb first  
MSb last  
no  
yes  
no  
yes  
off  
low  
mid  
SM RECORD PATH  
SM RESET  
Choose ADPCM recording  
path  
Soft reset  
SM OUTOFMIDI  
SM PDOWN  
SM TESTS  
Cancel MIDI decoding  
Powerdown  
Allow SDI tests  
SM ICONF  
7:6 Input configuration  
SM DACT  
8
9
DCLK active edge  
SDI bit order  
SM SDIORD  
SM SDISHARE  
SM SDINEW  
SM EARSPEAKER  
10 Share SPI chip select  
11 VS1002 native SPI modes  
13:12 Earspeaker setting  
high  
SM LINE IN  
SM ADPCM  
14 A/D stream input  
selector  
15 ADPCM recording active  
microphone  
line in  
no  
yes  
Version 1.01, 2007-09-03  
29  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
When SM DIFF is set, the player inverts the left channel output. For a stereo input this creates virtual  
surround, and for a mono input this creates a differential left/right signal.  
If SM RECORD PATH is set, ADPCM recording is performed from the A/D stream at 8 kHz, otherwise  
the Mixer output is recorded at 44.1 kHz. This bit is only valid if SM ADPCM is set.  
Software reset is initiated by setting SM RESET to 1. This bit is cleared automatically.  
To stop decoding a MIDI file set SM OUTOFMIDI, and send data until SM OUTOFMIDI has cleared. If  
SM OUTOFMIDI is set while MIDI decoding has not been going on, the register bit will not be cleared  
before the few first words of the next MIDI file (or zeros) have been sent to the decoder.  
Bit SM PDOWN sets VS1103b into software powerdown mode where the only operational software  
part is the control bus handler. Note: software powerdown is not nearly as power efficient as hardware  
powerdown activated with the XRESET pin.  
If SM TESTS is set, SDI tests are allowed. For more details on SDI tests, look at Chapter 7.8.  
SM ICONF specifies the configuration of the data input streams. The following table shows its bits.  
SM ICONF S1 Port  
Stream1  
S2 Port  
Stream2  
0
1
2
3
SDI  
SCI  
MIDI  
MIDI  
SCI  
SDI  
ADPCM  
ADPCM  
ADPCM  
ADPCM  
UART/SDI RT-MIDI/RT-SDI SCI  
UART RT-MIDI SDI  
When SM ICONF is set to 2, Real Time MIDI messages can be sent either through the UART or SDI.  
If sent through UART, the standard MIDI protocol and date speed (31250 bit/s) is used. If send through  
SDI, the protocol is otherwise the same, but every byte must either be preceded or followed by a zero  
byte (but only one of these two alternative zero byte orders may be used at a time). So, a message that  
would be sent as 0x92 0x37 0x73 through normal MIDI, would become 0x92 0x00 0x37 0x00 0x73 0x00  
if sent through SDI.  
NOTE! If you change SM ICONF, a software reset is performed as if you had also set SM RESET!  
SM DACT defines the active edge of data clock for SDI. When ’0’, data is read at the rising edge, when  
’1’, data is read at the falling edge.  
When SM SDIORD is clear, bytes on SDI are sent as a default MSb first. By setting SM SDIORD, the  
user may reverse the bit order for SDI, i.e. bit 0 is received first and bit 7 last. Bytes are, however, still  
sent in the default order. This register bit has no effect on the SCI bus.  
Setting SM SDISHARE makes SCI and SDI share the same chip select, as explained in Chapter 5.2, if  
also SM SDINEW is set.  
Setting SM SDINEW will activate VS1002 native serial modes as described in Chapters 5.2.1 and 5.4.2.  
Note, that this bit is set as a default when VS1103b is started up.  
Version 1.01, 2007-09-03  
30  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
Bits in SM EARSPEAKER control EarSpeaker spatial processing. They are used as follows:  
SM EARSPEAKER Setting  
0
1
2
3
Off  
Minimal  
Normal  
Extreme  
EarSpeaker uses approximately 6 MIPS at 44.1 kHz sample rate.  
SM LINE IN is used to select the input for ADPCM recording. If ’0’, microphone input pins MICP and  
MICN are used; if ’1’, LINEIN is used.  
When SM ADPCM is turned on, ADPCM encoding is activated (see Image 12 at Page 26).  
6.6.2 SCI STATUS (RW)  
SCI STATUS contains information on the current status of VS1103b and lets the user shutdown the chip  
without audio glitches.  
Name  
Bits Description  
SS VER  
7:4 Version  
SS APDOWN2  
SS APDOWN1  
SS AVOL  
3
2
Analog driver powerdown  
Analog internal powerdown  
1:0 Analog volume control  
SS VER is 0 for VS1001, 1 for VS1011, 2 for VS1002, 3 for VS1003, 4 for VS1053, 5 for VS1033, and  
7 for VS1103.  
SS APDOWN2 controls analog driver powerdown. Normally this bit is controlled by the system firmware.  
However, if the user wants to powerdown VS1103b with a minimum power-off transient, turn this bit to  
1, then wait for at least a few milliseconds before activating reset.  
SS APDOWN1 controls internal analog powerdown. This bit is meant to be used by the system firmware  
only.  
SS AVOL is the analog volume control: 0 = -0 dB, 1 = -6 dB, 3 = -12 dB. This register is meant to be  
used automatically by the system firmware only.  
6.6.3 SCI BASS (RW)  
Name  
Bits  
Description  
ST AMPLITUDE 15:12 Treble Control in 1.5 dB steps (-8..7, 0 = off)  
ST FREQLIMIT  
SB AMPLITUDE  
SB FREQLIMIT  
11:8 Lower limit frequency in 1000 Hz steps (0..15)  
7:4  
3:0  
Bass Enhancement in 1 dB steps (0..15, 0 = off)  
Lower limit frequency in 10 Hz steps (2..15)  
The Bass Enhancer VSBE is a powerful bass boosting DSP algorithm, which tries to take the most out  
Version 1.01, 2007-09-03  
31  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
of the users earphones without causing clipping.  
VSBE is activated when SB AMPLITUDE is non-zero. SB AMPLITUDE should be set to the user’s  
preferences, and SB FREQLIMIT to roughly 1.5 times the lowest frequency the user’s audio system can  
reproduce. For example setting SCI BASS to 0x00a6 will give 15 dB enhancement below 60 Hz.  
Note: Because VSBE tries to avoid clipping, it gives the best bass boost with dynamical music material,  
or when the playback volume is not set to maximum. It also does not create bass from nothing: the  
source material must have some bass to begin with.  
Treble Control VSTC is activated when ST AMPLITUDE is non-zero. For example setting SCI BASS  
to 0x7a00 will give 10.5 dB treble enhancement above 10 kHz.  
Bass Enhancer uses about 3.0 MIPS and Treble Control 1.2 MIPS at 44100 Hz sample rate. Both can be  
on simultaneously.  
6.6.4 SCI CLOCKF (RW)  
SCI CLOCKF is used to control the internal clock of VS1103b.  
SCI CLOCKF bits  
Name  
Bits  
Description  
SC MULT 15:13 Clock multiplier  
SC ZERO 12:11 Set to zero  
SC FREQ 10: 0 Clock frequency  
SC MULT activates the built-in clock multiplier. This will multiply XTALI to create a higher CLKI.  
The values are as follows:  
SC MULT MASK CLKI  
0
1
2
3
4
5
6
7
0x0000 XTALI  
0x2000 XTALI×  
0x4000 XTALI×  
0x6000 XTALI×  
0x8000 XTALI×  
0xa000 XTALI×  
0xc000 XTALI×  
0xe000 XTALI×  
SC FREQ is used to tell if the input clock XTALI is running at something else than 12.288 MHz. XTALI  
8000000  
