WM8728SEDSV [ETC]

24-bit, 192kHz Stereo DAC with Volume Control;
WM8728SEDSV
型号: WM8728SEDSV
厂家: ETC    ETC
描述:

24-bit, 192kHz Stereo DAC with Volume Control

文件: 总31页 (文件大小:471K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8728  
w
24-bit, 192kHz Stereo DAC with  
Volume Control  
DESCRIPTION  
FEATURES  
Stereo DAC with 24 bit PCM  
Audio Performance  
The WM8728 is a high performance stereo DAC designed  
for audio applications such as DVD, home theatre systems,  
and digital TV. The WM8728 supports PCM data input word  
lengths from 16 to 32-bits and sampling rates up to 192kHz.  
The WM8728 consists of a serial interface port, digital  
interpolation filters, multi-bit sigma delta modulators and  
-
-
106dB SNR (‘A’ weighted @ 48kHz) DAC  
-97dB THD  
DAC Sampling Frequency: 8kHz - 192kHz  
2 or 3-Wire Serial Control Interface or Hardware Control  
Programmable Audio Data Interface Modes  
stereo DAC in  
a small 20-lead SSOP package. The  
WM8728 also includes a digitally controllable mute and  
attenuate function for each channel.  
-
I2S, Left, Right Justified, DSP  
-
16/20/24/32 bit Word Lengths  
The WM8728 supports a variety of connection schemes for  
audio DAC control. The 2 or 3-wire MPU serial port provides  
access to a wide range of features including on-chip mute,  
attenuation and phase reversal. A hardware controllable  
interface is also available  
Independent Digital Volume Control on Each Channel with  
127.5dB Range in 0.5dB Steps  
3.0V - 5.5V Supply Operation  
20-lead SSOP Package  
The WM8728 is an ideal device to interface to AC-3,  
DTS, and MPEG audio decoders for surround sound  
applications, or for use in DVD players supporting DVD-A.  
Exceeds Dolby Class A Performance Requirements  
APPLICATIONS  
DVD-Audio and DVD ‘Universal’ Players  
Home theatre systems  
Digital TV  
Digital broadcast receivers  
BLOCK DIAGRAM  
Production Data, August 2008, Rev 4.6  
Copyright ©2008 Wolfson Microelectronics plc  
WOLFSON MICROELECTRONICS plc  
To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews/  
WM8728  
Production Data  
TABLE OF CONTENTS  
DESCRIPTION ............................................................................................................1  
FEATURES..................................................................................................................1  
APPLICATIONS ..........................................................................................................1  
BLOCK DIAGRAM ......................................................................................................1  
TABLE OF CONTENTS ..............................................................................................2  
PIN CONFIGURATION................................................................................................3  
ORDERING INFORMATION .......................................................................................3  
PIN DESCRIPTION .....................................................................................................4  
ABSOLUTE MAXIMUM RATINGS..............................................................................5  
DC ELECTRICAL CHARACTERISTICS .....................................................................6  
ELECTRICAL CHARACTERISTICS ...........................................................................6  
TERMINOLOGY................................................................................................................. 7  
MASTER CLOCK TIMING.................................................................................................. 8  
DIGITAL AUDIO INTERFACE............................................................................................ 8  
POWER SUPPLY TIMING ................................................................................................. 9  
POWER ON RESET (POR) ............................................................................................... 9  
MPU 3-WIRE INTERFACE TIMING ..................................................................................12  
MPU 2-WIRE INTERFACE TIMING ..................................................................................13  
DEVICE DESCRIPTION............................................................................................14  
INTRODUCTION...............................................................................................................14  
CLOCKING SCHEMES .....................................................................................................14  
