W632GU6MB12I [ETC]

IC DRAM 2G PARALLEL 800MHZ;
W632GU6MB12I
型号: W632GU6MB12I
厂家: ETC    ETC
描述:

IC DRAM 2G PARALLEL 800MHZ

动态存储器
文件: 总161页 (文件大小:5925K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W632GU6MB  
16M 8 BANKS 16 BIT DDR3L SDRAM  
Table of Contents-  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
GENERAL DESCRIPTION ...................................................................................................................5  
FEATURES...........................................................................................................................................5  
ORDER INFORMATION.......................................................................................................................6  
KEY PARAMETERS .............................................................................................................................7  
BALL CONFIGURATION ......................................................................................................................8  
BALL DESCRIPTION............................................................................................................................9  
BLOCK DIAGRAM ..............................................................................................................................11  
FUNCTIONAL DESCRIPTION............................................................................................................12  
Basic Functionality ..............................................................................................................................12  
RESET and Initialization Procedure....................................................................................................12  
8.1  
8.2  
8.2.1  
8.2.2  
Power-up Initialization Sequence.....................................................................................12  
Reset Initialization with Stable Power ..............................................................................14  
8.3  
Programming the Mode Registers.......................................................................................................15  
8.3.1  
Mode Register MR0 .........................................................................................................17  
Burst Length, Type and Order ................................................................................18  
CAS Latency...........................................................................................................18  
Test Mode...............................................................................................................19  
DLL Reset...............................................................................................................19  
Write Recovery.......................................................................................................19  
Precharge PD DLL .................................................................................................19  
Mode Register MR1 .........................................................................................................20  
DLL Enable/Disable................................................................................................20  
Output Driver Impedance Control...........................................................................21  
ODT RTT Values....................................................................................................21  
Additive Latency (AL) .............................................................................................21  
Write leveling..........................................................................................................21  
Output Disable........................................................................................................21  
Mode Register MR2 .........................................................................................................22  
Partial Array Self Refresh (PASR)..........................................................................23  
CAS Write Latency (CWL)......................................................................................23  
Auto Self Refresh (ASR) and Self Refresh Temperature (SRT) .............................23  
Dynamic ODT (Rtt_WR).........................................................................................23  
Mode Register MR3 .........................................................................................................24  
Multi Purpose Register (MPR)................................................................................24  
8.3.1.1  
8.3.1.2  
8.3.1.3  
8.3.1.4  
8.3.1.5  
8.3.1.6  
8.3.2  
8.3.2.1  
8.3.2.2  
8.3.2.3  
8.3.2.4  
8.3.2.5  
8.3.2.6  
8.3.3  
8.3.3.1  
8.3.3.2  
8.3.3.3  
8.3.3.4  
8.3.4  
8.3.4.1  
8.4  
8.5  
8.6  
8.7  
No OPeration (NOP) Command..........................................................................................................25  
Deselect Command.............................................................................................................................25  
DLL-off Mode ......................................................................................................................................25  
DLL on/off switching procedure...........................................................................................................26  
8.7.1  
8.7.2  
DLL “on” to DLL “off” Procedure.......................................................................................26  
DLL “off” to DLL “on” Procedure.......................................................................................27  
8.8  
8.9  
Input clock frequency change .............................................................................................................28  
8.8.1  
8.8.2  
Frequency change during Self-Refresh............................................................................28  
Frequency change during Precharge Power-down..........................................................28  
Write Leveling .....................................................................................................................................30  
8.9.1  
DRAM setting for write leveling & DRAM termination function in that mode ....................31  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 1 -  
W632GU6MB  
8.9.2  
8.9.3  
Write Leveling Procedure.................................................................................................31  
Write Leveling Mode Exit .................................................................................................33  
8.10 Multi Purpose Register........................................................................................................................34  
8.10.1  
8.10.2  
8.10.3  
8.10.4  
MPR Functional Description.............................................................................................35  
MPR Register Address Definition.....................................................................................36  
Relevant Timing Parameters............................................................................................36  
Protocol Example.............................................................................................................36  
8.11 ACTIVE Command..............................................................................................................................42  
8.12 PRECHARGE Command....................................................................................................................42  
8.13 READ Operation .................................................................................................................................43  
8.13.1  
8.13.2  
READ Burst Operation.....................................................................................................43  
READ Timing Definitions..................................................................................................44  
READ Timing; Clock to Data Strobe relationship....................................................45  
READ Timing; Data Strobe to Data relationship.....................................................46  
tLZ(DQS), tLZ(DQ), tHZ(DQS), tHZ(DQ) Calculation .............................................47  
tRPRE Calculation..................................................................................................48  
tRPST Calculation ..................................................................................................48  
Burst Read Operation followed by a Precharge......................................................54  
8.13.2.1  
8.13.2.2  
8.13.2.3  
8.13.2.4  
8.13.2.5  
8.13.2.6  
8.14 WRITE Operation................................................................................................................................56  
8.14.1  
8.14.2  
DDR3L Burst Operation ...................................................................................................56  
WRITE Timing Violations .................................................................................................56  
Motivation ...............................................................................................................56  
Data Setup and Hold Violations..............................................................................56  
Strobe to Strobe and Strobe to Clock Violations.....................................................56  
Write Timing Parameters........................................................................................56  
Write Data Mask...............................................................................................................57  
tWPRE Calculation...........................................................................................................58  
tWPST Calculation...........................................................................................................58  
8.14.2.1  
8.14.2.2  
8.14.2.3  
8.14.2.4  
8.14.3  
8.14.4  
8.14.5  
8.15 Refresh Command..............................................................................................................................65  
8.16 Self-Refresh Operation .......................................................................................................................67  
8.17 Power-Down Modes............................................................................................................................69  
8.17.1  
8.17.2  
8.17.3  
8.17.4  
Power-Down Entry and Exit .............................................................................................69  
Power-Down clarifications - Case 1 .................................................................................75  
Power-Down clarifications - Case 2 .................................................................................75  
Power-Down clarifications - Case 3 .................................................................................76  
8.18 ZQ Calibration Commands..................................................................................................................77  
8.18.1  
8.18.2  
8.18.3  
ZQ Calibration Description...............................................................................................77  
ZQ Calibration Timing ......................................................................................................78  
ZQ External Resistor Value, Tolerance, and Capacitive loading......................................78  
8.19 On-Die Termination (ODT)..................................................................................................................79  
8.19.1  
8.19.2  
ODT Mode Register and ODT Truth Table ......................................................................79  
Synchronous ODT Mode..................................................................................................80  
ODT Latency and Posted ODT...............................................................................80  
Timing Parameters .................................................................................................80  
ODT during Reads..................................................................................................82  
Dynamic ODT ..................................................................................................................83  
Functional Description:...........................................................................................83  
ODT Timing Diagrams............................................................................................84  
Asynchronous ODT Mode................................................................................................88  
8.19.2.1  
8.19.2.2  
8.19.2.3  
8.19.3  
8.19.3.1  
8.19.3.2  
8.19.4  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 2 -  
W632GU6MB  
8.19.4.1  
8.19.4.2  
8.19.4.3  
Synchronous to Asynchronous ODT Mode Transitions ..........................................89  
Synchronous to Asynchronous ODT Mode Transition during Power-Down Entry ..89  
Asynchronous to Synchronous ODT Mode Transition during Power-Down Exit.....92  
8.19.4.4  
low periods  
Asynchronous to Synchronous ODT Mode during short CKE high and short CKE  
93  
9.  
OPERATION MODE ...........................................................................................................................94  
Command Truth Table ........................................................................................................................94  
CKE Truth Table .................................................................................................................................96  
Simplified State Diagram.....................................................................................................................97  
9.1  
9.2  
9.3  
10.  
ELECTRICAL CHARACTERISTICS ...................................................................................................98  
10.1 Absolute Maximum Ratings ................................................................................................................98  
10.2 Operating Temperature Condition.......................................................................................................98  
10.3 DC & AC Operating Conditions...........................................................................................................98  
10.3.1  
Recommended DC Operating Conditions........................................................................98  
10.4 Input and Output Leakage Currents....................................................................................................99  
10.5 Interface Test Conditions ....................................................................................................................99  
10.6 DC and AC Input Measurement Levels.............................................................................................100  
10.6.1  
10.6.2  
10.6.3  
10.6.4  
10.6.5  
10.6.6  
10.6.7  
DC and AC Input Levels for Single-Ended Command and Address Signals..................100  
DC and AC Input Levels for Single-Ended Data Signals................................................100  
Differential swing requirements for clock (CK - CK#) and strobe (DQS - DQS#) ...........102  
Single-ended requirements for differential signals .........................................................103  
Differential Input Cross Point Voltage ............................................................................104  
Slew Rate Definitions for Single-Ended Input Signals....................................................105  
Slew Rate Definitions for Differential Input Signals ........................................................105  
10.7 DC and AC Output Measurement Levels..........................................................................................106  
10.7.1  
10.7.1.1  
10.7.1.2  
Output Slew Rate Definition and Requirements.............................................................106  
Single Ended Output Slew Rate ...........................................................................107  
Differential Output Slew Rate ...............................................................................108  
10.8 34 Ohm Output Driver DC Electrical Characteristics.........................................................................109  
10.8.1 Output Driver Temperature and Voltage sensitivity........................................................111  
10.9 On-Die Termination (ODT) Levels and Characteristics.....................................................................112  
10.9.1  
10.9.2  
10.9.3  
10.9.4  
ODT Levels and I-V Characteristics...............................................................................112  
ODT DC Electrical Characteristics .................................................................................113  
ODT Temperature and Voltage sensitivity .....................................................................113  
Design guide lines for RTTPU and RTTPD .......................................................................114  
ODT Timing Definitions............................................................................................................115  
Test Load for ODT Timings............................................................................................115  
ODT Timing Definitions..................................................................................................115  
Input/Output Capacitance........................................................................................................119  
Overshoot and Undershoot Specifications...............................................................................120  
AC Overshoot /Undershoot Specification for Address and Control Pins: .......................120  
AC Overshoot /Undershoot Specification for Clock, Data, Strobe and Mask Pins: ........120  
IDD and IDDQ Specification Parameters and Test Conditions................................................121  
IDD and IDDQ Measurement Conditions .......................................................................121  
IDD Current Specifications.............................................................................................131  
Clock Specification ..................................................................................................................132  
Speed Bins ..............................................................................................................................133  
DDR3L-1333 Speed Bin and Operating Conditions.......................................................133  
DDR3L-1600 Speed Bin and Operating Conditions.......................................................134  
DDR3L-1866 Speed Bin and Operating Conditions.......................................................135  
10.10  
10.10.1  
10.10.2  
10.11  
10.12  
10.12.1  
10.12.2  
10.13  
10.13.1  
10.13.2  
10.14  
10.15  
10.15.1  
10.15.2  
10.15.3  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 3 -  
W632GU6MB  
10.15.4  
10.15.5  
DDR3L-2133 Speed Bin and Operating Conditions.......................................................136  
Speed Bin General Notes ..............................................................................................137  
AC Characteristics...................................................................................................................138  
AC Timing and Operating Condition for -09/09I/09J/-11/11I/11J speed grades.............138  
AC Timing and Operating Condition for -12/12I/12J/-15/15I/15J speed grades.............142  
Timing Parameter Notes ................................................................................................146  
Address / Command Setup, Hold and Derating .............................................................149  
Data Setup, Hold and Slew Rate Derating.....................................................................156  
10.16  
10.16.1  
10.16.2  
10.16.3  
10.16.4  
10.16.5  
11.  
Backward Compatible to 1.5V DDR3 SDRAM VDD/VDDQ Requirements .......................................158  
11.1 Input/Output Functional.....................................................................................................................158  
11.2 Recommended DC Operating Conditions - DDR3L (1.35V) operation..............................................158  
11.3 Recommended DC Operating Conditions - DDR3 (1.5V) operation..................................................158  
11.4 VDD/VDDQ Voltage Switch between DDR3L and DDR3..................................................................158  
12.  
13.  
PACKAGE SPECIFICATION ............................................................................................................160  
REVISION HISTORY........................................................................................................................161  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 4 -  
W632GU6MB  
1. GENERAL DESCRIPTION  
The W632GU6MB is a 2G bits DDR3L SDRAM, organized as 16,777,216 words 8 banks 16 bits.  
This device achieves high speed transfer rates up to 2133 MT/s (DDR3L-2133) for various  
applications. This device is sorted into the following speed grades: -09, -11, -12, -15, 09I, 11I, 12I, 15I,  
09J, 11J, 12J and 15J.  
The -09 ,09I and 09J speed grades are compliant to the DDR3-2133L (14-14-14) specification (The  
09I industrial grade which is guaranteed to support -40°C ≤ TCASE 95°C, the 09J industrial plus  
grade which is guaranteed to support -40°C ≤ TCASE 105°C).  
The -11 ,11I and 11J speed grades are compliant to the DDR3L-1866 (13-13-13) specification (The  
11I industrial grade which is guaranteed to support -40°C ≤ TCASE 95°C, the 11J industrial plus  
grade which is guaranteed to support -40°C ≤ TCASE 105°C).  
The -12, 12I and 12J speed grades are compliant to the DDR3L-1600 (11-11-11) specification (The  
12I industrial grade which is guaranteed to support -40°C ≤ TCASE 95°C, the 12J industrial plus  
grade which is guaranteed to support -40°C ≤ TCASE 105°C).  
The -15, 15I and 15J speed grades are compliant to the DDR3L-1333 (9-9-9) specification (The 15I  
industrial grade which is guaranteed to support -40°C ≤ TCASE 95°C, the 15J industrial plus grade  
which is guaranteed to support -40°C ≤ TCASE 105°C).  
The W632GU6MB is designed to comply with the following key DDR3L SDRAM features such as  
posted CAS#, programmable CAS# Write Latency (CWL), ZQ calibration, on die termination and  
asynchronous reset. All of the control and address inputs are synchronized with a pair of externally  
supplied differential clocks. Inputs are latched at the cross point of differential clocks (CK rising and  
CK# falling). All I/Os are synchronized with a differential DQS-DQS# pair in a source synchronous  
fashion.  
2. FEATURES  
Power Supply: 1.35V (typ.), VDD, VDDQ = 1.283V to 1.45V  
Backward compatible to VDD, VDDQ = 1.5V ± 0.075V  
Double Data Rate architecture: two data transfers per clock cycle  
Eight internal banks for concurrent operation  
8 bit prefetch architecture  
CAS Latency: 5, 6, 7, 8, 9, 10, 11, 13 and 14  
Burst length 8 (BL8) and burst chop 4 (BC4) modes: fixed via mode register (MRS) or selectable On-  
The-Fly (OTF)  
Programmable read burst ordering: interleaved or nibble sequential  
Bi-directional, differential data strobes (DQS and DQS#) are transmitted / received with data  
Edge-aligned with read data and center-aligned with write data  
DLL aligns DQ and DQS transitions with clock  
Differential clock inputs (CK and CK#)  
Commands entered on each positive CK edge, data and data mask are referenced to both edges of  
a differential data strobe pair (double data rate)  
Posted CAS with programmable additive latency (AL = 0, CL - 1 and CL - 2) for improved command,  
address and data bus efficiency  
Read Latency = Additive Latency plus CAS Latency (RL = AL + CL)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 5 -  
W632GU6MB  
Auto-precharge operation for read and write bursts  
Refresh, Self-Refresh, Auto Self-refresh (ASR) and Partial array self refresh (PASR)  
Precharged Power Down and Active Power Down  
Data masks (DM) for write data  
Programmable CAS Write Latency (CWL) per operating frequency  
Write Latency WL = AL + CWL  
Multi purpose register (MPR) for readout a predefined system timing calibration bit sequence  
System level timing calibration support via write leveling and MPR read pattern  
ZQ Calibration for output driver and ODT using external reference resistor to ground  
Asynchronous RESET# pin for Power-up initialization sequence and reset function  
Programmable on-die termination (ODT) for data, data mask and differential strobe pairs  
Dynamic ODT mode for improved signal integrity and preselectable termination impedances during  
writes  
2K Byte page size  
Packaged in VFBGA 96 Ball (7.5 x13 mm2 with thickness of 1.0 mm), using lead free materials  
with RoHS compliant  
3. ORDER INFORMATION  
PART NUMBER  
W632GU6MB-09  
W632GU6MB09I  
W632GU6MB09J  
W632GU6MB-11  
W632GU6MB11I  
W632GU6MB11J  
W632GU6MB-12  
W632GU6MB12I  
W632GU6MB12J  
W632GU6MB-15  
W632GU6MB15I  
W632GU6MB15J  
SPEED GRADE  
OPERATING TEMPERATURE  
0°C TCASE 95°C  
DDR3L-2133 (14-14-14)  
DDR3L-2133 (14-14-14)  
DDR3L-2133 (14-14-14)  
DDR3L-1866 (13-13-13)  
DDR3L-1866 (13-13-13)  
DDR3L-1866 (13-13-13)  
DDR3L-1600 (11-11-11)  
DDR3L-1600 (11-11-11)  
DDR3L-1600 (11-11-11)  
DDR3L-1333 (9-9-9)  
-40°C TCASE 95°C  
-40°C TCASE 105°C  
0°C TCASE 95°C  
-40°C TCASE 95°C  
-40°C TCASE 105°C  
0°C TCASE 95°C  
-40°C TCASE 95°C  
-40°C TCASE 105°C  
0°C TCASE 95°C  
DDR3L-1333 (9-9-9)  
-40°C TCASE 95°C  
-40°C TCASE 105°C  
DDR3L-1333 (9-9-9)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 6 -  
W632GU6MB  
4. KEY PARAMETERS  
Speed Bin  
CL-nRCD-nRP  
Part Number Extension  
Parameter  
DDR3L-2133 DDR3L-1866 DDR3L-1600 DDR3L-1333  
14-14-14  
13-13-13  
11-11-11  
9-9-9  
Unit  
-09/09I/09J  
-11/11I/11J  
-12/12I/12J  
-15/15I/15J  
Sym.  
Min. Max. Min. Max. Min. Max. Min. Max.  
Maximum operating frequency using  
maximum allowed settings for Sup_CL  
and Sup_CWL  
1066  
20  
933  
20  
800  
20  
667  
20  
MHz  
fCKMAX  
13.75  
13.5  
13.09  
13.09  
13.09  
46.09  
13.91  
13.91  
13.91  
47.91  
Internal read command to first data  
nS  
nS  
nS  
nS  
tAA  
tRCD  
tRP  
(13.125)*5  
(13.125)*5  
ACT to internal read or write delay  
time  
13.75  
13.5  
(13.125)*5  
(13.125)*5  
13.75  
13.5  
PRE command period  
(13.125)*5  
(13.125)*5  
49.5  
48.75  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
(48.125)*5  
(49.125)*5  
33  
3.0  
9 * tREFI  
3.3  
34  
3.0  
2.5  
9 * tREFI  
3.3  
35  
3.0  
9 * tREFI  
3.3  
36  
3.0  
9 * tREFI  
3.3  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
tRAS  
CL = 5  
CL = 6  
CL = 7  
CL = 8  
CL = 9  
CL = 10  
CL = 11  
CL = 13  
CL = 14  
CWL = 5  
CWL = 5  
CWL = 6  
CWL = 6  
CWL = 7  
CWL = 7  
CWL = 8  
CWL = 9  
CWL = 10  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
2.5  
3.3  
3.3  
2.5  
3.3  
2.5  
3.3  
1.875  
1.875  
1.5  
< 2.5  
Reserved  
1.875  
1.875  
1.5  
< 2.5  
1.875  
1.875  
1.5  
< 2.5  
< 2.5  
1.875  
< 2.5  
< 2.5  
< 2.5  
< 1.875  
< 1.875  
< 1.5  
Reserved  
< 1.875  
< 1.875  
< 1.5  
< 1.875  
< 1.875  
1.5  
1.5  
< 1.875  
1.5  
1.5  
1.25  
1.07  
0.938  
Reserved  
1.25  
Reserved  
< 1.25  
< 1.07  
1.07  
< 1.25  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
5, 6, 7, 8, 9, 10,  
11, 13, 14  
5, 6, (7), 8, (9), 10,  
11  
Sup_CL  
5, 6, 8, 10, 13  
5, 6, 7, 9  
5, 6, (7), 8, 9, 10  
5, 6, 7  
Supported CL Settings  
Supported CWL Settings  
nCK  
Sup_CWL 5, 6, 7, 8, 9, 10  
5, 6, 7, 8  
nCK  
μS  
μS  
μS  
μS  
7.8*2, 3  
7.8*1  
3.9*4  
3.9*4  
7.8*2, 3  
7.8*1  
3.9*4  
3.9*4  
7.8*2, 3  
7.8*1  
3.9*4  
3.9*4  
7.8*2, 3  
7.8*1  
3.9*4  
3.9*4  
-40°C TCASE 85°C  
0°C TCASE 85°C  
85°C < TCASE 95°C  
95°C < TCASE 105°C  
Average  
periodic  
refresh  
Interval  
tREFI  
Operating One Bank Active-Precharge  
Current  
Operating One Bank Active-Read-  
Precharge Current  
140  
175  
135  
160  
120  
145  
110  
130  
mA  
mA  
IDD0  
IDD1  
230  
260  
195  
210  
235  
190  
190  
210  
180  
165  
185  
175  
Operating Burst Read Current  
Operating Burst Write Current  
Burst Refresh Current  
mA  
mA  
mA  
IDD4R  
IDD4W  
IDD5B  
Normal Temperature Self-Refresh  
Current  
11  
11  
11  
11  
mA  
mA  
IDD6  
IDD7  
290  
260  
235  
205  
Operating Bank Interleave Current  
Notes: (Field value contents in blue font or parentheses are optional AC parameter and CL setting)  
1. All speed grades support 0°C TCASE 85°C with full JEDEC AC and DC specifications.  
2. The -09, -11, -12 and -15 speed grades, -40°C TCASE < 0°C is not available.  
3. The 09I, 09J, 11I, 11J, 12I, 12J, 15I and 15J speed grades support -40°C TCASE 85°C with full JEDEC AC and DC  
specifications.  
4. The -09, 09I, -11, 11I, -12, 12I, -15 and 15I speed grades, TCASE is able to extend to 95°C. The 09J, 11J, 12J and 15J speed  
grades, TCASE is able to extend to 105°C. They are with doubling Auto Refresh commands in frequency to a 32 mS period ( tREFI  
= 3.9 µS), it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b  
and MR2 A7 = 1b) or enable the Auto Self-Refresh mode (ASR) (MR2 A6 = 1b, MR2 A7 is don't care).  
5. For devices supporting optional down binning to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 nS or lower. SPD settings must be  
programmed to match. For example, DDR3L-1333 (9-9-9) devices supporting down binning to DDR3L-1066 (7-7-7) should program  
13.125 nS in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3L-1600 (11-11-11) devices supporting  
down binning to DDR3L-1333 (9-9-9) or DDR3L-1066 (7-7-7) should program 13.125 nS in SPD bytes for tAAmin (Byte16), tRCDmin  
(Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125 nS, tRCmin (Byte 21, 23) also should be programmed  
accordingly. For example, 49.125nS (tRASmin + tRPmin = 36 nS + 13.125 nS) for DDR3L-1333 (9-9-9) and 48.125 nS (tRASmin +  
tRPmin = 35 nS + 13.125 nS) for DDR3L-1600 (11-11-11).  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 7 -  
W632GU6MB  
5. BALL CONFIGURATION  
1
2
3
4
5
A
B
C
D
E
F
6
7
8
9
DQU5  
VDD  
DQU7  
VSS  
DQU4  
DQSU#  
DQSU  
DQU0  
DML  
VDDQ  
VSS  
VSSQ  
VDDQ  
VDD  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
DQU6  
DQU2  
VSSQ  
VSSQ  
DQL3  
VSS  
DQU3  
VDDQ  
VSSQ  
DQL2  
DQL6  
DQU1  
DMU  
DQL0  
DQSL  
DQSL#  
DQL4  
RAS#  
CAS#  
WE#  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
VDDQ  
VSSQ  
DQL1  
VDD  
G
H
J
VREFDQ VDDQ  
DQL7  
CK  
DQL5  
VSS  
NC  
ODT  
NC  
VSS  
VDD  
CS#  
BA0  
A3  
K
L
CK#  
VDD  
CKE  
A10/AP  
NC  
ZQ  
NC  
M
N
VSS  
VDD  
BA2  
VREFCA  
BA1  
VSS  
A0  
A12/BC#  
VDD  
VSS  
VDD  
VSS  
A5  
A2  
A9  
A1  
A11  
NC  
A4  
VSS  
VDD  
VSS  
P
R
T
A7  
A6  
A8  
RESET#  
A13  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 8 -  
W632GU6MB  
6. BALL DESCRIPTION  
BALL NUMBER  
SYMBOL  
TYPE  
DESCRIPTION  
Clock: CK and CK# are differential clock inputs. All address and  
control input signals are sampled on the crossing of the positive edge  
of CK and negative edge of CK#.  
J7, K7  
CK, CK#  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates,  
internal clock signals and device input buffers and output drivers.  
Taking CKE Low provides Precharge Power Down and Self-Refresh  
operation (all banks idle), or Active Power Down (row Active in any  
bank). CKE is asynchronous for Self-Refresh exit. After VREFCA and  
VREFDQ have become stable during the power on and initialization  
sequence, they must be maintained during all operations (including  
Self-Refresh). CKE must be maintained high throughout read and  
write accesses. Input buffers, excluding CK, CK#, ODT and CKE, are  
disabled during power down. Input buffers, excluding CKE, are  
disabled during Self-Refresh.  
K9  
CKE  
Input  
Chip Select: All commands are masked when CS# is registered HIGH.  
CS# provides for external Rank selection on systems with multiple  
Ranks. CS# is considered part of the command code.  
L2  
CS#  
ODT  
Input  
Input  
On Die Termination: ODT (registered HIGH) enables termination  
resistance internal to the DDR3L SDRAM. When enabled, ODT is  
applied to each DQ, DQSU, DQSU#, DQSL, DQSL#, DMU, and DML  
signal. The ODT signal will be ignored if Mode Registers MR1 and  
MR2 are programmed to disable ODT and during Self Refresh.  
K1  
RAS#, CAS#,  
WE#  
Command Inputs: RAS#, CAS# and WE# (along with CS#) define the  
command being entered.  
J3, K3, L3  
D3, E7  
Input  
Input  
Input Data Mask: DMU and DML are the input mask signals control the  
lower or upper bytes for write data. Input data is masked when  
DMU/DML is sampled HIGH coincident with that input data during a  
Write access. DM is sampled on both edges of DQS.  
DMU, DML  
Bank Address Inputs: BA0BA2 define to which bank an Active, Read,  
Write, or Precharge command is being applied. Bank address also  
determines which mode register is to be accessed during a MRS  
cycle.  
M2, N8, M3  
BA0BA2  
Input  
Input  
Address Inputs: Provide the row address for Active commands and the  
column address for Read/Write commands to select one location out  
of the memory array in the respective bank. (A10/AP and A12/BC#  
have additional functions; see below). The address inputs also provide  
the op-code during Mode Register Set command.  
N3, P7, P3, N2, P8,  
P2, R8, R2, T8, R3,  
L7, R7, N7, T3  
A0A13  
Row address: A0−A13.  
Column address: A0−A9.  
Auto-precharge: A10 is sampled during Read/Write commands to  
determine whether Auto-precharge should be performed to the  
accessed bank after the Read/Write operation.  
L7  
A10/AP  
Input  
(HIGH: Auto-precharge; LOW: no Auto-precharge). A10 is sampled  
during a Precharge command to determine whether the Precharge  
applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one  
bank is to be precharged, the bank is selected by bank addresses.  
Burst Chop: A12/BC# is sampled during Read and Write commands to  
determine if burst chop (on-the-fly) will be performed.  
N7  
T2  
A12/BC#  
RESET#  
Input  
Input  
(HIGH, no burst chop; LOW: burst chopped). See section 9.1  
Command Truth Tableon page 94 for details.  
Active Low Asynchronous Reset: Reset is active when RESET# is  
LOW, and inactive when RESET# is HIGH. RESET# must be HIGH  
during normal operation. RESET# is a CMOS rail to rail signal with DC  
high and low at 80% and 20% of VDD, RESET# active is destructive to  
data contents.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 9 -  
W632GU6MB  
E3, F7, F2, F8, H3,  
H8, G2, H7  
DQL0DQL7  
DQU0DQU7  
Input/Output  
Input/Output  
Data Input/Output: Lower byte of Bi-directional data bus.  
D7, C3, C8, C2, A7,  
A2, B8, A3  
Data Input/Output: Upper byte of Bi-directional data bus.  
Lower byte data Strobe: Data Strobe output with read data, input with  
write data of DQL[7:0]. Edge-aligned with read data, centered in write  
data. DQSL is paired with DQSL# to provide differential pair signaling  
to the system during read and write data transfer. DDR3L SDRAM  
supports differential data strobe only and does not support single-  
ended.  
F3, G3  
C7, B7  
DQSL, DQSL#  
DQSU, DQSU#  
Input/Output  
Input/Output  
Upper byte data Strobe: Data Strobe output with read data, input with  
write data of DQU[7:0]. Edge-aligned with read data, centered in write  
data. DQSU is paired with DQSU# to provide differential pair signaling  
to the system during read and write data transfer. DDR3L SDRAM  
supports differential data strobe only and does not support single-  
ended.  
B2, D9, G7, K2, K8,  
N1, N9, R1, R9  
VDD  
VSS  
Supply  
Supply  
Power Supply: 1.283V to 1.45V operational.  
Ground.  
A9, B3, E1, G8, J2,  
J8, M1, M9, P1, P9,  
T1, T9  
A1, A8, C1, C9, D2,  
E9, F1, H2, H9  
VDDQ  
VSSQ  
Supply  
Supply  
DQ Power Supply: 1.283V to 1.45V operational.  
DQ Ground.  
B1, B9, D1, D8, E2,  
E8, F9, G1, G9  
H1  
M8  
VREFDQ  
VREFCA  
Supply  
Supply  
Reference voltage for DQ.  
Reference voltage for Control, Command and Address inputs.  
External reference ball for output drive and On-Die Termination  
Impedance calibration: This ball needs an external 240 Ω ± 1%  
external resistor (RZQ), connected from this ball to ground to perform  
ZQ calibration.  
L8  
ZQ  
NC  
Supply  
J1, J9, L1, L9, M7,  
T7  
No Connect: No internal electrical connection is present.  
Note:  
Input only balls (BA0-BA2, A0-A13, RAS#, CAS#, WE#, CS#, CKE, ODT and RESET#) do not supply termination.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 10 -  
W632GU6MB  
7. BLOCK DIAGRAM  
CK, CK#  
CLOCK  
BUFFER  
CKE  
CONTROL  
CS#  
SIGNAL  
GENERATOR  
RAS#  
CAS#  
COMMAND  
DECODER  
COLUMN  
DECODER  
COLUMN  
DECODER  
COLUMN  
DECODER  
COLUMN  
DECODER  
WE#  
CELL ARRAY  
BANK #5  
CELL ARRAY  
BANK #0  
CELL ARRAY  
BANK #4  
CELL ARRAY  
BANK #1  
A10  
A0  
MODE  
REGISTER  
SENSE  
AMPLIFIER  
SENSE  
AMPLIFIER  
ADDRESS  
BUFFER  
A9  
A11  
A12  
A13  
BA2  
BA1  
BA0  
CK, CK#  
ODT  
DLL  
DQL0DQL7  
DQU0DQU7  
DQL0DQL7  
DQU0DQU7  
READ  
drivers  
PREFETCH REGISTER  
DATA CONTROL CIRCUIT  
DM MASK LOGIC  
DQ  
BUFFER  
ODT  
LDQS, LDQS#  
LDQS, LDQS#  
LDQS, LDQS#  
UDQS, UDQS#  
WRITE  
drivers  
CONTROL  
COLUMN  
REFRESH  
COUNTER  
LDM, UDM  
LDM, UDM  
COUNTER  
ZQCL, ZQCS  
ZQ CAL  
ZQ  
COLUMN  
DECODER  
COLUMN  
DECODER  
COLUMN  
DECODER  
COLUMN  
DECODER  
RZQ  
To ODT/output drivers  
CELL ARRAY  
BANK #2  
CELL ARRAY  
BANK #3  
CELL ARRAY  
BANK #6  
VSSQ  
Note: RZQ and VSSQ are external component  
CELL ARRAY  
BANK #7  
SENSE  
SENSE  
SENSE  
SENSE  
AMPLIFIER  
AMPLIFIER  
AMPLIFIER  
AMPLIFIER  
NOTE: The cell array configuration is 16384 * 1024 * 16  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 11 -  
W632GU6MB  
8. FUNCTIONAL DESCRIPTION  
8.1 Basic Functionality  
The DDR3L SDRAM is a high-speed dynamic random-access memory internally configured as an  
eight-bank DRAM. The DDR3L SDRAM uses an 8n prefetch architecture to achieve high-speed  
operation. The 8n prefetch architecture is combined with an interface designed to transfer two data  
words per clock cycle at the I/O pins. A single read or write operation for the DDR3L SDRAM consists  
of a single 8n-bit wide, four clock data transfer at the internal DRAM core and eight corresponding n-  
bit wide, one-half clock cycle data transfers at the I/O pins.  
Read and write operation to the DDR3L SDRAM are burst oriented, start at a selected location, and  
continue for a burst length of eight or a ‘chopped’ burst of four in a programmed sequence. Operation  
begins with the registration of an Active command, which is then followed by a Read or Write  
command. The address bits registered coincident with the Active command are used to select the  
bank and row to be activated (BA0-BA2 select the bank; A0-A13 select the row). The address bits  
registered coincident with the Read or Write command are used to select the starting column location  
for the burst operation, determine if the auto precharge command is to be issued (via A10), and select  
BC4 or BL8 mode ‘on the fly’ (via A12) if enabled in the mode register.  
Prior to normal operation, the DDR3L SDRAM must be powered up and initialized in a predefined  
manner. The following sections provide detailed information covering device reset and initialization,  
register definition, command descriptions, and device operation.  
8.2 RESET and Initialization Procedure  
8.2.1 Power-up Initialization Sequence  
The following sequence is required for POWER UP and Initialization.  
1. Apply power (RESET# is recommended to be maintained below 0.2 * VDD; all other inputs may be  
undefined). RESET# needs to be maintained for minimum 200 µS with stable power. CKE is pulled  
“Low” anytime before RESET# being de-asserted (min. time 10 nS). The power voltage ramp time  
between 300 mV to VDD min. must be no greater than 200 mS; and during the ramp, VDD VDDQ  
and (VDD - VDDQ) < 0.3 Volts.  
VDD and VDDQ are driven from a single power converter output, AND  
The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to  
VDDQ and VDD on one side and must be larger than or equal to VSSQ and VSS on the other side.  
In addition, VTT is limited to 0.95 V max once power ramp is finished, AND  
VREF tracks VDDQ/2.  
OR  
Apply VDD without any slope reversal before or at the same time as VDDQ.  
Apply VDDQ without any slope reversal before or at the same time as VTT & VREF.  
The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to  
VDDQ and VDD on one side and must be larger than or equal to VSSQ and VSS on the other side.  
2. After RESET# is de-asserted, wait for another 500 µS until CKE becomes active. During this time,  
the DRAM will start internal state initialization; this will be done independently of external clocks.  
3. Clocks (CK, CK#) need to be started and stabilized for at least 10 nS or 5 tCK (which is larger)  
before CKE goes active. Since CKE is a synchronous signal, the corresponding set up time to  
clock (tIS) must be met. Also, a NOP or Deselect command must be registered (with tIS set up time  
to clock) before CKE goes active. Once the CKE is registered “High” after Reset, CKE needs to be  
continuously registered “High” until the initialization sequence is finished, including expiration of  
tDLLK and tZQinit.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 12 -  
W632GU6MB  
4. The DDR3L SDRAM keeps its on-die termination in high-impedance state as long as RESET# is  
asserted. Further, the SDRAM keeps its on-die termination in high impedance state after RESET#  
deassertion until CKE is registered HIGH. The ODT input signal may be in undefined state until tIS  
before CKE is registered HIGH. When CKE is registered HIGH, the ODT input signal may be  
statically held at either LOW or HIGH. If Rtt_Nom is to be enabled in MR1, the ODT input signal  
must be statically held LOW. In all cases, the ODT input signal remains static until the power up  
initialization sequence is finished, including the expiration of tDLLK and tZQinit.  
5. After CKE is being registered high, wait minimum of Reset CKE Exit time, tXPR, before issuing the  
first MRS command to load mode register. (tXPR=max (tXS ; 5 * tCK)  
6. Issue MRS Command to load MR2 with all application settings. (To issue MRS command for MR2,  
provide “Low” to BA0 and BA2, “High” to BA1.)  
7. Issue MRS Command to load MR3 with all application settings. (To issue MRS command for MR3,  
provide “Low” to BA2, “High” to BA0 and BA1.)  
8. Issue MRS Command to load MR1 with all application settings and DLL enabled. (To issue DLL  
Enablecommand, provide “Low” to A0, “High” to BA0 and “Low” to BA1-BA2).  
9. Issue MRS Command to load MR0 with all application settings and “DLL reset”. (To issue DLL  
reset command, provide “High” to A8 and “Low” to BA0-2).  
10.Issue ZQCL command to starting ZQ calibration.  
11.Wait for both tDLLK and tZQinit completed.  
12.The DDR3L SDRAM is now ready for normal operation.  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK, CK#  
tCKSRX  
VDD, VDDQ  
T = 200 µs  
T = 500 µs  
RESET#  
CKE  
tIS  
10 ns  
Tmin  
VALID  
tDLLK  
tXPR  
tMRD  
tMRD  
tMRD  
tMOD  
tZQinit  
*1  
tIS  
*1  
MRS  
MR2  
MRS  
MR3  
MRS  
MR1  
MRS  
MR0  
ZQCL  
VALID  
Command  
BA  
VALID  
tIS  
tIS  
Static LOW in case Rtt_Nom is enabled at time Tg. Otherwise static HIGH or LOW  
VALID  
ODT  
RTT  
TIME BREAK  
DON'T CARE  
Note:  
1. From time point “Td” until “Tk” NOP or DES commands must be applied between MRS and ZQCL commands.  
Figure 1 Reset and Initialization Sequence at Power-on Ramping  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 13 -  
W632GU6MB  
8.2.2 Reset Initialization with Stable Power  
The following sequence is required for RESET at no power interruption initialization.  
1. Asserted RESET below 0.2 * VDD anytime when reset is needed (all other inputs may be  
undefined). RESET needs to be maintained for minimum 100 nS. CKE is pulled “LOW” before  
RESET being de-asserted (min. time 10 nS).  
2. Follow Power-up Initialization Sequence steps 2 to 11.  
3. The Reset sequence is now completed; DDR3L SDRAM is ready for normal operation.  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK, CK#  
tCKSRX  
VDD, VDDQ  
T = 100 ns  
T = 500 µs  
RESET#  
CKE  
tIS  
Tmin = 10 ns  
VALID  
tDLLK  
tXPR  
tMRD  
tMRD  
tMRD  
tMOD  
tZQinit  
*1  
tIS  
*1  
MRS  
MR2  
MRS  
MR3  
MRS  
MR1  
MRS  
MR0  
ZQCL  
VALID  
Command  
BA  
VALID  
tIS  
tIS  
Static LOW in case Rtt_Nom is enabled at time Tg. Otherwise static HIGH or LOW  
VALID  
ODT  
RTT  
TIME BREAK  
DON'T CARE  
Note:  
1. From time point “Td” until “Tk” NOP or DES commands must be applied between MRS and ZQCL commands.  
Figure 2 Reset Procedure at Power Stable Condition  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 14 -  
W632GU6MB  
8.3 Programming the Mode Registers  
For application flexibility, various functions, features, and modes are programmable in four Mode  
Registers, provided by the DDR3L SDRAM, as user defined variables and they must be programmed  
via a Mode Register Set (MRS) command. As the default values of the Mode Registers (MR#) are not  
defined, contents of Mode Registers must be fully initialized and/or re-initialized, i.e., written, after  
power up and/or reset for proper operation. Also the contents of the Mode Registers can be altered by  
re-executing the MRS command during normal operation. When programming the mode registers,  
even if the user chooses to modify only a sub-set of the MRS fields, all address fields within the  
accessed mode register must be redefined when the MRS command is issued. MRS command and  
DLL Reset do not affect array contents, which mean these commands can be executed any time after  
power-up without affecting the array contents.  
The mode register set command cycle time, tMRD is required to complete the write operation to the  
mode register and is the minimum time required between two MRS commands shown in Figure 3.  
T0  
T1  
T2  
Ta0  
Ta1  
Tb0  
Tb1  
Tb2  
Tc0  
Tc1  
Tc2  
CK#  
CK  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
MRS  
NOP/DES  
VALID  
NOP/DES  
VALID  
MRS  
NOP/DES  
VALID  
NOP/DES  
VALID  
VALID  
VALID  
VALID  
VALID  
Command  
Address  
CKE  
VALID  
VALID  
Old settings  
Updating Settings  
New Settings  
Settings  
tMRD  
tMOD  
Rtt_Nom ENABLED prior and/or after MRS command  
ODTLoff+1  
VALID  
VALID  
VALID  
ODT  
ODT  
Rtt_Nom DISABLED prior and/or after MRS command  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
TIME BREAK  
DON'T CARE  
Figure 3 tMRD Timing  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 15 -  
W632GU6MB  
The MRS command to Non-MRS command delay, tMOD is required for the DRAM to update the  
features, except DLL reset, and is the minimum time required from a MRS command to a non-MRS  
command excluding NOP and DES shown in Figure 4.  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Tb0  
Tb1  
Tb2  
CK#  
CK  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
MRS  
NOP/DES  
VALID  
NOP/DES  
VALID  
NOP/DES  
VALID  
NOP/DES  
VALID  
NOP/DES  
VALID  
VALID  
VALID  
VALID  
VALID  
Command  
Address  
CKE  
VALID  
Old settings  
Updating Settings  
tMOD  
New Settings  
Settings  
Rtt_Nom ENABLED prior and/or after MRS command  
VALID  
VALID  
VALID  
ODT  
ODT  
ODTLoff+1  
Rtt_Nom DISABLED prior and/or after MRS command  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
TIME BREAK  
DON'T CARE  
Figure 4 tMOD Timing  
The mode register contents can be changed using the same command and timing requirements  
during normal operation as long as the DRAM is in idle state, i.e., all banks are in the precharged state  
with tRP satisfied, all data bursts are completed and CKE is high prior to writing into the mode register.  
If the Rtt_Nom Feature is enabled in the Mode Register prior and/or after a MRS command, the ODT  
signal must continuously be registered LOW ensuring RTT is in an off state prior to the MRS  
command. The ODT signal may be registered high after tMOD has expired. If the Rtt_Nom feature is  
disabled in the Mode Register prior and after a MRS command, the ODT signal can be registered  
either LOW or HIGH before, during and after the MRS command. The mode registers are divided into  
various fields depending on the functionality and/or modes.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 16 -  
W632GU6MB  
8.3.1 Mode Register MR0  
The mode register MR0 stores the data for controlling various operating modes of DDR3L SDRAM. It  
controls burst length, read burst type, CAS latency, test mode, DLL reset, WR and DLL control for  
precharge Power Down, which include various vendor specific options to make DDR3L SDRAM useful  
for various applications. The mode register is written by asserting low on CS#, RAS#, CAS#, WE#,  
BA0, BA1 and BA2, while controlling the states of address pins according to the Figure 5 below.  
BA2 BA1 BA0 A13 A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Field  
0*1  
0
RBT CL  
0*1  
0
PPD  
WR  
DLL TM  
CL  
BL  
Mode Register 0  
Burst Length  
A8 DLL Reset  
0
1
No  
A1 A0  
BL  
8 (Fixed)  
A3 Read Burst Type  
A7  
0
Mode  
Normal  
Test  
0
0
1
1
0
1
0
1
Yes  
Nibble Sequential  
Interleave  
0
1
BC4 or 8 (on the fly)  
BC4 (Fixed)  
Reserved  
1
BA1 BA0  
MRS mode  
MR0  
0
0
1
1
0
1
0
1
MR1  
CAS Latency  
Write recovery for Auto precharge  
A11 A10 A9 WR(cycles)  
MR2  
A6  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A5  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A4  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A2  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Latency  
MR3  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
16*2  
5*2  
6*2  
7*2  
8*2  
10*2  
12*2  
14*2  
Reserved  
5
A12 DLL Control for Precharge PD  
6
0
1
Slow exit (DLL off)  
Fast exit (DLL on)  
7
8
9
10  
11  
Reserved  
13  
14  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes:  
1. BA2 and A13 are reserved for future use and must be programmed to “0” during MRS.  
2. WR (write recovery for Auto precharge)min in clock cycles is calculated by dividing tWR (in nS) by tCK (in nS) and rounding  
up to the next integer: WRmin[cycles] = Roundup(tWR[nS] / tCK(avg)[nS]). The WR value in the mode register must be  
programmed to be equal or larger than WRmin. The programmed WR value is used with tRP to determine tDAL.  
3. The table only shows the encodings for a given Cas Latency. For actual supported CAS Latency, please refer to Speed  
Binstables for each frequency.  
4. The table only shows the encodings for Write Recovery. For actual Write recovery timing, please refer to AC timing table.  
Figure 5 MR0 Definition  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 17 -  
W632GU6MB  
8.3.1.1 Burst Length, Type and Order  
Accesses within a given burst may be programmed to sequential or interleaved order. The burst type  
is selected via bit A3 as shown in Figure 5. The ordering of accesses within a burst is determined by  
the burst length, burst type, and the starting column address as shown in Table 1. The burst length is  
defined by bits A0-A1. Burst length options include fixed BC4, fixed BL8 and ‘on the fly’ which allows  
BC4 or BL8 to be selected coincident with the registration of a Read or Write command via A12/BC#.  
Table 1 Burst Type and Burst Order  
Burst type = Sequential  
(decimal)  
Burst type = Interleaved  
(decimal)  
Starting Column Address  
(A2, A1, A0)  
Burst  
Length  
READ/  
WRITE  
NOTES  
A3 = 0  
A3 = 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0,V,V  
1,V,V  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
V,V,V  
0,1,2,3,T,T,T,T  
1,2,3,0,T,T,T,T  
2,3,0,1,T,T,T,T  
3,0,1,2,T,T,T,T  
4,5,6,7,T,T,T,T  
5,6,7,4,T,T,T,T  
6,7,4,5,T,T,T,T  
7,4,5,6,T,T,T,T  
0,1,2,3,X,X,X,X  
4,5,6,7,X,X,X,X  
0,1,2,3,4,5,6,7  
1,2,3,0,5,6,7,4  
2,3,0,1,6,7,4,5  
3,0,1,2,7,4,5,6  
4,5,6,7,0,1,2,3  
5,6,7,4,1,2,3,0  
6,7,4,5,2,3,0,1  
7,4,5,6,3,0,1,2  
0,1,2,3,4,5,6,7  
0,1,2,3,T,T,T,T  
1,0,3,2,T,T,T,T  
2,3,0,1,T,T,T,T  
3,2,1,0,T,T,T,T  
4,5,6,7,T,T,T,T  
5,4,7,6,T,T,T,T  
6,7,4,5,T,T,T,T  
7,6,5,4,T,T,T,T  
0,1,2,3,X,X,X,X  
4,5,6,7,X,X,X,X  
0,1,2,3,4,5,6,7  
1,0,3,2,5,4,7,6  
2,3,0,1,6,7,4,5  
3,2,1,0,7,6,5,4  
4,5,6,7,0,1,2,3  
5,4,7,6,1,0,3,2  
6,7,4,5,2,3,0,1  
7,6,5,4,3,2,1,0  
0,1,2,3,4,5,6,7  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 4, 5  
1, 2, 4, 5  
2
READ  
4
Chop  
WRITE  
2
2
2
READ  
8
2
2
2
2
WRITE  
2, 4  
Notes:  
1. In case of burst length being fixed to 4 by MR0 setting, the internal write operation starts two clock cycles earlier than for the  
BL8 mode. This means that the starting point for tWR and tWTR will be pulled in by two clocks. In case of burst length being  
selected on-the-fly via A12/BC#, the internal write operation starts at the same point in time like a burst of 8 write operation.  
This means that during on-the-fly control, the starting point for tWR and tWTR will not be pulled in by two clocks.  
2. 0...7 bit number is value of CA[2:0] that causes this bit to be the first read during a burst.  
3. T: Output driver for data and strobes are in high impedance.  
4. V: a valid logic level (0 or 1), but respective buffer input ignores level on input pins.  
5. X: Don't Care.  
8.3.1.2 CAS Latency  
The CAS Latency is defined by MR0 (bits A2, A4, A5 and A6) as shown in Figure 5. CAS Latency is  
the delay, in clock cycles, between the internal Read command and the availability of the first bit of  
output data. DDR3L SDRAM does not support any half-clock latencies. The overall Read Latency (RL)  
is defined as Additive Latency (AL) + CAS Latency (CL); RL = AL + CL. For more information on the  
supported CL and AL settings based on the operating clock frequency, refer to section 10.15 Speed  
Binson page 133. For detailed Read operation refer to section 8.13 READ Operationon page 43.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 18 -  
W632GU6MB  
8.3.1.3 Test Mode  
The normal operating mode is selected by MR0 (bit A7 = 0) and all other bits set to the desired values  
shown in Figure 5. Programming bit A7 to a ‘1’ places the DDR3L SDRAM into a test mode that is only  
used by the DRAM Manufacturer and should NOT be used. No operations or functionality is specified  
if A7 = 1.  
8.3.1.4 DLL Reset  
The DLL Reset bit is self-clearing, meaning that it returns back to the value of ‘0’ after the DLL reset  
function has been issued. Once the DLL is enabled, a subsequent DLL Reset should be applied. Any  
time that the DLL reset function is used, tDLLK must be met before any functions that require the DLL  
can be used (i.e., Read commands or ODT synchronous operations).  
8.3.1.5 Write Recovery  
The programmed WR value MR0 (bits A9, A10 and A11) is used for the auto precharge feature along  
with tRP to determine tDAL. WR (write recovery for auto-precharge) min in clock cycles is calculated by  
dividing tWR (in nS) by tCK(avg) (in nS) and rounding up to the next integer: WRmin[cycles] =  
Roundup(tWR[nS]/tCK(avg)[nS]). The WR must be programmed to be equal to or larger than tWR(min).  
8.3.1.6 Precharge PD DLL  
MR0 (bit A12) is used to select the DLL usage during precharge power down mode. When MR0 (A12  
= 0), or ‘slow-exit’, the DLL is frozen after entering precharge power down (for potential power savings)  
and upon exit requires tXPDLL to be met prior to the next valid command. When MR0 (A12 = 1), or  
‘fast-exit’, the DLL is maintained after entering precharge power down and upon exiting power down  
requires tXP to be met prior to the next valid command.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 19 -  
W632GU6MB  
8.3.2 Mode Register MR1  
The Mode Register MR1 stores the data for enabling or disabling the DLL, output driver strength,  
Rtt_Nom impedance, additive latency, Write leveling enable and Qoff. The Mode Register 1 is written  
by asserting low on CS#, RAS#, CAS#, WE#, high on BA0 and low on BA1 and BA2, while controlling  
the states of address pins according to the Figure 6 below.  
BA2  
BA1  
BA0  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Field  
0*1  
0
1
0*1  
Rtt_Nom  
Level Rtt_Nom  
AL
D.I.C  
DLL  
0*1  
0*1  
0*1  
Rtt_Nom  
Mode Register 1  
Qoff  
D.I.C  
A0  
0
DLL Enable  
Enable  
A9  
A6  
A2  
0
Rtt_Nom*3  
BA1  
BA0  
MR Select  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
Rtt_Nom disabled  
RZQ/4  
0
0
1
1
0
1
0
1
MR0  
MR1  
MR2  
MR3  
1
Disable  
1
0
RZQ/2  
Output Driver  
Impedance Control  
1
RZQ/6  
A5  
A1  
0
RZQ/12*4  
RZQ/8*4  
RZQ/6  
0
0
1
1
0
1
0
1
1
A7  
0
Write leveling enable  
Disabled  
RZQ/7  
0
Reserved  
Reserved  
Reserved  
Reserved  
1
1
Enabled  
Note: RZQ = 240 ohms  
Note: RZQ = 240 ohms  
A12  
0
Qoff*2  
A4  
0
A3  
0
Additive Latency  
0 (AL disabled)  
CL-1  
Output buffer enabled  
Output buffer disabled*2  
1
0
1
CL-2  
1
0
Reserved  
1
1
Notes:  
1. BA2, A8, A10, A11 and A13 are reserved for future use and must be programmed to “0” during MRS.  
2. Outputs disabled - DQs, DQSs, DQS#s.  
3. In Write leveling Mode (MR1 A[7] = 1) with MR1 A[12]=1, all Rtt_Nom settings are allowed; in Write Leveling Mode (MR1 A[7]  
= 1) with MR1 A[12]=0, only Rtt_Nom settings of RZQ/2, RZQ/4 and RZQ/6 are allowed.  
4. If Rtt_Nom is used during Writes, only the values RZQ/2, RZQ/4 and RZQ/6 are allowed.  
Figure 6 MR1 Definition  
8.3.2.1 DLL Enable/Disable  
The DLL must be enabled for normal operation. DLL enable is required during power up initialization,  
and upon returning to normal operation after having the DLL disabled. During normal operation (DLL-on)  
with MR1 (A0 = 0), the DLL is automatically disabled when entering Self Refresh operation and is  
automatically re-enabled upon exit of Self Refresh operation. Any time the DLL is enabled and  
subsequently reset, tDLLK clock cycles must occur before a Read or synchronous ODT command can be  
issued to allow time for the internal clock to be synchronized with the external clock. Failing to wait for  
synchronization to occur may result in a violation of the tDQSCK, tAON or tAOF parameters. During tDLLK,  
CKE must continuously be registered high. DDR3L SDRAM does not require DLL for any Write  
operation, except when Rtt_WR is enabled and the DLL is required for proper ODT operation. For more  
detailed information on DLL Disable operation refer to section 8.6 DLL-off Modeon page 25.  
The direct ODT feature is not supported during DLL-off mode. The on-die termination resistors must be  
disabled by continuously registering the ODT pin low and/or by programming the Rtt_Nom bits  
MR1{A9,A6,A2} to {0,0,0} via a mode register set command during DLL-off mode.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 20 -  
W632GU6MB  
The dynamic ODT feature is not supported at DLL-off mode. User must use MRS command to set  
Rtt_WR, MR2 {A10, A9} = {0,0}, to disable Dynamic ODT externally.  
8.3.2.2 Output Driver Impedance Control  
The output driver impedance of the DDR3L SDRAM device is selected by MR1 (bits A1 and A5) as  
shown in Figure 6.  
8.3.2.3 ODT RTT Values  
DDR3L SDRAM is capable of providing two different termination values (Rtt_Nom and Rtt_WR). The  
nominal termination value Rtt_Nom is programmed in MR1. A separate value (Rtt_WR) may be  
programmed in MR2 to enable a unique RTT value when ODT is enabled during writes. The Rtt_WR  
value can be applied during writes even when Rtt_Nom is disabled.  
8.3.2.4 Additive Latency (AL)  
Additive Latency (AL) operation is supported to make command and data bus efficient for sustainable  
bandwidths in DDR3L SDRAM. In this operation, the DDR3L SDRAM allows a read or write command  
(either with or without auto-precharge) to be issued immediately after the active command. The  
command is held for the time of the Additive Latency (AL) before it is issued inside the device. The  
Read Latency (RL) is controlled by the sum of the AL and CAS Latency (CL) register settings. Write  
Latency (WL) is controlled by the sum of the AL and CAS Write Latency (CWL) register settings. A  
summary of the AL register options are shown in Table 2.  
Table 2 Additive Latency (AL) Settings  
A4  
0
A3  
0
AL  
0 (AL Disabled)  
CL - 1  
0
1
1
0
CL - 2  
1
1
Reserved  
Note:  
AL has a value of CL - 1 or CL - 2 as per the CL values programmed in the MR0 register.  
8.3.2.5 Write leveling  
For better signal integrity, DDR3L memory module adopted fly-by topology for the commands,  
addresses, control signals, and clocks. The fly-by topology has the benefit of reducing the number of  
stubs and their length, but it also causes flight time skew between clock and strobe at every DRAM on  
the DIMM. This makes it difficult for the controller to maintain tDQSS, tDSS, and tDSH specification.  
Therefore, the DDR3L SDRAM supports a ‘write leveling’ feature to allow the controller to compensate  
for skew. See section 8.9 Write Levelingon page 30 for more details.  
8.3.2.6 Output Disable  
The DDR3L SDRAM outputs may be enabled/disabled by MR1 (bit A12) as shown in Figure 6. When  
this feature is enabled (A12 = 1), all output pins (DQs, DQS, DQS#, etc.) are disconnected from the  
device, thus removing any loading of the output drivers. This feature may be useful when measuring  
module power, for example. For normal operation, A12 should be set to ‘0’.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 21 -  
W632GU6MB  
8.3.3 Mode Register MR2  
The Mode Register MR2 stores the data for controlling refresh related features, Rtt_WR impedance,  
and CAS write latency. The Mode Register 2 is written by asserting low on CS#, RAS#, CAS#, WE#,  
high on BA1 and low on BA0 and BA2, while controlling the states of address pins according to the  
Figure 7 below.  
BA2  
BA1  
BA0  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Field  
0*1  
1
0
0*1  
Rtt_WR  
SRT  
ASR  
CWL  
PASR  
0*1  
Mode Register 2  
BA1 BA0  
MR Select  
A2  
A1  
0
A0  
Partial Array Self Refresh for 8 Banks  
Full array  
0
0
1
1
0
1
0
1
MR0  
MR1  
MR2  
MR3  
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
Half Array (BA[2:0]=000,001,010 & 011)  
Quarter Array (BA[2:0]=000 & 001)  
1/8th Array (BA[2:0]=000)  
0
1
1
A6  
0
Auto Self Refresh (ASR)  
Manual SR Reference (SRT)  
3/4 Array (BA[2:0]=010,011,100,101,110 & 111)  
Half Array (BA[2:0]=100,101,110 & 111)  
Quarter Array (BA[2:0]=110 & 111)  
1/8th Array (BA[2:0]=111)  
0
1
ASR enable  
0
1
A7  
0
Self Refresh Temperature (SRT) Range  
Normal operating temperature range  
Extended operating temperature range  
1
1
CAS write Latency (CWL)  
A5  
A4  
0
A3  
A10  
A9  
Rtt_WR*2  
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
5 (tCK(avg) 2.5nS)  
Dynamic ODT off  
(Write does not affect Rtt value)  
0
0
0
6 (2.5nS > tCK(avg) 1.875nS)  
7 (1.875nS > tCK(avg) 1.5nS)  
8 (1.5nS > tCK(avg) 1.25nS)  
9 (1.25nS > tCK(avg) 1.07nS)  
RZQ/4  
RZQ/2  
1
0
1
1
1
0
1
1
Reserved  
0
0
10 (1.07nS > tCK(avg) 0.938nS)  
Reserved  
1
1
Reserved  
Notes:  
1. BA2, A8, A11~A13 are reserved for future use and must be programmed to “0” during MRS.  
2. The Rtt_WR value can be applied during writes even when Rtt_Nom is disabled. During write leveling, Dynamic ODT is not  
available.  
Figure 7 MR2 Definition  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 22 -  
W632GU6MB  
8.3.3.1 Partial Array Self Refresh (PASR)  
If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified  
address range shown in Figure 7 will be lost if Self Refresh is entered. Data integrity will be  
maintained if tREFI conditions are met and no Self Refresh command is issued.  
8.3.3.2 CAS Write Latency (CWL)  
The CAS Write Latency is defined by MR2 (bits A3-A5), as shown in Figure 7. CAS Write Latency is  
the delay, in clock cycles, between the internal Write command and the availability of the first bit of  
input data.  
DDR3L SDRAM does not support any half-clock latencies. The overall Write Latency (WL) is defined  
as Additive Latency (AL) + CAS Write Latency (CWL); WL = AL + CWL. For more information on the  
supported CWL and AL settings based on the operating clock frequency, refer to section 10.15  
Speed Binson page 133. For detailed Write operation refer to section 8.14 WRITE Operationon  
page 56.  
8.3.3.3 Auto Self Refresh (ASR) and Self Refresh Temperature (SRT)  
DDR3L SDRAM must support Self Refresh operation at all supported temperatures. Applications  
requiring Self Refresh operation in the Extended Temperature Range must use the ASR function or  
program the SRT bit appropriately.  
When ASR enabled, DDR3L SDRAM automatically provides Self Refresh power management  
functions for all supported operating temperature values. If not enabled, the SRT bit must be  
programmed to indicate TOPER during subsequent Self Refresh operation.  
ASR = 0, Self Refresh rate is determined by SRT bit A7 in MR2.  
ASR = 1, Self Refresh rate is determined by on-die thermal sensor. SRT bit A7 in MR2 is don't care.  
8.3.3.4 Dynamic ODT (Rtt_WR)  
DDR3L SDRAM introduces a new feature Dynamic ODT. In certain application cases and to further  
enhance signal integrity on the data bus, it is desirable that the termination strength of the DDR3L  
SDRAM can be changed without issuing an MRS command. MR2 Register locations A9 and A10  
configure the Dynamic ODT settings. In Write leveling mode, only Rtt_Nom is available. For details on  
Dynamic ODT operation, refer to section 8.19.3 Dynamic ODTon page 83.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 23 -  
W632GU6MB  
8.3.4 Mode Register MR3  
The Mode Register MR3 controls Multi purpose registers. The Mode Register 3 is written by asserting  
low on CS#, RAS#, CAS#, WE#, high on BA1 and BA0, and low on BA2 while controlling the states of  
address pins according to the Figure 8 below.  
BA2  
BA1  
BA0  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Field  
0*1  
1
1
MPR Loc  
0*1  
MPR  
Mode Register 3  
MPR Address  
MPR Operation  
BA0  
A1  
A0  
MPR location  
BA1  
MR Select  
A2  
MPR  
0
0
1
1
0
1
0
1
0
0
MR0  
MR1  
MR2  
MR3  
Predefined pattern*2  
Normal operation*3  
Dataflow from MPR  
0
RFU  
RFU  
RFU  
0
1
1
1
0
1
1
Notes:  
1. BA2, A3~A13 are reserved for future use and must be programmed to “0” during MRS.  
2. The predefined pattern will be used for read synchronization.  
3. When MPR control is set for normal operation (MR3 A[2] = 0) then MR3 A[1:0] will be ignored.  
Figure 8 MR3 Definition  
8.3.4.1 Multi Purpose Register (MPR)  
The Multi Purpose Register (MPR) function is used to Read out a predefined system timing calibration  
bit sequence. To enable the MPR, a MODE Register Set (MRS) command must be issued to MR3  
Register with bit A2 = 1. Prior to issuing the MRS command, all banks must be in the idle state (all  
banks precharged and tRP met). Once the MPR is enabled, any subsequent RD or RDA commands  
will be redirected to the Multi Purpose Register. When the MPR is enabled, only RD or RDA  
commands are allowed until a subsequent MRS command is issued with the MPR disabled (MR3 bit  
A2 = 0). Power Down mode, Self Refresh, and any other non-RD/RDA command is not allowed during  
MPR enable mode. The RESET function is supported during MPR enable mode. For detailed MPR  
operation refer to section 8.10 Multi Purpose Registeron page 34.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 24 -  
W632GU6MB  
8.4 No OPeration (NOP) Command  
The No OPeration (NOP) command is used to instruct the selected DDR3L SDRAM to perform a NOP  
(CS# LOW and RAS#, CAS#, and WE# HIGH). This prevents unwanted commands from being  
registered during idle or wait states. Operations already in progress are not affected.  
8.5 Deselect Command  
The DESELECT function (CS# HIGH) prevents new commands from being executed by the DDR3L  
SDRAM. The DDR3L SDRAM is effectively deselected. Operations already in progress are not  
affected.  
8.6 DLL-off Mode  
DDR3L DLL-off mode is entered by setting MR1 bit A0 to “1”; this will disable the DLL for subsequent  
operations until A0 bit is set back to “0”. The MR1 A0 bit for DLL control can be switched either during  
initialization or later. Refer to section 8.8 Input clock frequency changeon page 28.  
The DLL-off Mode operations listed below are an optional feature for DDR3L. The maximum clock  
frequency for DLL-off Mode is specified by the parameter tCK(DLL_OFF). There is no minimum  
frequency limit besides the need to satisfy the refresh interval, tREFI.  
Due to latency counter and timing restrictions, only one value of CAS Latency (CL) in MR0 and CAS  
Write Latency (CWL) in MR2 are supported. The DLL-off mode is only required to support setting of  
both CL=6 and CWL=6.  
DLL-off mode will affect the Read data Clock to Data Strobe relationship (tDQSCK), but not the Data  
Strobe to Data relationship (tDQSQ, tQH). Special attention is needed to line up Read data to controller  
time domain.  
Comparing with DLL-on mode, where tDQSCK starts from the rising clock edge (AL+CL) cycles after  
the Read command, the DLL-off mode tDQSCK starts (AL+CL - 1) cycles after the read command.  
Another difference is that tDQSCK may not be small compared to tCK (it might even be larger than tCK)  
and the difference between tDQSCK min and tDQSCK max is significantly larger than in DLL-on mode.  
The timing relations on DLL-off mode READ operation is shown in the following Timing Diagram  
(CL=6, BL=8):  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
NOP  
CK#  
CK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
Bank  
Col b  
RL (DLL_on) = AL + CL = 6 (CL = 6, AL = 0)  
CL = 6  
DQS,DQS# (DLL_on)  
DQ (DLL_on)  
Dout  
b+3  
Dout  
b
Dout  
b+1  
Dout  
b+2  
Dout  
b+4  
Dout  
b+5  
Dout  
b+6  
Dout  
b+7  
RL (DLL_off) = AL + ( CL 1 ) = 5  
tDQSCK(DLL_off)_min  
DQS,DQS# (DLL_off)  
DQ (DLL_off)  
Dout  
b
Dout  
b+1  
Dout  
b+2  
Dout  
b+3  
Dout  
b+4  
Dout  
b+5  
Dout  
b+6  
Dout  
b+7  
tDQSCK(DLL_on)_max  
DQS,DQS# (DLL_off)  
DQ (DLL_off)  
Dout  
b
Dout  
b+1  
Dout  
b+2  
Dout  
b+3  
Dout  
b+4  
Dout  
b+5  
Dout  
b+6  
Dout  
b+7  
Note:  
The tDQSCK is used here for DQS, DQS# and DQ to have a simplified;  
the DLL_off shift will affect both timings in the same way and the skew  
between all DQ, and DQS, DQS# signals will still be tDQSQ.  
TRANSITIONING DATA  
DON'T CARE  
Figure 9 DLL-off mode READ Timing Operation  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 25 -  
W632GU6MB  
8.7 DLL on/off switching procedure  
DDR3L DLL-off mode is entered by setting MR1 bit A0 to “1”; this will disable the DLL for subsequent  
operations until A0 bit is set back to “0”.  
8.7.1 DLL “on” to DLL “off” Procedure  
To switch from DLL “on” to DLL “off” requires the frequency to be changed during Self-Refresh, as  
outlined in the following procedure:  
1. Starting from Idle state (All banks pre-charged, all timings fulfilled, and DRAMs On-die Termination  
resistors, RTT, must be in high impedance state before MRS to MR1 to disable the DLL.)  
2. Set MR1 bit A0 to “1” to disable the DLL.  
3. Wait tMOD.  
4. Enter Self Refresh Mode; wait until (tCKSRE) is satisfied.  
5. Change frequency, in guidance with section 8.8 Input clock frequency changeon page 28.  
6. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs.  
7. Starting with the Self Refresh Exit command, CKE must continuously be registered HIGH until all  
tMOD timings from any MRS command are satisfied. In addition, if any ODT features were enabled  
in the mode registers when Self Refresh mode was entered, the ODT signal must continuously be  
registered LOW until all tMOD timings from any MRS command are satisfied. If both ODT features  
were disabled in the mode registers when Self Refresh mode was entered, ODT signal can be  
registered LOW or HIGH.  
8. Wait tXS, then set Mode Registers with appropriate values (especially an update of CL, CWL and  
WR may be necessary. A ZQCL command may also be issued after tXS).  
9. Wait for tMOD, then DRAM is ready for next command.  
T0  
T1  
Ta0  
Ta1  
Tb0  
Tc0  
Td0  
Td1  
Te0  
Te1  
Tf0  
CK#  
CK  
VALID*8  
VALID*8  
CKE  
MRS*2  
NOP  
SRE*3  
NOP  
SRX*6  
NOP  
MRS*7  
NOP  
Command  
*5  
tCKSRX  
*1  
tMOD  
tCKSRE  
*4  
tXS  
tMOD  
tCKESR  
VALID8  
ODT  
ODT: Static LOW in case Rtt_Nom and Rtt_WR is enabled, otherwise static Low or High  
Notes:  
1. Starting with Idle state, RTT in Hi-Z state  
2. Disable DLL by setting MR1 Bit A0 to 1  
3. Enter SR  
TIME BREAK  
DON'T CARE  
4. Change Frequency  
5. Clock must be stable tCKSRX  
6. Exit SR  
7. Update Mode register with DLL off parameters setting  
8. Any valid command  
Figure 10 DLL Switch Sequence from DLL-on to DLL-off  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 26 -  
 