is set in 4 kHz steps. The formula for calculating the correct value for this register is  
4000  
(XTALI is in Hz).  
Note: As opposed to some other VS10XX chips, a software reset must be performed after SCI CLOCKF  
has been set. It is recommended that SCI CLOCKF is set only after each hardware reset / startup.  
Note: The default value 0 is assumed to mean XTALI=12.288 MHz.  
Version 1.01, 2007-09-03  
32  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
Note: Because maximum sample rate is  
MHz.  
, all sample rates are not available if XTALI  
256  
Example: If SCI CLOCKF is 0xC3E8, SC MULT = 6 and SC FREQ = 0x3E8 = 1000. This means that  
XTALI = = 12 MHz. The clock multiplier is set to MHz.  
×XTALI  
×
6.6.5 SCI DECODE TIME (RW)  
When decoding correct MIDI data, current decoded time is shown in this register in full seconds.  
The user may change the value of this register. In that case the new value should be written twice.  
SCI DECODE TIME is reset at every software reset and also when MIDI decoding starts or ends.  
6.6.6 SCI AUDATA (RW)  
The current sample rate and number of channels can be found in bits 15:1 and 0 of SCI AUDATA,  
respectively. Bits 15:1 contain the sample rate divided by two, and bit 0 is 0 for mono data and 1 for  
stereo. Writing to SCI AUDATA will change the sample rate directly (not recommended for VS1103b!).  
As VS1103b always runs in stereo mode at 44100 Hz, contents of this register is always 0xAC45 (44101).  
6.6.7 SCI WRAM (RW)  
SCI WRAM is used to upload application programs and data to instruction and data RAMs. The start  
address must be initialized by writing to SCI WRAMADDR prior to the first write/read of SCI WRAM.  
As 16 bits of data can be transferred with one SCI WRAM write/read, and the instruction word is 32 bits  
long, two consecutive writes/reads are needed for each instruction word. The byte order is big-endian  
(i.e. most significant byte first). After each full-word write/read, the internal pointer is autoincremented.  
6.6.8 SCI WRAMADDR (W)  
SCI WRAMADDR is used to set the program address for following SCI WRAM writes/reads. Address  
offset of 0 is used for X, 0x4000 for Y, and 0x8000 for instruction memory. Peripheral registers can also  
be accessed.  
SM WRAMADDR Dest. addr.  
Bits/  
Word  
Description  
Start... End  
Start... End  
0x1800... 0x187F  
0x5800... 0x587F  
0x8030... 0x84FF  
0xC000... 0xFFFF  
0x1800... 0x187F 16  
0x1800... 0x187F 16  
0x0030... 0x04FF 32  
0xC000... 0xFFFF 16  
X data RAM  
Y data RAM  
Instruction RAM  
I/O  
Version 1.01, 2007-09-03  
33  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
Only user areas in X, Y, and instruction memory are listed above. Other areas can be accessed, but should  
not be written to unless otherwise specified.  
6.6.9 SCI IN0 and SCI IN1 (R)  
SCI IN0 and SCI IN1 are used for offering SCI stream data and for reading encoded ADPCM Stream 4  
data.  
The bits in the registers are as follows:  
Register R/W Bits/ Description  
SCI IN0 Read 15:0 Read one word from Stream 4  
SCI IN0 Write 15:0 Write one word to SCI sourced stream  
SCI IN1 Read 15:8 Number of words × that can be read from SCI IN0 (Stream 4)  
SCI IN1 Read  
7:0  
Number of words × that can be written to SCI IN0 (SCI sourced stream)  
Note: Data word length is 16 bits.  
Example: If reading SCI IN1 returns 0x0312, then 0x03×8 words = 24 words = 48 bytes can be read  
from SCI IN0 and 0x12×8 words = 144 words = 288 bytes can be written to SCI IN0.  
6.6.10 SCI AIADDR (RW)  
SCI AIADDR indicates the start address of the application code written earlier with SCI WRAMADDR  
and SCI WRAM registers. If no application code is used, this register should not be initialized, or it  
should be initialized to zero. For more details, see Application Notes for VS10XX.  
6.6.11 SCI VOL (RW)  
SCI VOL is a volume control for the player hardware. For each channel, a value in the range of 0..254  
may be defined to set its attenuation from the maximum volume level (in 0.5 dB steps). The left channel  
value is then multiplied by 256 and the values are added. Thus, maximum volume is 0 and total silence  
is 0xFEFE.  
Example: for a volume of -2.0 dB for the left channel and -3.5 dB for the right channel: (4*256) + 7  
= 0x407. Note, that at startup volume is set to full volume. Resetting the software does not reset the  
volume setting.  
Note: Setting SCI VOL to 0xFFFF will activate analog powerdown mode.  
Version 1.01, 2007-09-03  
34  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
6.6.12 SCI MIXERVOL (RW)  
Control mixer volume. The contents of this register is as follows:  
SCI MIXERVOL bits  
Name  
Bits  
Description  
SMV ACTIVE  
SMV GAIN3  
SMV GAIN2  
SMV GAIN1  
15  
Control active  
14:10 Gain 3  
9:5  
4:0  
Gain 2  
Gain 1  
Gain values are defined in 1 dB steps so that 25 corresponds to 0 dB (signal is passed on as is) and 31 is  
+6 dB (signal is doubled). 0 means the channel is disabled.  
If SMV ACTIVE is 0, then Gain 1 is set to 25 (0 dB), and both Gain 2 and Gain 3 are set to 0 (mute).  
See Figure 12 on page 26 for more details on where gains are applied.  
Note: The polarity of the gains are opposite to registr SCI VOL: higher means a higher gain, not higher  
attenuation.  
6.6.13 SCI ADPCMRECCTL (RW)  
SCI ADPCMRECCTL bits  
Name  
Bits Description  
SARC DREQ512  
8
7
6
If set, DREQ needs 512 byte space to turn on.  
If set, current ADPCM playback is canceled.  
If set, automatic gain control (AGC) is not in used.  
SARC OUTOFADPCM  
SARC MANUALGAIN  
SARC GAIN4  
5:0 If SARC MANUALGAIN is 1, this is Gain 4;  
otherwise it is maximum gain of AGC  
SARC DREQ512 affects how the DREQ pin works. If not set, when DREQ is active there is at least 32  
bytes space to write to. If set, DREQ is set only when there is at least 512 bytes of free space in the SDI  
input buffer.  
SARC OUTOFADPCM does same to ADPCM playback as SCI MODE register bit SM OUTOFMIDI  
does to MIDI playback. Thus, if you want to stop decoding an ADPCM file, set SARC OUTOFADPCM,  
and send data until SARC OUTOFADPCM is cleared.  
SARC MANUALGAIN controls whether Gain 4 is manual or automatic.  
If SARC MANUALGAIN is set to 1, SARC GAIN4 sets Gain 4. Otherwise SARC GAIN4 sets the  
maximum gain allowed for the automatic gain control. The value is set at 1 dB steps and value 25 means  
0 dB gain (signal is passed on without change). 31 is equal to to +6 dB gain, etc. 0 disables the signal  
path completely.  
Version 1.01, 2007-09-03  
35  
VS1103B  
VLSI  
VS1103b  
y
Solution  
6. FUNCTIONAL DESCRIPTION  
6.6.14 SCI AICTRL[x] (RW)  
SCI AICTRL[x] registers ( x=[0 .. 3] ) can be used to access the user’s application program.  
Note: VS1103b reservs AICTRL0 as SCI MIXERVOL and AICTRL1 as SCI ADPCMRECCTL. They  
can, however, also be used for user applications if the applications don’t conflict with the originally  