DIGITAL AUDIO INTERFACE...........................................................................................15  
AUDIO DATA SAMPLING RATES.....................................................................................17  
HARDWARE CONTROL MODES .....................................................................................18  
SOFTWARE CONTROL INTERFACE...............................................................................20  
REGISTER MAP ...............................................................................................................21  
ATTENUATION CONTROL...............................................................................................22  
DIGITAL FILTER CHARACTERISTICS.............................................................................25  
DAC FILTER RESPONSES...............................................................................................25  
DIGITAL DE-EMPHASIS CHARACTERISTICS........................................................26  
APPLICATIONS INFORMATION ..............................................................................27  
RECOMMENDED EXTERNAL COMPONENTS (PCM AUDIO).........................................27  
RECOMMENDED EXTERNAL COMPONENTS VALUES.................................................27  
RECOMMENDED ANALOGUE LOW PASS FILTER FOR PCM DATA FORMAT  
(OPTIONAL)......................................................................................................................28  
PACKAGE DIMENSIONS .........................................................................................29  
IMPORTANT NOTICE...............................................................................................30  
ADDRESS: ........................................................................................................................30  
PD, Rev 4.6, August 2008  
w
2
WM8728  
Production Data  
PIN CONFIGURATION  
ORDERING INFORMATION  
MOISTURE SENSITIVITY  
LEVEL  
PEAK SOLDERING  
DEVICE  
TEMP. RANGE  
-40 to +85oC  
-40 to +85oC  
PACKAGE  
TEMP  
20-lead SSOP  
(Pb-free)  
MSL2  
WM8728SEDS/V  
WM8728SEDS/RV  
260°C  
20-lead SSOP  
MSL2  
260°C  
(Pb-free, tape and reel)  
Note:  
Reel quantity = 2,000  
PD, Rev 4.6 August 2008  
3
w
WM8728  
Production Data  
PIN DESCRIPTION  
PIN  
1
NAME  
LRCIN  
DIN  
TYPE  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Digital Output (Open drain)  
Supply  
DESCRIPTION  
DAC Sample Rate Clock Input: PCM Input Mode  
Serial Audio Data Input: PCM Input Mode  
Audio Data Bit Clock Input  
2
3
BCKIN  
MCLK  
ZERO  
DGND  
DVDD  
VOUTR  
AGND  
AVDD  
VOUTL  
VMID  
4
Master Clock Input  
5
Infinite ZERO Detect Flag (L = IZD detected, H = IZD not detected).  
Digital Ground Supply  
6
7
Supply  
Digital Positive Supply  
8
Analogue Output  
Supply  
Right Channel DAC Output  
9
Analogue Ground Supply  
10  
11  
12  
13  
14  
15  
Supply  
Analogue Positive Supply  
Analogue Output  
Analogue Output  
Supply  
Left Channel DAC Output  
Mid Rail Decoupling Point  
VREFN  
VREFP  
CSBIWL  
DAC Negative Reference – normally AGND, must not be below AGND  
DAC Positive Reference – normally AVDD, must not be above AVDD  
Software Mode: 3-Wire Serial Control Chip Select  
Hardware Mode: Input Word Length  
Supply  
Digital Input  
(pull-up)  
16  
17  
18  
MODE  
MUTEB  
SDIDEM  
Digital Input (pull-down)  
Digital Bi-directional  
Digital Bi-directional  
Control Mode Selection (L = Hardware, H = Software)  
Mute Control (L = Mute on, H = Mute off, Z = Automute Enabled)  
Software Mode: 3 or 2-Wire Serial Control Data Input:  
Hardware Mode: De-Emphasis Select  
19  
20  
SCK  
Digital Input (pull-down)  
Software Mode: 3 or 2-Wire Serial Control Clock Input  
Software Mode 3-Wire Serial Control Load Input  
Hardware Mode: Input Data Format Selection  
LATI2S  
Digital Input  
(pull-up)  
Note:  
Digital input pins have Schmitt trigger input buffers.  
PD, Rev 4.6, August 2008  
4
w
WM8728  
Production Data  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
MIN  
-0.3V  
MAX  
+7V  
Digital supply voltage  
Analogue supply voltage  
Voltage range digital inputs  
Voltage range analogue inputs  
Master Clock Frequency  
Operating temperature range, TA  
Storage temperature after soldering  
-0.3V  
+7V  
DGND -0.3V  
AGND -0.3V  
DVDD +0.3V  
AVDD +0.3V  
50MHz  
-40°C  
-65°C  
+85°C  
+150°C  
Note:  
Analogue and digital grounds must always be within 0.3V of each other.  