W632GU6MB  
8.7.2 DLL “off” to DLL “on” Procedure  
To switch from DLL “off” to DLL “on” (with required frequency change) during Self-Refresh:  
1. Starting from Idle state (All banks pre-charged, all timings fulfilled and DRAMs On-die Termination  
resistors (RTT) must be in high impedance state before Self-Refresh mode is entered.)  
2. Enter Self Refresh Mode, wait until tCKSRE satisfied.  
3. Change frequency, in guidance with section 8.8 Input clock frequency changeon page 28.  
4. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs.  
5. Starting with the Self Refresh Exit command, CKE must continuously be registered HIGH until  
tDLLK timing from subsequent DLL Reset command is satisfied. In addition, if any ODT features  
were enabled in the mode registers when Self Refresh mode was entered, the ODT signal must  
continuously be registered LOW until tDLLK timings from subsequent DLL Reset command is  
satisfied. If both ODT features are disabled in the mode registers when Self Refresh mode was  
entered, ODT signal can be registered LOW or HIGH.  
6. Wait tXS, then set MR1 bit A0 to “0” to enable the DLL.  
7. Wait tMRD, then set MR0 bit A8 to “1” to start DLL Reset.  
8. Wait tMRD, then set Mode Registers with appropriate values (especially an update of CL, CWL and  
WR may be necessary. After tMOD satisfied from any proceeding MRS command, a ZQCL  
command may also be issued during or after tDLLK.)  
9. Wait for tMOD, then DRAM is ready for next command (Remember to wait tDLLK after DLL Reset  
before applying command requiring a locked DLL!). In addition, wait also for tZQoper in case a  
ZQCL command was issued.  
T0  
Ta0  
Ta1  
Tb0  
Tc0  
Tc1  
Td0  
Te0  
Tf1  
Tg0  
Th0  
CK#  
CK  
VALID  
CKE  
tDLLK  
VALID*9  
NOP  
SRE*2  
NOP  
SRX*5  
MRS*6  
MRS*7  
MRS*8  
Command  
*4  
ODTLoff + 1 x tCK  
*3  
tCKSRE  
tCKSRX  
tXS  
tMRD  
tMRD  
*1  
tCKESR  
ODT  
ODT: Static LOW in case Rtt_Nom and Rtt_WR is enabled, otherwise static Low or High  
Notes:  
1. Starting with idle state  
2. Enter SR  
DON'T CARE  
TIME BREAK  
3. Change Frequency  
4. Clock must be stable tCKSRX  
5. Exit SR  
6. Set DLL on by MR1 A0 = 0  
7. Update Mode registers  
8. Any valid command  
Figure 11 DLL Switch Sequence from DLL Off to DLL On  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 27 -  
W632GU6MB  
8.8 Input clock frequency change  
Once the DDR3L SDRAM is initialized, the DDR3L SDRAM requires the clock to be “stable” during  
almost all states of normal operation. This means that, once the clock frequency has been set and is  
to be in the “stable state”, the clock period is not allowed to deviate except for what is allowed for by  
the clock jitter and SSC (spread spectrum clocking) specifications.  
The input clock frequency can be changed from one stable clock rate to another stable clock rate  
under two conditions: (1) Self-Refresh mode and (2) Precharge Power-down mode. Outside of these  
two modes, it is illegal to change the clock frequency.  
8.8.1 Frequency change during Self-Refresh  
For the first condition, once the DDR3L SDRAM has been successfully placed in to Self-Refresh mode  
and tCKSRE has been satisfied, the state of the clock becomes a don't care. Once a don't care,  
changing the clock frequency is permissible, provided the new clock frequency is stable prior to  
tCKSRX. When entering and exiting Self-Refresh mode for the sole purpose of changing the clock  
frequency, the Self-Refresh entry and exit specifications must still be met as outlined in see section  
8.16 Self-Refresh Operationon page 67.  
The DDR3L SDRAM input clock frequency is allowed to change only within the minimum and  
maximum operating frequency specified for the particular speed grade. Any frequency change below  
the minimum operating frequency would require the use of DLL_on mode -> DLL_off mode transition  
sequence; refer to section 8.7 DLL on/off switching procedureon page 26.  
8.8.2 Frequency change during Precharge Power-down  
The second condition is when the DDR3L SDRAM is in Precharge Power-down mode (either fast exit  
mode or slow exit mode). If the Rtt_Nom feature was enabled in the mode register prior to entering  
Precharge power down mode, the ODT signal must continuously be registered LOW ensuring RTT is  
in an off state. If the Rtt_Nom feature was disabled in the mode register prior to entering Precharge  
power down mode, RTT will remain in the off state. The ODT signal can be registered either LOW or  
HIGH in this case. A minimum of tCKSRE must occur after CKE goes LOW before the clock frequency  
may change. The DDR3L SDRAM input clock frequency is allowed to change only within the minimum  
and maximum operating frequency specified for the particular speed grade. During the input clock  
frequency change, ODT and CKE must be held at stable LOW levels. Once the input clock frequency  
is changed, stable new clocks must be provided to the DRAM tCKSRX before Precharge Power-down  
may be exited; after Precharge Power-down is exited and tXP has expired, the DLL must be RESET  
via MRS. Depending on the new clock frequency, additional MRS commands may need to be issued  
to appropriately set the WR, CL, and CWL with CKE continuously registered high. During DLL re-lock  
period, ODT must remain LOW and CKE must remain HIGH. After the DLL lock time, the DRAM is  
ready to operate with new clock frequency. This process is depicted in Figure 12 on page 29.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 28 -  
W632GU6MB  
Previous clock frequency  
New clock frequency  
T0  
T1  
T2  
Ta0  
Tb0  
Tc0  
Tc1  
Td0  
Td1  
Te0  
Te1  
CK#  
CK  
tCHb  
tCLb  
tCHb  
tCLb  
tCLb  
tCHb  
tCH  
tCL  
tCK  
tCKb  
tCKSRX  
tCKb  
tCKb  
tCKSRE  
tCKE  
tIH  
tIS  
tIH  
CKE  
Command  
Address  
tIS  
NOP  
tCPDED  
NOP  
NOP  
NOP  
NOP  
tXP  
MRS  
NOP  
VALID  
DLL Reset  
VALID  
tIS  
tIH  
tAOFPD / tAOF  
ODT  
DQS, DQS#  
DQ  
High-Z  
High-Z  
DM  
tDLLK  
Enter PRECHARGE  
Power-Down Mode  
Frequency  
Change  
Exit PRECHARGE  
Power-Down Mode  
TIME BREAK  
DON'T CARE  
Notes:  
1. Applicable for both SLOW EXIT and FAST EXIT Precharge Power-down.  
2. tAOFPD and tAOF must be satisfied and outputs High-Z prior to T1; refer to ODT timing section for exact requirements.  
3. If the Rtt_Nom feature was enabled in the mode register prior to entering Precharge power down mode, the ODT signal must  
continuously be registered LOW ensuring RTT is in an off state, as shown in Figure 9. If the Rtt_Nom feature was disabled in  
the mode register prior to entering Precharge power down mode, RTT will remain in the off state. The ODT signal can be  
registered either LOW or HIGH in this case.  
Figure 12 Change Frequency during Precharge Power-down  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 29 -  
W632GU6MB  
8.9 Write Leveling  
For better signal integrity, the DDR3L memory module adopted fly-by topology for the commands,  
addresses, control signals, and clocks. The fly-by topology has benefits from reducing number of  
stubs and their length, but it also causes flight time skew between clock and strobe at every DRAM on  
the DIMM. This makes it difficult for the Controller to maintain tDQSS, tDSS, and tDSH specification.  
Therefore, the DDR3L SDRAM supports a ‘write leveling’ feature to allow the controller to compensate  
for skew.  
The memory controller can use the ‘write leveling’ feature and feedback from the DDR3L SDRAM to  
adjust the DQS - DQS# to CK - CK# relationship. The memory controller involved in the leveling must  
have adjustable delay setting on DQS - DQS# to align the rising edge of DQS - DQS# with that of the  
clock at the DRAM pin. The DRAM asynchronously feeds back CK - CK#, sampled with the rising  
edge of DQS - DQS#, through the DQ bus. The controller repeatedly delays DQS - DQS# until a  
transition from 0 to 1 is detected. The DQS - DQS# delay established though this exercise would  
ensure tDQSS specification.  
Besides tDQSS, tDSS and tDSH specification also needs to be fulfilled. One way to achieve this is to  
combine the actual tDQSS in the application with an appropriate duty cycle and jitter on the DQS -  
DQS# signals. Depending on the actual tDQSS in the application, the actual values for tDQSL and tDQSH  
may have to be better than the absolute limits provided in section 10.16 AC Characteristicsin  
order to satisfy tDSS and tDSH specification. A conceptual timing of this scheme is shown in Figure 13.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK#  
CK  
Source  
Diff_DQS  
CK#  
Tn  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
Destination  
CK  
Diff_DQS  
DQ  
0 or 1  
0
0
0
Push DQS to capture 0-1  
transition  
Diff_DQS  
DQ  
0 or 1  
1
1
1
Figure 13 Write Leveling Concept  
DQS - DQS# driven by the controller during leveling mode must be terminated by the DRAM based on  
ranks populated. Similarly, the DQ bus driven by the DRAM must also be terminated at the controller.  
One or more data bits should carry the leveling feedback to the controller across the DRAM  
configurations x4, x8 and x16. On a x16 device, both byte lanes should be leveled independently.  
Therefore, a separate feedback mechanism should be available for each byte lane. The upper data  
bits should provide the feedback of the upper Diff_DQS(Diff_UDQS) to clock relationship whereas the  
lower data bits would indicate the lower Diff_DQS(Diff_LDQS) to clock relationship.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 30 -  
W632GU6MB  
8.9.1 DRAM setting for write leveling & DRAM termination function in that mode  
DRAM enters into Write leveling mode if A7 in MR1 set ‘High’ and after finishing leveling, DRAM exits  
from write leveling mode if A7 in MR1 set ‘Low’ (Table 3). Note that in write leveling mode, only  
DQS/DQS# terminations are activated and deactivated via ODT pin, unlike normal operation (Table 4).  
Table 3 MR setting involved in the leveling procedure  
Function  
MR1  
A7  
Enable  
Disable  
Write leveling enable  
Output buffer mode (Qoff)  
1
0
0
1
A12  
Table 4 DRAM termination function in the leveling mode  
ODT pin @DRAM  
De-asserted  
Asserted  
DQS/DQS# termination  
DQs termination  
Off  
On  
Off  
Off  
Note:  
In Write Leveling Mode with its output buffer disabled (MR1 A[7] = 1 with MR1 A[12] = 1) all Rtt_Nom settings are allowed; in  
Write Leveling Mode with its output buffer enabled (MR1 A[7] = 1 with MR1 A[12] = 0) only Rtt_Nom settings of RZQ/2, RZQ/4  
and RZQ/6 are allowed.  
8.9.2 Write Leveling Procedure  
The Memory controller initiates Leveling mode of all DRAMs by setting bit 7 of MR1 to 1. When  
entering write leveling mode, the DQ pins are in undefined driving mode. During write leveling mode,  
only NOP or DESELECT commands are allowed, as well as an MRS command to change Qoff bit  
(MR1[A12]) and an MRS command to exit write leveling (MR1[A7]). Upon exiting write leveling mode,  
the MRS command performing the exit (MR1[A7]=0) may also change MR1 bits of A12, A9, A6-A5,  
and A2-A1. Since the controller levels one rank at a time, the output of other ranks must be disabled  
by setting MR1 bit A12 to 1. The Controller may assert ODT after tMOD, at which time the DRAM is  
ready to accept the ODT signal.  
The Controller may drive DQS low and DQS# high after a delay of tWLDQSEN, at which time the DRAM  
has applied on-die termination on these signals. After tDQSL and tWLMRD, the controller provides a  
single DQS, DQS# edge which is used by the DRAM to sample CK - CK# driven from controller.  
tWLMRD(max) timing is controller dependent.  
DRAM samples CK - CK# status with rising edge of DQS - DQS# and provides feedback on all the DQ  
bits asynchronously after tWLO timing. Either one or all data bits ("prime DQ bit(s)") provide the leveling  
feedback. The DRAM's remaining DQ bits are driven Low statically after the first sampling procedure.  
There is a DQ output uncertainty of tWLOE defined to allow mismatch on DQ bits. The tWLOE period is  
defined from the transition of the earliest DQ bit to the corresponding transition of the latest DQ bit.  
There are no read strobes (DQS/DQS#) needed for these DQs. Controller samples incoming DQ and  
decides to increment or decrement DQS - DQS# delay setting and launches the next DQS/DQS#  
pulse after some time, which is controller dependent. Once a 0 to 1 transition is detected, the  
controller locks DQS - DQS# delay setting and write leveling is achieved for the device. Figure 14  
describes the timing diagram and parameters for the overall Write Leveling procedure.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 31 -  
W632GU6MB  
T1  
T2  
tWLH  
tWLH  
tWLS  
tWLS  
CK#*5  
CK  
MRS*2  
NOP*3  
tMOD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
ODT  
tWLDQSEN  
tDQSL*6  
tDQSH*6  
tDQSL*6  
tDQSH*6  
Diff_DQS*4  
One Prime DQ:  
tWLMRD  
tWLO  
tWLO  
Prime DQ*1  
tWLO  
Late Remaining DQs  
Early Remaining DQs  
tWLO  
tWLO  
tWLOE  
All DQs are Prime:  
tWLMRD  
tWLO  
Late Prime DQs*1  
tWLOE  
Early Prime DQs*1  
tWLO  
tWLOE  
tWLO  
UNDEFINED DRIVING MODE  
DON'T CARE  
TIME BREAK  
Notes:  
1. DRAM has the option to drive leveling feedback on a prime DQ or all DQs. If feedback is driven only on one DQ, the  
remaining DQs must be driven low, as shown in above Figure, and maintained at this state throughout the leveling procedure.  
2. MRS: Load MR1 to enter write leveling mode.  
3. NOP: NOP or Deselect.  
4. Diff_DQS is the differential data strobe (DQS, DQS#). Timing reference points are the zero crossings. DQS is shown with  
solid line, DQS# is shown with dotted line.  
5. CK, CK#: CK is shown with solid dark line, where as CK# is drawn with dotted line.  
6. DQS, DQS# needs to fulfill minimum pulse width requirements tDQSH(min) and tDQSL(min) as defined for regular Writes; the  
max pulse width is system dependent.  
Figure 14 Timing details of Write leveling sequence [DQS - DQS# is capturing CK - CK# low at  
T1 and CK - CK# high at T2]  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 32 -  
W632GU6MB  
8.9.3 Write Leveling Mode Exit  
The following sequence describes how the Write Leveling Mode should be exited:  
1. After the last rising strobe edge (see ~T0), stop driving the strobe signals (see ~Tc0). Note: From  
now on, DQ pins are in undefined driving mode, and will remain undefined, until tMOD after the  
respective MR command (Te1).  
2. Drive ODT pin low (tIS must be satisfied) and continue registering low. (see Tb0).  
3. After the RTT is switched off, disable Write Level Mode via MRS command (see Tc2).  
4. After tMOD is satisfied (Te1), any valid command may be registered. (MR commands may be  
issued after tMRD (Td1).  
T0  
T1  
T2  
Ta0  
Tb0  
Tc0  
Tc1  
Tc2  
Td0  
Td1  
Te0  
Te1  
CK#  
CK  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
MRS  
MR1  
NOP  
tMRD  
VALID  
VALID  
NOP  
VALID  
VALID  
Command  
Address  
tIS  
tMOD  
ODT  
tAOFmin  
ODTLoff  
RTT_DQS_DQS#  
Rtt_Nom  
tAOFmax  
DQS_DQS#  
RTT_DQ  
DQ*1  
tWLO  
result = 1  
UNDEFINED DRIVING MODE  
TRANSITIONING  
TIME BREAK  
DON'T CARE  
Note:  
1. The DQ result = 1 between Ta0 and Tc0 is a result of the DQS, DQS# signals capturing CK high just after the T0 state.  
Figure 15 Timing details of Write leveling exit  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 33 -  
W632GU6MB  
8.10 Multi Purpose Register  
The Multi Purpose Register (MPR) function is used to Read out a predefined system timing calibration  
bit sequence. The basic concept of the MPR is shown in Figure 16.  
Memory Core  
(all banks precharged)  
MR3 [A2]  
Multipurpose register  
Pre-defined data for Reads  
DQ, DM, DQS, DQS#  
Figure 16 MPR Block Diagram  
To enable the MPR, a Mode Register Set (MRS) command must be issued to MR3 Register with bit  
A2 = 1, as shown in Table 5. Prior to issuing the MRS command, all banks must be in the idle state (all  
banks precharged and tRP met). Once the MPR is enabled, any subsequent RD or RDA commands  
will be redirected to the Multi Purpose Register. The resulting operation, when a RD or RDA command  
is issued, is defined by MR3 bits A[1:0] when the MPR is enabled as shown in Table 6. When the  
MPR is enabled, only RD or RDA commands are allowed until a subsequent MRS command is issued  
with the MPR disabled (MR3 bit A2 = 0). Note that in MPR mode RDA has the same functionality as a  
READ command which means the auto precharge part of RDA is ignored. Power-Down mode, Self-  
Refresh, and any other non-RD/RDA command is not allowed during MPR enable mode. The RESET  
function is supported during MPR enable mode.  
Table 5 MPR Functional Description of MR3 Bits  
MR3 A[2]  
MR3 A[1:0]  
Function  
MPR  
MPR-Loc  
Normal operation, no MPR transaction  
All subsequent Reads will come from DRAM array  
All subsequent Write will go to DRAM array  
don't care  
(0b or 1b)  
0b  
1b  
See Table 6  
Enable MPR mode, subsequent RD/RDA commands defined by MR3 A[1:0]  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 34 -  
W632GU6MB  
8.10.1 MPR Functional Description  
One bit wide logical interface via all DQ pins during READ operation.  
Register Read:  
DQL[0] and DQU[0] drive information from MPR  
DQL[7:1] and DQU[7:1] either drive the same information as DQL[0], or they drive 0b  
Addressing during for Multi Purpose Register reads for all MPR agents:  
BA[2:0]: Don't care  
— A[1:0]: A[1:0] must be equal to ‘00’b. Data read burst order in nibble is fixed  
A[2]: A[2] selects the burst order  
For BL=8, A[2] must be equal to 0b, burst order is fixed to [0,1,2,3,4,5,6,7], *)  
For Burst Chop 4 cases, the burst order is switched on nibble base  
A[2]=0b, Burst order: 0,1,2,3 *)  
A[2]=1b, Burst order: 4,5,6,7 *)  
A[9:3]: Don't care  
A10/AP: Don't care  
A12/BC#: Selects burst chop mode on-the-fly, if enabled within MR0  
A11 and A13: Don't care  
Regular interface functionality during register reads:  
Support two Burst Ordering which are switched with A2 and A[1:0]=00b  
Support of read burst chop (MRS and on-the-fly via A12/BC#)  
All other address bits (remaining column address bits including A10, all bank address bits) will  
be ignored by the DDR3L SDRAM  
Regular read latencies and AC timings apply  
DLL must be locked prior to MPR Reads  
Note: *) Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 35 -  
W632GU6MB  
8.10.2 MPR Register Address Definition  
Table 6 provides an overview of the available data locations, how they are addressed by MR3 A[1:0]  
during a MRS to MR3, and how their individual bits are mapped into the burst order bits during a Multi  
Purpose Register Read.  
Table 6 MPR Readouts and Burst Order Bit Mapping  
Read  
Burst  
Length  
MR3 A[2] MR3 A[1:0]  
Function  
Address  
A[2:0]  
Burst Order and Data Pattern  
Burst order 0,1,2,3,4,5,6,7  
BL8  
000b  
000b  
100b  
Pre-defined Data Pattern [0,1,0,1,0,1,0,1]  
Burst order 0,1,2,3  
Read Pre-defined Pattern  
for System Calibration  
1b  
00b  
BC4  
BC4  
Pre-defined Data Pattern [0,1,0,1]  
Burst order 4,5,6,7  
Pre-defined Data Pattern [0,1,0,1]  
BL8  
BC4  
BC4  
BL8  
BC4  
BC4  
BL8  
BC4  
BC4  
000b  
000b  
100b  
000b  
000b  
100b  
000b  
000b  
100b  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
1b  
1b  
1b  
01b  
10b  
11b  
RFU  
RFU  
RFU  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
Note: Burst order bit 0 is assigned to LSB and the burst order bit 7 is assigned to MSB of the selected MPR agent.  
8.10.3 Relevant Timing Parameters  
The following AC timing parameters are important for operating the Multi Purpose Register: tRP, tMRD,  
tMOD, and tMPRR. For more details refer to section 10.16 AC Characteristicson page 138.  
8.10.4 Protocol Example  
Protocol Example (This is one example):  
Read out pre-determined read-calibration pattern.  
Description: Multiple reads from Multi Purpose Register, in order to do system level read timing  
calibration based on pre-determined and standardized pattern.  
Protocol Steps:  
Precharge All.  
Wait until tRP is satisfied.  
Set MRS, MR3 A[2] = 1b” and “MR3 A[1:0] = 00b.  
This redirects all subsequent reads and load pre-defined pattern into Multi Purpose Register.  
Wait until tMRD and tMOD are satisfied (Multi Purpose Register is then ready to be read). During the  
period MR3 A[2] =1, no data write operation is allowed.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 36 -  
W632GU6MB  
Read:  
A[1:0] = ‘00’b (Data burst order is fixed starting at nibble, always 00b here)  
A[2] = ‘0’b (For BL=8, burst order is fixed as 0,1,2,3,4,5,6,7)  
A12/BC# = 1 (use regular burst length of 8)  
All other address pins (including BA[2:0] and A10/AP): don't care  
After RL = AL + CL, DRAM bursts out the pre-defined Read Calibration Pattern.  
Memory controller repeats these calibration reads until read data capture at memory controller is  
optimized.  
After end of last MPR read burst, wait until tMPRR is satisfied.  
Set MRS, MR3 A[2] = 0band MR3 A[1:0] = don't careto the normal DRAM state.  
All subsequent read and write accesses will be regular reads and writes from/to the DRAM array.  
Wait until tMRD and tMOD are satisfied.  
Continue with “regular” DRAM commands, like activate a memory bank for regular read or write  
access,...  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 37 -  
W632GU6MB  
T0  
Ta  
Tb0  
Tb1  
Tc0  
Tc1  
Tc2  
Tc3  
Tc4  
Tc5  
Tc6  
Tc7  
Tc8  
Tc9  
Td  
CK#  
CK  
PREA  
MRS  
READ*1  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
MRS  
NOP  
NOP  
VALID  
Command  
tMPRR  
tRP  
tMOD  
VALID  
tMOD  
3
0
3
BA  
A[1:0]  
0*2  
VALID  
1
0*2  
0
00  
0
A[2]  
VALID  
VALID  
VALID  
VALID*1  
00  
0
A[9:3]  
1
A10/AP  
A[11]  
0
0
0
0
A12/BC#  
RL  
DQS, DQS#  
DQ  
TIME BREAK  
DON'T CARE  
1. RD with BL8 either by MRS or on the fly.  
2. Memory Controller must drive 0 on A[2:0].  
NOTES:  
Figure 17 MPR Readout of pre-defined pattern, BL8 fixed burst order, single readout  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 38 -  
W632GU6MB  
T0  
Ta  
Tb0  
Tc0  
Tc1  
Tc2  
Tc3  
Tc4  
Tc5  
Tc6  
Tc7  
Tc8  
Tc9  
T10  
Td  
CK#  
CK  
PREA  
MRS  
READ*1  
READ*1  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
MRS  
VALID  
NOP  
Command  
tRP  
tMOD  
tCCD  
tMPRR  
tMOD  
VALID  
VALID  
3
0
3
BA  
A[1:0]  
0*2  
0*2  
VALID  
1
0*2  
0*2  
0
00  
0
A[2]  
VALID  
VALID  
VALID  
VALID*1  
VALID  
VALID  
VALID  
VALID*1  
00  
0
A[9:3]  
1
A10/AP  
A[11]  
0
0
0
0
A12/BC#  
RL  
DQS, DQS#  
DQ  
RL  
TIME BREAK  
DON'T CARE  
1. RD with BL8 either by MRS or on the fly.  
2. Memory Controller must drive 0 on A[2:0].  
NOTES:  
Figure 18 MPR Readout of pre-defined pattern, BL8 fixed burst order, back-to-back readout  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 39 -  
W632GU6MB  
T0  
Ta  
Tb0  
Tc0  
Tc1  
Tc2  
Tc3  
Tc4  
Tc5  
Tc6  
Tc7  
Tc8  
Tc9  
T10  
Td  
CK#  
CK  
PREA  
MRS  
READ*1  
READ*1  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
MRS  
NOP  
NOP  
VALID  
Command  
tMPRR  
tMOD  
tCCD  
tRP  
tMOD  
VALID  
0*2  
VALID  
0*2  
3
0
3
BA  
A[1:0]  
VALID  
1
0*3  
1*4  
0
00  
0
A[2]  
VALID  
VALID  
VALID  
VALID*1  
VALID  
VALID  
VALID  
VALID*1  
00  
0
A[9:3]  
1
A10/AP  
A[11]  
0
0
0
0
A12/BC#  
RL  
DQS, DQS#  
DQ  
RL  
TIME BREAK  
DON'T CARE  
1. RD with BC4 either by MRS or on the fly.  
2. Memory Controller must drive 0 on A[1:0].  
3. A[2]=0 selects lower 4 nibble bits 0....3.  
4. A[2]=1 selects upper 4 nibble bits 4....7.  
NOTES:  
Figure 19 MPR Readout pre-defined pattern, BC4, lower nibble then upper nibble  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 40 -  
W632GU6MB  
T0  
Ta  
Tb0  
Tc0  
Tc1  
Tc2  
Tc3  
Tc4  
Tc5  
Tc6  
Tc7  
Tc8  
Tc9  
T10  
Td  
CK#  
CK  
PREA  
MRS  
READ*1  
READ*1  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
MRS  
NOP  
NOP  
VALID  
Command  
tMPRR  
tMOD  
tCCD  
tRP  
tMOD  
VALID  
0*2  
VALID  
0*2  
3
0
3
BA  
A[1:0]  
VALID  
1
1*4  
0*3  
0
00  
0
A[2]  
VALID  
VALID  
VALID  
VALID*1  
VALID  
VALID  
VALID  
VALID*1  
00  
0
A[9:3]  
1
A10/AP  
A[11]  
0
0
0
0
A12/BC#  
RL  
DQS, DQS#  
DQ  
RL  
TIME BREAK  
DON'T CARE  
1. RD with BC4 either by MRS or on the fly.  
2. Memory Controller must drive 0 on A[1:0].  
3. A[2]=0 selects lower 4 nibble bits 0....3.  
4. A[2]=1 selects upper 4 nibble bits 4....7.  
NOTES:  
Figure 20 MPR Readout of pre-defined pattern, BC4, upper nibble then lower nibble  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 41 -  
W632GU6MB  
8.11 ACTIVE Command  
The ACTIVE command is used to open (or activate) a row in a particular bank for a subsequent  
access. The value on the BA0-BA2 inputs selects the bank, and the address provided on inputs A0-  
A13 selects the row. This row remains active (or opens) for accesses until a precharge command is  
issued to that bank. A PRECHARGE command must be issued before opening a different row in the  
same bank.  
8.12 PRECHARGE Command  
The PRECHARGE command is used to deactivate the open row in a particular bank or the open row  
in all banks. The bank(s) will be available for a subsequent row activation a specified time (tRP) after  
the PRECHARGE command is issued, except in the case of concurrent auto precharge, where a  
READ or WRITE command to a different bank is allowed as long as it does not interrupt the data  
transfer in the current bank and does not violate any other timing parameters. Once a bank has been  
precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being  
issued to that bank. A PRECHARGE command is allowed if there is no open row in that bank (idle  
state) or if the previously open row is already in the process of precharging. However, the precharge  
period will be determined by the last PRECHARGE command issued to the bank.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 42 -  
W632GU6MB  
8.13 READ Operation  
8.13.1 READ Burst Operation  
During a READ or WRITE command, DDR3L will support BC4 and BL8 on the fly using address A12  
during the READ or WRITE (AUTO PRECHARGE can be enabled or disabled).  
A12 = 0, BC4 (BC4 = burst chop, tCCD = 4)  
A12 = 1, BL8  
A12 is used only for burst length control, not as a column address.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK#  
CK  
Command*3  
Address*4  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank  
Col n  
tRPST  
tRPRE  
DQS, DQS#  
DQ*2  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
CL = 6  
RL = AL + CL  
TRANSITIONING DATA  
DON'T CARE  
Notes:  
1. BL8, RL = 6, AL = 0, CL = 6.  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 A[1:0] = 00 or MR0 A[1:0] = 01 and A12 = 1 during READ command at T0.  
Figure 21 READ Burst Operation RL = 6 (AL = 0, CL = 6, BL8)  
T0  
T1  
T5  
T6  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
CK#  
CK  
Command*3  
Address*4  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank  
Col n  
tRPST  
tRPRE  
DQS, DQS#  
DQ*2  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
AL = 5  
CL = 6  
RL = AL + CL  
TIME BREAK  
TRANSITIONING DATA  
DON'T CARE  
Notes:  
1. BL8, RL = 11, AL = (CL - 1), CL = 6.  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 A[1:0] = 00 or MR0 A[1:0] = 01 and A12 = 1 during READ command at T0.  
Figure 22 READ Burst Operation RL = 11 (AL = 5, CL = 6, BL8)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 43 -  
W632GU6MB  
8.13.2 READ Timing Definitions  
Read timing is shown in Figure 23 and is applied when the DLL is enabled and locked.  
Rising data strobe edge parameters:  
tDQSCK min/max describes the allowed range for a rising data strobe edge relative to CK, CK#.  
tDQSCK is the actual position of a rising strobe edge relative to CK, CK#.  
tQSH describes the DQS, DQS# differential output high time.  
tDQSQ describes the latest valid transition of the associated DQ pins.  
tQH describes the earliest invalid transition of the associated DQ pins.  
Falling data strobe edge parameters:  
tQSL describes the DQS, DQS# differential output low time.  
tDQSQ describes the latest valid transition of the associated DQ pins.  
tQH describes the earliest invalid transition of the associated DQ pins.  
tDQSQ; both rising/falling edges of DQS, no tAC defined.  
CK#  
CK  
tDQSCK(min)  
tDQSCK(min)  
tDQSCK(max)  
tDQSCK(max)  
Rising Strobe  
Region  
Rising Strobe  
Region  
tDQSCK  
tDQSCK  
tQSH  
tQSL  
DQS#  
DQS  
tQH  
tQH  
tDQSQ  
tDQSQ  
Associated  
DQ Pins  
Figure 23 READ Timing Definition  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 44 -  
W632GU6MB  
8.13.2.1 READ Timing; Clock to Data Strobe relationship  
Clock to Data Strobe relationship is shown in Figure 24 and is applied when the DLL is enabled and  
locked.  
Rising data strobe edge parameters:  
tDQSCK min/max describes the allowed range for a rising data strobe edge relative to CK, CK#.  
tDQSCK is the actual position of a rising strobe edge relative to CK, CK#.  
tQSH describes the data strobe high pulse width.  
Falling data strobe edge parameters:  
tQSL describes the data strobe low pulse width.  
tLZ(DQS), tHZ(DQS) for preamble/postamble (see section 8.13.2.3 and Figure 26).  
RL Measured  
to this point  
CK/CK#  
tDQSCK(min)  
tDQSCK(min)  
tQSL  
tDQSCK(min)  
tQSL  
tDQSCK(min)  
tQSL  
tHZ(DQS)min  
tQSH  
tQSH  
tQSH  
tLZ(DQS)min  
DQS, DQS#  
Erly Strobe  
tRPST  
tRPRE  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
tHZ(DQS)max  
tDQSCK(max)  
tDQSCK(max)  
tDQSCK(max)  
tDQSCK(max)  
tLZ(DQS)max  
tRPST  
DQS, DQS#  
Late Strobe  
tQSH  
tQSL  
tQSH  
tQSL  
tQSL  
tQSH  
tRPRE  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Notes:  
1. Within a burst, rising strobe edge is not necessarily fixed to be always at tDQSCK(min) or tDQSCK(max). Instead, rising strobe  
edge can vary between tDQSCK(min) and tDQSCK(max).  
2. Not with standing note 1, a rising strobe edge with tDQSCK(max) at T(n) can not be immediately followed by a rising strobe  
edge with tDQSCK(min) at T(n+1). This is because other timing relationships (tQSH, tQSL) exist:  
if tDQSCK(n+1) < 0:  
tDQSCK(n) < 1.0 tCK - (tQSHmin + tQSLmin) - | tDQSCK(n+1) |  
3. The DQS, DQS# differential output high time is defined by tQSH and the DQS, DQS# differential output low time is defined by  
tQSL.  
4. Likewise, tLZ(DQS)min and tHZ(DQS)min are not tied to tDQSCK,min (early strobe case) and tLZ(DQS)max and tHZ(DQS)max  
are not tied to tDQSCK,max (late strobe case).  
5. The minimum pulse width of read preamble is defined by tRPRE(min).  
6. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZDSQ(max) on the right side.  
7. The minimum pulse width of read postamble is defined by tRPST(min).  
8. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side.  
Figure 24 Clock to Data Strobe Relationship  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 45 -  
 