intended register contents.  
Version 1.01, 2007-09-03  
36  
VS1103B  
VLSI  
VS1103b  
y
Solution  
7. OPERATION  
7 Operation  
7.1 Clocking  
VS1103b operates on a single, nominally 12.288 MHz fundamental frequency master clock. This clock  
can be generated by external circuitry (connected to pin XTALI) or by the internal clock crystal interface  
(pins XTALI and XTALO).  
7.2 Hardware Reset  
When the XRESET -signal is driven low, VS1103b is reset and all the control registers and internal  
states are set to the initial values. XRESET-signal is asynchronous to any external clock. The reset mode  
doubles as a full-powerdown mode, where both digital and analog parts of VS1103b are in minimum  
power consumption stage, and where clocks are stopped. Also XTALO is grounded.  
After a hardware reset (or at power-up) DREQ will stay down for at least 16600 clock cycles, which  
means an approximate 1.35 ms delay if VS1103b is run at 12.288 MHz. After this the user should set  
SCI CLOCKF, perform a software reset, and then set other basic software registers as e.g. SCI MODE,  
SCI BASS, and SCI VOL before starting decoding. See section 6.6 for details.  
The internal clock can be multiplied with a PLL. Supported multipliers through the SCI CLOCKF regis-  
ter are  
×
× the input clock. Reset value for Internal Clock Multiplier is  
×. If typical values  
are wanted, the Internal Clock Multiplier needs to be set to  
× after reset. Wait until DREQ rises, then  
write a proper value to SCI CLOCKF, followed by a software reset. See section 6.6.4 for details.  
After XRESET is released, a software reset operation is also performed.  
7.3 Software Reset  
In some cases the decoder software has to be reset. This is done by activating bit 2 in SCI MODE register  
(Chapter 6.6.1). Then wait for at least 2 s, then look at DREQ. DREQ will stay down for at least 16600  
clock cycles, which means an approximate 1.35 ms delay if VS1103b is run at 12.288 MHz. After DREQ  
is up, you may continue playback as usual.  
If GPIO0 is set to 1, Spi Boot is performed (Chapter 7.5). If GPIO0 is set to 0 and GPIO1 to 1, RT-MIDI  
Mode is activated (Chapter 6.3.2).  
As opposed to some earlier VS10XX products, VS1103b has been designed so that using software resets  
during normal operation shouldn’t be necessary.  
Version 1.01, 2007-09-03  
37  
VS1103B  
VLSI  
VS1103b  
y
Solution  
7. OPERATION  
7.4 ADPCM Recording  
This chapter explains how to create RIFF/WAV le with IMA ADPCM format. This is a widely sup-  
ported ADPCM format and many PC audio playback programs can play it.  
IMA ADPCM recording gives roughly a compression ratio of 4:1 compared to linear, 16-bit audio. This  
makes it possible to record approx. 8 kHz audio at approx. 32.44 kbit/s or 44.1 kHz audio at 178.85  
kbit/s.  
7.4.1 Activating ADPCM Recording  
IMA ADPCM recording mode is activated by setting bit SM ADPCM in SCI MODE. Before activating  
ADPCM recording, user must see to it that SCI ADPCMRECCTL has been properly set.  
7.4.2 Reading IMA ADPCM Data  
After IMA ADPCM recording has been activated, results can be read through registers SCI IN0 and  
SCI IN1.  
The IMA ADPCM sample buffer size is 512 16-bit words, or 1 KiB. If the data is not read fast enough,  
the buffer overflows and returns to empty state.  
Each IMA ADPCM block consists of 128 words, i.e. 256 bytes (or 505 mono audio samples). If you  
wish to interrupt reading data and possibly continue later, please stop at a 128-word boundary. This way  
whole blocks are skipped and the encoded stream stays valid.  
Note: if SCI IN1[15:8] ≥  
(i.e. there are more than  
to overflow and clear before reading samples to avoid buffer aliasing.  
×
words waiting), wait for the buffer  
Version 1.01, 2007-09-03  
38  
VS1103B  
VLSI  
VS1103b  
y
Solution  
7. OPERATION  
7.4.3 Adding a RIFF Header  
To make your IMA ADPCM file a RIFF / WAV le, you have to add a header before the actual data.  
Note that 2- and 4-byte values are little-endian (lowest byte first) in this format:  
File Offset Field Name  
Size Bytes  
"RIFF"  
Description  
0
4
8
ChunkID  
ChunkSize  
Format  
4
4
4
4
4
2
2
4
4
2
2
2
2
4
4
4
4
4
F0 F1 F2 F3  
"WAVE"  
"fmt "  
0x14 0x0 0x0 0x0 20  
0x11 0x0  
File size - 8  
12 SubChunk1ID  
16 SubChunk1Size  
20 AudioFormat  
22 NumOfChannels  
24 SampleRate  
0x11 for IMA ADPCM  
0x1 0x0  
Mono sound  
0x1f40 for 8 kHz  
0xfd7 for 8 kHz  
0x100  
4-bit ADPCM  
2
R0 R1 R2 R3  
B0 B1 B2 B3  
0x0 0x1  
0x4 0x0  
0x2 0x0  
0xf9 0x1  
"fact"  
0x4 0x0 0x0 0x0  
S0 S1 S2 S3  
"data"  
28 ByteRate  
32 BlockAlign  
34 BitsPerSample  
36 ByteExtraData  
38 ExtraData  
40 SubChunk2ID  
44 SubChunk2Size  
48 NumOfSamples  
52 SubChunk3ID  
56 SubChunk3Size  
Samples per block (505)  
4
D0 D1 D2 D3  
Data size (File Size-60)  
First ADPCM block  
More ADPCM data blocks  
60 Block1  
316 ...  
256  
If we have audio blocks, the values in the table are as follows:  
×
(see Chapter 7.4.1 to see how to calculate  
)
×256  
505  
×
.
×
If you know beforehand how much you are going to record, you may fill in the complete header before  
any actual data. However, if you don’t know how much you are going to record, you have to fill in the  
header size datas  
,
and after finishing recording.  
The 128 words (256 bytes) of an ADPCM block are read from SCI IN0 and written into file as follows.  
The high 8 bits of SCI IN0 should be written as the first byte to a file, then the low 8 bits. Note that this  
is contrary to the default operation of some 16-bit microcontrollers, and you may have to take extra care  
to do this right.  
A way to see if you have written the file in the right way is to check bytes 2 and 3 (the first byte counts as  
byte 0) of each 256-byte block. Byte 2 should always be less than 90, and byte 3 should always be zero.  
Version 1.01, 2007-09-03  
39  
VS1103B  
VLSI  
VS1103b  
y
Solution  
7. OPERATION  
7.4.4 Playing ADPCM Data  
In order to play back your IMA ADPCM recordings, you have to have a file with a header as described  
in Chapter 7.4.3. If this is the case, all you need to do is to provide the ADPCM file to VS1103 as an  
ADPCM stream.  
7.4.5 Sample Rate Considerations  
VS10xx chips that support IMA ADPCM playback are capable of playing back ADPCM files with  
any sample rate. However, some other programs may expect IMA ADPCM files to have some exact  
sample rates, like 8000 or 11025 Hz. Also, some programs or systems do not support sample rates below  
8000 Hz.  
If SM RECORD PATH is set, recording is performed from the mixer output at exactly 44.1 kHz from  
the mixer output. If SM RECORD PATH is not set, recording is performed at  
×
from  
the microphone or line input. From the formula it can be seen that the nominal 8 kHz 1s2am28p8le rate can  
only be obtained if XTALI = 12.288 MHz. Example: If you have a 12 MHz clock, you will get a sample  