PD, Rev 4.6 August 2008  
5
w
WM8728  
Production Data  
DC ELECTRICAL CHARACTERISTICS  
PARAMETER  
SYMBOL  
DVDD  
TEST CONDITIONS  
MIN  
3.0  
TYP  
MAX  
UNIT  
V
Digital supply range  
Analogue supply range  
Ground  
5.5  
5.5  
AVDD  
3.0  
V
AGND, DGND  
0
0
V
Difference DGND to AGND  
Analogue supply current  
Digital supply current  
Analogue supply current  
Digital supply current  
-0.3  
+0.3  
V
AVDD = 5V  
DVDD = 5V  
AVDD = 3.3V  
DVDD = 3.3V  
19  
8
mA  
mA  
mA  
mA  
18  
4
Note:  
DVDD supply needs to be active before AVDD supply for correct device power on reset. See Power Supply Timing section.  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
AVDD, DVDD = 5V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital Logic Levels (TTL Levels)  
Input LOW level  
VIL  
VIH  
0.8  
V
V
V
V
Input HIGH level  
2.0  
Output LOW  
VOL  
VOH  
I
OL = 1mA  
DGND + 0.3V  
Output HIGH  
I
OH = 1mA  
DVDD – 0.3V  
(VREFP -  
Analogue Reference Levels  
Reference voltage  
VMID  
(VREFP -  
(VREFP -  
V
VREFN)/2 - VREFN)/2 VREFN)/2 +  
50mV  
50mV  
Potential divider resistance  
RVMID  
10k  
DAC Output (Load = 10k50pF)  
0dBFs Full scale output voltage  
At DAC outputs  
1.1 x  
AVDD/5  
106  
Vrms  
dB  
SNR (Note 1,2,3)  
SNR (Note 1,2,3)  
SNR (Note 1,2,3)  
SNR (Note 1,2,3)  
A-weighted,  
@ fs = 48kHz  
A-weighted  
@ fs = 96kHz  
A-weighted  
100  
106  
106  
102  
dB  
dB  
@ fs = 192kHz  
A-weighted,  
dB  
@ fs = 48kHz  
AVDD, DVDD = 3.3V  
A-weighted  
@ fs = 96kHz  
AVDD, DVDD = 3.3V  
SNR (Note 1,2,3)  
SNR (Note 1,2,3)  
102  
103  
dB  
dB  
Non ‘A’ weighted @ fs  
= 48kHz  
THD (Note 1,2,3)  
1kHz, 0dBFs  
-97  
106  
100  
dB  
dB  
dB  
THD+N (Dynamic range, Note 2)  
DAC channel separation  
1kHz, -60dBFs  
100  
PD, Rev 4.6, August 2008  
6
w
WM8728  
Production Data  
Test Conditions  
AVDD, DVDD = 5V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analogue Output Levels  
Output level  
Load = 10k, 0dBFS  
1.1  
VRMS  
VRMS  
Load = 10k, 0dBFS,  
0.726  
(AVDD = 3.3V)  
Gain mismatch  
channel-to-channel  
±1  
1
%FSR  
kΩ  
Minimum resistance load  
To midrail or a.c.  
coupled  
To midrail or a.c.  
coupled  
600  
ohms  
(AVDD = 3.3V)  
Maximum capacitance load  
Output d.c. level  
5V or 3.3V  
100  
pF  
V
(VREFP -  
VREFN)/2  
Power On Reset (POR)  
POR threshold  
2.4  
V
Notes:  
1. Ratio of output level with 1kHz full scale input, to the output level with all ZEROS into the digital input, over a 20Hz to  
20kHz bandwidth.  
2. All performance measurements done with 20kHz low pass filter, and where noted an A-weight filter. Failure to use such a  
filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical  
Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic specification  
values.  
3. VMID decoupled with 10uF and 0.1uF capacitors (smaller values may result in reduced performance).  
TERMINOLOGY  
1. Signal-to-noise ratio (dB) - SNR is a measure of the difference in level between the full-scale output and the output with a  
ZERO signal applied. (No Auto-ZERO or Automute function is employed in achieving these results).  
2. Dynamic range (dB) - DNR is a measure of the difference between the highest and lowest portions of a signal. Normally a  
THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB to it. (e.g.  
THD+N @ -60dB= -32dB, DR= 92dB).  