W632GU6MB  
8.13.2.2 READ Timing; Data Strobe to Data relationship  
The Data Strobe to Data relationship is shown in Figure 25 and is applied when the DLL is enabled  
and locked.  
Rising data strobe edge parameters:  
tDQSQ describes the latest valid transition of the associated DQ pins.  
tQH describes the earliest invalid transition of the associated DQ pins.  
Falling data strobe edge parameters:  
tDQSQ describes the latest valid transition of the associated DQ pins.  
tQH describes the earliest invalid transition of the associated DQ pins.  
tDQSQ; both rising/falling edges of DQS, no tAC defined.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK#  
CK  
Command*3  
Address*4  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
RL = AL + CL  
Bank  
Col n  
tDQSQ(max)  
tDQSQ(max)  
tRPST  
DQS, DQS#  
tRPRE  
tQH  
Dout  
tQH  
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
DQ*2 (Last data valid)  
DQ*2 (first data no longer valid)  
All DQs collectively  
n
Dout  
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
n
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
TRANSITIONING DATA  
DON'T CARE  
Notes:  
1. BL = 8, RL = 6 (AL = 0, CL = 6).  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 A[1:0] = 00 or MR0 A[1:0] = 01 and A12 = 1 during READ command at T0.  
5. Output timings are referenced to VDDQ/2, and DLL on for locking.  
6. tDQSQ defines the skew between DQS, DQS# to Data and does not define DQS, DQS# to Clock.  
7. Early Data transitions may not always happen at the same DQ. Data transitions of a DQ can vary (either early or late) within  
a burst.  
Figure 25 Data Strobe to Data Relationship  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 46 -  
W632GU6MB  
8.13.2.3 tLZ(DQS), tLZ(DQ), tHZ(DQS), tHZ(DQ) Calculation  
tHZ and tLZ transitions occur in the same time window as valid data transitions. These parameters are  
referenced to a specific voltage level that specifies when the device output is no longer driving tHZ(DQS)  
and tHZ(DQ), or begins driving tLZ(DQS), tLZ(DQ). Figure 26 shows a method to calculate the point when  
the device is no longer driving tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS), tLZ(DQ), by measuring  
the signal at two different voltages. The actual voltage measurement points are not critical as long as  
the calculation is consistent. The parameters tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as  
singled ended.  
tHZ(DQS), tHZ(DQ) with BL8: CK CK# rising crossing at RL + 4 nCK  
tLZ(DQS): CK CK# rising crossing at RL - 1  
tHZ(DQS), tHZ(DQ) with BC4: CK CK# rising crossing at RL + 2 nCK  
tLZ(DQ): CK CK# rising crossing at RL  
CK  
CK  
CK#  
CK#  
tLZ  
tHZ  
VTT + 2x mV  
VOH - x mV  
VTT + x mV  
VOH - 2x mV  
tLZ(DQS), tLZ(DQ)  
tHZ(DQS), tHZ(DQ)  
VTT - x mV  
VOL + 2x mV  
VOL + x mV  
T1  
T2  
VTT - 2x mV  
T2  
T1  
tLZ(DQS), tLZ(DQ) begin point = 2 * T1 - T2  
tHZ(DQS), tHZ(DQ) end point = 2 * T1 - T2  
Figure 26 tLZ and tHZ method for calculating transitions and endpoints  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 47 -  
W632GU6MB  
8.13.2.4 tRPRE Calculation  
The method for calculating differential pulse widths for tRPRE is shown in Figure 27.  
CK  
VTT  
CK#  
tA  
tB  
VTT  
VTT  
DQS  
Single ended signal, provided  
as background information  
tC  
tD  
DQS#  
Single ended signal, provided  
as background information  
t1  
tRPRE_begin  
tRPRE  
DQS - DQS#  
Resulting differential signal,  
0
t2  
tRPRE_end  
relevant for tRPRE specification  
Figure 27 Method for calculating tRPRE transitions and endpoints  
8.13.2.5 tRPST Calculation  
The method for calculating differential pulse widths for tRPST is shown in Figure 28.  
CK  
VTT  
CK#  
tA  
DQS  
VTT  
VTT  
Single ended signal, provided  
as background information  
tB  
tC  
tD  
DQS#  
Single ended signal, provided  
as background information  
tRPST  
DQS - DQS#  
0
t1  
tRPST_begin  
Resulting differential signal,  
relevant for tRPST specification  
t2  
tRPST_end  
Figure 28 Method for calculating tRPST transitions and endpoints  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 48 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
Command*3  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tCCD  
Address*4  
Bank  
Col b  
Bank  
Col n  
tRPST  
tRPRE  
DQS, DQS#  
DQ*2  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
Dout  
b
Dout  
b+1  
Dout  
b+2  
Dout  
b+3  
Dout  
b+4  
Dout  
b+5  
Dout  
b+6  
Dout  
b+7  
RL = 6  
RL = 6  
NOTES: 1. BL8, RL = 6 (CL = 6, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 A[1:0] = 00 or MR0 A[1:0] = 01 and A12 = 1 during READ commands at T0 and T4.  
TRANSITIONING DATA  
DON'T CARE  
Figure 29 READ (BL8) to READ (BL8)  
T0  
T1  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
CK#  
CK  
Command*3  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tCCD = 5  
Bank  
Col b  
Bank  
Col n  
Address*4  
tRPST  
tRPRE  
DQS, DQS#*5  
DQ*2  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
Dout  
b
Dout  
b+1  
Dout  
b+2  
Dout  
b+3  
Dout  
b+4  
Dout  
b+5  
Dout  
b+6  
Dout  
b+7  
RL = 6  
RL = 6  
1. BL8, RL = 6 (CL = 6, AL = 0), tCCD = 5.  
NOTES:  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 A[1:0] = 00 or MR0 A[1:0] = 01 and A12 = 1 during READ commands at T0 and T5.  
5. DQS-DQS# is held logic low at T10.  
DON'T CARE  
TIME BREAK  
TRANSITIONING DATA  
Figure 30 Nonconsecutive READ (BL8) to READ (BL8), tCCD=5  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 49 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
Command*3  
READ  
NOP  
NOP  
tCCD  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank  
Col n  
Bank  
Col b  
Address*4  
tRPST  
tRPRE  
tRPST  
tRPRE  
DQS, DQS#  
DQ*2  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
b
Dout  
b+1  
Dout  
b+2  
Dout  
b+3  
RL = 6  
RL = 6  
NOTES:  
1. BC4, RL = 6 (CL = 6, AL = 0)  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
TRANSITIONING DATA  
DON'T CARE  
4. BC4 setting activated by either MR0 A[1:0] = 10 or MR0 A[1:0] = 01 and A12 = 0 during READ commands at T0 and T4.  
Figure 31 READ (BC4) to READ (BC4)  
T0  
T1  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
CK#  
CK  
Command*3  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tWR  
READ to WRITE Command Delay = RL + tCCD + 2tCK - WL  
4 clocks  
tWTR  
Address*4  
Bank  
Col n  
Bank  
Col b  
tWPST  
tRPST  
tWPRE  
tRPRE  
DQS, DQS#  
DQ*2  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+4  
Din  
b+5  
Din  
b+6  
Din  
b+7  
RL = 6  
WL = 5  
1. BL8, RL = 6 (CL = 6, AL = 0), WL = 5 (CWL = 5, AL = 0)  
NOTES:  
2. Dout n = data-out from column, Din b = data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 A[1:0] = 00 or MR0 A[1:0] = 01 and A12 = 1 during READ command at T0 and WRITE command at T7.  
TIME BREAK  
TRANSITIONING DATA  
DON'T CARE  
Figure 32 READ (BL8) to WRITE (BL8)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 50 -  
W632GU6MB  
T0  
T1  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
CK#  
CK  
Command*3  
READ  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tWR  
tWTR  
READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL  
4 clocks  
Address*4  
Bank  
Col n  
Bank  
Col b  
tWPST  
tRPST  
tWPRE  
tRPRE  
DQS, DQS#  
DQ*2  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
RL = 6  
WL = 5  
NOTES: 1. BC4, RL = 6 (CL = 6, AL = 0), WL = 5 (CWL = 5, AL = 0)  
2. Dout n = data-out from column, DIN b = data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 A[1:0] = 01 and A12 = 0 during READ command at T0 and WRITE command at T5.  
TIME BREAK  
TRANSITIONING DATA  
DON'T CARE  
Figure 33 READ (BC4) to WRITE (BC4) OTF  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
Command*3  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tCCD  
Address*4  
Bank  
Col b  
Bank  
Col n  
tRPRE  
tRPST  
DQS, DQS#  
DQ*2  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
Dout  
b
Dout  
b+1  
Dout  
b+2  
Dout  
b+3  
RL = 6  
RL = 6  
NOTES: 1. RL = 6 (CL = 6, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 A[1:0] = 01 and A12 = 1 during READ command at T0.  
BC4 setting activated by MR0 A[1:0] = 01 and A12 = 0 during READ command at T4.  
TRANSITIONING DATA  
DON'T CARE  
Figure 34 READ (BL8) to READ (BC4) OTF  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 51 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
Command*3  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tCCD  
Bank  
Col b  
Bank  
Col n  
Address*4  
tRPRE  
tRPST  
tRPST  
tRPRE  
DQS, DQS#  
DQ*2  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
b
Dout  
b+1  
Dout  
b+2  
Dout  
b+3  
Dout  
b+4  
Dout  
b+5  
Dout  
b+6  
Dout  
b+7  
RL = 6  
RL = 6  
NOTES:  
1. RL = 6 (CL = 6, AL = 0)  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 A[1:0] = 01 and A12 = 0 during READ command at T0.  
BL8 setting activated by MR0 A[1:0] = 01 and A12 = 1 during READ command at T4.  
TRANSITIONING DATA  
DON'T CARE  
Figure 35 READ (BC4) to READ (BL8) OTF  
T0  
T1  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
CK#  
CK  
Command*3  
READ  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tWR  
READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL  
4 clocks  
tWTR  
Address*4  
Bank  
Col n  
Bank  
Col b  
tWPST  
tRPST  
tWPRE  
tRPRE  
DQS, DQS#  
DQ*2  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+4  
Din  
b+5  
Din  
b+6  
Din  
b+7  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
RL = 6  
WL = 5  
NOTES: 1. RL = 6 (CL = 6, AL = 0), WL = 5 (CWL = 5, AL = 0)  
2. Dout n = data-out from column, Din b = data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 A[1:0] = 01 and A12 = 0 during READ command at T0.  
BL8 setting activated by MR0 A[1:0] = 01 and A12 = 1 during WRITE command at T5.  
TRANSITIONING DATA  
DON'T CARE  
TIME BREAK  
Figure 36 READ (BC4) to WRITE (BL8) OTF  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 52 -  
W632GU6MB  
T0  
T1  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
CK#  
CK  
Command*3  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tWR  
READ to WRITE Command Delay = RL + tCCD + 2tCK - WL  
4 clocks  
tWTR  
Address*4  
Bank  
Col n  
Bank  
Col b  
tWPST  
tRPST  
tWPRE  
tRPRE  
DQS, DQS#  
DQ*2  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+7  
RL = 6  
WL = 5  
1. RL = 6 (CL = 6, AL = 0), WL = 5 (CWL = 5, AL = 0)  
NOTES:  
2. Dout n = data-out from column, Din b = data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 A[1:0] = 01 and A12 = 1 during READ command at T0.  
BC4 setting activated by MR0 A[1:0] = 01 and A12 = 0 during WRITE command at T7.  
TIME BREAK  
TRANSITIONING DATA  
DON'T CARE  
Figure 37 READ (BL8) to WRITE (BC4) OTF  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 53 -  
W632GU6MB  
8.13.2.6 Burst Read Operation followed by a Precharge  
The minimum external Read command to Precharge command spacing to the same bank is equal to AL + tRTP with tRTP being the Internal Read  
Command to Precharge Command Delay. Note that the minimum ACT to PRE timing, tRAS.MIN must be satisfied as well. The minimum value for the  
Internal Read Command to Precharge Command Delay is given by tRTP.MIN = max(4 × nCK, 7.5 nS). A new bank active command may be issued to the  
same bank if the following two conditions are satisfied simultaneously:  
1. The minimum RAS precharge time (tRP.MIN) has been satisfied from the clock at which the precharge begins.  
2. The minimum RAS cycle time (tRC.MIN) from the previous bank activation has been satisfied.  
Examples of Read commands followed by Precharge are show in Figure 38 and Figure 39.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
CK#  
CK  
NOP  
READ  
NOP  
NOP  
NOP  
PRE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACT  
NOP  
Command  
Address  
Bank a,  
(or all)  
Bank a,  
Col n  
Bank a,  
Row b  
tRTP  
tRP  
RL = AL + CL = 9  
BL4 Operation:  
BL8 Operation:  
DQS, DQS#  
DQ  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
DQS, DQS#  
DQ  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
NOTES: 1. RL = 9 (CL = 9, AL = 0)  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. The example assumes tRAS.MIN is satisfied at Precharge command time (T5) and that tRC.MIN is satisfied at the next Active command time (T14).  
TRANSITIONING DATA  
DON'T CARE  
Figure 38 READ to PRECHARGE (RL = 9, AL = 0, CL = 9, tRTP = 4, tRP = 9)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 54 -  
W632GU6MB  
T0  
T1  
T2  
T13  
T14  
T21  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T31  
T34  
T35  
CK#  
CK  
NOP  
READ  
NOP  
NOP  
NOP  
PRE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACT  
Command  
Address  
Bank a,  
(or all)  
Bank a,  
Col n  
Bank a,  
Row b  
tRTP  
tRP  
AL = CL - 2 =12  
CL = 14  
RL = 26  
BL4 Operation:  
BL8 Operation:  
DQS, DQS#  
DQ  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
DQS, DQS#  
DQ  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
NOTES: 1. RL = 26 (CL = 14, AL = CL - 2)  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. The example assumes tRAS.MIN is satisfied at Precharge command time (T21) and that tRC.MIN is satisfied at the next Active command time (T35).  
TIME BREAK  
TRANSITIONING DATA  
DON'T CARE  
Figure 39 READ to PRECHARGE (RL = 26, AL = CL-2, CL = 14, tRTP = 8, tRP = 14)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 55 -  
W632GU6MB  
8.14 WRITE Operation  
8.14.1 DDR3L Burst Operation  
During a READ or WRITE command, DDR3L will support BC4 and BL8 on the fly using address A12  
during the READ or WRITE (AUTO PRECHARGE can be enabled or disabled).  
A12 = 0, BC4 (BC4 = burst chop, tCCD = 4)  
A12 = 1, BL8  
A12 is used only for burst length control, not as a column address.  
8.14.2 WRITE Timing Violations  
8.14.2.1 Motivation  
Generally, if timing parameters are violated, a complete reset/initialization procedure has to be  
initiated to make sure that the DRAM works properly. However, it is desirable; for certain minor  
violations, that the DRAM is guaranteed not to “hang up”, and that errors are limited to that particular  
operation.  
For the following, it will be assumed that there are no timing violations with regards to the Write  
command itself (including ODT, etc.) and that it does satisfy all timing requirements not mentioned  
below.  
8.14.2.2 Data Setup and Hold Violations  
Should the data to strobe timing requirements (tDS, tDH) be violated, for any of the strobe edges  
associated with a write burst, and then wrong data might be written to the memory location addressed  
with this WRITE command.  
In the example (Figure 40 on page 57), the relevant strobe edges for write burst A are associated with  
the clock edges: T5, T5.5, T6, T6.5, T7, T7.5, T8, T8.5.  
Subsequent reads from that location might result in unpredictable read data, however the DRAM will  
work properly otherwise.  
8.14.2.3 Strobe to Strobe and Strobe to Clock Violations  
Should the strobe timing requirements (tDQSH, tDQSL, tWPRE, tWPST) or the strobe to clock timing  
requirements (tDSS, tDSH, tDQSS) be violated, for any of the strobe edges associated with a Write burst,  
then wrong data might be written to the memory location addressed with the offending WRITE  
command. Subsequent reads from that location might result in unpredictable read data, however the  
DRAM will work properly otherwise.  
In the example (Figure 48 on page 61) the relevant strobe edges for Write burst n are associated with  
the clock edges: T4, T4.5, T5, T5.5, T6, T6.5, T7, T7.5, T8, T8.5 and T9. Any timing requirements  
starting or ending on one of these strobe edges need to be fulfilled for a valid burst. For Write burst b  
the relevant edges are T8, T8.5, T9, T9.5, T10, T10.5, T11, T11.5, T12, T12.5 and T13. Some edges  
are associated with both bursts.  
8.14.2.4 Write Timing Parameters  
This drawing is for example only to enumerate the strobe edges that “belong” to a Write burst. No  
actual timing violations are shown here. For a valid burst all timing parameters for each edge of a  
burst need to be satisfied (not only for one edge - as shown).  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 56 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK#  
CK  
Command*3  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
WL = AL + CWL  
Bank  
Col n  
Address*4  
tDQSS tDSH  
tDSH  
tDSH  
tDSH  
tWPST(min)  
tWPRE(min)  
tDQSS (min)  
DQS, DQS#  
tDQSH(min) tDQSL tDQSH tDQSL tDQSH tDQSL tDQSH tDQSL tDQSH tDQSL(min)  
tDSS  
tDSS  
tDSS  
Din  
tDSS  
tDSS  
Din  
Din  
Din  
Din  
Din  
DQ*2  
DM  
n
n+2  
n+3  
n+4  
n+6  
n+7  
tDSH  
tDSH  
tDSH  
tDSH  
tWPST(min)  
tWPRE(min)  
tDQSS (nominal)  
DQS, DQS#  
tDQSL  
tDSS  
tDQSH(min)  
tDQSH tDQSL  
tDSS  
tDQSH tDQSL tDQSH tDQSL tDQSH tDQSL(min)  
tDSS tDSS tDSS  
Din  
n
Din  
n+2  
Din  
n+3  
Din  
n+4  
Din  
n+6  
Din  
n+7  
DQ*2  
DM  
tDQSS  
tDSH  
tDSH  
tDSH  
tDSH  
tWPST(min)  
tWPRE(min)  
tDQSS (max)  
DQS, DQS#  
tDQSH  
tDQSL tDQSH  
tDSS  
tDQSH  
tDQSH tDQSL(min)  
tDSS  
tDQSH(min) tDQSL  
tDSS  
tDQSL  
tDQSL  
tDSS  
tDSS  
Din  
n
Din  
n+2  
Din  
n+3  
Din  
n+4  
Din  
n+6  
Din  
n+7  
DQ  
DM  
TRANSITIONING DATA  
DON'T CARE  
Notes:  
1. BL8, WL = 5 (AL = 0, CWL = 5)  
2. Din n = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 A[1:0] = 00 or MR0 A[1:0] = 01 and A12 = 1 during WRITE command at T0.  
5. tDQSS must be met at each rising clock edge.  
Figure 40 Write Timing Definition and Parameters  
8.14.3 Write Data Mask  
One write data mask (DM) pin for each 8 data bits (DQ) will be supported on DDR3L SDRAMs,  
consistent with the implementation on DDR2 SDRAMs. It has identical timings on write operations as  
the data bits as shown in Figure 40, and though used in a unidirectional manner, is internally loaded  
identically to data bits to ensure matched system timing. DM is not used during read cycles.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 57 -  
W632GU6MB  
8.14.4 tWPRE Calculation  
The method for calculating differential pulse widths for tWPRE is shown in Figure 41.  
CK  
VTT  
CK#  
t1  
tWPRE_begin  
DQS - DQS#  
0 V  
tWPRE  
Resulting differential signal,  
relevant for tWPRE specification  
t2  
tWPRE_end  
Figure 41 Method for calculating tWPRE transitions and endpoints  
8.14.5 tWPST Calculation  
The method for calculating differential pulse widths for tWPST is shown in Figure 42.  
CK  
VTT  
CK#  
tWPST  
DQS - DQS#  
Resulting differential signal,  
relevant for tWPST specification  
0 V  
t1  
tWPST_begin  
t2  
tWPST_end  
Figure 42 Method for calculating tWPST transitions and endpoints  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 58 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK#  
CK  
Command*3  
Address*4  
DQS, DQS#  
DQ*2  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
WL = AL + CWL  
Bank  
Col n  
tWPST  
tWPRE  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
Din  
n+4  
Din  
n+5  
Din  
n+6  
Din  
n+7  
TRANSITIONING DATA  
DON'T CARE  
Notes:  
1. BL8, WL = 5; AL = 0, CWL = 5.  
2. Din n = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 A[1:0] = 00 or MR0 A[1:0] = 01 and A12 = 1 during WRITE command at T0.  
Figure 43 WRITE Burst Operation WL = 5 (AL = 0, CWL = 5, BL8)  
T0  
T1  
T5  
T6  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
CK#  
CK  
Command*3  
Address*4  
DQS, DQS#  
DQ*2  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
AL = 5  
CWL = 5  
Bank  
Col n  
tWPST  
tWPRE  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
Din  
n+4  
Din  
n+5  
Din  
n+6  
Din  
n+7  
WL = AL + CWL  
TRANSITIONING DATA  
DON'T CARE  
TIME BREAK  
Notes:  
1. BL8, WL = 10; AL = CL - 1, CL = 6, CWL = 5.  
2. Din n = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 A[1:0] = 00 or MR0 A[1:0] = 01 and A12 = 1 during WRITE command at T0.  
Figure 44 WRITE Burst Operation WL = 10 (AL = CL-1, CWL = 5, BL8)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 59 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
Tn  
CK#  
CK  
Command*3  
Address*4  
DQS, DQS#  
DQ*2  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ  
tWTR*5  
Bank  
Col a  
Bank  
Col b  
tWPRE  
tWPST  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
WL = 5  
RL = 6  
TRANSITIONING DATA  
DON'T CARE  
TIME BREAK  
Notes:  
1. BC4, WL = 5, RL = 6.  
2. Din n = data-in from column n; Dout b = data-out from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 A[1:0] = 10 during WRITE command at T0 and READ command at Tn.  
5. tWTR controls the write to read delay to the same device and starts with the first rising clock edge after the last write data  
shown at T7.  
Figure 45 WRITE (BC4) to READ (BC4) Operation  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
Tn  
CK#  
CK  
Command*3  
Address*4  
DQS, DQS#  
DQ*2  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
PRE  
tWR*5  
Bank  
Col n  
tWPRE  
tWPST  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
WL = 5  
TRANSITIONING DATA  
DON'T CARE  
TIME BREAK  
Notes:  
1. BC4, WL = 5, RL = 6.  
2. Din n = data-in from column n; Dout b = data-out from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 A[1:0] = 10 during WRITE command at T0.  
5. The write recovery time (tWR) referenced from the first rising clock edge after the last write data shown at T7. tWR specifies  
the last burst write cycle until the precharge command can be issued to the same bank.  
Figure 46 WRITE (BC4) to PRECHARGE Operation  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 60 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
Ta0  
Ta1  
T14  
CK#  
CK  
Command*3  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
PRE  
NOP  
NOP  
tWR*5  
4 clocks  
Bank  
Col a  
Address*4  
VALID  
tWPRE  
tWPST  
DQS, DQS#  
DQ*2  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
WL = 5  
NOTES:  
1. BC4 on the fly, WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 on the fly setting activated by MR0 A[1:0] = 01 and A12 = 0 during WRITE command at T0.  
5. The write recovery time (tWR) starts at the rising clock edge T9 (4 clocks from T5).  
TIME BREAK  
TRANSITIONING DATA  
DON'T CARE  
Figure 47 WRITE (BC4) OTF to PRECHARGE Operation  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
Command*3  
WRITE  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tWR  
4 clocks  
tCCD  
tWTR  
Bank  
Col n  
Bank  
Col b  
Address*4  
tWPST  
tWPRE  
DQS, DQS#  
DQ*2  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
Din  
n+4  
Din  
n+5  
Din  
n+6  
Din  
n+7  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+4  
Din  
b+5  
Din  
b+6  
Din  
b+7  
WL = 5  
WL = 5  
NOTES:  
1. BL8, WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 A[1:0] = 00 or MR0 A[1:0] = 01 and A12 = 1 during WRITE command at T0 and T4.  
TRANSITIONING DATA  
DON'T CARE  
5. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T13.  
Figure 48 WRITE (BL8) to WRITE (BL8)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 61 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
Command*3  
WRITE  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tWR  
4 clocks  
tCCD  
tWTR  
Bank  
Col b  
Bank  
Col n  
Address*4  
tWPST  
tWPST  
tWPRE  
tWPRE  
DQS, DQS#  
DQ*2  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
WL = 5  
WL = 5  
NOTES: 1. BC4, WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 A[1:0] = 01 and A12 = 0 during WRITE command at T0 and T4.  
5. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge at T13 (4 clocks from T9).  
TRANSITIONING DATA  
DON'T CARE  
Figure 49 WRITE (BC4) to WRITE (BC4) OTF  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
Command*3  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ  
NOP  
tWTR  
Bank  
Col n  
Bank  
Col b  
Address*4  
tWPST  
tWPRE  
DQS, DQS#  
DQ*2  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
Din  
n+4  
Din  
n+5  
Din  
n+6  
Din  
n+7  
WL = 5  
RL = 6  
NOTES:  
1. RL = 6 (CL = 6, AL = 0), WL = 5 (CWL = 5, AL = 0)  
2. Din n = data-in from column n; Dout b = data-out from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 A[1:0] = 00 or MR0 A[1:0] = 01 and A12 = 1 during WRITE command at T0.  
READ command at T13 can be either BC4 or BL8 depending on MR0 A[1:0] and A12 status at T13.  
TRANSITIONING DATA  
DON'T CARE  
Figure 50 WRITE (BL8) to READ (BC4/BL8) OTF  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 62 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
Command*3  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ  
NOP  
4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
Address*4  
tWPST  
tWPRE  
DQS, DQS#  
DQ*2  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
WL = 5  
RL = 6  
NOTES:  
1. RL = 6 (CL = 6, AL = 0), WL = 5 (CWL = 5, AL = 0)  
2. Din n = data-in from column n; Dout b = data-out from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 A[1:0] = 01 and A12 = 0 during WRITE command at T0.  
READ command at T13 can be either BC4 or BL8 depending on MR0 A[1:0] and A12 status at T13.  
TRANSITIONING DATA  
DON'T CARE  
Figure 51 WRITE (BC4) to READ (BC4/BL8) OTF  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
Command*3  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
tWTR  
Bank  
Col n  
Bank  
Col b  
Address*4  
tWPST  
tWPRE  
DQS, DQS#  
DQ*2  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
WL = 5  
RL = 6  
NOTES:  
1. RL = 6 (CL = 6, AL = 0), WL = 5 (CWL =5, AL = 0)  
2. Din n = data-in from column n; Dout b = data-out from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 A[1:0] = 10.  
TRANSITIONING DATA  
DON'T CARE  
Figure 52 WRITE (BC4) to READ (BC4)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 63 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
Command*3  
WRITE  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tWR  
4 clocks  
tCCD  
tWTR  
Bank  
Col n  
Bank  
Col b  
Address*4  
tWPST  
tWPRE  
DQS, DQS#  
DQ*2  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
Din  
n+4  
Din  
n+5  
Din  
n+6  
Din  
n+7  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
WL = 5  
WL = 5  
NOTES:  
1. WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 A[1:0] = 01 and A12 = 1 during WRITE command at T0.  
BC4 setting activated by MR0 A[1:0] = 01 and A12 = 0 during WRITE command at T4.  
TRANSITIONING DATA  
DON'T CARE  
Figure 53 WRITE (BL8) to WRITE (BC4) OTF  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
Command*3  
WRITE  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tWR  
4 clocks  
tCCD  
tWTR  
Bank  
Col n  
Bank  
Col b  
Address*4  
tWPST  
tWPRE  
tWPST  
tWPRE  
DQS, DQS#  
DQ*2  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
B+4  
Din  
b+5  
Din  
b+6  
Din  
b+7  
WL = 5  
WL = 5  
NOTES:  
1. WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 A[1:0] = 01 and A12 = 0 during WRITE command at T0.  
BL8 setting activated by MR0 A[1:0] = 01 and A12 = 1 during WRITE command at T4.  
TRANSITIONING DATA  
DON'T CARE  
Figure 54 WRITE (BC4) to WRITE (BL8) OTF  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 64 -  
W632GU6MB  
8.15 Refresh Command  
The Refresh command (REF) is used during normal operation of the DDR3L SDRAMs. This command  
is non persistent, so it must be issued each time a refresh is required. The DDR3L SDRAM requires  
Refresh cycles at an average periodic interval of tREFI. When CS#, RAS# and CAS# are held Low and  
WE# High at the rising edge of the clock, the chip enters a Refresh cycle. All banks of the SDRAM  
must be precharged and idle for a minimum of the precharge time tRP(min) before the Refresh  
Command can be applied. The refresh addressing is generated by the internal refresh controller. This  
makes the address bits Don't Careduring a Refresh command. An internal address counter supplies  
the addresses during the refresh cycle. No control of the external address bus is required once this  
cycle has started. When the refresh cycle has completed, all banks of the SDRAM will be in the  
precharged (idle) state. A delay between the Refresh Command and the next valid command, except  
NOP or DES, must be greater than or equal to the minimum Refresh cycle time tRFC(min) as shown in  
Figure 55. Note that the tRFC timing parameter depends on memory density.  
In general, a Refresh command needs to be issued to the DDR3L SDRAM regularly every tREFI  
interval. To allow for improved efficiency in scheduling and switching between tasks, some flexibility in  
the absolute refresh interval is provided. A maximum of 8 Refresh commands can be postponed  
during operation of the DDR3L SDRAM, meaning that at no point in time more than a total of 8  
Refresh commands are allowed to be postponed. In case that 8 Refresh commands are postponed in  
a row, the resulting maximum interval between the surrounding Refresh commands is limited to 9 ×  
tREFI (see Figure 56). A maximum of 8 additional Refresh commands can be issued in advance  
(“pulled in”), with each one reducing the number of regular Refresh commands required later by one.  
Note that pulling in more than 8 Refresh commands in advance does not further reduce the number of  
regular Refresh commands required later, so that the resulting maximum interval between two  
surrounding Refresh commands is limited to 9 × tREFI (see Figure 57). At any given time, a maximum  
of 16 REF commands can be issued within 2 x tREFI. Self-Refresh Mode may be entered with a  
maximum of eight Refresh commands being postponed. After exiting Self-Refresh Mode with one or  
more Refresh commands postponed, additional Refresh commands may be postponed to the extent  
that the total number of postponed Refresh commands (before and after the Self-Refresh) will never  
exceed eight. During Self-Refresh Mode, the number of postponed or pulled-in REF commands does  
not change.  
T0  
T1  
Ta0  
Ta1  
Tb0  
Tb1  
Tb2  
Tb3  
Tc0  
Tc1  
Tc2  
Tc3  
CK#  
CK  
REF  
NOP  
NOP  
REF  
NOP  
NOP  
VALID  
VALID  
VALID  
VALID  
VALID  
REF  
VALID  
VALID  
VALID  
Command  
tRFC  
tRFC(min)  
tREFI (max. 9 x tREFI)  
DRAM must be idle  
DRAM must be idle  
1. Only NOP/DES commands allowed after Refresh command registered until tRFC(min) expires.  
2. Time interval between two Refresh commands may be extended to a maximum of 9 x tREFI.  
NOTES:  
DON'T CARE  
TIME BREAK  
Figure 55 Refresh Command Timing  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 65 -  
W632GU6MB  
tREFI  
9 x tREFI  
t
tRFC  
8 REF-Commands postponed  
Figure 56 Postponing Refresh Commands (Example)  
tREFI  
9 x tREFI  
t
tRFC  
8 REF-Commands pulled-in  
Figure 57 Pulling-in Refresh Commands (Example)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 66 -  
W632GU6MB  
8.16 Self-Refresh Operation  
The Self-Refresh command can be used to retain data in the DDR3L SDRAM, even if the rest of the  
system is powered down. When in the Self-Refresh mode, the DDR3L SDRAM retains data without  
external clocking. The DDR3L SDRAM device has a built-in timer to accommodate Self-Refresh  
operation. The Self-Refresh-Entry (SRE) Command is defined by having CS#, RAS#, CAS#, and CKE  
held low with WE# high at the rising edge of the clock.  
Before issuing the Self-Refresh-Entry command, the DDR3L SDRAM must be idle with all bank  
precharge state with tRP satisfied. ‘Idle state’ is defined as all banks are closed (tRP, tDAL, etc.  
satisfied), no data bursts are in progress, CKE is high, and all timings from previous operations are  
satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS, etc.) Also, on-die termination must be turned off  
before issuing Self-Refresh-Entry command, by either registering ODT pin low “ODTL + 0.5tCKprior  
to the Self-Refresh Entry command or using MRS to MR1 command. Once the Self-Refresh Entry  
command is registered, CKE must be held low to keep the device in Self-Refresh mode. During  
normal operation (DLL on), MR1 (A0 = 0), the DLL is automatically disabled upon entering Self-  
Refresh and is automatically enabled (including a DLL-Reset) upon exiting Self-Refresh.  
When the DDR3L SDRAM has entered Self-Refresh mode, all of the external control signals, except  
CKE and RESET#, are “don't care.” For proper Self-Refresh operation, all power supply and reference  
pins (VDD, VDDQ, VSS, VSSQ, VREFCA and VREFDQ) must be at valid levels. VREFDQ supply may be  
turned OFF and VREFDQ may take any value between VSS and VDD during Self Refresh operation,  
provided that VREFDQ is valid and stable prior to CKE going back High and that first Write operation or  
first Write Leveling Activity may not occur earlier than 512 nCK after exit from Self Refresh. The  
DRAM initiates a minimum of one Refresh command internally within tCKE period once it enters Self-  
Refresh mode.  
The clock is internally disabled during Self-Refresh Operation to save power. The minimum time that  
the DDR3L SDRAM must remain in Self-Refresh mode is tCKESR. The user may change the external  
clock frequency or halt the external clock tCKSRE after Self-Refresh entry is registered, however, the  
clock must be restarted and stable tCKSRX before the device can exit Self-Refresh operation.  
The procedure for exiting Self-Refresh requires a sequence of events. First, the clock must be stable  
prior to CKE going back HIGH. Once a Self-Refresh Exit command (SRX, combination of CKE going  
high and either NOP or Deselect on command bus) is registered, a delay of at least tXS must be  
satisfied before a valid command not requiring a locked DLL can be issued to the device to allow for  
any internal refresh in progress. Before a command that requires a locked DLL can be applied, a delay  
of at least tXSDLL must be satisfied.  
Depending on the system environment and the amount of time spent in Self-Refresh, ZQ calibration  
commands may be required to compensate for the voltage and temperature drift as described in  
section 8.18 ZQ Calibration Commandson page 77. To issue ZQ calibration commands,  
applicable timing requirements must be satisfied (See Figure 72 - ZQ Calibration Timingon page  
78).  
CKE must remain HIGH for the entire Self-Refresh exit period tXSDLL for proper operation except for  
Self-Refresh re-entry. Upon exit from Self-Refresh, the DDR3L SDRAM can be put back into Self-  
Refresh mode after waiting at least tXS period and issuing one refresh command (refresh period of  
tRFC). NOP or deselect commands must be registered on each positive clock edge during the Self-  
Refresh exit interval tXS. ODT must be turned off during tXSDLL.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 67 -  
 