rate of 7812.5 Hz, which should be recorded to the file.  
7.4.6 Example Code  
The following code initializes IMA ADPCM encoding on VS1103 and shows how to read the data.  
const unsigned char header[] = {  
0x52, 0x49, 0x46, 0x46, 0x1c, 0x10, 0x00, 0x00,  
0x57, 0x41, 0x56, 0x45, 0x66, 0x6d, 0x74, 0x20, / |RIFF....WAVEfmt | /  
*
*
0x14, 0x00, 0x00, 0x00, 0x11, 0x00, 0x01, 0x00,  
0x40, 0x1f, 0x00, 0x00, 0x75, 0x12, 0x00, 0x00, / |........@......| /  
*
*
0x00, 0x01, 0x04, 0x00, 0x02, 0x00, 0xf9, 0x01,  
0x66, 0x61, 0x63, 0x74, 0x04, 0x00, 0x00, 0x00, / |.......fact....| /  
*
*
0x5c, 0x1f, 0x00, 0x00, 0x64, 0x61, 0x74, 0x61,  
0xe8, 0x0f, 0x00, 0x00  
};  
unsigned char db[512]; / data buffer for saving to disk  
/
*
*
Version 1.01, 2007-09-03  
40  
VS1103B  
VLSI  
VS1103b  
y
Solution  
7. OPERATION  
void RecordAdpcm1103(void) {  
/
VS1003b/VS1023  
/
/
*
*
u_int16 w = 0, idx = 0, n = 0;  
s_int32 adpcmBlocks = -1;  
...  
/
Check and locate free space on disk  
*
*
WriteMp3SpiReg(SCI_CLOCKF, 0xC3E8); / 4.0x 12.288MHz  
/
*
*
WaitForDreq();  
WriteMp3SpiReg(SCI_MODE,  
WaitForDreq();  
/
Wait for DREQ to go up again  
/
*
/
*
/
*
*
0x0804); / Normal SW reset + other bits  
*
/
*
Wait for DREQ to go up again  
WriteMp3SpiReg(SCI_VOL,  
WriteMp3SpiReg(SCI_BASS,  
0x1414); / Recording monitor volume  
/
*
*
0); / Bass/treble disabled  
/
*
*
WriteMp3SpiReg(SCI_MIXERVOL, 0x8000U | (23<<10) | (23<<5) | (23));  
WriteMp3SpiReg(SCI_ADPCMRECCTL,25+20); / Auto gain to max +20 dB  
/
*
*
WriteMp3SpiReg(SCI_MODE,  
0x08c8); / Line in, SDI MIDI, SCI ADPCM, 8 kHz  
/
*
*
for (idx=0; idx < sizeof(header); idx++)  
db[idx] = header[idx];  
/
*
Save header first  
/
*
db[24] = sampleRate;  
db[25] = samplRate>>8;  
/
Set sample rate  
/
*
*
/
Synchronize  
/
*
*
do {  
n = 8  
((ReadMp3SpiReg(SCI_IN1) >> 8) & 0xFF);  
*
Yield(1);  
} while (n >= 480);  
/
/
Give control to other processes for 1 ms  
/
*
*
*
whole buffer size = 512 words  
/
*
/
Record loop  
/
*
*
while (recording_on) {  
while (idx < 512) {  
do {  
n = 8  
((ReadMp3SpiReg(SCI_IN1) >> 8) & 0xFF);  
*
Yield(1);  
} while (n < 16);  
/
/
Give control to other processes for 1 ms  
Only load data if >= 16 words available  
/
*
*
*
/
*
while (n--) {  
w = ReadMp3SpiReg(SCI_IN0);  
db[idx++] = w>>8;  
db[idx++] = w&0xFF;  
}
}
idx = 0;  
write_block(datasector++, db); / Write one disk block  
/
*
*
adpcmBlocks+=2;  
/
*
Disk block contains 2 adpcm blocks  
/
*
}
if (adpcmBlocks >= 0) {  
/
*
The previous algorithm will always write an unfinished ADPCM block.  
It doesn’t matter as we consistently only tell of the data until  
the last completely written block.  
/
*
dataSizeD  
= adpcmBlocks 256;  
*
chunkSizeF  
= dataSizeD+52:  
numOfSamplesS = adpcmBlocks 505;  
*
...  
/
Fix WAV header information  
*
/
*
}
}
Version 1.01, 2007-09-03  
41  
VS1103B  
VLSI  
VS1103b  
y
Solution  
7. OPERATION  
7.5 SPI Boot  
If GPIO0 is set with a pull-up resistor to 1 at boot time, VS1103b tries to boot from external SPI memory.  
SPI boot redefines the following pins:  
Normal Mode SPI Boot Mode  
GPIO0  
GPIO1  
DREQ  
GPIO2  
xCS  
CLK  
MOSI  
MISO  
The memory has to be an SPI Bus Serial EEPROM with 16-bit addresses (i.e. at least 1 KiB). The serial  
speed used by VS1103b is 245 kHz with the nominal 12.288 MHz clock. The first three bytes in the  
memory have to be 0x50, 0x26, 0x48. The exact record format is explained in the Application Notes for  
VS10XX.  
7.6 Play/Decode  
This is the normal operation mode of VS1103b. MIDI and ADPCM are decoded, mixed and converted  
to analog domain by the internal DAC.  
When there is no input for decoding, VS1103b goes into idle mode (lower power consumption than  
during decoding) and actively monitors the serial data input for valid data.  
All different formats can be played back-to-back without software resets in-between. Send at least 4  
zeros after each stream.  
7.7 Feeding PCM data  
VS1103b can be used as a PCM decoder by sending to it a WAV le header. If the length sent in the WAV  
file is 0xFFFFFFFF, VS1103b will stay in PCM mode for a long time (or until SARC OUTOFADPCM  
has been set). 8-bit linear and 16-bit linear audio is supported in mono or stereo.  
7.8 SDI Tests  
There are several test modes in VS1103b, which allow the user to perform memory tests, SCI bus tests,  
and several different sine wave tests.  
All tests are started in a similar way: VS1103b is hardware reset, SM TESTS is set, and then a test  
command is sent to the SDI bus. Each test is started by sending a 4-byte special command sequence,  
followed by 4 zeros. The sequences are described below.  
Version 1.01, 2007-09-03  
42  
VS1103B  
VLSI  
VS1103b  
y
Solution  
7. OPERATION  
7.8.1 Sine Test  
Sine test is initialized with the 8-byte sequence 0x53 0xEF 0x6E 0 0 0 0, where defines the sine test  
to use. is defined as follows:  
bits  
Name Bits Description  
7:5 Sample rate index  
4:0 Sine skip speed  
0
1
2
3
4
5
6
7
44100 Hz  
48000 Hz  
32000 Hz  
22050 Hz  
24000 Hz  
16000 Hz  
11025 Hz  
12000 Hz  
The frequency of the sine to be output can now be calculated from  
×
.
128  
Example: Sine test is activated with value 126, which is 0b01111110. Breaking to its components,  
and thus  
.
, and thus the final sine frequency  
30  
128  
×
.
To exit the sine test, send the sequence 0x45 0x78 0x69 0x74 0 0 0 0.  
Note: Sine test signals go through the digital volume control, so it is possible to test channels separately.  
7.8.2 Pin Test  
Pin test is activated with the 8-byte sequence 0x50 0xED 0x6E 0x54 0 0 0 0. This test is meant for chip  
production testing only.  
Version 1.01, 2007-09-03  
43  
VS1103B  
VLSI  
VS1103b  
y
Solution  
7. OPERATION  
7.8.3 Memory Test  
Memory test mode is initialized with the 8-byte sequence 0x4D 0xEA 0x6D 0x54 0 0 0 0. After this  
sequence, wait for 500000 clock cycles. The result can be read from the SCI register SCI IN0, and ’one’  
bits are interpreted as follows:  
Bit(s) Mask  
Meaning  
15  
14:7  
6
5
4
3
2
1
0
0x8000 Test finished  
Unused  
0x0040 Mux test succeeded  
0x0020 Good I RAM  
0x0010 Good Y RAM  
0x0008 Good X RAM  
0x0004 Good I ROM  
0x0002 Good Y ROM  
0x0001 Good X ROM  
0x807f All ok  
Memory tests overwrite the current contents of the RAM memories.  
7.8.4 SCI Test  
Sci test is initialized with the 8-byte sequence 0x53 0x70 0xEE 0 0 0 0, where  
number to test. The content of the given register is read and copied to SCI IN0. If the register to be  
tested is SCI IN0, the result is copied to SCI IN1.  
is the register  
Example: if is 48, contents of SCI register 0 (SCI MODE) is copied to SCI IN0.  
Version 1.01, 2007-09-03  
44  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8 VS1103b Registers  
8.1 Who Needs to Read This Chapter  
User software is required when a user wishes to add some own functionality like DSP effects to VS1103b.  