3. THD+N (dB) - THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.  
4. Stop band attenuation (dB) - Is the degree to which the frequency spectrum is attenuated (outside audio band).  
5. Channel Separation (dB) - Also known as Cross Talk. This is a measure of the amount one channel is isolated from the  
other. Normally measured by sending a full-scale signal down one channel and measuring the other.  
PD, Rev 4.6 August 2008  
w
7
WM8728  
Production Data  
MASTER CLOCK TIMING  
tMCLKL  
MCLK  
tMCLKH  
tMCLKY  
Figure 1 Master Clock Timing Requirements  
Test Conditions  
AVDD, DVDD = 5V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Master Clock Timing Information  
MCLK Master clock pulse width high  
MCLK Master clock pulse width low  
MCLK Master clock cycle time  
MCLK Duty cycle  
tMCLKH  
tMCLKL  
tMCLKY  
13  
13  
ns  
ns  
ns  
26  
40:60  
60:40  
DIGITAL AUDIO INTERFACE  
tBCH  
tBCL  
BCKIN  
LRCIN  
DIN  
tBCY  
tLRSU  
tDS  
tLRH  
tDH  
Figure 2 Digital Audio Data Timing  
Test Conditions  
AVDD, DVDD = 5V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCKIN cycle time  
tBCY  
tBCH  
tBCL  
40  
16  
16  
8
ns  
ns  
ns  
ns  
BCKIN pulse width high  
BCKIN pulse width low  
LRCIN set-up time to  
BCKIN rising edge  
tLRSU  
LRCIN hold time from  
BCKIN rising edge  
tLRH  
tDS  
8
8
8
ns  
ns  
ns  
DIN set-up time to BCKIN  
rising edge  
DIN hold time from BCKIN  
rising edge  
tDH  
PD, Rev 4.6, August 2008  
8
w
WM8728  
Production Data  
POWER SUPPLY TIMING  
Figure 3 Power Supply Timing Requirements  
Test Conditions  
AVDD, DVDD = 5V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Supply Input Timing Information  
DVDD set up time to AVDD  
rising edge  
TPSU  
Measured from DVDD=+2.4V to  
AVDD=+0.7V  
100  
µs  
POWER ON RESET (POR)  
The WM8728 has an internal power-on-reset (POR) circuit which is used to reset the digital logic  
into a default state after power up. A block diagram of the reset circuit is shown in Figure 4  
Figure 4 Block Diagram of Power-On-Reset Circuit  
PD, Rev 4.6 August 2008  
9
w
WM8728  
Production Data  
The POR circuit requires that the DVDD is applied before the AVDD. The active low reset signal  
NPOR will be asserted low until VMID rises to 1.2V. When this threshold has been reached, then  
the NPOR is released and the digital interface has been reset. This is illustrated in the diagram  
shown in Figure 5.  
Figure 5 NPOR Generation At Power On Reset  
PD, Rev 4.6, August 2008  
10  
w
WM8728  
Production Data  
Figure 6 and Figure 7 illustrate the NPOR generation when the AVDD and DVDD power are  
removed. Figure 6 illustrates the removal of DVDD before AVDD. Figure 7 illustrates the removal  
of AVDD before AVDD.  