W632GU6MB  
The use of Self-Refresh mode introduces the possibility that an internally timed refresh event can be  
missed when CKE is raised for exit from Self-Refresh mode. Upon exit from Self-Refresh, the DDR3L  
SDRAM requires a minimum of one extra refresh command before it is put back into Self-Refresh  
Mode.  
T0  
T1  
T2  
Ta0  
Tb0  
Tc0  
Tc1  
Td0  
Te0  
Tf0  
CK#  
CK  
tCKSRX  
tCKSRE  
tCKESR  
tIS  
tCPDED  
VALID  
VALID  
VALID  
CKE  
ODT  
tIS  
ODTL  
NOP  
SRE  
NOP  
SRX  
NOP*1  
VALID*2  
VALID  
VALID*3  
VALID  
Command  
Address  
tRP  
tXS  
tXSDLL  
Enter Self Refresh  
Exit Self Refresh  
TIME BREAK  
DON'T CARE  
Notes:  
1. Only NOP or DES command.  
2. Valid commands not requiring a locked DLL.  
3. Valid commands requiring a locked DLL.  
Figure 58 Self-Refresh Entry/Exit Timing  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 68 -  
W632GU6MB  
8.17 Power-Down Modes  
8.17.1 Power-Down Entry and Exit  
Power-down is synchronously entered when CKE is registered low (along with NOP or Deselect  
command). CKE is not allowed to go low while mode register set command, MPR operations, ZQCAL  
operations, DLL locking or read / write operation are in progress. CKE is allowed to go low while any  
of other operations such as row activation, precharge or auto-precharge and refresh are in progress,  
but power-down IDD spec will not be applied until finishing those operations. Timing diagrams are  
shown in Figure 59 through Figure 71 with details for entry and exit of Power-Down.  
The DLL should be in a locked state when power-down is entered for fastest power-down exit timing. If  
the DLL is not locked during power-down entry, the DLL must be reset after exiting power-down mode  
for proper read operation and synchronous ODT operation. DRAM design provides all AC and DC  
timing and voltage specification as well as proper DLL operation with any CKE intensive operations as  
long as DRAM controller complies with DRAM specifications.  
During Power-Down, if all banks are closed after any in-progress commands are completed, the  
device will be in precharge Power-Down mode; if any bank is open after in-progress commands are  
completed, the device will be in active Power-Down mode.  
Entering power-down deactivates the input and output buffers, excluding CK, CK#, ODT, CKE and  
RESET#. To protect DRAM internal delay on CKE line to block the input signals, multiple NOP or  
Deselect commands are needed during the CKE switch off and cycle(s) after, this timing period are  
defined as tCPDED. CKE_low will result in deactivation of command and address receivers after tCPDED  
has expired.  
Table 7 Power-Down Entry Definitions  
Status of DRAM  
MRS bit A12  
DLL  
PD Exit  
Relevant Parameters  
Active  
Don't Care  
On  
Fast  
tXP to any valid command  
(A bank or more Open)  
tXP to any valid command. Since it is in precharge state,  
Precharged  
commands here will be ACT, REF, MRS, PRE or PREA.  
0
1
Off  
On  
Slow  
Fast  
(All banks Precharged)  
tXPDLL to commands that need the DLL to operate, such  
as RD, RDA or ODT control line.  
Precharged  
tXP to any valid command  
(All banks Precharged)  
Also, the DLL is disabled upon entering precharge power-down (Slow Exit Mode), but the DLL is kept  
enabled during precharge power-down (Fast Exit Mode) or active power-down. In power-down mode,  
CKE low, RESET# high, and a stable clock signal must be maintained at the inputs of the DDR3L  
SDRAM, and ODT should be in a valid state, but all other input signals are “Don't Care.” (If RESET#  
goes low during Power-Down, the DRAM will be out of PD mode and into reset state.) CKE low must  
be maintained until tCKE has been satisfied. Power-down duration is limited by 9 times tREFI of the  
device.  
The power-down state is synchronously exited when CKE is registered high (along with a NOP or  
Deselect command). CKE high must be maintained until tCKE has been satisfied. A valid, executable  
command can be applied with power-down exit latency, tXP and/or tXPDLL after CKE goes high. Power-  
down exit latency is defined in section 10.16 AC Characteristicson page 138.  
Active Power Down Entry and Exit timing diagram example is shown in Figure 59. Timing Diagrams  
for CKE with PD Entry, PD Exit with Read and Read with Auto Precharge, Write, Write with Auto  
Precharge, Activate, Precharge, Refresh, and MRS are shown in Figure 60 through Figure 68.  
Additional clarifications are shown in Figure 69 through Figure 71.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 69 -  
 
W632GU6MB  
T0  
T1  
T2  
Ta0  
Ta1  
Tb0  
Tb1  
Tc0  
CK#  
CK  
VALID  
NOP  
NOP  
NOP  
NOP  
NOP  
VALID  
VALID  
VALID  
Command  
CKE  
tPD  
tIS  
tIH  
VALID  
tIH  
tIS  
tCKE  
VALID  
Address  
tCPDED  
tXP  
Enter  
Power-Down  
Mode  
Exit  
Power-Down  
Mode  
TIME BREAK  
DON'T CARE  
Note:  
1. VALID command at T0 is ACT, NOP, DES or PRE with still one bank remaining open after completion of the precharge  
command.  
Figure 59 Active Power-Down Entry and Exit Timing Diagram  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Ta8  
Tb0  
Tb1  
CK#  
CK  
RD or  
RDA  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
VALID  
Command  
tCPDED  
tIS  
VALID  
VALID  
CKE  
VALID  
Address  
RL = AL + CL  
tPD  
DQS, DQS#  
DQ BL8  
Dout  
b
Dout  
b+1  
Dout  
b+2  
Dout  
b+3  
Dout  
b+4  
Dout  
b+5  
Dout  
b+6  
Dout  
b+7  
Dout  
b
Dout  
b+1  
Dout  
b+2  
Dout  
b+3  
DQ BC4  
tRDPDEN  
Power-Down  
Entery  
DON'T CARE  
TIME BREAK  
TRANSITIONING DATA  
Figure 60 Power-Down Entry after Read and Read with Auto Precharge  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 70 -  
W632GU6MB  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Tb0  
Tb1  
Tb2  
Tc0  
Tc1  
CK#  
CK  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
VALID  
Command  
tCPDED  
tIS  
VALID  
VALID  
CKE  
Address  
A10  
Bank  
Col n  
WR*1  
tPD  
WL = AL + CWL  
DQS, DQS#  
DQ BL8  
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+4  
Din  
b+6  
Din  
b
Din  
b+5  
Din  
b+7  
Start Internal  
Precharge  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
DQ BC4  
tWRAPDEN  
Power-Down  
Entery  
DON'T CARE  
TIME BREAK  
TRANSITIONING DATA  
Note:  
1. tWR is programmed through MR0.  
Figure 61 Power-Down Entry after Write with Auto Precharge  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Tb0  
Tb1  
Tb2  
Tc0  
Tc1  
CK#  
CK  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
VALID  
Command  
tCPDED  
tIS  
VALID  
VALID  
CKE  
Address  
A10  
Bank  
Col n  
WL = AL + CWL  
tWR  
tPD  
DQS, DQS#  
DQ BL8  
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+4  
Din  
b+6  
Din  
b
Din  
b+5  
Din  
b+7  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
DQ BC4  
tWRPDEN  
Power-Down  
Entery  
DON'T CARE  
TIME BREAK  
TRANSITIONING DATA  
Figure 62 Power-Down Entry after Write  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 71 -  
W632GU6MB  
T0  
T1  
T2  
Ta0  
Ta1  
Tb0  
Tb1  
Tc0  
CK#  
CK  
Command  
NOP  
NOP  
NOP  
NOP  
tCKE  
NOP  
VALID  
VALID  
tCPDED  
tIH  
tIS  
VALID  
VALID  
CKE  
tXP  
tIS  
tPD  
Enter  
Power-Down  
Mode  
Exit  
Power-Down  
Mode  
TIME BREAK  
DON'T CARE  
Figure 63 Precharge Power-Down (Fast Exit Mode) Entry and Exit  
T0  
T1  
T2  
Ta0  
Ta1  
Tb0  
Tb1  
Tc0  
Td0  
CK#  
CK  
VALID  
NOP  
NOP  
NOP  
NOP  
tCKE  
NOP  
VALID  
VALID  
Command  
tCPDED  
tIS  
tIH  
VALID  
VALID  
VALID  
CKE  
tIS  
tXP  
tPD  
tXPDLL  
Enter  
Power-Down  
Mode  
Exit  
Power-Down  
Mode  
TIME BREAK  
DON'T CARE  
Figure 64 Precharge Power-Down (Slow Exit Mode) Entry and Exit  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 72 -  
W632GU6MB  
T0  
T1  
T2  
T3  
Ta0  
Ta1  
CK#  
CK  
VALID  
VALID  
REF  
NOP  
NOP  
NOP  
VALID  
VALID  
Command  
Address  
VALID  
tCPDED  
tIS  
tPD  
VALID  
CKE  
tREFPDEN  
TIME BREAK  
DON'T CARE  
Figure 65 Refresh Command to Power-Down Entry  
T0  
T1  
T2  
T3  
Ta0  
Ta1  
CK#  
CK  
VALID  
VALID  
ACTIVE  
VALID  
NOP  
NOP  
NOP  
VALID  
VALID  
Command  
Address  
tCPDED  
tIS  
tPD  
VALID  
CKE  
tACTPDEN  
TIME BREAK  
DON'T CARE  
Figure 66 Active Command to Power-Down Entry  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 73 -  
W632GU6MB  
T0  
T1  
T2  
T3  
Ta0  
Ta1  
CK#  
CK  
PRE or  
PREA  
VALID  
VALID  
NOP  
NOP  
NOP  
VALID  
VALID  
Command  
Address  
VALID  
tCPDED  
tIS  
tPD  
VALID  
CKE  
tPREPDEN  
TIME BREAK  
DON'T CARE  
Figure 67 Precharge / Precharge all Command to Power-Down Entry  
T0  
T1  
Ta0  
Ta1  
Tb0  
Tb1  
CK#  
CK  
MRS  
NOP  
NOP  
NOP  
VALID  
VALID  
Command  
Address  
VALID  
tCPDED  
tIS  
tPD  
VALID  
CKE  
tMRSPDEN  
DON'T CARE  
TIME BREAK  
Figure 68 MRS Command to Power-Down Entry  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 74 -  
W632GU6MB  
8.17.2 Power-Down clarifications - Case 1  
When CKE is registered low for power-down entry, tPD(min) must be satisfied before CKE can be  
registered high for power-down exit. The minimum value of parameter tPD(min) is equal to the  
minimum value of parameter tCKE(min) as shown in section 10.16 AC Characteristicson page 138.  
A detailed example of Case 1 is shown in Figure 69.  
T0  
T1  
T2  
Ta0  
Ta1  
Tb0  
Tb1  
Tb2  
CK#  
CK  
VALID  
NOP  
NOP  
NOP  
NOP  
NOP  
tIS  
VALID  
Command  
CKE  
tPD  
tIS  
tIH  
tIH  
tIS  
tCKE  
VALID  
Address  
tCPDED  
tCPDED  
Enter  
Power-Down  
Mode  
Exit  
Power-Down  
Mode  
Enter  
Power-Down  
Mode  
DON'T CARE  
TIME BREAK  
Figure 69 Power-Down Entry/Exit Clarifications - Case 1  
8.17.3 Power-Down clarifications - Case 2  
For certain CKE intensive operations, for example, repeated ‘PD Exit - Refresh - PD Entry’ sequences,  
the number of clock cycles between PD Exit and PD Entry may be insufficient to keep the DLL  
updated. Therefore, the following conditions must be met in addition to tCKE in order to maintain  
proper DRAM operation when the Refresh command is issued between PD Exit and PD Entry. Power-  
down mode can be used in conjunction with the Refresh command if the following conditions are met:  
1) tXP must be satisfied before issuing the command.  
2) tXPDLL must be satisfied (referenced to the registration of PD Exit) before the next power-down can  
be entered. A detailed example of Case 2 is shown in Figure 70.  
T0  
T1  
T2  
Ta0  
Ta1  
Tb0  
Tb1  
Tc0  
Tc1  
Td0  
CK#  
CK  
VALID  
NOP  
NOP  
NOP  
NOP  
NOP  
REF  
NOP  
NOP  
Command  
CKE  
tPD  
tIS  
tIH  
tIH  
tIS  
tCKE  
VALID  
Address  
tXP  
tXPDLL  
tCPDED  
Enter  
Power-Down  
Mode  
Exit  
Power-Down  
Mode  
Enter  
Power-Down  
Mode  
DON'T CARE  
TIME BREAK  
Figure 70 Power-Down Entry/Exit Clarifications - Case 2  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 75 -  
 
W632GU6MB  
8.17.4 Power-Down clarifications - Case 3  
If an early PD Entry is issued after a Refresh command, once PD Exit is issued, NOP or DES with  
CKE High must be issued until tRFC(min) from the Refresh command is satisfied. This means CKE can  
not be registered low twice within a tRFC(min) window. A detailed example of Case 3 is shown in  
Figure 71.  
T0  
T1  
T2  
Ta0  
Ta1  
Tb0  
Tb1  
Tc0  
Tc1  
Td0  
CK#  
CK  
REF  
NOP  
NOP  
NOP  
NOP  
NOP  
REF  
NOP  
NOP  
Command  
CKE  
tPD  
tIS  
tIH  
tIH  
tIS  
tCKE  
Address  
tXP  
tRFC(min)  
tCPDED  
Enter  
Power-Down  
Mode  
Exit  
Power-Down  
Mode  
Enter  
Power-Down  
Mode  
DON'T CARE  
TIME BREAK  
Figure 71 Power-Down Entry/Exit Clarifications - Case 3  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 76 -  
W632GU6MB  
8.18 ZQ Calibration Commands  
8.18.1 ZQ Calibration Description  
ZQ Calibration command is used to calibrate DRAM RON & ODT values over PVT (process, voltage  
and temperature). An external resistor (RZQ) between the DRAM ZQ pin and ground is used as a  
calibration reference. DDR3L SDRAM needs longer time to calibrate output driver and on-die  
termination circuits after power-up and/or any reset, medium time for a full calibration during normal  
operation (e.g. after self-refresh exit) and relatively smaller time to perform periodic update calibrations.  
ZQCL (ZQ Calibration Long) command is used to perform the initial calibration during power-up  
initialization sequence. This command may be issued at any time by the controller depending on the  
system environment. ZQCL command triggers the calibration engine inside the DRAM and, once  
calibration is achieved, the calibrated values are transferred from the calibration engine to DRAM IO,  
which gets reflected as updated output driver and on-die termination values.  
The first ZQCL command issued after reset is allowed a timing period of tZQinit to perform the full  
calibration and the transfer of values. All other ZQCL commands except the first ZQCL command  
issued after RESET are allowed a timing period of tZQoper.  
ZQCS (ZQ Calibration Short) command is used to perform periodic calibrations to account for voltage  
and temperature variations. A shorter timing window is provided to perform the calibration and transfer  
of values as defined by timing parameter tZQCS. One ZQCS command can effectively correct a  
minimum of 0.5 % (ZQ Correction) of RON and RTT impedance error within 64 nCK for all speed bins  
assuming the maximum sensitivities specified in the ‘Output Driver Voltage and Temperature  
Sensitivity’ and ‘ODT Voltage and Temperature Sensitivity’ tables. The appropriate interval  
between ZQCS commands can be determined from these tables and other application-specific  
parameters. One method for calculating the interval between ZQCS commands, given the temperature  
(Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is  
illustrated. The interval could be defined by the following formula:  
ZQCorrection  
(TSens× Tdriftrate) + (VSens × Vdriftrate)  
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM  
temperature and voltage sensitivities.  
For example, if TSens = 1.5%/C, VSens = 0.15%/mV, Tdriftrate = 1 C/sec and Vdriftrate = 15 mV/sec,  
then the interval between ZQCS commands is calculated as:  
0.5  
= 0.133 ≈ 128mS  
(1.5×1) + (0.15×15)  
No other activities should be performed on the DRAM channel by the controller for the duration of  
tZQinit, tZQoper, or tZQCS. The quiet time on the DRAM channel allows accurate calibration of output  
driver and on-die termination values. Once DRAM calibration is achieved, the DRAM should disable  
ZQ current consumption path to reduce power.  
All banks must be precharged and tRP met before ZQCL or ZQCS commands are issued by the  
controller. See section 9.1 Command Truth Tableon page 94 for a description of the ZQCL and  
ZQCS commands.  
ZQ calibration commands can also be issued in parallel to DLL lock time when coming out of self  
refresh. Upon Self-Refresh exit, DDR3L SDRAM will not perform an IO calibration without an explicit  
ZQ calibration command. The earliest possible time for ZQ Calibration command (ZQCS or ZQCL)  
after self refresh exit is tXS.  
In systems that share the ZQ resistor between devices, the controller must not allow any overlap of  
tZQoper, tZQinit, or tZQCS between the devices.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 77 -  
W632GU6MB  
8.18.2 ZQ Calibration Timing  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Tb0  
Tb1  
Tc0  
Tc1  
Tc2  
CK#  
CK  
ZQCL  
NOP  
NOP  
NOP  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
ZQCS  
NOP  
NOP  
NOP  
VALID  
VALID  
VALID  
VALID  
VALID  
Command  
Address  
A10  
VALID  
VALID  
CKE  
*1  
*2  
*1  
*2  
*3  
VALID  
ODT  
ACTIVITIES  
DQ Bus  
Hi-Z  
tZQinit or tZQoper  
ACTIVITIES  
*3  
Hi-Z  
tZQCS  
DON'T CARE  
TIME BREAK  
Notes:  
1. CKE must be continuously registered high during the calibration procedure.  
2. On-die termination must be disabled via the ODT signal or MRS during the calibration procedure.  
3. All devices connected to the DQ bus should be high impedance during the calibration procedure.  
Figure 72 ZQ Calibration Timing  
8.18.3 ZQ External Resistor Value, Tolerance, and Capacitive loading  
In order to use the ZQ Calibration function, a 240 ohm ± 1% tolerance external resistor must be  
connected between the ZQ pin and ground. The single resistor can be used for each SDRAM or one  
resistor can be shared between two SDRAMs if the ZQ calibration timings for each SDRAM do not  
overlap. The total capacitive loading on the ZQ pin must be limited (See section 10.11 Input/Output  
Capacitanceon page 119).  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 78 -  
W632GU6MB  
8.19 On-Die Termination (ODT)  
ODT (On-Die Termination) is a feature of the DDR3L SDRAM that allows the DRAM to turn on/off  
termination resistance for each DQU, DQL, DQSU, DQSU#, DQSL, DQSL#, DMU and DML signal via  
the ODT control pin. The ODT feature is designed to improve signal integrity of the memory channel  
by allowing the DRAM controller to independently turn on/off termination resistance for any or all  
DRAM devices. More details about ODT control modes and ODT timing modes can be found further  
down in this document:  
The ODT control modes are described in section 8.19.1  
The ODT synchronous mode is described in section 8.19.2  
The dynamic ODT feature is described in section 8.19.3  
The ODT asynchronous mode is described in section 8.19.4  
The transitions between ODT synchronous and asynchronous are described in section 8.19.4.1  
through section 8.19.4.4  
The ODT feature is turned off and not supported in Self-Refresh mode.  
A simple functional representation of the DRAM ODT feature is shown in Figure 73.  
ODT  
VDDQ / 2  
RTT  
To other  
circuitry  
like  
Swtich  
RCV,…  
DQ, DQS, DM  
Figure 73 Functional Representation of ODT  
The switch is enabled by the internal ODT control logic, which uses the external ODT pin and other  
control information, see below. The value of RTT is determined by the settings of Mode Register bits  
(See Figure 6 - MR1 Definition and Figure 7 - MR2 Definition). The ODT pin will be ignored if the  
Mode Registers MR1 and MR2 are programmed to disable ODT, and in self-refresh mode.  
8.19.1 ODT Mode Register and ODT Truth Table  
The ODT Mode is enabled if any of MR1 {A9, A6, A2} or MR2 {A10, A9} are non zero. In this case, the  
value of RTT is determined by the settings of those bits (see Figure 6 on page 20).  
Application: Controller sends WR command together with ODT asserted.  
One possible application: The rank that is being written to provides termination.  
DRAM turns ON termination if it sees ODT asserted (unless ODT is disabled by MR).  
DRAM does not use any write or read command decode information.  
The Termination Truth Table is shown in Table 8.  
Table 8 Termination Truth Table  
ODT pin  
DRAM Termination State  
0
1
OFF  
ON, (OFF, if disabled by MR1 {A9, A6, A2} and MR2 {A10, A9} in general)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 79 -  
 
W632GU6MB  
8.19.2 Synchronous ODT Mode  
Synchronous ODT mode is selected whenever the DLL is turned on and locked. Based on the power-  
down definition, these modes are:  
Any bank active with CKE high  
Refresh with CKE high  
Idle mode with CKE high  
Active power down mode (regardless of MR0 bit A12)  
Precharge power down mode if DLL is enabled during precharge power down by MR0 bit A12.  
The direct ODT feature is not supported during DLL-off mode. The on-die termination resistors must  
be disabled by continuously registering the ODT pin low and/or by programming the Rtt_Nom bits  
MR1{A9,A6,A2} to {0,0,0} via a mode register set command during DLL-off mode.  
In synchronous ODT mode, RTT will be turned on ODTLon clock cycles after ODT is sampled high by  
a rising clock edge and turned off ODTLoff clock cycles after ODT is registered low by a rising clock  
edge. The ODT latency is tied to the write latency (WL) by: ODTLon = WL - 2; ODTLoff = WL - 2.  
8.19.2.1 ODT Latency and Posted ODT  
In Synchronous ODT Mode, the Additive Latency (AL) programmed into the Mode Register (MR1) also  
applies to the ODT signal. The DRAM internal ODT signal is delayed for a number of clock cycles  
defined by the Additive Latency (AL) relative to the external ODT signal. ODTLon = CWL + AL - 2;  
ODTLoff = CWL + AL - 2. For more details refer to the ODT timing parameters in section 10.16 AC  
Characteristicson page 138.  
Table 9 ODT Latency  
Symbol  
ODTLon  
ODTLoff  
Parameter  
DDR3L-1333/1600/1866/2133  
WL - 2 = CWL + AL - 2  
Unit  
ODT turn on Latency  
ODT turn off Latency  
nCK  
WL - 2 = CWL + AL - 2  
8.19.2.2 Timing Parameters  
In synchronous ODT mode, the following timing parameters apply (see also Figures 74):  
ODTLon, ODTLoff, tAON,min,max, tAOF,min,max.  
Minimum RTT turn-on time (tAONmin) is the point in time when the device leaves high impedance and  
ODT resistance begins to turn on. Maximum RTT turn on time (tAONmax) is the point in time when the  
ODT resistance is fully on. Both are measured from ODTLon.  
Minimum RTT turn-off time (tAOFmin) is the point in time when the device starts to turn off the ODT  
resistance. Maximum RTT turn off time (tAOFmax) is the point in time when the on-die termination has  
reached high impedance. Both are measured from ODTLoff.  
When ODT is asserted, it must remain high until ODTH4 is satisfied. If a Write command is registered  
by the SDRAM with ODT high, then ODT must remain high until ODTH4 (BL = 4) or ODTH8 (BL = 8)  
after the Write command (see Figure 75). ODTH4 and ODTH8 are measured from ODT registered  
high to ODT registered low or from the registration of a Write command until ODT is registered low.  
ODT must be held high for at least ODTH4 after assertion (T1); ODT must be kept high ODTH4 (BL =  
4) or ODTH8 (BL = 8) after Write command (T7). ODTH is measured from ODT first registered high to  
ODT first registered low, or from registration of Write command with ODT high to ODT registered low.  
Note that although ODTH4 is satisfied from ODT registered high at T6, ODT must not go low before  
T11 as ODTH4 must also be satisfied from the registration of the Write command at T7.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 80 -  
 