However, most users of VS1103b don’t need to worry about writing their own code, or about this chapter,  
including those who only download software plugins from VLSI Solution’s Web site.  
8.2 The Processor Core  
VS DSP is a 16/32-bit DSP processor core that also had extensive all-purpose processor features. VLSI  
Solution’s free VSKIT Software Package contains all the tools and documentation needed to write, sim-  
ulate and debug Assembly Language or Extended ANSI C programs for the VS DSP processor core.  
VLSI Solution also offers a full Integrated Development Environment VSIDE for full debug capabilities.  
8.3 VS1103b Memory Map  
VS1103b’s Memory Map is shown in Figure 14.  
8.4 SCI Registers  
SCI registers described in Chapter 6.6 can be found here between 0xC000..0xC00F. In addition to these  
registers, there is one in address 0xC010, called SCI CHANGE.  
SCI registers, prefix SCI  
Reg Type Reset Abbrev[bits]  
Description  
0xC010  
r
0
CHANGE[5:0]  
Last SCI access address.  
SCI CHANGE bits  
Bits Description  
1 if last access was a write cycle.  
Name  
SCI CH WRITE  
SCI CH ADDR  
4
3:0 SPI address of last access.  
8.5 Serial Data Registers  
SDI registers, prefix SER  
Reg Type Reset Abbrev[bits]  
Description  
0xC011  
0xC012  
r
w
0
0
DATA  
DREQ[0]  
Last received 2 bytes, big-endian.  
DREQ pin control.  
Version 1.01, 2007-09-03  
45  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
Instruction (32−bit)  
X (16−bit)  
Y (16−bit)  
0000  
0000  
0030  
System Vectors  
0030  
User  
Instruction  
RAM  
0500  
0500  
X DATA  
RAM  
Y DATA  
RAM  
1800  
1880  
1940  
1800  
1880  
1940  
User  
User  
Space  
Space  
Stack  
Stack  
1C00  
1C00  
1E00  
1E00  
4000  
4000  
Instruction  
ROM  
X DATA  
ROM  
Y DATA  
ROM  
8000  
8000  
C000  
C000  
Hardware  
Register  
Space  
C100  
C100  
Figure 14: User’s Memory Map.  
8.6 DAC Registers  
DAC registers, prefix DAC  
Reg Type Reset Abbrev[bits]  
Description  
0xC013  
0xC014  
0xC015  
0xC016  
rw  
rw  
rw  
rw  
0
0
0
0
FCTLL  
FCTLH  
LEFT  
DAC frequency control, 16 LSbs.  
DAC frequency control 4MSbs, PLL control.  
DAC left channel PCM value.  
RIGHT  
DAC right channel PCM value.  
Every fourth clock cycle, an internal 26-bit counter is added to by (DAC FCTLH & 15) × 65536 +  
DAC FCTLL. Whenever this counter overflows, values from DAC LEFT and DAC RIGHT are read and  
a DAC interrupt is generated.  
Version 1.01, 2007-09-03  
46  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.7 GPIO Registers  
GPIO registers, prefix GPIO  
Reg Type Reset Abbrev[bits]  
Description  
0xC017  
0xC018  
0xC019  
rw  
r
rw  
0
0
0
DDR[3:0]  
IDATA[3:0]  
ODATA[3:0]  
Direction.  
Values read from the pins.  
Values set to the pins.  
GPIO DIR is used to set the direction of the GPIO pins. 1 means output. GPIO ODATA remembers its  
values even if a GPIO DIR bit is set to input.  
GPIO registers don’t generate interrupts.  
Note that in VS1103b the VSDSP registers can be read and written through the SCI WRAMADDR and  
SCI WRAM registers. You can thus use the GPIO pins quite conveniently.  
Version 1.01, 2007-09-03  
47  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.8 Interrupt Registers  
Interrupt registers, prefix INT  
Reg Type Reset Abbrev[bits]  
Description  
0xC01A  
0xC01B  
0xC01C  
0xC01D  
rw  
w
w
0
0
0
0
ENABLE[7:0]  
GLOB DIS[-]  
GLOB ENA[-]  
COUNTER[4:0]  
Interrupt enable.  
Write to add to interrupt counter.  
Write to subtract from interript counter.  
Interrupt counter.  
rw  
INT ENABLE controls the interrupts. The control bits are as follows:  
INT ENABLE bits  
Bits Description  
Name  
INT EN TIM1  
INT EN TIM0  
INT EN RX  
7
6
5
4
3
2
1
0
Enable Timer 1 interrupt.  
Enable Timer 0 interrupt.  
Enable UART RX interrupt.  
Enable UART TX interrupt.  
Enable AD modulator interrupt.  
Enable Data interrupt.  
INT EN TX  
INT EN MODU  
INT EN SDI  
INT EN SCI  
INT EN DAC  
Enable SCI interrupt.  
Enable DAC interrupt.  
Note: It may take upto 6 clock cycles before changing INT ENABLE has any effect.  
Writing any value to INT GLOB DIS adds one to the interrupt counter INT COUNTER and effectively  
disables all interrupts. It may take upto 6 clock cycles before writing to this register has any effect.  
Writing any value to INT GLOB ENA subtracts one from the interrupt counter (unless INT COUNTER  
already was 0). If the interrupt counter becomes zero, interrupts selected with INT ENABLE are re-  
stored. An interrupt routine should always write to this register as the last thing it does, because in-  
terrupts automatically add one to the interrupt counter, but subtracting it back to its initial value is the  
responsibility of the user. It may take upto 6 clock cycles before writing this register has any effect.  
By reading INT COUNTER the user may check if the interrupt counter is correct or not. If the register  
is not 0, interrupts are disabled.  
Version 1.01, 2007-09-03  
48  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.9 A/D Modulator Registers  
Interrupt registers, prefix AD  
Reg Type Reset Abbrev[bits]  
Description  
0xC01E  
0xC01F  
rw  
rw  
0
0
DIV  
DATA  
A/D Modulator divider.  
A/D Modulator data.  
AD DIV bits  
Bits Description  
Name  
ADM POWERDOWN  
ADM DIVIDER  
15 1 in powerdown.  
14:0 Divider.  
ADM DIVIDER controls the AD converter’s sampling frequency. To gather one sample,  
cycles are used ( is value of AD DIV). The lowest usable value is 4, which gives a 48 kHz sample rate  
when CLKI is 24.576 MHz. When ADM POWERDOWN is 1, the A/D converter is turned off.  
×
clock  
AD DATA contains the latest decoded A/D value.  
Version 1.01, 2007-09-03  
49  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.10 Watchdog v1.0 2002-08-26  
The watchdog consist of a watchdog counter and some logic. After reset, the watchdog is inactive.  
The counter reload value can be set by writing to WDOG CONFIG. The watchdog is activated by writ-  
ing 0x4ea9 to register WDOG RESET. Every time this is done, the watchdog counter is reset. Every  
65536’th clock cycle the counter is decremented by one. If the counter underflows, it will activate vs-  
dsp’s internal reset sequence.  
Thus, after the first 0x4ea9 write to WDOG RESET, subsequent writes to the same register with the  
same value must be made no less than every  
×WDOG CONFIG clock cycles.  
Once started, the watchdog cannot be turned off. Also, a write to WDOG CONFIG doesn’t change the  
counter reload value.  
After watchdog has been activated, any read/write operation from/to WDOG CONFIG or WDOG DUMMY  
will invalidate the next write operation to WDOG RESET. This will prevent runaway loops from re-  
setting the counter, even if they do happen to write the correct number. Writing a wrong value to  
WDOG RESET will also invalidate the next write to WDOG RESET.  
Reads from watchdog registers return undefined values.  