DVDD  
1.0V (Typ)  
AVDD  
VMID  
Normal operation mode  
Reset  
NPOR  
Figure 6 NPOR Generation at Power-off Reset (DVDD falls before AVDD)  
DVDD  
AVDD  
1.0V (Typ)  
VMID  
Normal operation mode  
Reset  
NPOR  
NPOR falls  
with AVDD  
Figure 7 NPOR Generation at Power-off Reset (AVDD falls before DVDD)  
PD, Rev 4.6 August 2008  
11  
w
WM8728  
Production Data  
MPU 3-WIRE INTERFACE TIMING  
Figure 8 Program Register Input Timing - 3-Wire Serial Control Mode  
Test Conditions  
AVDD, DVDD = 5V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCK rising edge to LATI2S  
rising edge  
tSCS  
40  
ns  
SCK pulse cycle time  
tSCY  
tSCL  
80  
20  
20  
20  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK pulse width low  
SCK pulse width high  
tSCH  
tDSU  
tDHO  
tCSL  
SDIDEM to SCK set-up time  
SCK to SDIDEM hold time  
LATI2S pulse width low  
LATI2S pulse width high  
LATI2S rising to SCK rising  
CSBIWL to LATI2S set-up time  
LATI2S to CSBIWL hold time  
tCSH  
tCSS  
tCSSU  
tCSSH  
PD, Rev 4.6, August 2008  
12  
w
WM8728  
Production Data  
MPU 2-WIRE INTERFACE TIMING  
Figure 9 Program Register Input Timing - 2-Wire Serial Control Mode  
Test Conditions  
AVDD, DVDD = 5V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCK pulse cycle time  
tSCY  
tSCL  
tSCH  
tSSU  
80  
20  
20  
10  
ns  
ns  
ns  
ns  
SCK pulse width low  
SCK pulse width high  
SDIDEM to SCK data set-up  
time for start signal  
SDIDEM from SCK data hold  
time for start signal  
tSHD  
tDSU  
10  
20  
ns  
ns  
SDIDEM to SCK data set-up  
time  
SCK to SDIDEM data hold time  
SCK rise time  
tDHD  
tSCR  
tSCF  
tDR  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
SCK fall time  
5
SDIDEM rise time  
SDIDEM fall time  
5
tDF  
5
SDIDEM to SCK data set-up  
time for stop signal  
tESU  
10  
Notes:  
1. The address for the device in the 2-wire mode is 001101X (binary) with the last bit selectable.  
2. In the two-wire interface mode, the CSBIWL pin indicates the final bit of the chip address.  
3. In 2-wire mode the LATI2S pin should be tied to either DGND or DVSS to avoid noise toggling the interface into 3-wire  
mode.  
PD, Rev 4.6 August 2008  
w
13  
WM8728  
Production Data  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8728 is a high performance DAC designed for digital consumer audio applications. Its  
range of features makes it ideally suited for use in DVD players, AV receivers and other high-end  
consumer audio equipment.  
WM8728 is a complete 2-channel stereo audio digital-to-analogue converter, including digital  
interpolation filter, multi-bit sigma delta with dither, switched capacitor multi-bit stereo DAC and  
output smoothing filters. The WM8728 includes an on-chip digital volume control, configurable  
digital audio interface and a 2 or 3 wire MPU control interface. It is fully compatible and an ideal  
partner for a range of industry standard microprocessors, controllers and DSPs.  
Control of internal functionality of the device is by either hardware control (pin programmed) or  
software control (2 or 3-wire serial control interface). The MODE pin selects between hardware  
and software control. The software control interface may be asynchronous to the audio data  
interface. In which case control data will be re-synchronised to the audio processing internally.  
Operation using a master clock of 256fs, 384fs, 512fs or 768fs is provided, selection between  
clock rates being automatically controlled in hardware mode, or serial controlled when in software  
mode. Sample rates (fs) from less than 8ks/s to 96ks/s are allowed, provided the appropriate  
master clock is input. Support is also provided for up to 192ks/s using a master clock of 128fs or  
192fs.  
The audio data interface supports right justified, left justified and I2S (Philips left justified, one bit  
delayed) interface formats along with a highly flexible DSP serial port interface. When in hardware  
mode, the three serial interface pins become control pins to allow selection of, input data format  
type (I2S or right justified), input word length (20 or 24 bit) and de-emphasis functions.  
The device is packaged in a small 20-pin SSOP.  
CLOCKING SCHEMES  
In a typical digital audio system there is only one central clock source producing a reference clock  
to which all audio data processing is synchronised. This clock is often referred to as the audio  
system’s Master Clock. The external master system clock can be applied directly through the  
MCLK input pin with no software configuration necessary for sample rate selection.  
Note that on the WM8728, MCLK is used to derive clocks for the DAC path. The DAC path  
consists of DAC sampling clock, DAC digital filter clock and DAC digital audio interface timing. In  
a system where there are a number of possible sources for the reference clock it is recommended  
that the clock source with the lowest jitter be used to optimise the performance of the DAC.  
WM8728 always acts as a slave and requires clocks to be inputs.  