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
CK#  
CK  
CKE  
ODT  
AL = 3  
AL = 3  
CWL - 2  
ODTH4min  
ODTLon = CWL + AL - 2  
ODTLoff = CWL + AL - 2  
tAOFmin  
tAONmin  
Rtt_Nom  
DRAM_RTT  
tAONmax  
tAOFmax  
TRANSITIONING  
DON'T CARE  
Figure 74 Synchronous ODT Timing (AL = 3; CWL = 5; ODTLon = AL + CWL - 2 = 6; ODTLoff = AL + CWL - 2 = 6)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK#  
CK  
CKE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
WRS4  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
ODTH4  
ODTH4min  
ODTH4  
ODT  
ODTLoff = WL - 2  
ODTLon = WL - 2  
tAOFmin  
ODTLoff = WL - 2  
ODTLon = WL - 2  
tAONmin  
tAOFmin  
tAONmax  
Rtt_Nom  
DRAM_RTT  
tAONmax  
tAONmin  
tAOFmax  
tAOFmax  
TRANSITIONING  
DON'T CARE  
Figure 75 Synchronous ODT (BL = 4, WL = 7)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 81 -  
W632GU6MB  
8.19.2.3 ODT during Reads  
As the DDR3L SDRAM can not terminate and drive at the same time, RTT must be disabled at least half a clock cycle before the read preamble by driving  
the ODT pin low appropriately. RTT may not be enabled until the end of the post-amble as shown in the example below. As shown in Figure 76 below, at  
cycle T15, DRAM turns on the termination when it stops driving, which is determined by tHZ. If DRAM stops driving early (i.e., tHZ is early), then tAONmin  
timing may apply. If DRAM stops driving late (i.e., tHZ is late), then DRAM complies with tAONmax timing. Note that ODT may be disabled earlier before the  
Read and enabled later after the Read than shown in this example in Figure 76.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK#  
CK  
READ  
VALID  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
ODTLon = CWL + AL - 2  
ODTTLoff = CWL + AL - 2  
ODT  
RTT  
tAOFmin  
tAOFmax  
Rtt_Nom  
Rtt_Nom  
tAONmax  
RL = AL + CL  
DQS, DQS#  
DQ  
Dout  
b
Dout  
b+1  
Dout  
b+2  
Dout  
b+3  
Dout  
b+4  
Dout  
b+5  
Dout  
b+6  
Dout  
b+7  
TRANSITIONING  
DON'T CARE  
Figure 76 ODT must be disabled externally during Reads by driving ODT low.  
(CL = 6; AL = CL - 1 = 5; RL = AL + CL = 11; CWL = 5; ODTLon = CWL + AL - 2 = 8; ODTLoff = CWL + AL - 2 = 8)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 82 -  
W632GU6MB  
8.19.3 Dynamic ODT  
In certain application cases and to further enhance signal integrity on the data bus, it is desirable that  
the termination strength of the DDR3L SDRAM can be changed without issuing an MRS command.  
This requirement is supported by the “Dynamic ODT” feature as described as follows:  
8.19.3.1 Functional Description:  
The Dynamic ODT Mode is enabled if bit (A9) or (A10) of MR2 is set to ‘1’. The function is described  
as follows:  
Two RTT values are available: Rtt_Nom and Rtt_WR.  
The value for Rtt_Nom is preselected via bits A[9,6,2] in MR1.  
The value for Rtt_WR is preselected via bits A[10,9] in MR2.  
During operation without write commands, the termination is controlled as follows:  
Nominal termination strength Rtt_Nom is selected.  
Termination on/off timing is controlled via ODT pin and latencies ODTLon and ODTLoff.  
When a write command (WR, WRA, WRS4, WRS8, WRAS4, WRAS8) is registered, and if  
Dynamic ODT is enabled, the termination is controlled as follows:  
A latency ODTLcnw after the write command, termination strength Rtt_WR is selected.  
A latency ODTLcwn8 (for BL8, fixed by MRS or selected OTF) or ODTLcwn4 (for BC4, fixed by  
MRS or selected OTF) after the write command, termination strength Rtt_Nom is selected.  
Termination on/off timing is controlled via ODT pin and ODTLon, ODTLoff.  
Table 10 shows latencies and timing parameters which are relevant for the on-die termination control  
in Dynamic ODT mode.  
The dynamic ODT feature is not supported at DLL-off mode. User must use MRS command to set  
Rtt_WR, MR2{A10, A9}={0,0}, to disable Dynamic ODT externally.  
When ODT is asserted, it must remain high until ODTH4 is satisfied. If a Write command is registered  
by the SDRAM with ODT high, then ODT must remain high until ODTH4 (BL = 4) or ODTH8 (BL = 8)  
after the Write command (see Figure 77). ODTH4 and ODTH8 are measured from ODT registered  
high to ODT registered low or from the registration of a Write command until ODT is registered low.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 83 -  
W632GU6MB  
Table 10 Latencies and timing parameters relevant for Dynamic ODT  
Definition for all DDR3L  
speed bins  
Name and Description  
ODT turn-on Latency  
ODT turn-off Latency  
Abbr.  
ODTLon  
ODTLoff  
ODTLcnw  
ODTLcwn4  
ODTLcwn8  
ODTH4  
Defined from  
Defined to  
Unit  
tCK  
Registering external  
ODT signal high  
Turning termination on  
Turning termination off  
ODTLon = WL - 2  
ODTLoff = WL - 2  
ODTLcnw = WL - 2  
ODTLcwn4 = 4 + ODTLoff  
ODTLcwn8 = 6 + ODTLoff  
ODTH4 = 4  
Registering external  
ODT signal low  
tCK  
ODT Latency for changing  
from Rtt_Nom to Rtt_WR  
Registering external  
write command  
Change RTT strength from  
Rtt_Nom to Rtt_WR  
tCK  
ODT Latency for change from  
Rtt_WR to Rtt_Nom (BL = 4)  
Registering external  
write command  
Change RTT strength from  
Rtt_WR to Rtt_Nom  
tCK  
ODT Latency for change from  
Rtt_WR to Rtt_Nom (BL = 8)  
Registering external  
write command  
Change RTT strength from  
Rtt_WR to Rtt_Nom  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
Minimum ODT high time after  
ODT assertion  
Registering ODT  
high  
ODT registered low  
ODT registered low  
ODT registered low  
RTT valid  
Minimum ODT high time after  
Write (BL = 4)  
Registering Write  
with ODT high  
ODTH4  
ODTH4 = 4  
Minimum ODT high time after  
Write (BL =8)  
Registering Write  
with ODT high  
ODTH8  
ODTH4 = 6  
tADC(min) = 0.3 * tCK(avg)  
tADC(max) = 0.7 * tCK(avg)  
ODTLcnw  
ODTLcwn  
RTT change skew  
tADC  
tCK(avg)  
Note: tAOFnom and tADCnom are 0.5 tCK (effectively adding half a clock cycle to ODTLoff, ODTcnw and ODTLcwn)  
8.19.3.2 ODT Timing Diagrams  
The following pages provide exemplary timing diagrams as described in Table 11:  
Table 11 – Timing Diagrams for “Dynamic ODT”  
Figure and Page  
Figure 77 on page 85  
Figure 78 on page 86  
Description  
Figure 77, Dynamic ODT: Behavior with ODT being asserted before and after the write  
Figure 78, Dynamic ODT: Behavior without write command, AL = 0, CWL = 5  
Figure 79, Dynamic ODT: Behavior with ODT pin being asserted together with write command for a duration  
of 6 clock cycles  
Figure 79 on page 86  
Figure 80 on page 87  
Figure 81 on page 87  
Figure 80, Dynamic ODT: Behavior with ODT pin being asserted together with write command for a duration  
of 6 clock cycles, example for BC4 (via MRS or OTF), AL = 0, CWL = 5  
Figure 81, Dynamic ODT: Behavior with ODT pin being asserted together with write command for a duration  
of 4 clock cycles  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 84 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
NOP  
T11  
NOP  
T12  
NOP  
T13  
NOP  
T14  
NOP  
T15  
NOP  
T16  
NOP  
T17  
NOP  
CK#  
CK  
NOP  
NOP  
NOP  
NOP  
WRS4  
VALID  
NOP  
NOP  
NOP  
NOP  
NOP  
Address  
ODT  
ODTH4  
ODTLoff  
ODTH4  
ODTLon  
ODTLcwn4  
tADCmin  
tADCmin  
tAOFmin  
tAONmin  
RTT  
Rtt_Nom  
tAONmax  
Rtt_WR  
Rtt_Nom  
ODTLcnw  
tADCmax  
tADCmax  
tAOFmax  
DQS, DQS#  
DQ  
Din  
b
Din  
Din  
Din  
b+1 b+2 b+3  
WL  
TRANSITIONING  
DON'T CARE  
NOTES: Example for BC4 (via MRS or OTF), AL = 0, CWL = 5. ODTH4 applies to first registering ODT high and to the registration of the Write command.  
In this example, ODTH4 would be satisfied if ODT went low at T8 (4 clocks after the Write command).  
Figure 77 Dynamic ODT: Behavior with ODT being asserted before and after the write  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 85 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK#  
CK  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
Command  
Address  
ODTH4  
ODTLon  
ODTLoff  
ODT  
RTT  
tAONmin  
tAOFmin  
Rtt_Nom  
tAONmax  
tAOFmax  
DQS, DQS#  
DQ  
TRANSITIONING  
DON'T CARE  
Notes:  
1. ODTH4 is defined from ODT registered high to ODT registered low, so in this example, ODTH4 is satisfied.  
2. ODT registered low at T5 would also be legal.  
Figure 78 Dynamic ODT: Behavior without write command, AL = 0, CWL = 5  
T0  
T1  
T2  
ODTLcnw  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
NOP  
CK#  
CK  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
NOP  
WRS8  
VALID  
NOP  
ODTH8  
ODTLon  
ODTLoff  
ODT  
RTT  
tAONmin  
tAOFmin  
Rtt_WR  
tADCmax  
ODTLcwn8  
tAOFmax  
DQS, DQS#  
DQ  
WL  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+4  
Din  
b+5  
Din  
b+6  
Din  
b+7  
TRANSITIONING  
DON'T CARE  
Note:  
1. Example for BL8 (via MRS or OTF), AL = 0, CWL = 5. In this example, ODTH8 = 6 is exactly satisfied.  
Figure 79 Dynamic ODT: Behavior with ODT pin being asserted together with write command  
for a duration of 6 clock cycles  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 86 -  
W632GU6MB  
T0  
T1  
T2  
ODTLcnw  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
NOP  
T11  
NOP  
CK#  
CK  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
NOP  
WRS4  
VALID  
ODTH4  
ODTLoff  
ODT  
RTT  
ODTLon  
tAONmin  
tADCmin  
tAOFmin  
Rtt_Nom  
Rtt_WR  
tADCmax  
ODTLcwn4  
tADCmax  
tAOFmax  
DQS, DQS#  
DQ  
WL  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
TRANSITIONING  
DON'T CARE  
Notes:  
1. ODTH4 is defined from ODT registered high to ODT registered low, so in this example, ODTH4 is satisfied.  
2. ODT registered low at T5 would also be legal.  
Figure 80 Dynamic ODT: Behavior with ODT pin being asserted together with write command  
for a duration of 6 clock cycles, example for BC4 (via MRS or OTF), AL = 0, CWL = 5  
T0  
T1  
T2  
ODTLcnw  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
NOP  
T11  
NOP  
CK#  
CK  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
NOP  
WRS4  
VALID  
ODTH4  
ODTLoff  
ODT  
RTT  
ODTLon  
tAONmin  
tAOFmin  
Rtt_WR  
tADCmax  
ODTLcwn4  
tAOFmax  
DQS, DQS#  
DQ  
WL  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
TRANSITIONING  
DON'T CARE  
Note:  
1. Example for BC4 (via MRS or OTF), AL = 0, CWL = 5. In this example, ODTH4 = 4 is exactly satisfied.  
Figure 81 Dynamic ODT: Behavior with ODT pin being asserted together with write command  
for a duration of 4 clock cycles  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 87 -  
W632GU6MB  
8.19.4 Asynchronous ODT Mode  
Asynchronous ODT mode is selected when DRAM runs in DLLon mode, but DLL is temporarily disabled (i.e. frozen) in precharge power-down (by MR0 bit  
A12). Based on the power down mode definitions, this is currently Precharge power down mode if DLL is disabled during precharge power down by MR0  
bit A12.  
In asynchronous ODT timing mode, internal ODT command is NOT delayed by Additive Latency (AL) relative to the external ODT command.  
In asynchronous ODT mode, the following timing parameters apply (see Figure 82): tAONPD,min,max, tAOFPD,min,max.  
Minimum RTT turn-on time (tAONPDmin) is the point in time when the device termination circuit leaves high impedance state and ODT resistance begins to  
turn on. Maximum RTT turn on time (tAONPDmax) is the point in time when the ODT resistance is fully on.  
tAONPDmin and tAONPDmax are measured from ODT being sampled high.  
Minimum RTT turn-off time (tAOFPDmin) is the point in time when the devices termination circuit starts to turn off the ODT resistance. Maximum ODT turn  
off time (tAOFPDmax) is the point in time when the on-die termination has reached high impedance. tAOFPDmin and tAOFPDmax are measured from ODT  
being sampled low.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK#  
CK  
CKE  
tIH  
tIS  
tIH  
tIS  
ODT  
RTT  
tAOFPDmin  
tAONPDmin  
RTT  
tAONPDmax  
tAOFPDmax  
TRANSITIONING  
DON'T CARE  
Figure 82 Asynchronous ODT Timings on DDR3L SDRAM with fast ODT transition: AL is ignored  
In Precharge Power Down, ODT receiver remains active, however no Read or Write command can be issued, as the respective ADD/CMD receivers may  
be disabled.  
Table 12 Asynchronous ODT Timing Parameters for all Speed Bins  
Symbol  
tAONPD  
tAOFPD  
Description  
Min.  
Max.  
8.5  
Unit  
nS  
Asynchronous RTT turn-on delay (Power-Down with DLL frozen)  
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)  
2
2
8.5  
nS  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 88 -  
W632GU6MB  
8.19.4.1 Synchronous to Asynchronous ODT Mode Transitions  
Table 13 ODT timing parameters for Power Down (with DLL frozen) entry and exit transition period  
Description  
Min.  
Max.  
min{ ODTLon * tCK(avg) + tAONmin; tAONPDmin } max{ ODTLon * tCK(avg) + tAONmax; tAONPDmax }  
ODT to RTT turn-  
on delay  
min{ (WL - 2) * tCK(avg) + tAONmin; tAONPDmin }  
min{ ODTLoff * tCK(avg) +tAOFmin; tAOFPDmin }  
min{ (WL - 2) * tCK(avg) +tAOFmin; tAOFPDmin }  
max{ (WL - 2) * tCK(avg) + tAONmax; tAONPDmax }  
max{ ODTLoff * tCK(avg) + tAOFmax; tAOFPDmax }  
max{ (WL - 2) * tCK(avg) + tAOFmax; tAOFPDmax }  
ODT to RTT turn-  
off delay  
tANPD  
WL -1  
8.19.4.2 Synchronous to Asynchronous ODT Mode Transition during Power-Down Entry  
If DLL is selected to be frozen in Precharge Power Down Mode by the setting of bit A12 in MR0 to “0”,  
there is a transition period around power down entry, where the DDR3L SDRAM may show either  
synchronous or asynchronous ODT behavior.  
The transition period is defined by the parameters tANPD and tCPDED(min). tANPD is equal to (WL -1)  
and is counted backwards in time from the clock cycle where CKE is first registered low. tCPDED(min)  
starts with the clock cycle where CKE is first registered low. The transition period begins with the  
starting point of tANPD and terminates at the end point of tCPDED(min), as shown in Figure 83. If there  
is a Refresh command in progress while CKE goes low, then the transition period ends at the later one  
of tRFC(min) after the Refresh command and the end point of tCPDED(min), as shown in Figure 84.  
Please note that the actual starting point at tANPD is excluded from the transition period, and the actual  
end points at tCPDED(min) and tRFC(min), respectively, are included in the transition period.  
ODT assertion during the transition period may result in an RTT change as early as the smaller of  
tAONPDmin and (ODTLon * tCK(avg) + tAONmin) and as late as the larger of tAONPDmax and (ODTLon *  
tCK(avg) + tAONmax). ODT de-assertion during the transition period may result in an RTT change as  
early as the smaller of tAOFPDmin and (ODTLoff * tCK(avg) + tAOFmin) and as late as the larger of  
tAOFPDmax and (ODTLoff * tCK(avg) + tAOFmax). See Table 13.  
Note that, if AL has a large value, the range where RTT is uncertain becomes quite large. Figure 83  
shows the three different cases: ODT_A, synchronous behavior before tANPD; ODT_B has a state  
change during the transition period; ODT_C shows a state change after the transition period.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 89 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
CK#  
CK  
CKE  
Command  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tCPDED  
tANPD  
tCPDEDmin  
PD entry transition period  
Last sync, ODT  
RTT  
tAOFmin  
RTT  
ODTLoff  
tAOFmax  
tAOFPDmax  
ODTLoff + tAOFmin  
Sync or async, ODT  
RTT  
tAOFPDmin  
RTT  
ODTLoff + tAOFmax  
First async, ODT  
RTT  
tAOFPDmin  
RTT  
PD entry transition period  
tAOFPDmax  
TRANSITIONING DATA  
DON'T CARE  
Figure 83 Synchronous to asynchronous transition during Precharge Power Down  
(with DLL frozen) entry (AL = 0; CWL = 5; tANPD = WL - 1 = 4)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 90 -  
W632GU6MB  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
Ta0  
Ta1  
Ta2  
Ta3  
CK#  
CK  
CKE  
Command  
NOP  
REF  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tRFC(min)  
tANPD  
tCPDEDmin  
PD entry transition period  
Last sync, ODT  
RTT  
tAOFmin  
RTT  
tAOFPDmax  
ODTLoff  
tAOFmax  
ODTLoff + tAOFPDmin  
Sync or async, ODT  
RTT  
tAOFPDmin  
RTT  
ODTLoff + tAOFPDmax  
First async, ODT  
RTT  
tAOFPDmin  
tAOFPDmax  
RTT  
TIME BREAK  
TRANSITIONING  
DON'T CARE  
Figure 84 Synchronous to asynchronous transition after Refresh command (AL = 0; CWL = 5; tANPD = WL - 1 = 4)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 91 -  
W632GU6MB  
8.19.4.3 Asynchronous to Synchronous ODT Mode Transition during Power-Down Exit  
If DLL is selected to be frozen in Precharge Power Down Mode by the setting of bit A12 in MR0 to “0”, there is also a transition period around power down  
exit, where either synchronous or asynchronous response to a change in ODT must be expected from the DDR3L SDRAM.  
This transition period starts tANPD before CKE is first registered high, and ends tXPDLL after CKE is first registered high. tANPD is equal to (WL - 1) and is  
counted (backwards) from the clock cycle where CKE is first registered high.  
ODT assertion during the transition period may result in an RTT change as early as the smaller of tAONPDmin and (ODTLon*tCK(avg) + tAONmin) and as late  
as the larger of tAONPDmax and (ODTLon*tCK(avg) + tAONmax). ODT de-assertion during the transition period may result in an RTT change as early as the  
smaller of tAOFPDmin and (ODTLoff*tCK(avg) + tAOFmin) and as late as the larger of tAOFPDmax and (ODTLoff*tCK(avg) + tAOFmax). See Table 13.  
Note that, if AL has a large value, the range where RTT is uncertain becomes quite large. Figure 85 shows the three different cases: ODT_C,  
asynchronous response before tANPD; ODT_B has a state change of ODT during the transition period; ODT_A shows a state change of ODT after the  
transition period with synchronous response.  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Tb0  
Tb1  
Tb2  
Tc0  
Tc1  
Tc2  
Td0  
Td1  
CK#  
CK  
CKE  
Command  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tANPD  
tXPDLL  
PD exit transition period  
Last sync, ODT  
RTT  
tAOFPDmin  
tAOFPDmax  
RTT  
ODTLoff + tAOFmin  
tAOFPDmax  
Sync or async, ODT  
RTT  
tAOFPDmin  
RTT  
ODTLoff + tAOFmax  
tAOFmax  
ODTLoff  
First async, ODT  
RTT  
tAOFmin  
RTT  
TIME BREAK  
TRANSITIONING  
DON'T CARE  
Figure 85 Asynchronous to synchronous transition during Precharge Power Down  
(with DLL frozen) exit (CL = 6; AL = CL - 1; CWL = 5; tANPD = WL - 1 = 9)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 92 -  
W632GU6MB  
8.19.4.4 Asynchronous to Synchronous ODT Mode during short CKE high and short CKE low periods  
If the total time in Precharge Power Down state or Idle state is very short, the transition periods for PD entry and PD exit may overlap (see Figure 86). In  
this case, the response of the DDR3L SDRAMs RTT to a change in ODT state at the input may be synchronous OR asynchronous from the start of the PD  
entry transition period to the end of the PD exit transition period (even if the entry period ends later than the exit period).  
If the total time in Idle state is very short, the transition periods for PD exit and PD entry may overlap. In this case the response of the DDR3L SDRAMs  
RTT to a change in ODT state at the input may be synchronous OR asynchronous from the start of the PD exit transition period to the end of the PD entry  
transition period. Note that in the bottom part of Figure 86 it is assumed that there was no Refresh command in progress when Idle state was entered.  
T0  
T1  
T2  
T3  
NOP  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
NOP  
T11  
NOP  
T12  
NOP  
T13  
NOP  
T14  
NOP  
CK#  
CK  
REF  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
CKE  
tANPD  
tRFC(min)  
PD entry transition period  
PD exit transition period  
tANPD  
tXPDLL  
short CKE low transition period  
CKE  
tANPD  
short CKE high transition period  
tXPDLL  
TIME BREAK  
TRANSITIONING  
DON'T CARE  
Figure 86 Transition period for short CKE cycles, entry and exit period overlapping (AL = 0, WL = 5, tANPD = WL - 1 = 4)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 93 -  
W632GU6MB  
9. OPERATION MODE  
9.1 Command Truth Table  
Notes 1, 2, 3 and 4 apply to the entire Command Truth Table.  
Note 5 Applies to all Read/Write commands.  
[BA=Bank Address, RA=Row Address, CA=Column Address, BC#=Burst Chop, X=Don't Care, V=Valid]  
Table 14 Command Truth Table  
CKE  
A0-  
BA0-  
BA2  
A12/ A10/  
COMMAND  
Abbr.  
CS# RAS# CAS# WE#  
A13  
A9, NOTES  
A11  
Previous Current  
BC#  
AP  
Cycle  
Cycle  
Mode Register Set  
Refresh  
MRS  
REF  
SRE  
H
H
H
H
H
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
H
H
X
H
L
BA  
V
OP Code  
V
V
X
V
V
V
V
V
X
V
V
V
V
V
X
V
L
V
Self Refresh Entry  
L
L
V
V
X
V
V
V
7,9,12  
X
H
L
X
H
H
H
H
L
X
Self Refresh Exit  
SRX  
L
H
7,8,9,12  
V
Single Bank Precharge  
Precharge all Banks  
Bank Activate  
PRE  
PREA  
ACT  
H
H
H
H
H
H
H
H
H
H
H
H
BA  
V
L
L
H
L
H
L
BA  
BA  
BA  
BA  
Row Address (RA)  
Write (Fixed BL8 or BC4)  
Write (BC4, on the Fly)  
Write (BL8, on the Fly)  
WR  
H
H
H
RFU  
RFU  
RFU  
V
L
L
L
L
CA  
CA  
CA  
5
5
5
WRS4  
WRS8  
L
L
L
L
H
Write with Auto Precharge  
(Fixed BL8 or BC4)  
WRA  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
L
L
BA  
BA  
BA  
RFU  
RFU  
RFU  
V
L
H
H
H
CA  
CA  
CA  
5
5
5
Write with Auto Precharge  
(BC4, on the Fly)  
WRAS4  
WRAS8  
Write with Auto Precharge  
(BL8, on the Fly)  
H
Read (Fixed BL8 or BC4)  
Read (BC4, on the Fly)  
Read (BL8, on the Fly)  
RD  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA  
BA  
BA  
RFU  
RFU  
RFU  
V
L
L
L
L
CA  
CA  
CA  
5
5
5
RDS4  
RDS8  
H
Read with Auto Precharge  
(Fixed BL8 or BC4)  
RDA  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA  
BA  
BA  
RFU  
RFU  
RFU  
V
L
H
H
H
CA  
CA  
CA  
5
5
5
Read with Auto Precharge  
(BC4, on the Fly)  
RDAS4  
RDAS8  
Read with Auto Precharge  
(BL8, on the Fly)  
H
No Operation  
NOP  
DES  
H
H
H
H
L
H
L
H
X
H
X
H
X
H
H
H
X
H
X
H
X
H
H
H
X
H
X
H
X
L
V
X
V
X
V
X
X
X
V
X
V
X
V
X
X
X
V
X
V
X
V
X
X
X
V
X
V
X
V
X
H
L
V
X
V
X
V
X
X
X
10  
11  
Device Deselected  
Power Down Entry  
Power Down Exit  
PDE  
PDX  
H
L
L
6,12  
6,12  
H
L
H
H
L
ZQ Calibration Long  
ZQ Calibration Short  
ZQCL  
ZQCS  
H
H
H
H
L
L
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 94 -  
 