8.10.1 Registers  
Watchdog, prefix WDOG  
Reg Type Reset Abbrev  
Description  
0xC020  
0xC021  
0xC022  
w
w
w
0
0
0
CONFIG  
RESET  
DUMMY[-] Dummy register  
Configuration  
Clock configuration  
Version 1.01, 2007-09-03  
50  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.11 UART v1.0 2002-04-23  
RS232 UART implements a serial interface using rs232 standard.  
Start  
bit  
Stop  
bit  
D0  
D4  
D1  
D2  
D3  
D5  
D6  
D7  
Figure 15: RS232 Serial Interface Protocol  
When the line is idling, it stays in logic high state. When a byte is transmitted, the transmission begins  
with a start bit (logic zero) and continues with data bits (LSB first) and ends up with a stop bit (logic  
high). 10 bits are sent for each 8-bit byte frame.  
8.11.1 Registers  
UART registers, prefix UARTx  
Reg Type Reset Abbrev  
Description  
STATUS[3:0] Status  
DATA[7:0] Data  
DATAH[15:8] Data High  
DIV Divider  
0xC028  
r
0
0
0
0
0xC029 r/w  
0xC02A r/w  
0xC02B r/w  
8.11.2 Status UARTx STATUS  
A read from the status register returns the transmitter and receiver states.  
UARTx STATUS Bits  
Bits Description  
Name  
UART ST RXORUN  
UART ST RXFULL  
UART ST TXFULL  
UART ST TXRUNNING  
3
2
1
0
Receiver overrun  
Receiver data register full  
Transmitter data register full  
Transmitter running  
UART ST RXORUN is set if a received byte overwrites unread data when it is transferred from the  
receiver shift register to the data register, otherwise it is cleared.  
UART ST RXFULL is set if there is unread data in the data register.  
UART ST TXFULL is set if a write to the data register is not allowed (data register full).  
UART ST TXRUNNING is set if the transmitter shift register is in operation.  
Version 1.01, 2007-09-03  
51  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.11.3 Data UARTx DATA  
A read from UARTx DATA returns the received byte in bits 7:0, bits 15:8 are returned as ’0’. If there is  
no more data to be read, the receiver data register full indicator will be cleared.  
A receive interrupt will be generated when a byte is moved from the receiver shift register to the receiver  
data register.  
A write to UARTx DATA sets a byte for transmission. The data is taken from bits 7:0, other bits in the  
written value are ignored. If the transmitter is idle, the byte is immediately moved to the transmitter shift  
register, a transmit interrupt request is generated, and transmission is started. If the transmitter is busy,  
the UART ST TXFULL will be set and the byte remains in the transmitter data register until the previous  
byte has been sent and transmission can proceed.  
8.11.4 Data High UARTx DATAH  
The same as UARTx DATA, except that bits 15:8 are used.  
8.11.5 Divider UARTx DIV  
UARTx DIV Bits  
Name  
Bits Description  
UART DIV D1  
UART DIV D2  
15:8 Divider 1 (0..255)  
7:0 Divider 2 (6..255)  
The divider is set to 0x0000 in reset. The ROM boot code must initialize it correctly depending on the  
master clock frequency to get the correct bit speed. The second divider ( 2) must be from 6 to 255.  
The communication speed  
TX/RX speed in bps.  
, where  
)
2
is the master clock frequency, and is the  
(
1+1)×(  
Divider values for common communication speeds at 26 MHz master clock:  
Example UART Speeds,  
Comm. Speed [bps] UART DIV D1 UART DIV D2  
4800  
9600  
85  
42  
42  
51  
42  
25  
1
63  
63  
42  
26  
21  
26  
226  
226  
14400  
19200  
28800  
38400  
57600  
115200  
0
Version 1.01, 2007-09-03  
52  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.11.6 Interrupts and Operation  
Transmitter operates as follows: After an 8-bit word is written to the transmit data register it will be  
transmitted instantly if the transmitter is not busy transmitting the previous byte. When the transmission  
begins a TX INTR interrupt will be sent. Status bit [1] informs the transmitter data register empty (or  
full state) and bit [0] informs the transmitter (shift register) empty state. A new word must not be written  
to transmitter data register if it is not empty (bit [1] = ’0’). The transmitter data register will be empty  
as soon as it is shifted to transmitter and the transmission is begun. It is safe to write a new word to  
transmitter data register every time a transmit interrupt is generated.  
Receiver operates as follows: It samples the RX signal line and if it detects a high to low transition, a  
start bit is found. After this it samples each 8 bit at the middle of the bit time (using a constant timer),  
and fills the receiver (shift register) LSB first. Finally if a stop bit (logic high) is detected the data in  
the receiver is moved to the reveive data register and the RX INTR interrupt is sent and a status bit[2]  
(receive data register full) is set, and status bit[2] old state is copied to bit[3] (receive data overrun). After  
that the receiver returns to idle state to wait for a new start bit. Status bit[2] is zeroed when the receiver  
data register is read.  
RS232 communication speed is set using two clock dividers. The base clock is the processor master  
clock. Bits 15-8 in these registers are for first divider and bits 7-0 for second divider. RX sample  
frequency is the clock frequency that is input for the second divider.  
Version 1.01, 2007-09-03  
53  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.12 Timers v1.0 2002-04-23  
There are two 32-bit timers that can be initialized and enabled independently of each other. If enabled,  
a timer initializes to its start value, written by a processor, and starts decrementing every clock cycle.  
When the value goes past zero, an interrupt is sent, and the timer initializes to the value in its start value  
register, and continues downcounting. A timer stays in that loop as long as it is enabled.  
A timer has a 32-bit timer register for down counting and a 32-bit TIMER1 LH register for holding the  
timer start value written by the processor. Timers have also a 2-bit TIMER ENA register. Each timer is  
enabled (1) or disabled (0) by a corresponding bit of the enable register.  
8.12.1 Registers  
Timer registers, prefix TIMER  
Reg Type Reset Abbrev  
Description  
0xC030 r/w  
0xC031 r/w  
0
0
CONFIG[7:0] Timer configuration  
ENABLE[1:0] Timer enable  
0xC034 r/w  
0xC035 r/w  
0xC036 r/w  
0xC037 r/w  
0xC038 r/w  
0xC039 r/w  
0xC03A r/w  
0xC03B r/w  
0
0
0
0
0
0
0
0
T0L  
T0H  
T0CNTL  
T0CNTH  
T1L  
T1H  
T1CNTL  
T1CNTH  
Timer0 startvalue - LSBs  
Timer0 startvalue - MSBs  
Timer0 counter - LSBs  
Timer0 counter - MSBs  
Timer1 startvalue - LSBs  
Timer1 startvalue - MSBs  
Timer1 counter - LSBs  
Timer1 counter - MSBs  
8.12.2 Configuration TIMER CONFIG  
TIMER CONFIG Bits  
Bits Description  
7:0 Master clock divider  
Name  
TIMER CF CLKDIV  
TIMER CF CLKDIV is the master clock divider for all timer clocks. The generated internal clock  