PD, Rev 4.6, August 2008  
14  
w
WM8728  
Production Data  
DIGITAL AUDIO INTERFACE  
Audio data is applied to the internal DAC filters via the Digital Audio Interface. Five popular  
interface formats are supported:  
Left Justified mode  
Right Justified mode  
I2S mode  
DSP mode A  
DSP mode B  
All five formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits with the  
exception that 32 bit data is not supported in right justified mode. DIN and LRCIN maybe  
configured to be sampled on the rising or falling edge of BCKIN.  
In left justified, right justified and I2S modes, the digital audio interface receives data on the DIN  
input. Audio Data is time multiplexed with LRCIN indicating whether the left or right channel is  
present. LRCIN is also used as a timing reference to indicate the beginning or end of the data  
words. The minimum number of BCKINs per LRCIN period is 2 times the selected word length.  
LRCIN must be high for a minimum of word length BCKINs and low for a minimum of word length  
BCKINs. Any mark to space ratio on LRCIN is acceptable provided the above requirements are  
met  
The WM8728 will automatically detect when data with a LRCIN period of exactly 32 BCKINs is  
sent, and select 16-bit mode - overriding any previously programmed word length. Word length  
will revert to a programmed value only if a LRCIN period other than 32 BCKINs is detected.  
In DSP mode A or B, the data is time multiplexed onto DIN. LRCIN is used as a frame sync signal  
to identify the MSB of the first word. The minimum number of BCKINs per LRCIN period is 2  
times the selected word length. Any mark to space ratio is acceptable on LRCIN provided the  
rising edge is correctly positioned. (See Figure 13 and Figure 14)  
LEFT JUSTIFIED MODE  
In left justified mode, the MSB is sampled on the first rising edge of BCKIN following a LRCIN  
transition. LRCIN is high during the left data word and low during the right data word.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCIN  
BCKIN  
DIN  
1
2
3
n
n-2 n-1  
1
2
3
n
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 10 Left Justified Mode Timing Diagram  
PD, Rev 4.6 August 2008  
15  
w
WM8728  
Production Data  
RIGHT JUSTIFIED MODE  
In right justified mode, the LSB is sampled on the rising edge of BCKIN preceding a LRCIN  
transition. LRCIN is high during the left data word and low during the right data word.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCIN  
BCKIN  
DIN  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 11 Right Justified Mode Timing Diagram  
I2S MODE  
In I2S mode, the MSB is sampled on the second rising edge of BCKIN following a LRCIN  
transition. LRCIN is low during the left data word and high during the right data word.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCIN  
BCKIN  
1 BCKIN  
1 BCKIN  
DIN  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
LSB  
LSB  
MSB  
MSB  
Figure 12 I2S Mode Timing Diagram  
DSP MODE A  
In DSP mode A, the first bit is sampled on the BCKIN rising edge following the one that detects a  
low to high transition on LRCIN. No BCKIN edges are allowed between the data words. The word  
order is DIN left, DIN right.  
1 BCKIN  
1 BCKIN  
1/fs  
LRCIN  
BCKIN  
LEFT CHANNEL  
RIGHT CHANNEL  
NO VALID DATA  
DIN  
1
2
n
1
2
n
n-1  
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 13 DSP Mode A Timing Diagram  
PD, Rev 4.6, August 2008  
16  
w
WM8728  
Production Data  
DSP MODE B  
In DSP mode B, the first bit is sampled on the BCKIN rising edge, which detects a low to high  
transition on LRCIN. No BCKIN edges are allowed between the data words. The word order is  
DIN left, DIN right.  
1/fs  
LRCIN  
BCKIN  
LEFT CHANNEL  
RIGHT CHANNEL  
NO VALID DATA  
DIN  
1
2
n
1
2
n
1
n-1  
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 14 DSP Mode B Timing Diagram  
AUDIO DATA SAMPLING RATES  
The master clock for WM8728 can range from 128fs to 768fs, where fs is the audio sampling  
frequency (LRCIN) typically 32kHz, 44.1kHz, 48kHz, 96kHz or 192kHz. The master clock is used  
to operate the digital filters and the noise shaping circuits.  
The WM8728 has a master clock detection circuit that automatically determines the relationship  
between the master clock frequency and the sampling rate (to within +/- 32 system clocks). If  
there is a greater than 32 clocks error, the interface shuts down the DAC and mutes the output.  