W632GU6MB  
Notes:  
1. All DDR3L SDRAM commands are defined by states of CS#, RAS#, CAS#, WE# and CKE at the rising edge of the clock.  
The MSB of BA, RA and CA are device density and configuration dependent.  
2. RESET# is Low enable command which will be used only for asynchronous reset so must be maintained HIGH during any  
function.  
3. Bank addresses (BA) determine which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode Register.  
4. Vmeans H or L (but a defined logic level)and Vmeans either defined or undefined (like floating) logic level.  
5. Burst reads or writes cannot be terminated or interrupted and Fixed/on-the-fly BL will be defined by MRS.  
6. The Power Down Mode does not perform any refresh operation.  
7. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
8. Self Refresh Exit is asynchronous.  
9. VREF (Both VREFDQ and VREFCA) must be maintained during Self Refresh operation. VREFDQ supply may be turned OFF  
and VREFDQ may take any value between VSS and VDD during Self Refresh operation, provided that VREFDQ is valid and  
stable prior to CKE going back High and that first Write operation or first Write Leveling Activity may not occur earlier than  
512 nCK after exit from Self Refresh.  
10. The No Operation command should be used in cases when the DDR3L SDRAM is in an idle or wait state. The purpose of  
the No Operation command (NOP) is to prevent the DDR3L SDRAM from registering any unwanted commands between  
operations. A No Operation command will not terminate a pervious operation that is still executing, such as a burst read or  
write cycle.  
11. The Deselect command performs the same function as No Operation command.  
12. Refer to the CKE Truth Table for more detail with CKE transition.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 95 -  
W632GU6MB  
9.2 CKE Truth Table  
Notes 1-7 apply to the entire CKE Truth Table.  
For Power-down entry and exit parameters See 8.17 Power-Down Modeson page 69.  
CKE low is allowed only if tMRD and tMOD are satisfied.  
Table 15 CKE Truth Table  
CKE  
CURRENT  
STATE2  
COMMAND (N) 3  
RAS#, CAS#, WE#, CS#  
ACTION (N) 3  
NOTES  
Previous Cycle 1 Current Cycle 1  
(N-1)  
(N)  
L
L
X
Maintain Power Down  
Power Down Exit  
14,15  
11,14  
Power Down  
Self Refresh  
L
L
H
L
H
L
L
L
L
L
L
L
DESELECT or NOP  
X
Maintain Self Refresh  
Self Refresh Exit  
15,16  
L
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
REFRESH  
8,12,16  
11,13,14  
11,13,14,17  
11,13,14,17  
11,13,14,17  
11  
Bank(s) Active  
Reading  
H
H
H
H
H
H
H
Active Power Down Entry  
Power Down Entry  
Writing  
Power Down Entry  
Precharging  
Refreshing  
Power Down Entry  
Precharge Power Down Entry  
Precharge Power Down Entry  
Self Refresh  
11,13,14,18  
9,13,18  
10  
All Banks Idle  
Any other state  
Refer to section 9.1 Command Truth Tableon page 94 for more detail with all command signals  
Notes:  
1. CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.  
2. Current state is defined as the state of the DDR3L SDRAM immediately prior to clock edge N.  
3. COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N), ODT is not included  
here.  
4. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
5. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
6. During any CKE transition (registration of CKE H->L or CKE L->H) the CKE level must be maintained until 1nCK prior to tCKEmin  
being satisfied (at which time CKE may transition again).  
7. DESELECT and NOP are defined in the Command Truth Table.  
8. On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXS period. Read  
or ODT commands may be issued only after tXSDLL is satisfied.  
9. Self Refresh mode can only be entered from the All Banks Idle state.  
10. Must be a legal command as defined in the Command Truth Table.  
11. Valid commands for Power Down Entry and Exit are NOP and DESELECT only.  
12. Valid commands for Self Refresh Exit are NOP and DESELECT only.  
13. Self Refresh can not be entered during Read or Write operations. For a detailed list of restrictions See section 8.16 Self-Refresh  
Operationon page 67 and See section 8.17 Power-Down Modeson page 69.  
14. The Power Down does not perform any refresh operations.  
15. “X” means “don't care(including floating around VREF) in Self Refresh and Power Down. It also applies to Address pins.  
16. VREF (Both VREFDQ and VREFCA) must be maintained during Self Refresh operation. VREFDQ supply may be turned OFF and  
VREFDQ may take any value between VSS and VDD during Self Refresh operation, provided that VREFDQ is valid and stable prior  
to CKE going back High and that first Write operation or first Write Leveling Activity may not occur earlier than 512 nCK after exit  
from Self Refresh.  
17. If all banks are closed at the conclusion of the read, write or precharge command, then Precharge Power Down is entered,  
otherwise Active Power Down is entered.  
18. ‘Idle state’ is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress, CKE is high, and all timings  
from previous operations are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS, etc.) as well as all Self Refresh exit and Power  
Down Exit parameters are satisfied (tXS, tXP, tXPDLL, etc).  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 96 -  
W632GU6MB  
9.3 Simplified State Diagram  
This simplified State Diagram is intended to provide an overview of the possible state transitions and  
the commands to control them. In particular, situations involving more than one bank, the enabling or  
disabling of on-die termination, and some other events are not captured in full detail.  
CKE_ L  
Power  
Applied  
MRS, MPR,  
Write  
Leveling  
Power  
on  
Reset  
Procedure  
Self  
Refresh  
Initialization  
ZQCL  
SRE  
MRS  
Idle  
SRX  
From any state  
RESET  
ZQCL, ZQCS  
REF  
ZQ  
Calibration  
Refreshing  
PDE  
PDX  
ACT  
Active  
Power  
Down  
Precharge  
Power  
Down  
Activating  
PDX  
PDE  
CKE_L  
CKE_L  
Bank  
Active  
Write  
Read  
Write A  
Read A  
Read  
Read  
Write  
Writing  
Write A  
Reading  
Read A  
Write  
Write A  
PRE, PREA  
PRE, PREA PRE, PREA  
Reading  
Writing  
Precharging  
Automatic sequence  
Command sequence  
Figure 87 Simplified State Diagram  
Table 16 State Diagram Command Definitions  
Abbreviation  
Function  
Active  
Abbreviation  
Read  
Abbreviation  
Function  
Enter Power-down  
Exit Power-down  
Self-Refresh entry  
Self-Refresh exit  
Multi-Purpose Register  
-
Function  
ACT  
PRE  
RD, RDS4, RDS8  
PDE  
PDX  
SRE  
SRX  
MPR  
-
Precharge  
Read A  
Write  
RDA, RDAS4, RDAS8  
WR, WRS4, WRS8  
WRA, WRAS4, WRAS8  
Start RESET Procedure  
ZQ Calibration Short  
PREA  
MRS  
REF  
Precharge All  
Mode Register Set  
Refresh  
Write A  
RESET  
ZQCS  
ZQCL  
ZQ Calibration Long  
NOTE: See Command Truth Tableon page 94 for more details  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 97 -  
W632GU6MB  
10. ELECTRICAL CHARACTERISTICS  
10.1 Absolute Maximum Ratings  
PARAMETER  
Voltage on VDD pin relative to VSS  
Voltage on VDDQ pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
SYMBOL  
RATING  
-0.4 ~ 1.975  
-0.4 ~ 1.975  
-0.4 ~ 1.975  
-55 ~ 150  
UNIT NOTES  
VDD  
VDDQ  
V
V
1, 3  
1, 3  
1
VIN, VOUT  
TSTG  
V
°C  
1, 2  
Notes:  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions,  
please refer to JESD51-2 standard.  
3. VDD and VDDQ must be within 300 mV of each other at all times. VREFDQ and VREFCA must not greater than 0.6 x VDDQ.  
When VDD and VDDQ are less than 500 mV, VREFDQ and VREFCA may be equal to or less than 300 mV.  
10.2 Operating Temperature Condition  
PARAMETER  
SYMBOL RATING  
UNIT NOTES  
0 ~ 85  
TOPER  
°C  
°C  
°C  
°C  
°C  
°C  
1, 2  
1, 2, 4  
1, 3  
Commercial operating temperature range (for -09/-11/-12/-15)  
0 ~95  
-40 ~ 85  
TOPER  
Industrial operating temperature range (for 09I/11I/12I/15I)  
-40 ~ 95  
1, 3, 4  
1, 3  
-40 ~ 85  
TOPER  
Industrial Plus operating temperature range (for 09J/11J/12J/15J)  
-40 ~ 105  
1, 3, 4  
Notes:  
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement  
conditions, please refer to the JEDEC document JESD51-2.  
2. During operation, the DRAM case temperature must be maintained between 0 to 95°C for Commercial parts under all  
specification parameters.  
3. During operation, the DRAM case temperature must be maintained between -40 to 95°C for Industrial parts and -40 to 105°C  
for Industrial Plus parts under all specification parameters.  
4. Some applications require operation of the 85°C < TCASE 105°C operating temperature. Full specifications are provided in  
this range, but the following additional conditions apply:  
(a) Refresh commands have to be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µS.  
(b) If Self-Refresh operation is required in 85°C < TCASE 105°C operating temperature range, than it is mandatory to  
either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b)  
or enable the Auto Self-Refresh mode (ASR) (MR2 A6 = 1b, MR2 A7 is don't care).  
10.3 DC & AC Operating Conditions  
10.3.1 Recommended DC Operating Conditions  
SYM.  
PARAMETER  
Supply Voltage  
MIN.  
1.283  
1.283  
TYP.  
1.35  
1.35  
MAX.  
1.45  
UNIT  
NOTES  
1, 2  
VDD  
V
V
VDDQ Supply Voltage for Output  
1.45  
1, 2  
External Calibration Resistor connected  
from ZQ ball to ground  
RZQ  
237.6  
240.0  
242.4  
Ω
3
Notes:  
1. Under all conditions VDDQ must be less than or equal to VDD.  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
3. The external calibration resistor RZQ can be time-shared among DRAMs in special applications.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 98 -  
W632GU6MB  
10.4 Input and Output Leakage Currents  
SYMBOL  
PARAMETER  
Input Leakage Current  
MIN.  
MAX.  
UNIT  
NOTES  
-2  
2
µA  
1
IIL  
(0V VIN VDD)  
Output Leakage Current  
-5  
5
µA  
2
IOL  
(Output disabled, 0V VOUT VDDQ)  
Notes:  
1. All other balls not under test = 0 V.  
2. All DQ, DQS and DQS# are in high-impedance mode.  
10.5 Interface Test Conditions  
Figure 88 represents the effective reference load of 25 ohms used in defining the relevant AC timing  
parameters of the device as well as output slew rate measurements.  
It is not intended as a precise representation of any particular system environment or a depiction of  
the actual load presented by a production tester. System designers should use IBIS or other  
simulation tools to correlate the timing reference load to a system environment. Manufacturers  
correlate to their production test conditions, generally one or more coaxial transmission lines  
terminated at the tester electronics.  
VDDQ  
DQ  
DQS  
DQS#  
CK, CK#  
VTT = VDDQ/2  
DUT  
25Ω  
Timing reference point  
Figure 88 Reference Load for AC Timings and Output Slew Rates  
The Timing Reference Points are the idealized input and output nodes / terminals on the outside of the  
packaged SDRAM device as they would appear in a schematic or an IBIS model.  
The output timing reference voltage level for single ended signals is the cross point with VTT.  
The output timing reference voltage level for differential signals is the cross point of the true (e.g.  
DQSL, DQSU) and the complement (e.g. DQSL#, DQSU#) signal.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 99 -  
W632GU6MB  
10.6 DC and AC Input Measurement Levels  
10.6.1 DC and AC Input Levels for Single-Ended Command and Address Signals  
Table 17 Single-Ended DC and AC Input Levels for Command and Address  
DDR3L-1333/1600  
DDR3L-1866/2133  
PARAMETER  
SYMBOL  
UNIT NOTES  
MIN.  
VREF + 0.09  
VSS  
MAX.  
VDD  
MIN.  
VREF + 0.09  
VSS  
MAX.  
VDD  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
VIH.CA(DC90)  
VIL.CA(DC90)  
VIH.CA(AC160)  
VIL.CA(AC160)  
VIH.CA(AC135)  
VIL.CA(AC135)  
VIH.CA(AC125)  
VIL.CA(AC125)  
V
V
V
V
V
V
V
V
1, 5  
VREF - 0.09  
Note 2  
VREF - 0.09  
-
1, 6  
VREF + 0.160  
Note 2  
-
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
VREF - 0.160  
Note 2  
-
-
VREF + 0.135  
Note 2  
VREF + 0.135  
Note 2  
Note 2  
VREF - 0.135  
-
VREF - 0.135  
Note 2  
-
VREF + 0.125  
Note 2  
-
-
VREF - 0.125  
Reference Voltage for  
ADD, CMD inputs  
VREFCA(DC)  
0.49 x VDD  
0.51 x VDD  
0.49 x VDD  
0.51 x VDD  
V
3, 4, 9  
Notes:  
1. For input only pins except RESET#. VREF = VREFCA(DC).  
2. See section 10.12 Overshoot and Undershoot Specificationson page 120.  
3. The AC peak noise on VREF may not allow VREF to deviate from VREFCA(DC) by more than ± 1% VDD (for reference: approx.  
± 13.5 mV).  
4. For reference: approx. VDD/2 ± 13.5 mV.  
5. VIH(DC) is used as a simplified symbol for VIH.CA(DC90).  
6. VIL(DC) is used as a simplified symbol for VIL.CA(DC90).  
7. VIH(AC) is used as a simplified symbol for VIH.CA(AC160), VIH.CA(AC135) and VIH.CA(AC125); VIH.CA(AC160) value is used  
when VREF + 0.16V is referenced, VIH.CA(AC135) value is used when VREF + 0.135V is referenced and VIH.CA(AC125) value  
is used when VREF + 0.125V is referenced.  
8. VIL(AC) is used as a simplified symbol for VIL.CA(AC160), VIL.CA(AC135) and VIL.CA(AC125); VIL.CA(AC160) value is used when  
VREF - 0.16V is referenced, VIL.CA(AC135) value is used when VREF - 0.135V is referenced and VIL.CA(AC125) value is used  
when VREF - 0.125V is referenced.  
9. VREFCA(DC) is measured relative to VDD at the same point in time on the same device.  
10.6.2 DC and AC Input Levels for Single-Ended Data Signals  
Table 18 Single-Ended DC and AC Input Levels for DQ and DM  
DDR3L-1333/1600  
DDR3L-1866/2133  
PARAMETER  
SYMBOL  
UNIT NOTES  
MIN.  
VREF + 0.09  
VSS  
MAX.  
MIN.  
MAX.  
DC input logic high VIH.DQ(DC90)  
DC input logic low VIL.DQ(DC90)  
VDD  
VREF + 0.09  
VDD  
V
V
V
V
V
V
1, 5  
VREF - 0.09  
VSS  
VREF - 0.09  
1, 6  
AC input logic high VIH.DQ(AC135) VREF + 0.135  
Note 2  
-
-
-
-
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
AC input logic low VIL.DQ(AC135)  
AC input logic high VIH.DQ(AC130)  
AC input logic low VIL.DQ(AC130)  
Note 2  
VREF - 0.135  
-
-
-
-
VREF + 0.130  
Note 2  
Note 2  
VREF - 0.130  
Reference Voltage  
VREFDQ(DC)  
0.49 x VDD  
0.51 x VDD  
0.49 x VDD  
0.51 x VDD  
V
3, 4, 9  
for DQ, DM inputs  
Notes:  
1. VREF = VREFDQ(DC).  
2. See section 10.12 Overshoot and Undershoot Specificationson page 120.  
3. The AC peak noise on VREF may not allow VREF to deviate from VREFDQ(DC) by more than ± 1% VDD (for reference: approx.  
± 13.5 mV).  
4. For reference: approx. VDD/2 ± 13.5 mV.  
5. VIH(DC) is used as a simplified symbol for VIH.DQ(DC90).  
6. VIL(DC) is used as a simplified symbol for VIL.DQ(DC90).  
7. VIH(AC) is used as a simplified symbol for VIH.DQ(AC135) and VIH.DQ(AC130); VIH.DQ(AC135) value is used when VREF + 0.135V  
is referenced and VIH.DQ(AC130) value is used when VREF + 0.13V is referenced.  
8. VIL(AC) is used as a simplified symbol for VIL.DQ(AC135) and VIL.DQ(AC130); VIL.DQ(AC135) value is used when VREF - 0.135V  
is referenced and VIL.DQ(AC130) value is used when VREF - 0.13V is referenced.  
9. VREFDQ(DC) is measured relative to VDD at the same point in time on the same device.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 100 -  
W632GU6MB  
The DC-tolerance limits and AC-noise limits for the reference voltages VREFCA and VREFDQ are  
illustrated in Figure 89. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands  
for VREFCA and VREFDQ likewise).  
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g., 1 sec). This average  
has to meet the min/max requirements in Table 17. Furthermore VREF(t) may temporarily deviate from  
VREF(DC) by no more than ± 1% VDD.  
voltage  
VDD  
VREF(t)  
VREF AC-noise  
VREF(DC)max  
VDD/2  
VREF(DC)  
VREF(DC)min  
VSS  
time  
Figure 89 Illustration of VREF(DC) tolerance and VREF AC-noise limits  
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and VIL(DC) are  
dependent on VREF.  
VREFshall be understood as VREF(DC), as defined in Figure 89.  
This clarifies that DC-variations of VREF affect the absolute voltage a signal has to reach to achieve a  
valid high or low level and therefore the time to which setup and hold is measured. System timing and  
voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-  
eye of the input signals.  
This also clarifies that the DRAM setup/hold specification and derating values need to include time  
and voltage associated with VREF AC-noise. Timing and voltage effects due to AC-noise on VREF up  
to the specified limit (± 1% of VDD) are included in DRAM timings and their associated deratings.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 101 -  
W632GU6MB  
10.6.3 Differential swing requirements for clock (CK - CK#) and strobe (DQS - DQS#)  
Table 19 Differential DC and AC Input Level  
DDR3L-1333/1600/1866/2133  
SYM.  
PARAMETER  
UNIT NOTES  
MIN.  
MAX.  
Differential input high  
Differential input low  
VIH.DIFF  
VIL.DIFF  
+0.180  
Note 3  
V
V
V
V
1
1
2
2
Note 3  
-0.180  
Differential input high AC  
Differential input low AC  
VIH.DIFF(AC)  
VIL.DIFF(AC)  
2 x (VIH(AC) - VREF)  
Note 3  
Note 3  
2 x (VIL(AC) - VREF)  
Notes:  
1. Used to define a differential signal slew-rate.  
2. For CK - CK# use VIH.CA(AC)/VIL.CA(AC) of ADD/CMD and VREFCA; for DQSL, DQSL#, DQSU , DQSU# use  
VIH.DQ(AC)/VIL.DQ(AC) of DQs and VREFDQ; if a reduced AC-high or AC-low level is used for a signal group, then the  
reduced level applies also here.  
3. These values are not defined; however, the single-ended signals CK, CK#, DQSL, DQSL#, DQSU, DQSU# need to be within  
the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and  
undershoot. Refer to section 10.12 Overshoot and Undershoot Specificationson page 120.  
tDVAC  
VIHDIFF(AC)min  
VIHDIFFmin  
0
Half cycle  
VILDIFFmax  
VILDIFF(AC)max  
tDVAC  
time  
Figure 90 Definition of differential ac-swing and “time above AC-level” tDVAC  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 102 -  
W632GU6MB  
Table 20 Allowed time before ringback (tDVAC) for CK - CK# and DQS - DQS#  
DDR3L-1333/1600 DDR3L-1866/2133  
tDVAC [pS] @ tDVAC [pS] @ tDVAC [pS] @  
tDVAC [pS] @  
tDVAC [pS] @  
Slew Rate  
[V/nS]  
|VIH/LDIFF(AC)| = |VIH/LDIFF(AC)| = |VIH/LDIFF(AC)| = |VIH/LDIFF(AC)| = |VIH/LDIFF(AC)| =  
320mV 270mV 270mV 250mV 260mV  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min. Max.  
Min.  
Max.  
> 4.0  
4.0  
189  
189  
162  
109  
91  
-
-
-
-
-
-
-
-
-
-
201  
201  
179  
134  
119  
100  
76  
-
-
-
-
-
-
-
-
-
163  
163  
140  
95  
-
-
-
-
-
-
-
-
-
-
168  
168  
147  
105  
91  
176  
176  
154  
111  
97  
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
80  
1.6  
69  
62  
74  
78  
1.4  
40  
37  
52  
56  
1.2  
Note  
Note  
Note  
44  
5
22  
24  
1.0  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
< 1.0  
Note:  
Rising input signal shall become equal to or greater than VIH(AC) level and Falling input signal shall become equal to or less  
than VIL(AC) level.  
10.6.4 Single-ended requirements for differential signals  
Each individual component of a differential signal (CK, DQSL, DQSU, CK#, DQSL#, DQSU#) has also  
to comply with certain requirements for single-ended signals.  
CK and CK# have to approximately reach VSEHmin / VSELmax (approximately equal to the AC-levels  
(VIH.CA(AC) / VIL.CA(AC) ) for ADD/CMD signals) in every half-cycle.  
DQSL, DQSU, DQSL#, DQSU# have to reach VSEHmin / VSELmax (approximately the AC-levels  
(VIH.DQ(AC) / VIL.DQ(AC) ) for DQ signals) in every half-cycle preceding and following a valid transition.  
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if  
VIH.CA(AC135)/VIL.CA(AC135) is used for ADD/CMD signals, then these AC-levels apply also for the  
single-ended signals CK and CK#.  
Table 21 Single-ended levels for CK, DQSL, DQSU, CK#, DQSL# or DQSU#  
DDR3L-1333/1600/1866/2133  
PARAMETER  
SYMBOL  
VSEH  
UNIT  
NOTES  
MIN.  
(VDD/2) + 0.160  
(VDD/2) + 0.160  
Note 3  
MAX.  
Note 3  
Single-ended high level for strobes  
Single-ended high level for CK, CK#  
Single-ended low level for strobes  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
Note 3  
(VDD/2) - 0.160  
(VDD/2) - 0.160  
VSEL  
Single-ended low level for CK, CK#  
Note 3  
Notes:  
1. For CK, CK# use VIH.CA(AC) / VIL..CA(AC) of ADD/CMD; for strobes (DQSL, DQSL#, DQSU, DQSU#) use VIH.DQ(AC) /  
VIL.DQ(AC) of DQs.  
2. VIH.DQ(AC) / VIL.DQ(AC) for DQs is based on VREFDQ; VIH.CA(AC) / VIL.CA(AC) for ADD/CMD is based on VREFCA; if a  
reduced AC-high or AC-low level is used for a signal group, then the reduced level applies also here.  
3. These values are not defined; however, the single-ended signals CK, CK#, DQSL, DQSL#, DQSU, DQSU# need to be within  
the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and  
undershoot. Refer to section 10.12 Overshoot and Undershoot Specificationson page 120.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 103 -  
W632GU6MB  
VDD or VDDQ  
VSEHmin  
VSEH  
VDD/2 or VDDQ/2  
VSELmax  
CK or DQS  
VSEL  
VSS or VSSQ  
time  
Figure 91 Single-ended requirement for differential signals  
Note that, while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended  
components of differential signals have a requirement with respect to VDD/2; this is nominally the  
same. The transition of single-ended signals through the AC-levels is used to measure setup time. For  
single-ended components of differential signals the requirement to reach VSELmax, VSEHmin has no  
bearing on timing, but adds a restriction on the common mode characteristics of these signals.  
10.6.5 Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and  
strobe, each cross point voltage of differential input signals (CK, CK# and DQS, DQS#) must meet the  
requirements in Table 22. The differential input cross point voltage VIX is measured from the actual  
cross point of true and complement signals to the midlevel between of VDD and VSS.  
VDD  
CK#, DQS#  
VIX  
VDD/2  
VIX  
VIX  
CK, DQS  
VSEH  
VSEL  
VSS  
Figure 92 VIX Definition  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 104 -  
W632GU6MB  
Table 22 Cross point voltage for differential input signals (CK, DQS)  
DDR3L-1333/1600/1866/2133  
PARAMETER  
SYMBOL  
UNIT  
NOTES  
MIN.  
MAX.  
Differential Input Cross Point Voltage  
relative to VDD/2 for CK, CK#  
VIX(CK)  
-150  
150  
mV  
mV  
1
Differential Input Cross Point Voltage  
relative to VDD/2 for DQS, DQS#  
VIX(DQS)  
-150  
150  
Note:  
1. The relation between VIX Min/Max and VSEL/VSEH should satisfy following.  
(VDD/2) + VIX (Min) - VSEL ≥ 25mV  
VSEH - ((VDD/2) + VIX (Max)) ≥ 25mV  
10.6.6 Slew Rate Definitions for Single-Ended Input Signals  
See section 10.16.4 Address / Command Setup, Hold and Deratingon page 149 for single-  
ended slew rate definitions for address and command signals.  
See section 10.16.5 Data Setup, Hold and Slew Rate Deratingon page 156 for single-ended slew  
rate definitions for data signals.  
10.6.7 Slew Rate Definitions for Differential Input Signals  
Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and measured as shown  
in Table 23 and Figure 93.  
Table 23 Differential Input Slew Rate Definition  
Measured  
Description  
Defined by  
from  
to  
Differential input slew rate for rising edge  
(CK - CK# and DQS - DQS#)  
VIL.DIFFmax VIH.DIFFmin [VIH.DIFFmin - VIL.DIFFmax] / ΔTR.DIFF  
VIH.DIFFmin VIL.DIFFmax [VIH.DIFFmin - VIL.DIFFmax] / ΔTF.DIFF  
Differential input slew rate for falling edge  
(CK - CK# and DQS - DQS#)  
Note: The differential signal (i.e., CK - CK# and DQS - DQS#) must be linear between these thresholds  
ΔTR.DIFF  
VIH.DIFFmin  
0
VIL.DIFFmax  
ΔTF.DIFF  
Figure 93 Differential Input Slew Rate Definition for DQS, DQS# and CK, CK#  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 105 -  
W632GU6MB  
10.7 DC and AC Output Measurement Levels  
Table 24 Single-ended DC and AC Output Levels  
PARAMETER  
SYMBOL  
VOH(DC)  
VOM(DC)  
VOL(DC)  
VOH(AC)  
VOL(AC)  
VALUE  
UNIT NOTES  
DC output high measurement level (for IV curve linearity)  
DC output mid measurement level (for IV curve linearity)  
DC output low measurement level (for IV curve linearity)  
AC output high measurement level (for output slew rate)  
AC output low measurement level (for output slew rate)  
0.8 x VDDQ  
0.5 x VDDQ  
V
V
V
0.2 x VDDQ  
VTT + 0.1 x VDDQ  
VTT - 0.1 x VDDQ  
V
V
1
1
Note:  
1. The swing of ± 0.1 × VDDQ is based on approximately 50% of the static single-ended output high or low swing with a  
driver impedance of 34 Ω and an effective test load of 25 Ω to VTT = VDDQ/2.  
Table 25 Differential DC and AC Output Levels  
VALUE  
PARAMETER  
SYMBOL  
UNIT NOTES  
MIN.  
MAX.  
AC differential output high measurement level (for output  
slew rate)  
VOH.DIFF(AC)  
VOL.DIFF(AC)  
+0.2 x VDDQ  
-0.2 x VDDQ  
V
V
1
1
AC differential output low measurement level (for output  
slew rate)  
Note:  
1. The swing of ± 0.2 × VDDQ is based on approximately 50% of the static single-ended output high or low swing with a  
driver impedance of 34 Ω and an effective test load of 25 Ω to VTT = VDDQ/2 at each of the differential outputs.  
10.7.1 Output Slew Rate Definition and Requirements  
The slew rate definition depends if the signal is single-ended or differential. For the relevant AC output  
reference levels see above Table 24 and Table 25.  
Table 26 Output Slew Rate  
DDR3L-1333/1600/1866/2133  
PARAMETER  
SYMBOL  
UNIT  
NOTES  
MIN.  
1.75  
3.5  
MAX.  
51)  
Single-ended Output Slew Rate  
Differential Output Slew Rate  
SRQse  
SRQdiff  
V/nS  
V/nS  
1, 2, 3  
2, 3  
12  
Notes:  
1. In two cases, a maximum slew rate of 6 V/nS applies for a single DQ signal within a byte lane.  
- Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high  
to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e they stay at either high or low).  
- Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high  
to low or low to high) while all remaining DQ signals in the same byte lane are switching into the opposite direction (i.e.  
from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the  
regular maximum limit of 5 V/nS applies.  
2. Background for Symbol Nomenclature: SR: Slew Rate; Q: Query Output (like in DQ, which stands for Data-in, Query-  
Output); se: Single-ended Signals; diff: Differential Signals.  
3. For RON = RZQ/7 settings only.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 106 -  
W632GU6MB  
10.7.1.1 Single Ended Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is  
defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in Table 27  
and Figure 94.  
Table 27 Single-ended Output Slew Rate Definition  
Measured  
Description  
Defined by  
from  
to  
Single-ended output slew rate for rising edge  
Single-ended output slew rate for falling edge  
VOL(AC)  
VOH(AC)  
VOH(AC)  
VOL(AC)  
[VOH(AC) - VOL(AC)] / ΔTRse  
[VOH(AC) - VOL(AC)] / ΔTFse  
Note: Output slew rate is verified by design and characterization, and may not be subject to production test.  
ΔTRse  
VOH(AC)  
VTT  
VOL(AC)  
ΔTFse  
Figure 94 Single-ended Output Slew Rate Definition  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 107 -  
W632GU6MB  
10.7.1.2 Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is  
defined and measured between VOL.DIFFAC) and VOH.DIFF(AC) for differential signals as shown in Table  
28 and Figure 95.  
Table 28 Differential Output Slew Rate Definition  
Measured  
Description  
Defined by  
from  
to  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
VOL.DIFF(AC)  
VOH.DIFF(AC)  
VOH.DIFF(AC)  
VOL.DIFF(AC)  
[VOH.DIFF(AC) - VOL.DIFF(AC)] / ΔTRdiff  
[V0H.DIFF(AC) - VOL.DIFF(AC)] / ΔTFdiff  
Note: Output slew rate is verified by design and characterization, and may not be subject to production test.  
ΔTRdiff  
VOH.DIFF(AC)  
0
VOL.DIFF(AC)  
ΔTFdiff  
Figure 95 Differential Output Slew Rate Definition  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 108 -  
W632GU6MB  
10.8 34 Ohm Output Driver DC Electrical Characteristics  
A functional representation of the output buffer is shown in Figure 96. Output driver impedance RON is  
selected by bits “D.I.C” A1 and A5 in the MR1 Register. Four different values can be selected via MR1  
settings:  
RON34 = RZQ / 7 (nominal 34.3 Ω ±10% with nominal RZQ = 240 Ω)  
RON40 = RZQ / 6 (nominal 40.0 Ω ±10% with nominal RZQ = 240 Ω)  
The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows:  
VDDQ - VOut  
RONPu  
=
under the condition that RONPd is turned off  
IOut  
VOut  
RONPd  
=
under the condition that RONPu is turned off  
IOut  
Chip in Drive Mode  
Output Driver  
VDDQ  
Ipu  
RONpu  
To other  
circuitry  
DQ  
like RCV, ...  
Iout  
Vout  
RONpd  
Ipd  
VSSQ  
Figure 96 Output Driver: Definition of Voltages and Currents  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 109 -  
W632GU6MB  
Table 29 Output Driver DC Electrical Characteristics, assuming RZQ = 240 Ω; entire operating  
temperature range; after proper ZQ calibration  
RONNom  
Resistor  
VOUT  
MIN.  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
NOM. MAX.  
UNIT NOTES  
VOLDC = 0.2 × VDDQ  
VOMDC = 0.5 × VDDQ  
VOHDC = 0.8 × VDDQ  
VOLDC = 0.2 × VDDQ  
VOMDC = 0.5 × VDDQ  
VOHDC = 0.8 × VDDQ  
VOLDC = 0.2 × VDDQ  
VOMDC = 0.5 × VDDQ  
VOHDC = 0.8 × VDDQ  
VOLDC = 0.2 × VDDQ  
VOMDC = 0.5 × VDDQ  
VOHDC = 0.8 × VDDQ  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
RON34Pd  
34 Ω  
RON34Pu  
RON40Pd  
RON40Pu  
40 Ω  
Mismatch between pull-up and pull-down,  
MMPuPd  
VOMDC = 0.5 × VDDQ  
-10  
+10  
%
1, 2, 4  
Notes:  
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance  
limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity.  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.  
3. Pull-down and pull-up output driver impedances are recommended to be calibrated at 0.5 × VDDQ. Other calibration  
schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 × VDDQ and 0.8 × VDDQ.  
4. Measurement definition for mismatch between pull-up and pull-down, MMPuPd:  
Measure RONPu and RONPd, both at 0.5 * VDDQ:  
RONPu - RONPd  
MMPuPd  
=
x 100%  
RONNom  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 110 -  
W632GU6MB  
10.8.1 Output Driver Temperature and Voltage sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to Table 30  
and Table 31.  
ΔT = T - T(@calibration); ΔV= VDDQ - VDDQ(@calibration); VDD = VDDQ  
Note: dRONdT and dRONdV are not subject to production test but are verified by design and characterization.  
Table 30 Output Driver Sensitivity Definition  
MIN.  
MAX.  
UNIT  
RZQ/7  
RZQ/7  
RZQ/7  
RONPU@ VOHDC  
RON@ VOMDC  
RONPD@ VOLDC  
0.6 - dRONdTH*|ΔT| - dRONdVH*|ΔV|  
0.9 - dRONdTM*|ΔT| - dRONdVM*|ΔV|  
0.6 - dRONdTL*|ΔT| - dRONdVL*|ΔV|  
1.1 + dRONdTH*|ΔT| + dRONdVH*|ΔV|  
1.1 + dRONdTM*|ΔT| + dRONdVM*|ΔV|  
1.1 + dRONdTL*|ΔT| + dRONdVL*|ΔV|  
Table 31 Output Driver Voltage and Temperature Sensitivity  
DDR3L-1333 DDR3L-1600/1866/2133  
Speed Bin  
UNIT  
MIN.  
MAX.  
1.5  
MIN.  
MAX.  
1.5  
dRONdTM  
dRONdVM  
dRONdTL  
dRONdVL  
dRONdTH  
dRONdVH  
0
0
0
0
0
0
0
0
0
0
0
0
%/°C  
%/mV  
%/°C  
%/mV  
%/°C  
%/mV  
0.15  
1.5  
0.13  
1.5  
0.15  
1.5  
0.13  
1.5  
0.15  
0.13  
Note: These parameters may not be subject to production test. They are verified by design and characterization.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 111 -  
W632GU6MB  
10.9 On-Die Termination (ODT) Levels and Characteristics  
10.9.1 ODT Levels and I-V Characteristics  
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of the MR1 Register.  
ODT is applied to the DQ, DM and DQS/DQS# pins.  
A functional representation of the on-die termination is shown in Figure 97. The individual pull-up and  
pull-down resistors (RTTPu and RTT ) are defined as follows:  
Pd  
VDDQ -VOut  
RTTPu  
RTTPd  
=
=
under the condition that RTTPd is turned off  
under the condition that RTTPu is turned off  
IOut  
VOut  
IOut  
Chip in Termination Mode  
ODT  
VDDQ  
Ipu  
RTTpu  
Iout = IPd - IPu  
To other  
circuitry  
DQ  
like RCV, ...  
Iout  
Vout  
RTTpd  
Ipd  
VSSQ  
Figure 97 On-Die Termination: Definition of Voltages and Currents  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 112 -  
W632GU6MB  
10.9.2 ODT DC Electrical Characteristics  
An overview about the specification requirements for RTT and ΔVM is provided in Table 32.  
Table 32 ODT DC Impedance and Mid-Level Requirements  
MR1 A9, A6, A2  
0, 1, 0  
RTT  
120 Ω  
60 Ω  
40 Ω  
30 Ω  
20 Ω  
Resistor  
RTT120  
RTT60  
Vout  
Min. Nom. Max.  
Unit  
RZQ/2  
RZQ/4  
RZQ/6  
RZQ/8  
RZQ/12  
%
Notes  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4, 5  
0.9  
0.9  
0.9  
0.9  
0.9  
-5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.65  
1.65  
1.65  
1.65  
1.65  
+5  
0, 0, 1  
0, 1, 1  
RTT40  
VIL(AC) to VIH(AC)  
1, 0, 1  
RTT30  
1, 0, 0  
RTT20  
Deviation of VM with respect to VDDQ/2, ΔVM  
Notes:  
1. With RZQ = 240 Ω.  
2. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance  
limits if temperature or voltage changes after calibration, see the following section ODT temperature and voltage sensitivity.  
3. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.  
4. Measurement definition for RTT :  
Apply VIH(AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test and measure current  
I(VIL(AC)) respectively. Calculate RTT as follows:  
RTT = [VIH(AC) - VIL(AC)] / [I (VIH(AC)) - I (VIL(AC))]  
5. Measurement definition for VM and ΔVM:  
Measure voltage (VM) at test pin (midpoint) with no load. Calculate ΔVM as follows:  
ΔVM = (2 × VM / VDDQ - 1) × 100%.  
10.9.3 ODT Temperature and Voltage sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to Table 33  
and Table 34. The following definitions are used:  
ΔT = T - T (@calibration);ΔV = VDDQ- VDDQ (@calibration); VDD = VDDQ  
Table 33 ODT Sensitivity Definition  
SYMBOL  
MIN.  
MAX.  
UNIT  
RTT  
0.9 - dRTTdT × |ΔT| - dRTTdV × |ΔV|  
1.6 + dRTTdT × |ΔT| + dRTTdV × |ΔV|  
RZQ/2,4,6,8,12  
Table 34 ODT Voltage and Temperature Sensitivity  
SYMBOL  
dRTTdT  
MIN.  
MAX.  
1.5  
UNIT  
%/°C  
%/mV  
0
0
dRTTdV  
0.15  
Note: These parameters may not be subject to production test. They are verified by design and characterization  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 113 -  
W632GU6MB  
10.9.4 Design guide lines for RTTPU and RTTPD  
Table 35 provides an overview of the ODT DC electrical pull-up and pull-down characteristics. The  
values are not specification requirements, but can be used as design guide lines.  
Table 35 ODT DC Electrical Pull-Down and Pull-Up Characteristics, assuming RZQ = 240 Ω ± 1%  
entire operating temperature range; after proper ZQ calibration  
MR1 A9, A6, A2  
0, 1, 0  
RTT  
120 Ω, RTT120PD240  
60 Ω, RTT60PD120  
Resistor  
Vout  
Min. Nom. Max.  
Unit  
Notes  
,
VOLDC = 0.2 × VDDQ  
VOMDC = 0.5 × VDDQ  
VOHDC = 0.8 × VDDQ  
0.6  
0.9  
0.9  
1.0 1.15 RZQ/TISFPUPD 1, 2, 3, 4, 5  
1.0 1.15 RZQ/TISFPUPD 1, 2, 3, 4, 5  
1.0 1.45 RZQ/TISFPUPD 1, 2, 3, 4, 5  
0, 0, 1  
,
0, 1, 1  
40 Ω, RTT40PD80  
30 Ω, RTT30PD60  
20 Ω RTT20PD40  
,
,
1, 0, 1  
1, 0, 0  
RTT120PU240  
RTT60PU120  
,
VOLDC = 0.2 × VDDQ  
VOMDC = 0.5 × VDDQ  
VOHDC = 0.8 × VDDQ  
0.9  
0.9  
0.6  
1.0 1.45 RZQ/TISFPUPD 1, 2, 3, 4, 5  
1.0 1.15 RZQ/TISFPUPD 1, 2, 3, 4, 5  
1.0 1.15 RZQ/TISFPUPD 1, 2, 3, 4, 5  
,
RTT40PU80  
RTT30PU60  
RTT20PU40  
,
,
Notes:  
1. TISFPUPD: Termination Impedance Scaling Factor for Pull-Up and Pull-Down path:  
TISFPUPD = 1 for RTT120PU/PD240  
TISFPUPD = 2 for RTT60PU/PD120  
TISFPUPD = 3 for RTT40PU/PD80  
TISFPUPD = 4 for RTT30PU/PD60  
TISFPUPD = 6 for RTT20PU/PD40  
2. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance  
limits if temperature or voltage changes after calibration, see the above section ODT temperature and voltage sensitivity.  
3. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.  
4. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5 × VDDQ. Other calibration schemes may be  
used to achieve the linearity spec shown above, e.g. calibration at 0.2 × VDDQ and 0.8 × VDDQ.  
5. Not a specification requirement, but a design guide line.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 114 -  
W632GU6MB  
10.10 ODT Timing Definitions  
10.10.1 Test Load for ODT Timings  
Different than for timing measurements, the reference load for ODT timings is defined in Figure 98.  
VDDQ  
CK, CK#  
DQ, DM  
VTT = VSSQ  
DUT  
DQS, DQS#  
RTT = 25Ω  
VSSQ  
Timing reference point  
Figure 98 ODT Timing Reference Load  
10.10.2 ODT Timing Definitions  
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 36 and subsequent figures.  
Measurement reference settings are provided in Table 37.  
Table 36 ODT Timing Definitions  
Symbol  
Begin Point Definition  
End Point Definition  
Figure  
Rising edge of CK - CK# defined by the end  
point of ODTLon  
tAON  
Extrapolated point at VSSQ  
Figure 99  
Rising edge of CK - CK# with ODT being first  
registered high  
tAONPD  
tAOF  
Extrapolated point at VSSQ  
Figure 100  
Figure 101  
Figure 102  
Figure 103  
Rising edge of CK - CK# defined by the end  
point of ODTLoff  
End point: Extrapolated point at VRtt_Nom  
End point: Extrapolated point at VRtt_Nom  
Rising edge of CK - CK# with ODT being first  
registered low  
tAOFPD  
tADC  
Rising edge of CK - CK# defined by the end End point: Extrapolated point at VRtt_WR and  
point of ODTLcnw, ODTLcwn4 or ODTLcwn8 VRtt_Nom respectively  
Table 37 Reference Settings for ODT Timing Measurements  
Measured Parameter  
Rtt_Nom Setting  
RZQ/4  
Rtt_WR Setting  
VSW1 [V]  
0.05  
VSW2 [V]  
NA  
NA  
0.10  
0.20  
0.10  
0.20  
0.10  
0.20  
0.10  
0.20  
0.25  
tAON  
RZQ/12  
RZQ/4  
0.10  
NA  
0.05  
tAONPD  
tAOF  
RZQ/12  
RZQ/4  
NA  
0.10  
NA  
0.05  
RZQ/12  
RZQ/4  
NA  
0.10  
NA  
0.05  
tAOFPD  
tADC  
RZQ/12  
RZQ/12  
NA  
0.10  
RZQ/2  
0.20  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 115 -  
W632GU6MB  
Begin point: Rising edge of CK CK#  
defined by the end point of ODTL on  
CK  
VTT  
CK#  
tAON  
TSW2  
TSW1  
VSW2  
DQ, DM  
VSW1  
DQS, DQS#  
VSSQ  
VSSQ  
End point: Extrapolated point at VSSQ  
Figure 99 Definition of tAON  
Begin point: Rising edge of CK - CK# with  
ODT being first registered high  
CK  
VTT  
CK#  
tAONPD  
TSW2  
TSW1  
VSW2  
DQ, DM  
VSW1  
DQS, DQS#  
VSSQ  
VSSQ  
End point: Extrapolated point at VSSQ  
Figure 100 Definition of tAONPD  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 116 -  
W632GU6MB  
Begin point: Rising edge of CK - CK#  
defined by the end point of ODTLoff  
CK  
VTT  
CK#  
tAOF  
End point: Extrapolated point at VRtt_Nom  
VRtt_Nom  
TSW2  
VSW2  
TSW1  
DQ, DM  
DQS, DQS#  
VSW1  
VSSQ  
Figure 101 Definition of tAOF  
Begin point: Rising edge of CK CK# with  
ODT being first registered low  
CK  
VTT  
CK#  
tAOFPD  
End point: Extrapolated point at VRtt_Nom  
VRtt_Nom  
VSW2  
TSW2  
TSW1  
DQ, DM  
DQS, DQS#  
VSW1  
VSSQ  
Figure 102 Definition of tAOFPD  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 117 -  
W632GU6MB  
Begin point: Rising edge of CK CK#  
Begin point: Rising edge of CK CK# defined by  
defined by the end point of ODTLcnw  
the end point of ODTLcwn4 or ODTLcwn8  
CK  
VTT  
CK#  
tADC  
tADC  
VRtt_Nom  
VRtt_Nom  
TSW21  
TSW2  
End point: Extrapolated point at VRtt_Nom  
VSW2  
TSW1  
VSW1  
DQ, DM  
DQS, DQS#  
TSW1  
VRtt_WR  
End point: Extrapolated point at VRtt_WR  
VSSQ  
Figure 103 Definition of tADC  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 118 -  
W632GU6MB  
10.11 Input/Output Capacitance  
DDR3L-1333 DDR3L-1600 DDR3L-1866 DDR3L-2133  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
PARAMETER  
SYMBOL  
UNIT NOTES  
Input/output capacitance  
(DQ, DM, DQS, DQS#)  
CIO  
CCK  
1.4  
0.8  
0
2.3  
1.4  
1.4  
0.8  
0
2.2  
1.4  
1.4  
0.8  
0
2.1  
1.3  
1.4  
0.8  
0
2.0  
1.3  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
1, 2, 3  
2, 3  
Input capacitance  
(CK and CK#)  
Delta of input capacitance  
(CK and CK#)  
CDCK  
0.15  
0.15  
1.3  
0.15  
0.15  
1.2  
0.15  
0.15  
1.2  
0.15  
0.15  
1.2  
2, 3, 4  
Delta of Input/Output capacitance  
(DQS and DQS#)  
CDDQS  
CI  
0
0
0
0
2, 3, 5  
Input capacitance  
(CTRL, ADD, CMD input-only pins)  
0.75  
-0.4  
-0.4  
0.75  
-0.4  
-0.4  
0.75  
-0.4  
-0.4  
0.75  
-0.4  
-0.4  
2, 3, 6  
Delta of input capacitance  
(All CTRL input-only pins)  
CDI_CTRL  
CDI_ADD_CMD  
0.2  
0.2  
0.2  
0.2  
2, 3, 7, 8  
2, 3, 9, 10  
Delta of input capacitance  
(All ADD/CMD input-only pins)  
0.4  
0.4  
0.4  
0.4  
Delta of Input/output capacitance  
(DQ, DM, DQS, DQS#)  
CDIO  
CZQ  
-0.5  
0.3  
3
-0.5  
0.3  
3
-0.5  
0.3  
3
-0.5  
0.3  
3
pF  
pF  
2, 3, 11  
2, 3, 12  
Input/output capacitance of ZQ signal  
Notes:  
1. Although the DM signals have different functions, the loading matches DQ and DQS.  
2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to  
JEP147 (Procedure for measuring input capacitance using a vector network analyzer (VNA) with VDD, VDDQ, VSS, VSSQ applied and all  
other pins floating (except the ball under test, CKE, RESET# and ODT as necessary). VDD=VDDQ=1.35V, VBIAS=VDD/2 and on-die  
termination off.  
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here.  
4. Absolute value of CCK-CCK#.  
5. Absolute value of CIO(DQS)-CIO(DQS#).  
6. CI applies to ODT, CS#, CKE, A0-A13, BA0-BA2, RAS#, CAS#, WE#.  
7. CDI_CTRL applies to ODT, CS# and CKE.  
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK#)).  
9. CDI_ADD_CMD applies to A0-A13, BA0-BA2, RAS#, CAS# and WE#.  
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK#)).  
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS#)).  
12. Maximum external load capacitance on ZQ signal: 5 pF.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 119 -  
W632GU6MB  
10.12 Overshoot and Undershoot Specifications  
10.12.1 AC Overshoot /Undershoot Specification for Address and Control Pins:  
Applies to A0-A13, BA0-BA2, CS#, RAS#, CAS#, WE#, CKE, ODT  
DDR3L- DDR3L- DDR3L- DDR3L-  
PARAMETER  
UNIT  
1333  
0.4  
1600  
0.4  
1866  
0.4  
2133  
0.4  
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDD  
V
0.4  
0.4  
0.4  
0.4  
V
0.4  
0.33  
0.33  
0.28  
0.28  
0.25  
0.25  
V-nS  
V-nS  
Maximum undershoot area below VSS  
0.4  
10.12.2 AC Overshoot /Undershoot Specification for Clock, Data, Strobe and Mask Pins:  
Applies to CK, CK#, DQ, DQS, DQS#, DM  
DDR3L- DDR3L- DDR3L- DDR3L-  
PARAMETER  
UNIT  
1333  
0.4  
1600  
0.4  
1866  
0.4  
2133  
0.4  
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDDQ  
V
0.4  
0.4  
0.4  
0.4  
V
0.15  
0.15  
0.13  
0.13  
0.11  
0.11  
0.10  
0.10  
V-nS  
V-nS  
Maximum undershoot area below VSSQ  
Maximum Amplitude  
Overshoot Area  
VDD/VDDQ  
VSS/VSSQ  
Volts (V)  
Undershoot Area  
Maximum Amplitude  