frequency +1, where is the master clock frequency and is TIMER CF CLKDIV. Example:  
With a 12 MHz master clock, TIMER CF DIV=3 divides the master clock by 4, and the output/sampling  
12  
3+1  
clock would thus be  
.
Version 1.01, 2007-09-03  
54  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.12.3 Configuration TIMER ENABLE  
TIMER ENABLE Bits  
Bits Description  
Name  
TIMER EN T1  
TIMER EN T0  
1
0
Enable timer 1  
Enable timer 0  
8.12.4 Timer X Startvalue TIMER Tx[L/H]  
The 32-bit start value TIMER Tx[L/H] sets the initial counter value when the timer is reset. The timer  
interrupt frequency where is the master clock obtained with the clock divider (see Chap-  
+1  
ter 8.12.2 and is TIMER Tx[L/H].  
Example: With a 12 MHz master clock and with TIMER CF CLKDIV=3, the master clock  
.
3
If TIMER TH=0, TIMER TL=99, then the timer interrupt frequency  
99+1  
.
8.12.5 Timer X Counter TIMER TxCNT[L/H]  
TIMER TxCNT[L/H] contains the current counter values. By reading this register pair, the user may get  
knowledge of how long it will take before the next timer interrupt. Also, by writing to this register, a  
one-shot different length timer interrupt delay may be realized.  
8.12.6 Interrupts  
Each timer has its own interrupt, which is asserted when the timer counter underflows.  
Version 1.01, 2007-09-03  
55  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.13 System Vector Tags  
The System Vector Tags are tags that may be replaced by the user to take control over several decoder  
functions.  
8.13.1 AudioInt, 0x20  
Normally contains the following VS DSP assembly code:  
jmpi DAC_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
interrupt.  
command to gain control over the audio  
8.13.2 SciInt, 0x21  
Normally contains the following VS DSP assembly code:  
jmpi SCI_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
command to gain control over the SCI interrupt.  
8.13.3 DataInt, 0x22  
Normally contains the following VS DSP assembly code:  
jmpi SDI_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
command to gain control over the SDI interrupt.  
8.13.4 ModuInt, 0x23  
Normally contains the following VS DSP assembly code:  
jmpi MODU_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
lator interrupt.  
command to gain control over the AD Modu-  
Version 1.01, 2007-09-03  
56  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.13.5 TxInt, 0x24  
Normally contains the following VS DSP assembly code:  
jmpi EMPTY_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
interrupt.  
command to gain control over the UART TX  
command to gain control over the UART  
command to gain control over the Timer  
command to gain control over the Timer  
8.13.6 RxInt, 0x25  
Normally contains the following VS DSP assembly code:  
jmpi RX_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
RX interrupt.  
8.13.7 Timer0Int, 0x26  
Normally contains the following VS DSP assembly code:  
jmpi EMPTY_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
0 interrupt.  
8.13.8 Timer1Int, 0x27  
Normally contains the following VS DSP assembly code:  
jmpi EMPTY_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
1 interrupt.  
Version 1.01, 2007-09-03  
57  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
8.13.9 UserCodec, 0x0  
Normally contains the following VS DSP assembly code:  
jr  
nop  
If the user wants to take control away from the standard decoder, the first instruction should be replaced  
with an appropriate command to user’s own code.  
The system usually activates the user program in less than 1 ms. After this, the user should steal interrupt  
vectors from the system, and insert user programs.  
8.14 System Vector Functions  
The System Vector Functions are pointers to some functions that the user may call to help implementing  
his own applications.  
8.14.1 WriteIRam(), 0x2  
VS DSP C prototype:  
void WriteIRam(register i0 u int16 *addr, register a1 u int16 msW, register a0 u int16 lsW);  
This is the preferred way to write to the User Instruction RAM.  
8.14.2 ReadIRam(), 0x4  
VS DSP C prototype:  
u int32 ReadIRam(register i0 u int16 *addr);  
This is the preferred way to read from the User Instruction RAM.  
A1 contains the MSBs and a0 the LSBs of the result.  
8.14.3 DataBytes(), 0x6  
VS DSP C prototype:  
u int16 DataBytes(void);  
Version 1.01, 2007-09-03  
58  
VS1103B  
VLSI  
VS1103b  
y
Solution  
8. VS1103B REGISTERS  
If the user has taken over the normal operation of the system by switching the pointer in UserCodec  
to point to his own code, he may read data from the Data Interface through this and the following two  
functions.  
This function returns the number of data bytes that can be read.  
8.14.4 GetDataByte(), 0x8  
VS DSP C prototype:  
u int16 GetDataByte(void);  
Reads and returns one data byte from the Data Interface. This function will wait until there is enough  
data in the input buffer.  
8.14.5 GetDataWords(), 0xa  
VS DSP C prototype:  
void GetDataWords(register i0 y u int16 *d, register a0 u int16 n);  
Read data byte pairs and copy them in big-endian format (first byte to MSBs) to . This function will  
wait until there is enough data in the input buffer.  
8.14.6 Reboot(), 0xc  
VS DSP C prototype:  
void Reboot(void);  
Causes a software reboot, i.e. jump to the standard firmware without reinitializing the IRAM vectors.  
This is NOT the same as the software reset function, which causes complete initialization.  
Version 1.01, 2007-09-03  
59  
VS1103B  
VLSI  
VS1103b  
y
Solution  
9. DOCUMENT VERSION CHANGES  
9 Document Version Changes  
This chapter describes the most important changes to this document.  
Version 1.01 for VS1103b, 2007-09-03  
Corrected recording examples, Chapters 7.4.2 and 7.4.6.  
Version 1.00 for VS1103b, 2007-08-22  
Removed preliminary status.  
Version 0.4 for VS1103b, 2007-07-06  
Added SCI Multiple Write mode, Chapter 5.5.4.  
Corrected documentation for SCI IN1 in Chapter 6.6.9.  
Added note to always run a software reset after setting SCI CLOCKF to Chapter 6.6.4.  
Version 0.3 for VS1103b, 2007-04-24  
Added Buffer 1 and 2 sizes. Now both are 1 KiB (Chapter 6.3).  
Size of ADPCM encode Buffer 3 increased to 1 KiB (Chapter 6.3.1).  
Writing to SM ICONF also causes a software reset (Chapter 6.6.1).  
SCI MODE’s SS VER is now documented as 7 for VS1103 (Chapter 6.6.2).  
New register bit SARC DREQ512 (Chapter 6.6.13).  
Version 0.2 for VS1103a, 2007-01-29  
Minor modifications.  
Version 0.1 for VS1103a, 2007-01-11  
First release.  
Version 1.01, 2007-09-03  
60  
VS1103B  
VLSI  
VS1103b  
y
Solution  
10. CONTACT INFORMATION  
10 Contact Information  
VLSI Solution Oy  
Entrance G, 2nd floor  
Hermiankatu 8  
FIN-33720 Tampere  
FINLAND  
Fax: +358-3-3140-8288  
Phone: +358-3-3140-8200  
Email: sales@vlsi.fi  
URL: http://www.vlsi.fi/  
Version 1.01, 2007-09-03  
61  