Time (nS)  
Figure 104 AC Overshoot and Undershoot Definition  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 120 -  
W632GU6MB  
10.13 IDD and IDDQ Specification Parameters and Test Conditions  
10.13.1 IDD and IDDQ Measurement Conditions  
In this section, IDD and IDDQ measurement conditions such as test load and patterns are defined.  
Figure 105 shows the setup and test load for IDD and IDDQ measurements.  
IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W,  
IDD5B, IDD6, IDD6ET and IDD7) are measured as time-averaged currents with all VDD balls of the  
DDR3L SDRAM under test tied together. Any IDDQ current is not included in IDD currents.  
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all  
VDDQ balls of the DDR3L SDRAM under test tied together. Any IDD current is not included in IDDQ  
currents.  
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3L SDRAM.  
They can be used to support correlation of simulated IO power to actual IO power as  
outlined in Figure 106. In DRAM module application, IDDQ cannot be measured separately  
since VDD and VDDQ are using one merged-power layer in Module PCB.  
For IDD and IDDQ measurements, the following definitions apply:  
“0” and “LOW” is defined as VIN VILAC(max).  
“1” and “HIGH” is defined as VIN VIHAC(min).  
MID-LEVEL” is defined as inputs are VREF = VDD / 2.  
Timings used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 38.  
Basic IDD and IDDQ Measurement Conditions are described in Table 39.  
Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 40 through Table 47.  
IDD Measurements are done after properly initializing the DDR3L SDRAM. This includes but is not  
limited to setting  
RON = RZQ/7 (34 Ohm in MR1);  
Qoff = 0b (Output Buffer enabled in MR1);  
Rtt_Nom = RZQ/6 (40 Ohm in MR1);  
Rtt_WR = RZQ/2 (120 Ohm in MR2);  
Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time  
before actual IDD or IDDQ measurement is started.  
Define D = {CS#, RAS#, CAS#, WE# } := {HIGH, LOW, LOW, LOW}  
Define D# = {CS#, RAS#, CAS#, WE# } := {HIGH, HIGH, HIGH, HIGH}  
Table 38 Timings used for IDD and IDDQ Measurement-Loop Patterns  
Speed Bin  
DDR3L-1333  
9-9-9  
DDR3L-1600  
11-11-11  
DDR3L-1866  
13-13-13  
DDR3L-2133  
14-14-14  
CL-nRCD-nRP  
Unit  
Part Number Extension  
-15/15I/15J  
-12/12I/12J  
-11/11I/11J  
-09/09I/09J  
tCK  
CL  
1.5  
9
1.25  
11  
11  
39  
28  
11  
32  
6
1.07  
13  
13  
45  
32  
13  
33  
6
0.938  
14  
nS  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nRCD  
nRC  
9
14  
33  
24  
9
50  
nRAS  
nRP  
36  
14  
nFAW  
nRRD  
nRFC 2 Gb  
30  
5
38  
7
107  
128  
150  
172  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 121 -  
W632GU6MB  
(optional)  
IDD  
IDDQ  
VDD  
VDDQ  
DDR3  
SDRAM  
RESET#  
CK/CK#  
CKE  
CS#  
RTT = 25 Ω  
VDDQ / 2  
DQS, DQS#, DQ, DM  
RAS#, CAS#, WE#  
A, BA  
ODT  
ZQ  
VSS  
VSSQ  
NOTE: DIMM level Output test load condition may be different from above.  
Figure 105 Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements  
Application specific  
memory channel  
IDDQ Test Load  
environment  
Channel IO  
Power  
simulation  
IDDQ  
Measurement  
IDDQ  
Simulation  
Correlation  
Correlation  
Channel IO Power  
Number  
Figure 106 Correlation from simulated Channel IO Power to actual Channel IO Power  
supported by IDDQ Measurement  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 122 -  
W632GU6MB  
Table 39 Basic IDD and IDDQ Measurement Conditions  
DESCRIPTION  
SYM.  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 38; BL: 8(1); AL: 0; CS#: High  
between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling according  
to Table 40; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: Cycling with one bank active at  
a time: 0,0,1,1,2,2,... (see Table 40); Output Buffer and RTT: Enabled in Mode Registers(2); ODT  
Signal: stable at 0; Pattern Details: see Table 40  
IDD0  
Operating One Bank Active-Read-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 38; BL: 8(1,6); AL: 0; CS#:  
High between ACT, RD and PRE; Command, Address, Bank Address Inputs, Data IO: partially  
toggling according to Table 41; DM: stable at 0; Bank Activity: Cycling with one bank active at a  
time: 0,0,1,1,2,2,... (see Table 41); Output Buffer and RTT: Enabled in Mode Registers(2); ODT  
Signal: stable at 0; Pattern Details: see Table 41  
IDD1  
Precharge Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 38; BL: 8(1); AL: 0; CS#: stable at 1;  
Command, Address, Bank Address Inputs: partially toggling according to Table 42; Data IO:  
MID-LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in  
Mode Registers(2); ODT Signal: stable at 0; Pattern Details: see Table 42  
IDD2N  
Precharge Standby ODT Current  
CKE: High; External clock: On; tCK, CL: see Table 38; BL: 8(1); AL: 0; CS#: stable at 1;  
Command, Address, Bank Address Inputs: partially toggling according to Table 43; Data IO:  
MID-LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in  
Mode Registers(2); ODT Signal: toggling according to Table 43; Pattern Details: see Table 43  
IDD2NT  
IDDQ2NT  
IDD2P0  
Precharge Standby ODT IDDQ Current  
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current  
Precharge Power-Down Current Slow Exit  
CKE: Low; External clock: On; tCK, CL: see Table 38; BL: 8(1); AL: 0; CS#: stable at 1;  
Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM: stable at 0;  
Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers(2); ODT  
Signal: stable at 0; Precharge Power Down Mode: Slow Exit(3)  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On; tCK, CL: see Table 38; BL: 8(1); AL: 0; CS#: stable at 1;  
Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM: stable at 0;  
Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers(2); ODT  
Signal: stable at 0; Precharge Power Down Mode: Fast Exit(3)  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
Precharge Quiet Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 38; BL: 8(1); AL: 0; CS#: stable at 1;  
Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM: stable at 0;  
Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers(2); ODT  
Signal: stable at 0  
Active Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 38; BL: 8(1); AL: 0; CS#: stable at 1;  
Command, Address, Bank Address Inputs: partially toggling according to Table 42; Data IO:  
MID-LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in  
Mode Registers(2); ODT Signal: stable at 0; Pattern Details: see Table 42  
Active Power-Down Current  
CKE: Low; External clock: On; tCK, CL: see Table 38; BL: 8(1); AL: 0; CS#: stable at 1;  
Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM: stable at 0;  
Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers(2); ODT  
Signal: stable at 0  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 123 -  
W632GU6MB  
Basic IDD and IDDQ Measurement Conditions, continued  
SYM.  
DESCRIPTION  
Operating Burst Read Current  
CKE: High; External clock: On; tCK, CL: see Table 38; BL: 8(1,6); AL: 0; CS#: High between RD;  
Command, Address, Bank Address Inputs: partially toggling according to Table 44; Data IO:  
seamless read data burst with different data between one burst and the next one according to Table  
44; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks:  
0,0,1,1,2,2,... (see Table 44); Output Buffer and RTT: Enabled in Mode Registers(2); ODT Signal:  
stable at 0; Pattern Details: see Table 44  
IDD4R  
Operating Burst Read IDDQ Current  
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current  
Operating Burst Write Current  
CKE: High; External clock: On; tCK, CL: see Table 38; BL: 8(1); AL: 0; CS#: High between WR;  
Command, Address, Bank Address Inputs: partially toggling according to Table 45; Data IO:  
seamless write data burst with different data between one burst and the next one according to  
Table 45; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks:  
0,0,1,1,2,2,... (see Table 45); Output Buffer and RTT: Enabled in Mode Registers(2); ODT Signal:  
stable at HIGH; Pattern Details: see Table 45  
IDDQ4R  
IDD4W  
Burst Refresh Current  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 38; BL: 8(1); AL: 0; CS#: High between  
REF; Command, Address, Bank Address Inputs: partially toggling according to Table 46; Data  
IO: MID-LEVEL; DM: stable at 0; Bank Activity: REF command every nRFC (see Table 46);  
Output Buffer and RTT: Enabled in Mode Registers(2); ODT Signal: stable at 0; Pattern Details:  
see Table 46  
IDD5B  
IDD6  
Self Refresh Current: Normal Temperature Range  
Auto Self-Refresh (ASR): Disabled(4); Self-Refresh Temperature Range (SRT): Normal(5); CKE:  
Low; External clock: Off; CK and CK#: LOW; CL: see Table 38; BL: 8(1); AL: 0; CS#, Command,  
Address, Bank Address, Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: Self-Refresh  
operation; Output Buffer and RTT: Enabled in Mode Registers(2); ODT Signal: MID-LEVEL  
Self-Refresh Current: Extended Temperature Range  
Auto Self-Refresh (ASR): Disabled(4); Self-Refresh Temperature Range (SRT): Extended(5);  
CKE: Low; External clock: Off; CK and CK#: LOW; CL: see Table 38; BL: 8(1); AL: 0; CS#,  
Command, Address, Bank Address, Data IO: MID-LEVEL; DM: stable at 0; Bank Activity:  
Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode  
Registers(2); ODT Signal: MID-LEVEL  
IDD6ET  
Operating Bank Interleave Read Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 38; BL:  
8(1,6); AL: CL-1; CS#: High between ACT and RDA; Command, Address, Bank Address Inputs:  
partially toggling according to Table 47; Data IO: read data bursts with different data between one  
burst and the next one according to Table 47; DM: stable at 0; Bank Activity: two times interleaved  
cycling through banks (0, 1, ...7) with different addressing, see Table 47; Output Buffer and RTT:  
Enabled in Mode Registers(2); ODT Signal: stable at 0; Pattern Details: see Table 47  
IDD7  
IDD8  
RESET# Low Current  
RESET#: Low; External clock: Off; CK and CK#: Low; CKE: FLOATING; CS#, Command,  
Address, Bank Address, Data IO: FLOATING; ODT Signal: FLOATING  
RESET# Low current reading is valid once power is stable and RESET has been Low for at least  
1mS  
Notes:  
1. Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00b.  
2. Output Buffer Enable: set MR1 A[12] = 0b; set MR1 A[5,1] = 01b; Rtt_Nom enable: set MR1 A[9,6,2] = 011b; Rtt_WR  
enable: set MR2 A[10,9] = 10b.  
3. Precharge Power Down Mode: set MR0 A12=0b for Slow Exit or MR0 A12=1b for Fast Exit.  
4. Auto Self-Refresh (ASR): set MR2 A6 = 0b to disable or 1b to enable feature.  
5. Self-Refresh Temperature Range (SRT): set MR2 A7=0b for normal or 1b for extended temperature range.  
6. Read Burst Type: Nibble Sequential, set MR0 A[3] = 0b.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 124 -  
W632GU6MB  
Table 40 IDD0 Measurement-Loop Pattern1  
Data2  
0
1, 2  
ACT  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
3, 4  
D#, D#  
...  
Repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
Repeat pattern 1...4 until nRC - 1, truncate if necessary  
nRAS  
0
0
1
0
0
0
0
0
0
0
0
-
...  
0
1*nRC+0  
1*nRC+1, 2  
1*nRC+3, 4  
...  
ACT  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
D#, D#  
Repeat pattern nRC + 1,...,4 until nRC + nRAS - 1, truncate if necessary  
PRE  
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
0
F
0
-
Repeat pattern nRC + 1,...,4 until 2*nRC - 1, truncate if necessary  
Repeat Sub-Loop 0, use BA[2:0] = 1 instead  
Repeat Sub-Loop 0, use BA[2:0] = 2 instead  
Repeat Sub-Loop 0, use BA[2:0] = 3 instead  
Repeat Sub-Loop 0, use BA[2:0] = 4 instead  
Repeat Sub-Loop 0, use BA[2:0] = 5 instead  
Repeat Sub-Loop 0, use BA[2:0] = 6 instead  
Repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
Notes:  
1. DM must be driven LOW all the time. DQS, DQS# are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 125 -  
W632GU6MB  
Table 41 IDD1 Measurement-Loop Pattern1  
Data2  
0
1, 2  
ACT  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
3, 4  
D#, D#  
...  
Repeat pattern 1...4 until nRCD - 1, truncate if necessary  
RD  
Repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
Repeat pattern 1...4 until nRC - 1, truncate if necessary  
nRCD  
...  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
00000000  
nRAS  
0
0
1
0
0
0
0
0
-
...  
0
1*nRC+0  
1*nRC+1, 2  
1*nRC+3, 4  
...  
ACT  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
D#, D#  
Repeat pattern nRC + 1,...,4 until nRC + nRCD - 1, truncate if necessary  
RD  
Repeat pattern nRC + 1,...,4 until nRC + nRAS - 1, truncate if necessary  
PRE  
1*nRC+nRCD  
...  
0
1
0
1
0
0
0
0
0
F
0
0
00110011  
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
0
F
-
Repeat pattern nRC + 1,...,4 until 2*nRC - 1, truncate if necessary  
Repeat Sub-Loop 0, use BA[2:0] = 1 instead  
Repeat Sub-Loop 0, use BA[2:0] = 2 instead  
Repeat Sub-Loop 0, use BA[2:0] = 3 instead  
Repeat Sub-Loop 0, use BA[2:0] = 4 instead  
Repeat Sub-Loop 0, use BA[2:0] = 5 instead  
Repeat Sub-Loop 0, use BA[2:0] = 6 instead  
Repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
Notes:  
1. DM must be driven LOW all the time. DQS, DQS# are used according to RD Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 126 -  
W632GU6MB  
Table 42 IDD2N and IDD3N Measurement-Loop Pattern1  
Data2  
0
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
-
-
-
1
0
2
D#  
D#  
3
1
2
3
4
5
6
7
4-7  
Repeat Sub-Loop 0, use BA[2:0] = 1 instead  
Repeat Sub-Loop 0, use BA[2:0] = 2 instead  
Repeat Sub-Loop 0, use BA[2:0] = 3 instead  
Repeat Sub-Loop 0, use BA[2:0] = 4 instead  
Repeat Sub-Loop 0, use BA[2:0] = 5 instead  
Repeat Sub-Loop 0, use BA[2:0] = 6 instead  
Repeat Sub-Loop 0, use BA[2:0] = 7 instead  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
Notes:  
1. DM must be driven LOW all the time. DQS, DQS# are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
Table 43 IDD2NT and IDDQ2NT Measurement-Loop Pattern1  
Data2  
0
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
-
-
-
1
0
2
D#  
D#  
3
1
2
3
4
5
6
7
4-7  
Repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1  
Repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2  
Repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3  
Repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4  
Repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5  
Repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6  
Repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
Notes:  
1. DM must be driven LOW all the time. DQS, DQS# are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 127 -  
W632GU6MB  
Table 44 IDD4R and IDDQ4R Measurement-Loop Pattern1  
Data2  
0
RD  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
-
2, 3  
4
D#, D#  
RD  
-
0
00110011  
5
D
-
-
6, 7  
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
D#, D#  
1
2
3
4
5
6
7
Repeat Sub-Loop 0, but BA[2:0] = 1  
Repeat Sub-Loop 0, but BA[2:0] = 2  
Repeat Sub-Loop 0, but BA[2:0] = 3  
Repeat Sub-Loop 0, but BA[2:0] = 4  
Repeat Sub-Loop 0, but BA[2:0] = 5  
Repeat Sub-Loop 0, but BA[2:0] = 6  
Repeat Sub-Loop 0, but BA[2:0] = 7  
Notes:  
1. DM must be driven LOW all the time. DQS, DQS# are used according to RD Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
Table 45 IDD4W Measurement-Loop Pattern1  
Data2  
0
WR  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
-
2, 3  
4
D#, D#  
WR  
-
0
00110011  
5
D
-
-
6, 7  
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
D#, D#  
1
2
3
4
5
6
7
Repeat Sub-Loop 0, but BA[2:0] = 1  
Repeat Sub-Loop 0, but BA[2:0] = 2  
Repeat Sub-Loop 0, but BA[2:0] = 3  
Repeat Sub-Loop 0, but BA[2:0] = 4  
Repeat Sub-Loop 0, but BA[2:0] = 5  
Repeat Sub-Loop 0, but BA[2:0] = 6  
Repeat Sub-Loop 0, but BA[2:0] = 7  
Notes:  
1. DM must be driven LOW all the time. DQS, DQS# are used according to WR Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 128 -  
W632GU6MB  
Table 46 IDD5B Measurement-Loop Pattern1  
Data2  
0
1
2
0
1, 2  
REF  
D, D  
0
1
1
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
0
0
0
-
-
-
3, 4  
D#, D#  
5...8  
Repeat cycles 1...4, but BA[2:0] = 1  
Repeat cycles 1...4, but BA[2:0] = 2  
Repeat cycles 1...4, but BA[2:0] = 3  
Repeat cycles 1...4, but BA[2:0] = 4  
Repeat cycles 1...4, but BA[2:0] = 5  
Repeat cycles 1...4, but BA[2:0] = 6  
Repeat cycles 1...4, but BA[2:0] = 7  
9...12  
13...16  
17...20  
21...24  
25...28  
29...32  
33...nRFC - 1  
Repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary  
Notes:  
1. DM must be driven LOW all the time. DQS, DQS# are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 129 -  
W632GU6MB  
Table 47 IDD7 Measurement-Loop Pattern1  
ATTENTION: Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9  
Data2  
0
1
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
0
1
2
...  
Repeat above D Command until nRRD - 1  
nRRD  
nRRD+1  
nRRD+2  
...  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
Repeat above D Command until 2 * nRRD -1  
Repeat Sub-Loop 0, but BA[2:0] = 2  
Repeat Sub-Loop 1, but BA[2:0] = 3  
2
3
2*nRRD  
3*nRRD  
D
1
0
0
0
0
3
0
0
0
F
0
-
4
4*nRRD  
Assert and repeat above D Command until nFAW - 1, if necessary  
Repeat Sub-Loop 0, but BA[2:0] = 4  
5
6
7
8
nFAW  
nFAW+nRRD  
nFAW+2*nRRD  
nFAW+3*nRRD  
Repeat Sub-Loop 1, but BA[2:0] = 5  
Repeat Sub-Loop 0, but BA[2:0] = 6  
Repeat Sub-Loop 1, but BA[2:0] = 7  
D
1
0
0
0
0
7
0
0
0
F
0
-
9
nFAW+4*nRRD  
Assert and repeat above D Command until 2 * nFAW - 1, if necessary  
2*nFAW+0  
2*nFAW+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
10  
-
2*nFAW+2  
Repeat above D Command until 2 * nFAW + nRRD - 1  
2*nFAW+nRRD  
ACT  
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
-
2*nFAW+nRRD+1 RDA  
00000000  
-
11  
D
2*nFAW+nRRD+2  
Repeat above D Command until 2 * nFAW + 2 * nRRD -1  
Repeat Sub-Loop 10, but BA[2:0] = 2  
12  
13  
2*nFAW+2*nRRD  
2*nFAW+3*nRRD  
Repeat Sub-Loop 11, but BA[2:0] = 3  
D
1
0
0
0
0
3
0
0
0
0
0
-
14  
2*nFAW+4*nRRD  
Assert and repeat above D Command until 3 * nFAW - 1, if necessary  
Repeat Sub-Loop 10, but BA[2:0] = 4  
15  
16  
17  
18  
3*nFAW  
3*nFAW+nRRD  
3*nFAW+2*nRRD  
3*nFAW+3*nRRD  
Repeat Sub-Loop 11, but BA[2:0] = 5  
Repeat Sub-Loop 10, but BA[2:0] = 6  
Repeat Sub-Loop 11, but BA[2:0] = 7  
D
1
0
0
0
0
7
0
0
0
0
0
-
19  
3*nFAW+4*nRRD  
Assert and repeat above D Command until 4 * nFAW - 1, if necessary  
Notes:  
1. DM must be driven LOW all the time. DQS, DQS# are used according to RD Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 130 -  
W632GU6MB  
10.13.2 IDD Current Specifications  
DDR3L-  
1333  
DDR3L-  
1600  
DDR3L-  
1866  
DDR3L-  
2133  
Speed Bin  
SYM.  
UNIT  
Part Number Extension  
-15/15I/15J -12/12I/12J -11/11I/11J -09/09I/09J  
DEFINITION  
MAX.  
MAX.  
MAX.  
MAX.  
Operating One Bank Active-Precharge  
Current  
IDD0  
IDD1  
110  
120  
135  
140  
mA  
mA  
Operating One Bank Active-Read-  
Precharge Current  
130  
145  
160  
175  
Precharge Standby Current  
IDD2N  
IDD2NT  
IDD2P0  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
IDD4R  
IDD4W  
IDD5B  
IDD6*3  
80  
95  
85  
105  
16  
95  
115  
16  
100  
130  
16  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Precharge Standby ODT Current  
Precharge Power Down Current Slow Exit  
Precharge Power Down Current Fast Exit  
Precharge Quiet Standby Current  
Active Standby Current  
16  
45  
50  
55  
60  
80  
85  
95  
100  
110  
70  
85  
95  
100  
65  
Active Power Down Current  
55  
60  
Operating Burst Read Current  
Operating Burst Write Current  
Burst Refresh Current  
165  
185  
175  
11  
190  
210  
180  
11  
210  
235  
190  
11  
230  
260  
195  
11  
Normal Temperature Self-Refresh Current  
Extended Temperature Self-Refresh  
Current  
IDD6ET*4  
13  
13  
13  
13  
mA  
Operating Bank Interleave Read Current  
RESET# Low Current  
IDD7  
IDD8  
205  
10  
235  
10  
260  
10  
290  
10  
mA  
mA  
Notes:  
1. Max. values for IDD currents consider worst case conditions of process, temperature and voltage.  
2. The IDD values must be derated (increased) when operated outside the range 0°C TCASE 85°C:  
(a) When TCASE < 0°C: IDD2P0, IDD2P1 and IDD3P must be derated by 4%; IDD4R and IDD5W must be derated by 2%; and  
IDD6, IDD6ET and IDD7 must be derated by 7%.  
(b) When TCASE > 85°C: IDD0, IDD1, IDD2N, IDD2NT, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, and IDD5B must be derated by  
2%; and IDD2P0, IDD2P1 must be derated by 30%.  
3. Set MR2 A[6] = 0b, Auto Self-Refresh (ASR) disable; Set MR2 A[7] = 0b, Self-Refresh Temperature Range (SRT) disable for  
normal temperature range.  
4. Set MR2 A[6] = 0b, ASR disable; Set MR2 A[7] = 1b, SRT enable for extended temperature range.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 131 -  
W632GU6MB  
10.14 Clock Specification  
The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the  
min/max values may result in malfunction of the DDR3L SDRAM device.  
Definition for tCK(avg)  
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where  
each clock period is calculated from rising edge to rising edge.  
N
tCK(avg) =  
tCK / N  
j   
j1  
where  
N = 200  
Definition for tCK(abs)  
tCK(abs) is defined as the absolute clock period, as measured from one rising edge to the next  
consecutive rising edge. tCK(abs) is not subject to production test.  
Definition for tCH(avg) and tCL(avg)  
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high  
pulses.  
N
tCH(avg) =  
tCH / (N × tCK(avg))  
j   
j1  
where  
N = 200  
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low  
pulses.  
N
tCL(avg) =  
tCL / (N × tCK(avg))  
j   
j1  
where  
N = 200  
Definition for tJIT(per) and tJIT(per,lck)  
tJIT(per) is defined as the largest deviation of any signal tCK from tCK(avg).  
tJIT(per) = Min/max of {tCKi - tCK(avg) where i = 1 to 200}.  
tJIT(per) defines the single period jitter when the DLL is already locked.  
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.  
tJIT(per) and tJIT(per,lck) are not subject to production test.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 132 -  
W632GU6MB  
Definition for tJIT(cc) and tJIT(cc,lck)  
tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles.  
tJIT(cc) = Max of |{tCKi +1 - tCK }|.  
i
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.  
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.  
tJIT(cc) and tJIT(cc,lck) are not subject to production test.  
Definition for tERR(nper)  
tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not  
subject to production test.  
10.15 Speed Bins  
DDR3L SDRAM Speed Bins include tCK, tRCD, tRP, tRC and tRAS for each corresponding bin.  
10.15.1 DDR3L-1333 Speed Bin and Operating Conditions  
Speed Bin  
CL-nRCD-nRP  
DDR3L-1333  
9-9-9  
UNIT  
NOTES  
Part Number Extension  
Parameter  
-15/15I/15J  
Symbol  
Min.  
Max.  
Maximum operating frequency using maximum  
allowed settings for Sup_CL and Sup_CWL  
fCKMAX  
667  
20  
MHz  
nS  
13.5  
(13.125)*10  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tAA  
tRCD  
tRP  
13.5  
(13.125)*10  
nS  
13.5  
(13.125)*10  
nS  
49.5  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
nS  
(49.125)*10  
tRAS  
36  
9 * tREFI  
3.3  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nCK  
nCK  
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
3.0  
1, 2, 3, 4, 6  
CL = 5  
CWL = 6, 7  
Reserved  
5
CWL = 5  
2.5  
3.3  
1, 2, 3, 4, 6  
CL = 6  
CWL = 6, 7  
Reserved  
Reserved  
1.875 < 2.5  
5
5
CWL = 5  
CL = 7  
CL = 8  
CWL = 6  
tCK(AVG)  
1, 2, 3, 4, 6  
(Optional)*10  
Reserved  
Reserved  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5, 6  
CWL = 7  
CWL = 5, 6  
CWL = 7  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Sup_CL  
Sup_CWL  
5
5
1.875  
< 2.5  
1, 2, 3, 4, 6  
Reserved  
Reserved  
5
5
CL = 9  
1.5  
Reserved  
1.5 < 1.875  
< 1.875  
1, 2, 3, 4  
5
CL = 10  
1, 2, 3, 4  
Supported CL Settings  
Supported CWL Settings  
5, 6, (7), 8, 9, 10  
5, 6, 7  
Note:  
Field value contents in blue font or parentheses are optional AC parameter and CL setting. Detail descriptions refer to note 10.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 133 -  
W632GU6MB  
10.15.2 DDR3L-1600 Speed Bin and Operating Conditions  
Speed Bin  
CL-nRCD-nRP  
DDR3L-1600  
11-11-11  
UNIT  
NOTES  
Part Number Extension  
-12/12I/12J  
Parameter  
Symbol  
Min.  
Max.  
Maximum operating frequency using maximum  
allowed settings for Sup_CL and Sup_CWL  
fCKMAX  
800  
20  
MHz  
nS  
13.75  
(13.125)*10  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tAA  
tRCD  
tRP  
13.75  
(13.125)*10  
nS  
13.75  
(13.125)*10  
nS  
48.75  
(48.125)*10  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
nS  
tRAS  
35  
9 * tREFI  
3.3  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nCK  
nCK  
CWL = 5  
CL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
3.0  
1, 2, 3, 4, 7  
CWL = 6, 7, 8  
Reserved  
5
CWL = 5  
CL = 6  
2.5  
3.3  
1, 2, 3, 4, 7  
CWL = 6, 7, 8  
Reserved  
Reserved  
1.875 < 2.5  
(Optional)*10  
5
CWL = 5  
5
1, 2, 3, 4, 7  
CL = 7  
CL = 8  
CL = 9  
CWL = 6  
tCK(AVG)  
5
CWL = 7, 8  
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
Reserved  
5
5
CWL = 6  
1.875  
< 2.5  
1, 2, 3, 4, 7  
CWL = 7, 8  
CWL = 5, 6  
Reserved  
Reserved  
5
5
1.5  
< 1.875  
5
CWL = 7  
tCK(AVG)  
(Optional)*10  
Reserved  
Reserved  
1, 2, 3, 4, 7  
CWL = 8  
CWL = 5, 6  
CWL = 7  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Sup_CL  
Sup_CWL  
5
5
CL =10  
CL =11  
1.5  
< 1.875  
1, 2, 3, 4, 7  
CWL = 8  
Reserved  
Reserved  
5
5
CWL = 5, 6, 7  
CWL = 8  
1.25  
< 1.5  
1, 2, 3, 4  
Supported CL Settings  
Supported CWL Settings  
5, 6, (7), 8, (9), 10, 11  
5, 6, 7, 8  
Note:  
Field value contents in blue font or parentheses are optional AC parameter and CL setting. Detail descriptions refer to note 10.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 134 -  
W632GU6MB  
10.15.3 DDR3L-1866 Speed Bin and Operating Conditions  
Speed Bin  
CL-nRCD-nRP  
DDR3L-1866  
13-13-13  
UNIT  
NOTES  
Part Number Extension  
-11/11I/11J  
Parameter  
Symbol  
Min.  
Max.  
Maximum operating frequency using maximum  
allowed settings for Sup_CL and Sup_CWL  
fCKMAX  
933  
MHz  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tAA  
tRCD  
13.91  
13.91  
13.91  
47.91  
34  
20  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nCK  
nCK  
tRP  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
tRAS  
9 * tREFI  
3.3  
CWL = 5  
CL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Sup_CL  
Sup_CWL  
3.0  
1, 2, 3, 4, 8  
CWL = 6, 7, 8, 9  
Reserved  
5
CWL = 5  
CL = 6  
2.5  
3.3  
1, 2, 3, 4, 8  
CWL = 6, 7, 8, 9  
Reserved  
Reserved  
1.875 < 2.5  
Reserved  
Reserved  
< 1.875  
5
CWL = 5  
5
CL = 8  
CWL = 6  
CWL = 7, 8, 9  
CWL = 5, 6  
CWL = 7  
1, 2, 3, 4, 8  
5
5
CL =10  
CL =13  
1.5  
1, 2, 3, 4, 8  
CWL = 8, 9  
CWL = 5, 6, 7, 8  
CWL = 9  
Reserved  
Reserved  
5
5
1.07  
5, 6, 8, 10, 13  
5, 6, 7, 9  
< 1.25  
1, 2, 3, 4  
Supported CL Settings  
Supported CWL Settings  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 135 -  
W632GU6MB  
10.15.4 DDR3L-2133 Speed Bin and Operating Conditions  
Speed Bin  
CL-nRCD-nRP  
DDR3L-2133  
14-14-14  
UNIT  
NOTES  
Part Number Extension  
-09/09I/09J  
Parameter  
Symbol  
Min.  
Max.  
Maximum operating frequency using maximum  
allowed settings for Sup_CL and Sup_CWL  
fCKMAX  
1067  
MHz  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tAA  
13.09  
13.09  
13.09  
46.09  
33  
20  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nCK  
nCK  
tRCD  
-
tRP  
-
-
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
tRAS  
9 * tREFI  
3.3  
CWL = 5  
CL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
3.0  
1, 2, 3, 4, 9  
CWL = 6, 7, 8, 9, 10  
Reserved  
5
CWL = 5  
CL = 6  
2.5  
3.3  
1, 2, 3, 4, 9  
CWL = 6, 7, 8, 9, 10  
Reserved  
Reserved  
1.875 < 2.5  
Reserved  
Reserved  
1.875 < 2.5  
5
CWL = 5  
5
CL = 7  
CL = 8  
CL = 9  
CL = 10  
CL = 11  
CWL = 6  
CWL = 7, 8, 9, 10  
CWL = 5  
1, 2, 3, 4, 9  
5
5
CWL = 6  
1, 2, 3, 4, 9  
CWL = 7, 8, 9, 10  
CWL = 5, 6  
CWL = 7  
Reserved  
Reserved  
5
5
1.5  
1.5  
< 1.875  
1, 2, 3, 4, 9  
CWL = 8, 9, 10  
CWL = 5, 6  
CWL = 7  
Reserved  
Reserved  
5
5
< 1.875  
1, 2, 3, 4, 9  
CWL = 8, 9, 10  
CWL = 5, 6, 7  
CWL = 8  
Reserved  
Reserved  
5
5
1.25  
Reserved  
Reserved  
1.07 < 1.25  
< 1.5  
1, 2, 3, 4, 9  
CWL = 9, 10  
CWL = 5, 6, 7, 8  
CWL = 9  
5
5
CL = 13  
CL = 14  
1, 2, 3, 4, 9  
CWL = 10  
Reserved  
Reserved  
5
5
CWL = 5, 6, 7, 8, 9  
CWL = 10  
0.938  
< 1.07  
1, 2, 3, 4  
Supported CL Settings  
Supported CWL Settings  
Sup_CL 5, 6, 7, 8, 9, 10, 11, 13, 14  
Sup_CWL  
5, 6, 7, 8, 9, 10  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 136 -  
W632GU6MB  
10.15.5 Speed Bin General Notes  
The absolute specification for all speed bins is TOPER and VDD = VDDQ = 1.283V to 1.45V. In addition  
the following general notes apply.  
1. Max. limits are exclusive. E.g. if tCK(AVG).MAX value is 2.5 nS, tCK(AVG) needs to be < 2.5 nS.  
2. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making  
a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as  
requirements from CWL setting.  
3. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are  
synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An  
application should use the next smaller standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, 1.25, 1.07 nS  
or 0.938 nS) when calculating CL [nCK] = tAA [nS] / tCK(AVG) [nS], rounding up to the next  
‘Supported CL’.  
4. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG)  
down to the next valid speed bin (i.e. 3.3nS or 2.5nS or 1.875 nS, 1.5 nS or 1.25 nS or 1.07 nS).  
This result is tCK(AVG).MAX corresponding to CL SELECTED.  
5. ‘Reserved’ settings are not allowed. User must program a different value.  
6. Any DDR3L-1333 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
7. Any DDR3L-1600 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
8. Any DDR3L-1866 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
9. Any DDR3L-2133 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
10.For devices supporting optional down binning to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125  
nS or lower. SPD settings must be programmed to match. For example, DDR3L-1333 (9-9-9)  
devices supporting down binning to DDR3L-1066 (7-7-7) should program 13.125 nS in SPD bytes  
for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3L-1600 (11-11-11) devices  
supporting down binning to DDR3L-1333 (9-9-9) or DDR3L-1066 (7-7-7) should program 13.125  
nS in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20)  
is programmed to 13.125 nS, tRCmin (Byte 21, 23) also should be programmed accordingly. For  
example, 49.125nS (tRASmin + tRPmin = 36 nS + 13.125 nS) for DDR3L-1333 (9-9-9) and 48.125  
nS (tRASmin + tRPmin = 35 nS + 13.125 nS) for DDR3L-1600 (11-11-11).  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 137 -  
W632GU6MB  
10.16 AC Characteristics  
10.16.1 AC Timing and Operating Condition for -09/09I/09J/-11/11I/11J speed grades  
DDR3L-2133  
(-09/09I/09J)  
DDR3L-1866  
(-11/11I/11J)  
SPEED GRADE  
PARAMETER  
SYMBOL  
UNITS NOTES  
MIN.  
MAX.  
MIN.  
MAX.  
1, 2, 3, 4  
Common Notes  
Clock Input Timing  
tCK(DLL-off) Minimum clock cycle time (DLL-off mode)  
8
8
nS  
pS  
45  
See “Speed Bin” on See “Speed Bin” on  
page 136 page 135  
tCK(avg)  
Average Clock Period  
tCH(avg)  
tCL(avg)  
Average CK/CK# high pulse width  
Average CK/CK# low pulse width  
0.47  
0.47  
0.53  
0.53  
0.47  
0.47  
0.53  
0.53  
tCK(avg)  
tCK(avg)  
Min.: tCK(avg)min + tJIT(per)min  
Max.: tCK(avg)max + tJIT(per)max  
tCK(abs)  
Absolute Clock Period  
pS  
37  
tCH(abs)  
tCL(abs)  
tJIT(per)  
Absolute CK/CK# high pulse width  
Absolute CK/CK# low pulse width  
Clock Period Jitter  
0.43  
0.43  
-50  
0.43  
0.43  
-60  
tCK(avg)  
tCK(avg)  
pS  
38  
39  
50  
40  
60  
50  
tJIT(per,lck) Clock Period Jitter during DLL locking period  
-40  
-50  
pS  
tJIT(cc)  
tJIT(cc,lck)  
tJIT(duty)  
Cycle to Cycle Period Jitter  
100  
80  
120  
100  
pS  
Cycle to Cycle Period Jitter during DLL locking  
period  
pS  
Clock Duty Cycle Jitter  
Already included in tCH(abs) and tCL(abs)  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
tERR(2per) Cumulative error across 2 cycles  
tERR(3per) Cumulative error across 3 cycles  
tERR(4per) Cumulative error across 4 cycles  
tERR(5per) Cumulative error across 5 cycles  
tERR(6per) Cumulative error across 6 cycles  
tERR(7per) Cumulative error across 7 cycles  
tERR(8per) Cumulative error across 8 cycles  
tERR(9per) Cumulative error across 9 cycles  
tERR(10per) Cumulative error across 10 cycles  
tERR(11per) Cumulative error across 11 cycles  
tERR(12per) Cumulative error across 12 cycles  
-74  
-87  
74  
-88  
88  
87  
-105  
-117  
-126  
-133  
-139  
-145  
-150  
-154  
-158  
-161  
105  
117  
126  
133  
139  
145  
150  
154  
158  
161  
-97  
97  
-105  
-111  
-116  
-121  
-125  
-128  
-132  
-134  
105  
111  
116  
121  
125  
128  
132  
134  
Min.: tJIT(per)min * (1 + 0.68 * ln(n))  
Max.: tJIT(per)max * (1 + 0.68 * ln(n))  
Cumulative error across n = 13, 14...49, 50  
tERR(nper)  
cycles  
pS  
7
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 138 -  
W632GU6MB  
AC Timing and Operating Condition for -09/09I/09J/-11/11I/11J speed grades, continued  
DDR3L-2133  
(-09/09I/09J)  
DDR3L-1866  
(-11/11I/11J)  
SPEED GRADE  
SYMBOL  
UNITS NOTES  
PARAMETER  
MIN.  
MAX.  
MIN.  
MAX.  
Data Timing  
tDQSQ  
tQH  
DQS, DQS# to DQ skew, per group, per access  
DQ output hold time from DQS, DQS#  
DQ low impedance time from CK, CK#  
DQ high impedance time from CK, CK#  
75  
85  
pS  
tCK(avg)  
pS  
23  
0.38  
-360  
0.38  
-390  
18, 23  
tLZ(DQ)  
tHZ(DQ)  
180  
180  
195  
195  
17, 23, 24  
17, 23, 24  
11, 40  
pS  
Base specification @ 2V/nS  
Data setup time to  
55  
70  
pS  
tDS(AC130)  
DQS, DQS#  
VREF @ 2 V/nS  
120  
60  
135  
75  
pS  
11, 40, 42  
11, 40  
Base specification @ 2V/nS  
Data hold time  
pS  
tDH(DC90)  
tDIPW  
from DQS, DQS#  
VREF @ 2 V/nS  
105  
280  
120  
320  
pS  
11, 40, 42  
10  
DQ and DM input pulse width for each input  
pS  
Data Strobe Timing  
tRPRE  
tRPST  
tQSH  
DQS,DQS# differential READ Preamble  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 21  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 21 tCK(avg) 18, 21, 23  
Note 22 tCK(avg) 18, 22, 23  
DQS,DQS# differential READ Postamble  
DQS,DQS# differential output high time  
DQS,DQS# differential output low time  
DQS,DQS# differential WRITE Preamble  
DQS,DQS# differential WRITE Postamble  
Note 22  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
18, 23  
18, 23  
46  
tQSL  
tWPRE  
tWPST  
46  
DQS,DQS# rising edge output access time from  
rising CK, CK#  
tDQSCK  
tLZ(DQS)  
tHZ(DQS)  
-180  
-360  
180  
180  
180  
-195  
-390  
195  
195  
195  
pS  
pS  
pS  
17, 23  
DQS and DQS# low-impedance time from  
CK, CK# (Referenced from RL - 1)  
17, 23, 24  
17, 23, 24  
DQS and DQS# high-impedance time from  
CK, CK# (Referenced from RL + BL/2)  
tDQSL  
tDQSH  
tDQSS  
DQS,DQS# differential input low pulse width  
DQS,DQS# differential input high pulse width  
DQS,DQS# rising edge to CK,CK# rising edge  
0.45  
0.45  
-0.27  
0.55  
0.55  
0.27  
0.45  
0.45  
-0.27  
0.55  
0.55  
0.27  
tCK(avg)  
tCK(avg)  
tCK(avg)  
12, 14  
13, 14  
16  
DQS,DQS# falling edge setup time to CK,CK#  
rising edge  
tDSS  
tDSH  
0.18  
0.18  
0.18  
0.18  
tCK(avg)  
tCK(avg)  
15, 16  
15, 16  
DQS,DQS# falling edge hold time from CK,CK#  
rising edge  
Command and Address Timing  
tAA  
tRCD  
tRP  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
nS  
nS  
8
8
8
8
8
See “Speed Bin” on See “Speed Bin” on  
page 136 page 135  
nS  
tRC  
ACT to ACT or REF command period  
ACT to PRE command period  
DLL locking time  
nS  
tRAS  
tDLLK  
nS  
512  
512  
nCK  
Internal READ Command to PRECHARGE  
Command delay  
max(4nCK,  
7.5nS)  
max(4nCK,  
7.5nS)  
tRTP  
8
Delay from start of internal write transaction to  
internal read command  
max(4nCK,  
7.5nS)  
max(4nCK,  
7.5nS)  
tWTR  
8, 26  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 139 -  
W632GU6MB  
AC Timing and Operating Condition for -09/09I/09J/-11/11I/11J speed grades, continued  
DDR3L-2133  
(-09/09I/09J)  
DDR3L-1866  
(-11/11I/11J)  
SPEED GRADE  
SYMBOL  
UNITS NOTES  
PARAMETER  
MIN.  
MAX.  
MIN.  
MAX.  
Command and Address Timing  
tWR  
WRITE recovery time  
15  
4
15  
4
nS  
8, 26  
tMRD  
Mode Register Set command cycle time  
Mode Register Set command update delay  
CAS# to CAS# command delay  
nCK  
max(12nCK,  
15nS)  
max(12nCK,  
15nS)  
tMOD  
tCCD  
4
4
nCK  
nCK  
nCK  
tDAL(min) Auto precharge write recovery + precharge time  
WR + roundup(tRP(min)/ tCK(avg))  
6
tMPRR  
Multi-Purpose Register Recovery Time  
1
1
29  
ACTIVE to ACTIVE command period for 2KB page  
size  
max(4nCK,  
6nS)  
max(4nCK,  
6nS)  
tRRD  
8
tFAW  
Four activate window for 2KB page size  
35  
35  
nS  
pS  
8
Base specification  
VREF @ 1 V/nS  
Base specification  
VREF @ 1 V/nS  
Base specification  
VREF @ 1 V/nS  
60  
65  
9, 41  
Command and Address  
setup time to CK, CK#  
tIS(AC135)  
tIS(AC125)  
195  
135  
260  
105  
195  
200  
150  
275  
110  
200  
pS 9, 41, 42  
pS 9, 41  
pS 9, 41, 42  
pS 9, 41  
pS 9, 41, 42  
Command and Address  
setup time to CK, CK#  
Command and Address  
hold time from CK, CK#  
tIH(DC90)  
tIPW  
Control, address and control input pulse width for each  
input  
470  
535  
pS  
10  
Calibration Timing  
max(512nCK,  
640nS)  
max(512nCK,  
640nS)  
tZQinit  
Power-up and RESET calibration time  
max(256nCK,  
320nS)  
max(256nCK,  
320nS)  
tZQoper Normal operation Full calibration time  
max(64nCK,  
80nS)  
max(64nCK,  
80nS)  
tZQCS  
Normal operation Short calibration time  
33  
Reset Timing  
max(5nCK,  
170nS)  
max(5nCK,  
170nS)  
tXPR  
Exit Reset from CKE HIGH to a valid command  
Self Refresh Timing  
Exit Self Refresh to commands not requiring a locked  
DLL  
max(5nCK,  
170nS)  
max(5nCK,  
170nS)  
tXS  
34  
35  
tXSDLL  
tCKESR  
Exit Self Refresh to commands requiring a locked DLL  
tDLLK(min)  
tDLLK(min)  
nCK  
Minimum CKE low width for Self Refresh entry to exit  
timing  
tCKE(min) +  
1nCK  
tCKE(min) +  
1nCK  
Valid Clock Requirement after Self Refresh Entry  
(SRE)  
max(5 nCK,  
10nS)  
max(5 nCK,  
10nS)  
tCKSRE  
tCKSRX  
Valid Clock Requirement before Self Refresh Exit  
(SRX)  
max(5 nCK,  
10nS)  
max(5 nCK,  
10nS)  
Refresh Timing  
tRFC  
tREFI  
REF command to ACT or REF command time  
160  
160  
nS  
μS  
μS  
μS  
μS  
36  
-40°C TCASE 85°C*  
0°C TCASE 85°C  
7.8  
7.8  
3.9  
3.9  
7.8  
7.8  
3.9  
3.9  
Average periodic  
refresh Interval  
85°C < TCASE 95°C  
95°C < TCASE 105°C*  
* -40°C TCASE 85°C is for 09I, 09J, 11I and 11J grade parts only. 95°C < TCASE ≤ 105°C is available for 09J and 11J grade  
parts only.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 140 -  
W632GU6MB  
AC Timing and Operating Condition for -09/09I/09J/-11/11I/11J speed grades, continued  
DDR3L-2133  
(-09/09I/09J)  
DDR3L-1866  
(-11/11I/11J)  
SPEED GRADE  
SYMBOL  
UNITS NOTES  
PARAMETER  
MIN.  
MAX.  
MIN.  
MAX.  
Power Down Timing  
Exit Power Down with DLL on to any valid  
command; Exit Precharge Power Down with DLL  
frozen to commands not requiring a locked DLL  
max(3nCK,  
6nS)  
max(3nCK,  
6nS)  
tXP  
34  
35  
Exit Precharge Power Down with DLL frozen to  
commands requiring a locked DLL  
max(10nCK,  
24nS)  
max(10nCK,  
24nS)  
tXPDLL  
tCKE  
max(3nCK,  
5nS)  
max(3nCK,  
5nS)  
CKE minimum pulse width  
tCPDED Command pass disable delay  
tPD Power Down Entry to Exit Timing  
2
2
nCK  
25  
tCKE(min) 9 * tREFI tCKE(min) 9 * tREFI  
tACTPDEN Timing of ACT command to Power Down entry  
2
2
1
1
nCK  
nCK  
nCK  
nCK  
27  
27  
Timing of PRE or PREA command to Power Down  
tPRPDEN  
entry  
tRDPDEN Timing of RD/RDA command to Power Down entry RL + 4 + 1  
RL + 4 + 1  
Min.: WL + 4 + roundup (tWR(min)/ tCK(avg))  
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BC4OTF)  
tWRPDEN  
tWRAPDEN  
tWRPDEN  
tWRAPDEN  
20  
19  
20  
Max.:  
Min.: WL + 4 + WR + 1  
Timing of WRA command to Power Down entry  
(BL8OTF, BL8MRS, BC4OTF)  
nCK  
nCK  
Max.:   
Min.: WL + 2 + roundup (tWR(min)/ tCK(avg))  
Timing of WR command to Power Down entry  
(BC4MRS)  
Max.:   
Min.: WL + 2 + WR + 1  
Timing of WRA command to Power Down entry  
(BC4MRS)  
nCK  
nCK  
19  
Max.:   
tREFPDEN Timing of REF command to Power Down entry  
tMRSPDEN Timing of MRS command to Power Down entry  
2
1
27, 28  
tMOD(min)  
tMOD(min)  
ODT Timing  
ODT high time without write command or with write  
command and burst chop 4  
ODTH4  
4
6
2
4
6
2
nCK  
nCK  
nS  
30  
31  
32  
ODT high time with Write command and burst  
ODTH8  
length 8  
Asynchronous RTT turn-on delay (Power Down  
with DLL frozen)  
tAONPD  
8.5  
8.5  
Asynchronous RTT turn-off delay (Power Down  
with DLL frozen)  
tAOFPD  
2
8.5  
180  
0.7  
0.7  
2
8.5  
195  
0.7  
0.7  
nS  
pS  
32  
tAON  
tAOF  
tADC  
RTT turn-on  
-180  
0.3  
0.3  
-195  
0.3  
0.3  
17, 43  
Rtt_Nom and Rtt_WR turn-off time from ODTLoff  
reference  
tCK(avg) 17, 44  
RTT dynamic change skew  
tCK(avg)  
17  
Write Leveling Timing  
First DQS/DQS# rising edge after write leveling  
mode is programmed  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
40  
25  
nCK  
nCK  
pS  
5
5
DQS/DQS# delay after write leveling mode is  
programmed  
Write leveling setup time from (CK, CK#) zero  
crossing to rising (DQS, DQS#) zero crossing  
125  
125  
140  
140  
Write leveling hold time from rising (DQS, DQS#)  
zero crossing to (CK, CK#) zero crossing  
tWLH  
pS  
tWLO  
Write leveling output delay  
Write leveling output error  
0
0
7.5  
2
0
0
7.5  
2
nS  
nS  
tWLOE  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 141 -  
W632GU6MB  
10.16.2 AC Timing and Operating Condition for -12/12I/12J/-15/15I/15J speed grades  
DDR3L-1600  
(-12/12I/12J)  
DDR3L-1333  
(-15/15I/15J)  
SPEED GRADE  
PARAMETER  
SYMBOL  
UNITS NOTES  
MIN.  
MAX.  
MIN. MAX.  
1, 2, 3, 4  
Common Notes  
Clock Input Timing  
tCK(DLL-off) Minimum clock cycle time (DLL-off mode)  
8
8
nS  
pS  
45  
See “Speed Bin” on See “Speed Bin” on  
page 134 page 133  
tCK(avg)  
Average Clock Period  
tCH(avg)  
tCL(avg)  
Average CK/CK# high pulse width  
Average CK/CK# low pulse width  
0.47  
0.47  
0.53  
0.53  
0.47  
0.47  
0.53  
0.53  
tCK(avg)  
tCK(avg)  
Min.: tCK(avg)min + tJIT(per)min  
Max.: tCK(avg)max + tJIT(per)max  
tCK(abs)  
Absolute Clock Period  
pS  
37  
tCH(abs)  
tCL(abs)  
tJIT(per)  
Absolute CK/CK# high pulse width  
Absolute CK/CK# low pulse width  
Clock Period Jitter  
0.43  
0.43  
-70  
0.43  
0.43  
-80  
tCK(avg)  
tCK(avg)  
pS  
38  
39  
70  
60  
80  
70  
tJIT(per,lck) Clock Period Jitter during DLL locking period  
-60  
-70  
pS  
tJIT(cc)  
tJIT(cc,lck)  
tJIT(duty)  
Cycle to Cycle Period Jitter  
140  
120  
160  
140  
pS  
Cycle to Cycle Period Jitter during DLL locking  
period  
pS  
Clock Duty Cycle Jitter  
Already included in tCH(abs) and tCL(abs)  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
pS  
tERR(2per) Cumulative error across 2 cycles  
tERR(3per) Cumulative error across 3 cycles  
tERR(4per) Cumulative error across 4 cycles  
tERR(5per) Cumulative error across 5 cycles  
tERR(6per) Cumulative error across 6 cycles  
tERR(7per) Cumulative error across 7 cycles  
tERR(8per) Cumulative error across 8 cycles  
tERR(9per) Cumulative error across 9 cycles  
tERR(10per) Cumulative error across 10 cycles  
tERR(11per) Cumulative error across 11 cycles  
tERR(12per) Cumulative error across 12 cycles  
-103  
-122  
-136  
-147  
-155  
-163  
-169  
-175  
-180  
-184  
-188  
103  
122  
136  
147  
155  
163  
169  
175  
180  
184  
188  
-118  
-140  
-155  
-168  
-177  
-186  
-193  
-200  
-205  
-210  
-215  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
Min.: tJIT(per)min * (1 + 0.68 * ln(n))  
Max.: tJIT(per)max * (1 + 0.68 * ln(n))  
Cumulative error across n = 13, 14...49, 50  
tERR(nper)  
cycles  
pS  
7
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 142 -  
W632GU6MB  
AC Timing and Operating Condition for -12/12I/12J/-15/15I/15J speed grades, continued  
DDR3L-1600  
(-12/12I/12J)  
DDR3L-1333  
(-15/15I/15J)  
SPEED GRADE  
SYMBOL  
UNITS NOTES  
PARAMETER  
MIN.  
MAX.  
MIN.  
MAX.  
Data Timing  
tDQSQ  
tQH  
DQS, DQS# to DQ skew, per group, per access  
DQ output hold time from DQS, DQS#  
DQ low impedance time from CK, CK#  
DQ high impedance time from CK, CK#  
100  
125  
pS  
tCK(avg)  
pS  
23  
0.38  
-450  
0.38  
-500  
18, 23  
tLZ(DQ)  
tHZ(DQ)  
225  
225  
250  
250  
17, 23, 24  
17, 23, 24  
11, 40  
pS  
Base specification  
Data setup time to  
25  
45  
pS  
tDS(AC135)  
DQS, DQS#  
VREF @ 1 V/nS  
160  
55  
180  
75  
11, 40, 42  
11, 40  
Base specification  
Data hold time from  
pS  
pS  
tDH(DC90)  
tDIPW  
DQS, DQS#  
VREF @ 1 V/nS  
145  
360  
165  
400  
11, 40, 42  
10  
DQ and DM input pulse width for each input  
Data Strobe Timing  
tRPRE  
tRPST  
tQSH  
DQS,DQS# differential READ Preamble  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 21  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 21 tCK(avg) 18, 21, 23  
Note 22 tCK(avg) 18, 22, 23  
DQS,DQS# differential READ Postamble  
DQS,DQS# differential output high time  
DQS,DQS# differential output low time  
DQS,DQS# differential WRITE Preamble  
DQS,DQS# differential WRITE Postamble  
Note 22  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
18, 23  
18, 23  
46  
tQSL  
tWPRE  
tWPST  
46  
DQS,DQS# rising edge output access time from  
rising CK, CK#  
tDQSCK  
tLZ(DQS)  
tHZ(DQS)  
-225  
-450  
225  
225  
225  
-255  
-500  
255  
250  
250  
pS  
pS  
pS  
17, 23  
DQS and DQS# low-impedance time from  
CK, CK# (Referenced from RL - 1)  
17, 23, 24  
17, 23, 24  
DQS and DQS# high-impedance time from  
CK, CK# (Referenced from RL + BL/2)  
tDQSL  
tDQSH  
tDQSS  
DQS,DQS# differential input low pulse width  
DQS,DQS# differential input high pulse width  
DQS,DQS# rising edge to CK,CK# rising edge  
0.45  
0.45  
0.55  
0.55  
0.27  
0.45  
0.45  
0.55  
0.55  
0.25  
tCK(avg)  
tCK(avg)  
tCK(avg)  
12, 14  
13, 14  
16  
-0.27  
-0.25  
DQS,DQS# falling edge setup time to CK,CK#  
rising edge  
tDSS  
tDSH  
0.18  
0.18  
0.2  
0.2  
tCK(avg)  
tCK(avg)  
15, 16  
15, 16  
DQS,DQS# falling edge hold time from CK,CK#  
rising edge  
Command and Address Timing  
tAA  
tRCD  
tRP  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
nS  
nS  
8
8
8
8
8
See “Speed Bin” on See “Speed Bin” on  
page 134 page 133  
nS  
tRC  
ACT to ACT or REF command period  
ACT to PRE command period  
DLL locking time  
nS  
tRAS  
tDLLK  
nS  
512  
512  
nCK  
Internal READ Command to PRECHARGE  
Command delay  
max(4nCK,  
7.5nS)  
max(4nCK,  
7.5nS)  
tRTP  
8
Delay from start of internal write transaction to  
internal read command  
max(4nCK,  
7.5nS)  
max(4nCK,  
7.5nS)  
tWTR  
8, 26  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 143 -  
W632GU6MB  
AC Timing and Operating Condition for -12/12I/12J/-15/15I/15J speed grades, continued  
DDR3L-1600  
(-12/12I/12J)  
DDR3L-1333  
(-15/15I/15J)  
SPEED GRADE  
SYMBOL  
UNITS NOTES  
PARAMETER  
MIN.  
MAX.  
MIN.  
MAX.  
Command and Address Timing  
tWR  
WRITE recovery time  
15  
4
15  
4
nS  
8, 26  
tMRD  
Mode Register Set command cycle time  
nCK  
max(12nCK,  
15nS)  
max(12nCK,  
15nS)  
tMOD  
tCCD  
Mode Register Set command update delay  
CAS# to CAS# command delay  
4
4
nCK  
nCK  
nCK  
Auto precharge write recovery + precharge  
time  
tDAL(min)  
tMPRR  
tRRD  
WR + roundup(tRP(min)/ tCK(avg))  
6
29  
8
Multi-Purpose Register Recovery Time  
1
1
ACTIVE to ACTIVE command period for 2KB  
page size  
max(4nCK,  
7.5nS)  
max(4nCK,  
7.5nS)  
tFAW  
Four activate window for 2KB page size  
40  
45  
nS  
pS  
pS  
pS  
pS  
pS  
pS  
8
Base specification  
VREF @ 1 V/nS  
Base specification  
VREF @ 1 V/nS  
Base specification  
VREF @ 1 V/nS  
60  
80  
9, 41  
Command and Address  
setup time to CK, CK#  
tIS(AC160)  
tIS(AC135)  
220  
185  
320  
130  
220  
240  
205  
340  
150  
240  
9, 41, 42  
9, 41  
Command and Address  
setup time to CK, CK#  
9, 41, 42  
9, 41  
Command and Address  
hold time from CK, CK#  
tIH(DC90)  
tIPW  
9, 41, 42  
Control, address and control input pulse width  
for each input  
560  
620  
pS  
10  
33  
Calibration Timing  
max(512nCK,  
640nS)  
max(512nCK,  
640nS)  
tZQinit  
Power-up and RESET calibration time  
max(256nCK,  
320nS)  
max(256nCK,  
320nS)  
tZQoper Normal operation Full calibration time  
max(64nCK,  
80nS)  
max(64nCK,  
80nS)  
tZQCS  
Normal operation Short calibration time  
Reset Timing  
Exit Reset from CKE HIGH to a valid  
command  
max(5nCK,  
170nS)  
max(5nCK,  
170nS)  
tXPR  
Self Refresh Timing  
Exit Self Refresh to commands not requiring a  
locked DLL  
max(5nCK,  
170nS)  
max(5nCK,  
170nS)  
tXS  
34  
35  
Exit Self Refresh to commands requiring a  
locked DLL  
tXSDLL  
tCKESR  
tCKSRE  
tCKSRX  
tDLLK(min)  
tDLLK(min)  
nCK  
Minimum CKE low width for Self Refresh entry tCKE(min) +  
to exit timing  
tCKE(min) +  
1nCK  
1nCK  
Valid Clock Requirement after Self Refresh  
Entry (SRE)  
max(5 nCK,  
10nS)  
max(5 nCK,  
10nS)  
Valid Clock Requirement before Self Refresh  
Exit (SRX)  
max(5 nCK,  
10nS)  
max(5 nCK,  
10nS)  
Refresh Timing  
tRFC  
tREFI  
REF command to ACT or REF command time  
160  
160  
nS  
μS  
μS  
μS  
μS  
36  
-40°C TCASE 85°C*  
0°C TCASE 85°C  
85°C < TCASE 95°C  
95°C < TCASE 105°C*  
7.8  
7.8  
3.9  
3.9  
7.8  
7.8  
3.9  
3.9  
Average periodic  
refresh Interval  
* -40°C TCASE 85°C is for 12I, 12J, 15I and 15J grade parts only. 95°C TCASE 105°C is for 12J and 15J grade parts only  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 144 -  
W632GU6MB  
AC Timing and Operating Condition for -12/12I/12J/-15/15I/15J speed grades, continued  
DDR3L-1600  
(-12/12I/12J)  
DDR3L-1333  
(-15/15I/15J)  
SPEED GRADE  
SYMBOL  
UNITS NOTES  
PARAMETER  
MIN.  
MAX.  
MIN.  
MAX.  
Power Down Timing  
Exit Power Down with DLL on to any valid  
command; Exit Precharge Power Down with DLL  
frozen to commands not requiring a locked DLL  
max(3nCK,  
6nS)  
max(3nCK,  
6nS)  
tXP  
34  
35  
Exit Precharge Power Down with DLL frozen to  
commands requiring a locked DLL  
max(10nCK,  
24nS)  
max(10nCK,  
24nS)  
tXPDLL  
tCKE  
max(3nCK,  
5nS)  
max(3nCK,  
5.625nS)  
CKE minimum pulse width  
tCPDED Command pass disable delay  
tPD Power Down Entry to Exit Timing  
1
1
nCK  
25  
tCKE(min) 9 * tREFI tCKE(min) 9 * tREFI  
tACTPDEN Timing of ACT command to Power Down entry  
1
1
1
1
nCK  
nCK  
nCK  
nCK  
27  
27  
Timing of PRE or PREA command to Power Down  
tPRPDEN  
entry  
tRDPDEN Timing of RD/RDA command to Power Down entry RL + 4 + 1  
RL + 4 + 1  
Min.: WL + 4 + roundup (tWR(min)/ tCK(avg))  
Max.:   
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BC4OTF)  
tWRPDEN  
tWRAPDEN  
tWRPDEN  
tWRAPDEN  
20  
19  
20  
Min.: WL + 4 + WR + 1  
Max.:   
Timing of WRA command to Power Down entry  
(BL8OTF, BL8MRS, BC4OTF)  
nCK  
nCK  
Min.: WL + 2 + roundup (tWR(min)/ tCK(avg))  
Max.:   
Timing of WR command to Power Down entry  
(BC4MRS)  
Min.: WL + 2 + WR + 1  
Max.:   
Timing of WRA command to Power Down entry  
(BC4MRS)  
nCK  
nCK  
19  
tREFPDEN Timing of REF command to Power Down entry  
tMRSPDEN Timing of MRS command to Power Down entry  
1
1
27, 28  
tMOD(min)  
tMOD(min)  
ODT Timing  
ODT high time without write command or with write  
command and burst chop 4  
ODTH4  
4
6
2
4
6
2
nCK  
nCK  
nS  
30  
31  
32  
ODT high time with Write command and burst  
ODTH8  
length 8  
Asynchronous RTT turn-on delay (Power Down  
with DLL frozen)  
tAONPD  
8.5  
8.5  
Asynchronous RTT turn-off delay (Power Down  
with DLL frozen)  
tAOFPD  
2
8.5  
225  
0.7  
0.7  
2
8.5  
250  
0.7  
0.7  
nS  
pS  
32  
tAON  
tAOF  
tADC  
RTT turn-on  
-225  
0.3  
0.3  
-250  
0.3  
0.3  
17, 43  
Rtt_Nom and Rtt_WR turn-off time from ODTLoff  
reference  
tCK(avg) 17, 44  
RTT dynamic change skew  
tCK(avg)  
17  
Write Leveling Timing  
First DQS/DQS# rising edge after write leveling  
mode is programmed  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
40  
25  
nCK  
nCK  
pS  
5
5
DQS/DQS# delay after write leveling mode is  
programmed  
Write leveling setup time from (CK, CK#) zero  
crossing to rising (DQS, DQS#) zero crossing  
165  
165  
195  
195  
Write leveling hold time from rising (DQS, DQS#)  
zero crossing to (CK, CK#) zero crossing  
tWLH  
pS  
tWLO  
Write leveling output delay  
Write leveling output error  
0
0
7.5  
2
0
0
9
2
nS  
nS  
tWLOE  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 145 -  
W632GU6MB  
10.16.3 Timing Parameter Notes  
1. Unit ‘tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ‘nCK’ represents  
one clock cycle of the input clock, counting the actual clock edges.  
For example, tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another  
Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) +  
tERR(4per),min (which is smaller than 4 x tCK(avg)).  
2. Timing that is not specified is illegal and after such an event, in order to provide proper operation, the  
DRAM must be resetted or powered down and then restarted through the specified initialization  
sequence before normal operation can continue.  
3. The CK/CK# input reference level (for timing reference to CK / CK#) is the point at which CK and CK#  
cross.  
The DQS/DQS# input reference level is the point at which DQS and DQS# cross;  
The input reference level for signals other than CK/CK#, DQS/DQS# and RESET# is VREFCA and  
VREFDQ respectively.  
4. Inputs are not recognized as valid until VREFCA stabilizes within specified limits.  
5. The max values are system dependent.  
6. tCK(avg) refers to the actual application clock period. WR refers to the WR parameter stored in mode  
register MR0.  
7. n = from 13 cycles to 50 cycles. This row defines 38 parameters.  
8. For these parameters, the DDR3L SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [nS] / tCK(avg)  
[nS] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied.  
For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock  
jitter specifications are met. This means: For DDR3L-1333 (9-9-9), of which tRP = 13.5nS, the device will  
support tnRP = RU{tRP / tCK(avg)} = 9, as long as the input clock jitter specifications are met, i.e.  
Precharge command at Tm and Active command at Tm+9 is valid even if (Tm+9 - Tm) is less than  
13.5nS due to input clock jitter.  
9. These parameters are measured from a command/address signal (CKE, CS#, RAS#, CAS#, WE#, ODT,  
BA0, A0, A1, etc.) transition edge to its respective clock signal (CK/CK#) crossing. The spec values are  
not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are  
relative to the clock signal crossing that latches the command/address. That is, these parameters  
should be met whether clock jitter is present or not.  
10.Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the  
consecutive crossing of VREF(DC).  
11.These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition  
edge to its respective data strobe signal (DQS(L/U), DQS(L/U)#) crossing.  
12.tDQSL describes the instantaneous differential input low pulse width on DQS - DQS#, as measured from  
one falling edge to the next consecutive rising edge.  
13.tDQSH describes the instantaneous differential input high pulse width on DQS - DQS#, as measured  
from one rising edge to the next consecutive falling edge.  
14.tDQSH,act + tDQSL,act = 1 tCK,act ; with tXYZ,act being the actual measured value of the respective timing  
parameter in the application.  
15.tDSH,act + tDSS,act = 1 tCK,act ; with tXYZ,act being the actual measured value of the respective timing  
parameter in the application.  
16.These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)#) crossing to its  
respective clock signal (CK, CK#) crossing. The spec values are not affected by the amount of clock  
jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these  
parameters should be met whether clock jitter is present or not.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 146 -  
W632GU6MB  
17.When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tERR(mper),act of the input clock, where 2 <= m <= 12. (output deratings are relative to the actual  
SDRAM input clock.)  
For example, if the measured jitter into a DDR3L-1333 SDRAM has tERR(mper),act,min = - 138 pS and  
tERR(mper),act,max = + 155 pS, then  
tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 255 pS - 155 pS = - 410 pS and  
tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 255 pS + 138 pS = + 393 pS.  
Similarly, tLZ(DQ) for DDR3L-1333 derates to tLZ(DQ),min(derated) = - 500 pS - 155 pS = - 655 pS and  
tLZ(DQ),max(derated) = 250 pS + 138 pS = + 388 pS. (Caution on the min/max usage!)  
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <= 12, and  
tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.  
18.When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tJIT(per),act of the input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR3L-1333 SDRAM has tCK(avg),act = 1500 pS,  
tJIT(per),act,min = - 58 pS and tJIT(per),act,max = + 74 pS, then  
tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 1500  
pS - 58 pS = + 1292 pS.  
Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x  
1500 pS - 58 pS = + 512 pS. (Caution on the min/max usage!).  
19.WR in clock cycles as programmed in mode register MR0.  
20.tWR(min) is defined in nS, for calculation of tWRPDEN it is necessary to round up tWR(min)/tCK(avg) to the  
next integer value.  
21.The maximum read preamble is bound by tLZ(DQS)min on the left side and tDQSCK(max) on the right side.  
See Figure 24 - READ Timing; Clock to Data Strobe relationshipon page 45.  
22.The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max  
on the right side. See Figure 24 - READ Timing; Clock to Data Strobe relationshipon page 45.  
23.Value is only valid for RON34.  
24.Single ended signal parameter.  
25.tREFI depends on TOPER.  
26.Start of internal write transaction is defined as follows:  
For BL8 (fixed by MRS and on- the-fly): Rising clock edge 4 clock cycles after WL.  
For BC4 (on- the- fly): Rising clock edge 4 clock cycles after WL.  
For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL.  
27.CKE is allowed to be registered low while operations such as row activation, precharge, auto-precharge  
or refresh are in progress, but power down IDD spec will not be applied until finishing those operations.  
28.Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is  
satisfied, there are cases where additional time such as tXPDLL(min) is also required. See section 8.17.3  
Power-Down clarifications - Case 2on page 75.  
29.Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.  
30.ODTH4 is measured from ODT first registered high (without a Write command) to ODT first registered  
low, or from ODT registered high together with a Write command with burst length 4 to ODT registered  
low.  
31.ODTH8 is measured from ODT registered high together with a Write command with burst length 8 to  
ODT registered low.  
32.This parameter applies upon entry and during precharge power down mode with DLL frozen.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 147 -  
W632GU6MB  
33.One ZQCS command can effectively correct a minimum of 0.5 % (ZQ Correction) of RON and RTT  
impedance error within 64 nCK for all speed bins assuming the maximum sensitivities specified in the  
‘Output Driver Voltage and Temperature Sensitivity’ and ‘ODT Voltage and Temperature Sensitivity’  
tables. The appropriate interval between ZQCS commands can be determined from these tables and  
other application-specific parameters.  
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate)  
and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The  
interval could be defined by the following formula:  
ZQCorrection  
(TSens× Tdriftrate) + (VSens × Vdriftrate)  
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM  
temperature and voltage sensitivities.  
For example, if TSens = 1.5% / C, VSens = 0.15% / mV, Tdriftrate = 1 C / sec and Vdriftrate = 15  
mV/sec, then the interval between ZQCS commands is calculated as:  
0.5  
= 0.133 ≈ 128mS  
(1.5×1) + (0.15×15)  
34.Commands not requiring a locked DLL are all commands except Read, Read with Auto-Precharge and  
Synchronous ODT.  
35.Commands requiring a locked DLL are Read, Read with Auto-Precharge and Synchronous ODT.  
36.A maximum of one regular plus eight posted refresh commands can be issued to any given DDR3L  
SDRAM device meaning that the maximum absolute interval between any refresh command and the  
next refresh command is 9 ×tREFI.  
37.Parameter tCK(avg) is specified per its average value. However, it is understood that the relationship  
between the average timing tCK(avg) and the respective absolute instantaneous timing tCK(abs) holds  
all times.  
38.tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the  
following falling edge.  
39.tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the  
following rising edge.  
40.tDS(base) and tDH(base) values are for a single-ended 1V/nS slew rate DQs (DQs are at 2V/nS for  
DDR3L-1866 and DDR3L-2133) and 2V/nS DQS, DQS# differential slew rate. Note for DQ and DM  
signals, VREF(DC) = VREFDQ(DC). For input only pins except RESET#, VREF(DC) = VREFCA(DC). See  
section 10.16.5 Data Setup, Hold and Slew Rate Deratingon page 156.  
41.tIS(base) and tIH(base) values are for 1V/nS CMD/ADD single-ended slew rate and 2V/nS CK, CK#  
differential slew rate. Note for DQ and DM signals, VREF(DC) = VREFDQ(DC). For input only pins except  
RESET#, VREF(DC) = VREFCA(DC). See section 10.16.4 Address / Command Setup, Hold and  
Deratingon page 149.  
42.The setup and hold times are listed converting the base specification values (to which derating tables  
apply) to VREF when the slew rate is 1 V/nS (DQs are at 2V/nS for DDR3L-1866 and DDR3L-2133).  
These values, with a slew rate of 1 V/nS (DQs are at 2V/nS for DDR3L-1866 and DDR3L-2133), are for  
reference only.  
43.For definition of RTT turn-on time tAON See 8.19.2.2 Timing Parameterson page 80.  
44.For definition of RTT turn-off time tAOF See 8.19.2.2 Timing Parameterson page 80.  
45.There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.  
46.Actual value dependent upon measurement level definitions See Figure 41 - “Method for calculating  
tWPRE transitions and endpoints” on page 58 and See Figure 42 - “Method for calculating tWPST  
transitions and endpoints” on page 58.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 148 -  
W632GU6MB  
10.16.4 Address / Command Setup, Hold and Derating  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the  
datasheet tIS(base) and tIH(base) value (see Table 48) to the ΔtIS and ΔtIH derating value (see Table 49  
to Table 51) respectively. Example: tIS (total setup time) = tIS(base) + ΔtIS.  
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
VREF(DC) and the first crossing of VIH(AC)min. Setup (tIS) nominal slew rate for a falling signal is  
defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If  
the actual signal is always earlier than the nominal slew rate line between shaded ‘VREF(DC) to AC  
region’, use nominal slew rate for derating value (see Figure 107). If the actual signal is later than the  
nominal slew rate line anywhere between shaded ‘VREF(DC) to AC region’, the slew rate of a tangent  
line to the actual signal from the AC level to DC level is used for derating value (see Figure 109).  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
VIL(DC)max and the first crossing of VREF(DC). Hold (tIH) nominal slew rate for a falling signal is defined  
as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If the actual  
signal is always later than the nominal slew rate line between shaded ‘DC to VREF(DC) region’, use  
nominal slew rate for derating value (see Figure 108). If the actual signal is earlier than the nominal  
slew rate line anywhere between shaded ‘DC to VREF(DC) region’, the slew rate of a tangent line to the  
actual signal from the DC level to VREF(DC) level is used for derating value (see Figure 110).  
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see  
Table 52).  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not  
have reached VIH/IL(AC) at the time of the rising clock transition, a valid input signal is still required to  
complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in the tables, the derating values may obtained by linear  
interpolation.  
These values are typically not subject to production test. They are verified by design and  
characterization.  
Table 48 ADD/CMD Setup and Hold Base-Values for 1V/nS  
Symbol  
Reference  
DDR3L-1333 DDR3L-1600 DDR3L-1866 DDR3L-2133 Unit Note  
tIS(base) AC160 VIH/L(AC) : SR=1 V/nS  
tIS(base) AC135 VIH/L(AC) : SR=1 V/nS  
tIS(base) AC125 VIH/L(AC) : SR=1 V/nS  
tIH(base) DC90 VIH/L(DC) : SR=1 V/nS  
Notes:  
80  
205  
-
60  
185  
-
-
-
pS  
1
65  
60  
pS 1, 2  
pS 1, 3  
150  
110  
135  
105  
150  
130  
pS  
1
1. (AC/DC referenced for 1V/nS Address/Command slew rate and 2 V/nS differential CK-CK# slew rate)  
2. The tIS(base) AC135 specifications are adjusted from the tIS(base) AC160 specification by adding an additional 100pS for  
DDR3L-1333/1600 of derating to accommodate for the lower alternate threshold of 135 mV and another 25 pS to account  
for the earlier reference point [(160 mV - 135 mV) / 1 V/nS].  
3. The tIS(base) AC125 specifications are adjusted from the tIS(base) AC135 specification by adding an additional 75 pS for  
DDR3L-1866 or 65pS for DDR3L-2133 of derating to accommodate for the lower alternate threshold of 125 mV and another  
10 pS to account for the earlier reference point [(135 mV - 125 mV) / 1 V/nS].  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 149 -  
W632GU6MB  
Table 49 Derating values DDR3L-1333/1600 tIS/tIH - AC/DC based  
ΔtIS, ΔtIH derating in [pS] AC/DC based  
CMD/  
ADD  
Slew  
rate  
AC160 Threshold -> VIH(AC)=VREF(DC)+160mV, VIL(AC)=VREF(DC)-160mV  
CK, CK# Differential Slew Rate  
4.0 V/nS  
3.0 V/nS  
2.0 V/nS  
1.8 V/nS  
1.6 V/nS  
1.4 V/nS  
1.2 V/nS  
1.0 V/nS  
(V/nS)  
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
80  
53  
0
45  
30  
0
80  
53  
0
45  
30  
0
80  
53  
0
45  
30  
0
88  
61  
8
53  
38  
8
96  
69  
16  
15  
13  
11  
8
61  
46  
16  
13  
9
104  
77  
24  
23  
21  
19  
16  
4
69  
54  
24  
21  
17  
11  
4
112  
85  
32  
31  
29  
27  
24  
12  
-8  
79  
64  
34  
31  
27  
21  
14  
4
120  
93  
40  
39  
37  
35  
32  
20  
0
95  
80  
50  
47  
43  
37  
30  
20  
5
-1  
-3  
-1  
-3  
-1  
-3  
7
5
-3  
-8  
-3  
-8  
-3  
-8  
5
1
-5  
-13  
-20  
-30  
-45  
-5  
-13  
-20  
-30  
-45  
-5  
-13  
-20  
-30  
-45  
3
-5  
3
-8  
-8  
-8  
0
-12  
-22  
-37  
-4  
-20  
-40  
-20  
-40  
-20  
-40  
-12  
-32  
-4  
-14  
-29  
-6  
-24  
-16  
-21  
-11  
Table 50 Derating values DDR3L-1333/1600 tIS/tIH - AC/DC based - Alternate AC135 Threshold  
ΔtIS, ΔtIH derating in [pS] AC/DC based  
CMD/  
ADD  
Alternate AC135 Threshold -> VIH(AC)=VREF(DC)+135mV, VIL(AC)=VREF(DC)-135mV  
CK, CK# Differential Slew Rate  
1.8 V/nS 1.6 V/nS  
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH  
Slew  
rate  
(V/nS)  
4.0 V/nS  
3.0 V/nS  
2.0 V/nS  
1.4 V/nS  
1.2 V/nS  
1.0 V/nS  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
68  
45  
0
45  
30  
0
68  
45  
0
45  
30  
0
68  
45  
0
45  
30  
0
76  
53  
8
53  
38  
8
84  
61  
16  
18  
19  
22  
25  
21  
14  
61  
46  
16  
13  
9
92  
69  
24  
26  
27  
30  
33  
29  
22  
69  
54  
24  
21  
17  
11  
4
100  
77  
32  
34  
35  
38  
41  
37  
30  
79  
64  
34  
31  
27  
21  
14  
4
108  
85  
40  
42  
43  
46  
49  
45  
38  
95  
80  
50  
47  
43  
37  
30  
20  
5
2
-3  
2
-3  
2
-3  
10  
11  
14  
17  
13  
6
5
3
-8  
3
-8  
3
-8  
1
6
-13  
-20  
-30  
-45  
6
-13  
-20  
-30  
-45  
6
-13  
-20  
-30  
-45  
-5  
3
9
9
9
-12  
-22  
-37  
-4  
5
5
5
-14  
-29  
-6  
-3  
-3  
-3  
-21  
-11  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 150 -  
W632GU6MB  
Table 51 Derating values DDR3L-1866/2133 tIS/tIH - AC/DC based Alternate AC125 Threshold  
ΔtIS, ΔtIH derating in [pS] AC/DC based  
CMD/  
ADD  
Alternate AC125 Threshold -> VIH(AC)=VREF(DC)+125mV, VIL(AC)=VREF(DC)-125mV  
CK, CK# Differential Slew Rate  
1.8 V/nS 1.6 V/nS  
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH  
Slew  
rate  
(V/nS)  
4.0 V/nS  
3.0 V/nS  
2.0 V/nS  
1.4 V/nS  
1.2 V/nS  
1.0 V/nS  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
63  
42  
0
45  
30  
0
63  
42  
0
45  
30  
0
63  
42  
0
45  
30  
0
71  
50  
8
53  
38  
8
79  
58  
16  
19  
22  
26  
32  
31  
29  
61  
46  
16  
13  
9
87  
66  
24  
27  
30  
34  
40  
39  
37  
69  
54  
24  
21  
17  
11  
-4  
95  
74  
32  
35  
38  
42  
48  
47  
45  
79  
64  
34  
31  
27  
21  
14  
4
103  
82  
40  
43  
46  
50  
56  
55  
53  
95  
80  
50  
47  
43  
37  
30  
20  
5
3
-3  
3
-3  
3
-3  
11  
14  
18  
24  
23  
21  
5
6
-8  
6
-8  
6
-8  
1
10  
16  
15  
13  
-13  
-20  
-30  
-45  
10  
16  
15  
13  
-13  
-20  
-30  
-45  
10  
16  
15  
13  
-13  
-20  
-30  
-45  
-5  
3
-12  
-22  
-37  
4
-14  
-29  
-6  
-21  
-11  
Table 52 Required time tVAC above VIH(AC) {below VIL(AC)} for valid ADD/CMD transition  
DDR3L-1333/1600 DDR3L-1866/2133  
tVAC @ 160mV [pS] tVAC @ 135mV [pS] tVAC @ 135mV [pS] tVAC @ 125mV [pS]  
Slew Rate  
[V/nS]  
Min.  
200  
200  
173  
120  
102  
80  
Max.  
Min.  
213  
213  
190  
145  
130  
111  
87  
Max.  
Min.  
200  
200  
178  
133  
118  
99  
Max.  
Min.  
205  
205  
184  
143  
129  
111  
89  
Max.  
> 2.0  
2.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
1.0  
0.9  
0.8  
0.7  
51  
75  
0.6  
13  
55  
43  
59  
0.5  
Note  
Note  
10  
Note  
Note  
18  
< 0.5  
10  
18  
Note: Rising input signal shall become equal to or greater than VIH(AC) level and Falling input signal shall become equal to or  
less than VIL(AC) level.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 151 -  
W632GU6MB  
Note: Clock and Strobe are drawn  
on a different time scale.  
tIS  
tIH  
tIS  
tIH  
CK  
CK#  
DQS#  
DQS  
tDS  
tDS  
tDH  
tDH  
VDDQ  
tVAC  
VIH(AC)min  
VREF to AC  
region  
VIH(DC)min  
nominal  
slew rate  
VREF(DC)  
nominal  
slew rate  
VIL(DC)max  
VIL(AC)max  
VREF to AC  
region  
tVAC  
VSS  
ΔTF  
ΔTR  
VREF(DC) VIL(AC)max  
ΔTF  
VIH(AC)min - VREF(DC)  
Setup Slew Rate  
Falling Signal  
Setup Slew Rate  
Rising Signal  
=
=
ΔTR  
Figure 107 Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to  
strobe) and tIS (for ADD/CMD with respect to clock)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 152 -  
W632GU6MB  
Note: Clock and Strobe are drawn  
on a different time scale.  
tIH  
tIS  
tIH  
tIS  
CK  
CK#  
DQS#  
DQS  
tDS  
tDH  
tDS  
tDH  
VDDQ  
VIH(AC)min  
VIH(DC)min  
DC to VREF  
nominal  
region  
slew rate  
VREF(DC)  
nominal  
slew rate  
DC to VREF  
region  
VIL(DC)max  
VIL(AC)max  
VSS  
ΔTR  
Hold Slew Rate  
ΔTF  
VREF(DC) VIL(DC)max  
ΔTR  
VIH(DC)min - VREF(DC)  
Hold Slew Rate  
Rising Signal  
=
=
Falling Signal  
ΔTF  
Figure 108 Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe)  
and tIH (for ADD/CMD with respect to clock)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 153 -  
W632GU6MB  
Note: Clock and Strobe are drawn  
on a different time scale.  
tIS  
tIH  
tIS  
tIH  
CK  
CK#  
DQS#  
DQS  
tDS  
tDS  
tDH  
tDH  
VDDQ  
tVAC  
nominal  
line  
VIH(AC)min  
VREF to AC  
region  
VIH(DC)min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC)max  
VIL(AC)max  
VREF to AC  
region  
nominal  
line  
tVAC  
ΔTR  
VSS  
tangent line [VIH(AC)min - VREF(DC)]  
Setup Slew Rate  
Rising Signal  
ΔTF  
=
=
ΔTR  
tangent line [VREF(DC) - VIL(AC)max]  
Setup Slew Rate  
Falling Signal  
ΔTF  
Figure 109 Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 154 -  
W632GU6MB  
Note: Clock and Strobe are drawn  
on a different time scale.  
tIH  
tIS  
tIH  
tIS  
CK  
CK#  
DQS#  
DQS  
tDS  
tDH  
tDS  
tDH  
VDDQ  
VIH(AC)min  
nominal  
line  
VIH(DC)min  
DC to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
DC to VREF  
region  
nominal  
line  
VIL(DC)max  
VIL(AC)max  
VSS  
ΔTR  
ΔTF  
tangent line [VREF(DC) - VIL(DC)max]  
Hold Slew Rate  
Rising Signal  
=
ΔTR  
tangent line [VIH(DC)min - VREF(DC)]  
Hold Slew Rate  
Falling Signal  
=
ΔTF  
Figure 110 Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock)  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 155 -  
W632GU6MB  
10.16.5 Data Setup, Hold and Slew Rate Derating  
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the  
data sheet tDS(base) and tDH(base) value (see Table 53) to the ΔtDS and ΔtDH (see Table 54 and Table  
55) derating value respectively. Example: tDS (total setup time) = tDS(base) + ΔtDS.  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing  
of VREF(DC) and the first crossing of VIH(AC)min. Setup (tDS) nominal slew rate for a falling signal is  
defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max  
(see Figure 107). If the actual signal is always earlier than the nominal slew rate line between shaded  
‘VREF(DC) to AC region’, use nominal slew rate for derating value. If the actual signal is later than the  
nominal slew rate line anywhere between shaded ‘VREF(DC) to AC region’, the slew rate of a tangent  
line to the actual signal from the AC level to DC level is used for derating value (see Figure 109).  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
VIL(DC)max and the first crossing of VREF(DC). Hold (tDH) nominal slew rate for a falling signal is  
defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC)  
(see Figure 108). If the actual signal is always later than the nominal slew rate line between shaded  
‘DC level to VREF(DC) region’, use nominal slew rate for derating value. If the actual signal is earlier  
than the nominal slew rate line anywhere between shaded ‘DC to VREF(DC) region’, the slew rate of a  
tangent line to the actual signal from the DC level to VREF(DC) level is used for derating value (see  
Figure 110).  
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see  
Table 56).  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not  
have reached VIH/IL(AC) at the time of the rising clock transition) a valid input signal is still required to  
complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in the tables the derating values may obtained by linear  
interpolation.  
These values are typically not subject to production test. They are verified by design and  
characterization.  
Table 53 Data Setup and Hold Base-Values  
Symbol  
Reference DDR3L-1333 DDR3L-1600 DDR3L-1866 DDR3L-2133 Unit  
Notes  
VIH/L(AC) :  
SR=1 V/nS  
tDS(base) AC135  
45  
25  
-
pS  
pS  
pS  
pS  
1
70  
VIH/L(AC) :  
SR=2 V/nS  
tDS(base) AC130  
tDH(base) DC90  
tDH(base) DC90  
55  
-
2
1
2
VIH/L(DC) :  
SR=1 V/nS  
75  
55  
VIH/L(DC) :  
SR=2 V/nS  
75  
60  
Notes:  
1. (AC/DC referenced for 1V/nS DQ-slew rate and 2 V/nS DQS slew rate)  
2. (AC/DC referenced for 2V/nS DQ-slew rate and 4 V/nS DQS slew rate).  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 156 -  
W632GU6MB  
Table 54 Derating values for DDR3L-1333/1600 tDS/tDH - (AC135)  
ΔtDS, ΔtDH derating in [pS] AC/DC based*  
Alternate AC135 Threshold -> VIH(AC)=VREF(DC)+135mV, VIL(AC)=VREF(DC)-135mV  
DQ  
Slew  
rate  
DQS, DQS# Differential Slew Rate  
4.0 V/nS  
3.0 V/nS  
2.0 V/nS  
1.8 V/nS  
1.6 V/nS  
1.4 V/nS  
1.2 V/nS  
1.0 V/nS  
(V/nS)  
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
68  
45  
0
-
45  
30  
0
-
68  
45  
0
2
-
45  
30  
0
-3  
-
68  
45  
0
2
3
-
45  
30  
0
-
53  
8
-
38  
8
5
1
-5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
18  
19  
22  
25  
-
16  
13  
9
-
-
-
-
-
-
-3  
-8  
-
10  
11  
14  
-
26  
27  
30  
33  
29  
-
21  
17  
11  
4
-
-
-
-
-
-
35  
38  
41  
37  
30  
27  
21  
14  
4
-
-
-
-
-
-
3
46  
49  
45  
38  
37  
30  
20  
5
-
-
-
-
-
-
-4  
-
-
-
-
-
-
-
-
-
-6  
-
-
-
-
-
-
-
-
-
-
-
-11  
Note: Cell contents ‘-are defined as not supported.  
Table 55 Derating values for DDR3L-1866/2133 tDS/tDH - (AC130)  
ΔtDS, ΔtDH derating in [pS] AC/DC based*  
Alternate AC130 Threshold -> VIH(AC)=VREF(DC)+130mV, VIL(AC)=VREF(DC)-130mV  
DQ  
Slew  
rate  
DQS, DQS# Differential Slew Rate  
8.0 V/nS 7.0 V/nS 6.0 V/nS 5.0 V/nS 4.0 V/nS 3.0 V/nS 2.0 V/nS 1.8 V/nS 1.6 V/nS 1.4 V/nS 1.2 V/nS 1.0 V/nS  
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH  
(V/nS)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
33 23 33 23 33 23  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
28 19 28 19 28 19 28 19  
22 15 22 15 22 15 22 15 22 15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
13  
-
9
-
-
-
-
-
-
-
-
-
13  
0
-
9
0
-
13  
0
9
0
13  
9
13  
0
9
0
-
-
0
0
0
0
-
-22 -15 -22 -15 -22 -15 -22 -15 -14 -7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-65 -45 -65 -45 -65 -45 -57 -37 -49 -29  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-62 -48 -62 -48 -54 -40 -46 -32 -38 -24  
-
-
-
-
-
-
-
-
-
-
-
-
-
-61 -53 -53 -45 -45 -37 -37 -29 -29 -19  
-
-
-
-
-
-
-
-
-
-
-
-49 -50 -41 -42 -33 -34 -25 -24 -17 -8  
-
-
-
-
-
-
-
-
-
-37 -49 -29 -41 -21 -31 -13 -15  
-
-
-
-
-
-
-
-31 -51 -23 -41 -15 -25  
-28 -56 -20 -40  
-
-
-
-
-
Note: Cell contents ‘-are defined as not supported.  
Table 56 Required time tVAC above VIH(AC) {below VIL(AC)} for valid transition  
DDR3L-1333/1600 (AC 135)  
tVAC [pS]  
DDR3L-1866/2133 (AC 130)  
tVAC [pS]  
Slew Rate [V/nS]  
Min.  
113  
113  
90  
Max.  
Min.  
95  
95  
73  
30  
16  
Note  
-
Max.  
> 2.0  
2.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
1.0  
45  
0.9  
30  
0.8  
11  
0.7  
Note  
Note  
Note  
Note  
0.6  
-
0.5  
-
< 0.5  
-
Note: Rising input signal shall become equal to or greater than VIH(AC) level and Falling input signal shall become equal to or less than  
VIL(AC) level.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 157 -  
W632GU6MB  
11. Backward Compatible to 1.5V DDR3 SDRAM VDD/VDDQ Requirements  
11.1 Input/Output Functional  
Symbol  
Type  
Function  
Power Supply: DDR3L operation = 1.283V to 1.45V;  
DDR3 operation = 1.425V to 1.575V  
VDD  
Supply  
DQ Power Supply: DDR3L operation = 1.283V to 1.45V;  
DDR3 operation = 1.425V to 1.575V  
VDDQ  
Supply  
11.2 Recommended DC Operating Conditions - DDR3L (1.35V) operation  
Symbol Parameter/Condition  
Min.  
1.283  
1.283  
Typ.  
1.35  
1.35  
Max.  
1.45  
1.45  
Unit  
V
Notes  
1, 2, 3, 4  
1, 2, 3, 4  
VDD  
Supply Voltage  
VDDQ  
Supply Voltage for Output  
V
Notes:  
1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ(t) over a very long  
period of time (e.g., 1 sec).  
2. If maximum limit is exceeded, input levels shall be governed by DDR3 specifications.  
3. Under these supply voltages, the device operates to this DDR3L specification.  
4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and VDDQ are  
changed for DDR3 operation (see Figure 111).  
11.3 Recommended DC Operating Conditions - DDR3 (1.5V) operation  
Symbol Parameter/Condition  
Min.  
1.425  
1.425  
Typ.  
1.5  
Max.  
1.575  
1.575  
Unit  
V
Notes  
1, 2, 3  
1, 2, 3  
VDD  
Supply Voltage  
VDDQ  
Supply Voltage for Output  
1.5  
V
Notes:  
1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications.  
2. Under 1.5 V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as defined for  
this device.  
3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and VDDQ are  
changed for DDR3L operation (see Figure 111).  
11.4 VDD/VDDQ Voltage Switch between DDR3L and DDR3  
If the SDRAM is powered up and initialized for the 1.35V operating voltage range, voltage can be  
increased to the 1.5V operating range provided that:  
Just prior to increasing the 1.35V operating voltages, no further commands are issued, other than  
NOPs or COMMAND INHIBITs, and all banks are in the precharge state.  
The 1.5V operating voltages are stable prior to issuing new commands, other than NOPs or  
COMMAND INHIBITs.  
The DLL is reset and relocked after the 1.5V operating voltages are stable and prior to any READ  
command.  
The ZQ calibration is performed. tZQinit must be satisfied after the 1.5V operating voltages are  
stable and prior to any READ command.  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 158 -  
W632GU6MB  
If the SDRAM is powered up and initialized for the 1.5V operating voltage range, voltage can be  
reduced to the 1.35V operating range provided that:  
Just prior to reducing the 1.5V operating voltages, no further commands are issued, other than  
NOPs or COMMAND INHIBITs, and all banks are in the precharge state.  
The 1.35V operating voltages are stable prior to issuing new commands, other than NOPs or  
COMMAND INHIBITs.  
The DLL is reset and relocked after the 1.35V operating voltages are stable and prior to any READ  
command.  
The ZQ calibration is performed. tZQinit must be satisfied after the 1.35V operating voltages are  
stable and prior to any READ command.  
After the DDR3L DRAM is powered up and initialized, the power supply can be altered between the  
DDR3L and DDR3 levels, provided the sequence in Figure 111 is maintained.  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK, CK#  
tCKSRX  
Tmin = 10 ns  
VDD, VDDQ (DDR3)  
VDD, VDDQ (DDR3L)  
Tmin = 10 ns  
Tmin = 200 µs  
T = 500 µs  
RESET#  
CKE  
tIS  
Tmin = 10 ns  
VALID  
tDLLK  
ZQCL  
tXPR  
tMRD  
tMRD  
tMRD  
tMOD  
tZQinit  
*1  
tIS  
*1  
MRS  
MR2  
MRS  
MR3  
MRS  
MR1  
MRS  
MR0  
VALID  
Command  
BA  
VALID  
tIS  
tIS  
Static LOW in case Rtt_Nom is enabled at time Tg, Otherwise static HIGH or LOW  
VALID  
ODT  
RTT  
TIME BREAK  
DON'T CARE  
Note:  
1. From time point “Td” until “Tk” NOP or DES commands must be applied between MRS and ZQCL commands.  
Figure 111 VDD/VDDQ Voltage Switch between DDR3L and DDR3  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 159 -  
W632GU6MB  
12. PACKAGE SPECIFICATION  
Package Outline VFBGA96 Ball (7.5x13 mm2, ball pitch: 0.8mm) (Window BGA Type)  
aaa  
4X  
C
bbb  
C
E1  
//  
A
E
B
PIN A1 INDEX  
A1  
eE  
A
PIN A1 INDEX  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
ccc C  
THE WINDOW-SIDE  
ENCAPSULANT  
C
Φb  
SEATING PLANE  
SOLDER BALL DIAMETER REFERS.  
TO POST REFLOW CONDITION.  
ddd M  
eee  
C
C
A
B
M
DIMENSION  
(INCH)  
DIMENSION  
(MM)  
SYMBOL  
MIN.  
---  
NOM.  
---  
MAX.  
MIN.  
---  
NOM.  
---  
MAX.  
0.039  
0.016  
0.020  
0.516  
0.299  
BALL LAND  
1.00  
0.40  
A
A1  
b
0.25  
0.40  
---  
---  
0.010  
0.016  
0.508  
0.291  
---  
---  
0.50  
13.10  
7.60  
0.512  
12.90  
7.40  
13.00  
7.50  
D
E
0.295  
D1  
12.00 BSC.  
6.40 BSC.  
0.80 BSC.  
0.80 BSC.  
---  
0.472 BSC.  
0.252 BSC.  
0.032 BSC.  
0.032 BSC.  
E1  
eE  
1
eD  
aaa  
bbb  
ccc  
ddd  
eee  
BALL OPENING  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
0.006  
0.008  
0.004  
0.006  
0.003  
0.15  
0.20  
0.10  
---  
Note:  
---  
1. Ball land: 0.5mm, Ball opening: 0.4mm,  
PCB Ball land suggested 0.4mm  
---  
0.15  
0.08  
---  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 160 -  
W632GU6MB  
13. REVISION HISTORY  
VERSION  
DATE  
PAGE  
All  
DESCRIPTION  
A01  
May 16, 2017  
Initial formally datasheet  
Add CL = 5 setting  
5, 7, 17, 133~137  
124, 131  
Refine IDD6 and IDD6ET parameters definition  
A02  
Nov. 22, 2017  
Add note 3 & 4 measured condition for IDD6 and  
IDD6ET parameters  
131  
Publication Release Date: Nov. 22, 2017  
Revision: A02  
- 161 -  

相关型号:

W632GU6MB12I TR

IC DRAM 2G PARALLEL 800MHZ

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W632GU6MB15I

IC DRAM 2G PARALLEL 667MHZ

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W632GU6MB15I TR

IC DRAM 2G PARALLEL 667MHZ

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

W632GU8KB

32M X 8 BANKS X 8 BIT DDR3L SDRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W632GU8KB-11

32M X 8 BANKS X 8 BIT DDR3L SDRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W632GU8KB-12

32M X 8 BANKS X 8 BIT DDR3L SDRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W632GU8KB-15

32M X 8 BANKS X 8 BIT DDR3L SDRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W632GU8KB12I

32M X 8 BANKS X 8 BIT DDR3L SDRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W632GU8KB15I

32M X 8 BANKS X 8 BIT DDR3L SDRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W63GT

Single Color LED, Green, Transparent, T-1 3/4, 5mm,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KINGBRIGHT

W63SRC

Single Color LED, Super Bright Red, Water Clear, T-1 3/4, 5mm,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KINGBRIGHT

W63SRD

Single Color LED, Super Bright Red, Diffused Red, T-1 3/4, 5mm,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KINGBRIGHT