相关型号:

VS110VLNVWM

VS110VLNVWM是一款用于浪涌保护、电压控制和电压限制的TVS二极管。该产品用更小型的PMDE封装实现了与ROHM以往产品同等的电气特性。PMDE是可靠性高、散热性能优异的封装形式。
ROHM

VS110VLNVWMTF

VS110VLNVWMTF是一款用于浪涌保护、电压控制和电压限制的TVS二极管。是符合AEC-Q101标准的高可靠性车规级产品。该产品用更小型的PMDE封装实现了与ROHM以往产品同等的电气特性。PMDE是可靠性高、散热性能优异的封装形式。
ROHM

VS11510000J0G

Barrier Strip Terminal Block
AMPHENOL

VS11510100J0G

Barrier Strip Terminal Block
AMPHENOL

VS11512000J0G

Barrier Strip Terminal Block
AMPHENOL

VS11512100J0G

Barrier Strip Terminal Block
AMPHENOL

VS11513000J0G

Barrier Strip Terminal Block
AMPHENOL

VS11513100J0G

Barrier Strip Terminal Block
AMPHENOL

VS11514000J0G

Barrier Strip Terminal Block
AMPHENOL

VS11515000J0G

Barrier Strip Terminal Block
AMPHENOL

VS11515100J0G

Barrier Strip Terminal Block
AMPHENOL

VS1151C000J0G

Barrier Strip Terminal Block
AMPHENOL