The master clock should be synchronised with LRCIN, although the WM8728 is tolerant of phase  
differences or jitter on this clock. See Table 1  
SAMPLING  
RATE  
MASTER CLOCK FREQUENCY (MHZ) (MCLK)  
128fs  
192fs  
256fs  
384fs  
512fs  
768fs  
(LRCIN)  
32kHz  
4.096  
5.6448  
6.114  
6.144  
8.467  
8.192  
11.2896  
12.288  
24.576  
12.288  
16.9340  
18.432  
36.864  
16.384  
22.5792  
24.576  
24.576  
33.8688  
36.864  
44.1kHz  
48kHz  
9.216  
96kHz  
12.288  
24.576  
18.432  
36.864  
Unavailable Unavailable  
192kHz  
Unavailable Unavailable Unavailable Unavailable  
Table 1 Typical Relationships Between Master Clock Frequency and Sampling Rate  
PD, Rev 4.6 August 2008  
17  
w
WM8728  
Production Data  
HARDWARE CONTROL MODES  
When the MODE pin is held low, the following hardware modes of operation are available.  
MUTE AND AUTOMUTE OPERATION  
In both hardware and software modes, pin 17 (MUTEB) controls the selection of MUTE directly,  
and can be used to enable and disable the automute function. Automute is enabled by leaving  
MUTEB pin floating, it is disabled by applying a signal to the pin. When left floating this pin  
becomes an output and indicates infinite ZERO detect (IZD), see also pin 5 (ZERO). The status  
of IZD controls the selection of MUTE when automute is enabled. When IZD is detected MUTE is  
enabled and when IZD is not detected MUTE is disabled.  
MUTEB PIN  
DESCRIPTION  
0
1
Mute DAC channels  
Normal Operation  
Floating  
MUTEB becomes an output to indicate when IZD occurs.  
L=IZD detected (MUTE enabled), H=IZD not detected (MUTE disabled).  
Table 2 Mute and Automute Control  
ZERO PIN  
DESCRIPTION  
0
1
Indicates Infinite Zero detected from the digital input.  
Indicates Infinite Zero not detected from the digital input.  
Table 3 Zero Pin Output  
Figure 15 shows the application and release of MUTE whilst a full amplitude sinusoid is being  
played at 48kHz sampling rate. When MUTE (lower trace) is asserted, the output (upper trace)  
begins to decay exponentially from the DC level of the last input sample. The output will decay  
towards VMID with a time constant of approximately 64 input samples. When MUTE is de-  
asserted, the output will restart almost immediately from the current input sample.  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
0
0.001  
0.002  
0.003  
0.004  
0.005  
0.006  
Time(s)  
Figure 15 Application and Release of Soft Mute  
The MUTEB pin is an input to select mute or not mute. MUTEB is active low; taking the pin low  
causes the filters to soft mute, ramping down the audio signal over a few milliseconds. Taking  
MUTEB high again allows data into the filter.  
PD, Rev 4.6, August 2008  
18  
w
WM8728  
Production Data  
The automute function detects a series of ZERO value audio samples of 1024 samples long  
being applied to both channels. After such an event, a latch is set whose output (AUTOMUTED)  
is wire OR’ed through a 10kohm resistor to the MUTEB pin. Thus if the MUTEB pin is not being  
driven, the automute function will assert mute.  
If MUTEB is tied high, AUTOMUTED is overridden and will not mute unless the IZD register bit is  
set. If MUTEB is driven from a bi-directional source, then both MUTE and automute functions are  
available. If MUTEB is not driven, AUTOMUTED appears as a weak output (10kOhm-source  
impedance) so can be used to drive external mute circuits. AUTOMUTED will be removed as  
soon as any channel receives a non-ZERO input.  
A diagram showing how the various Mute modes interact is shown below Figure 16.  
IZD (Register Bit)  
AUTOMUTED  
(Internal Signal)  
10k  
SOFTMUTE  
(Internal  
Signal)  
MUTEB  
PIN  
MUT (Register Bit)  
Figure 16 Selection Logic for MUTE Modes  
INPUT FORMAT SELECTION  
In hardware mode, LATI2S (pin 20) and CSBIWL (pin 15) become input controls for selection of  
input data format type and input data word length.  
LATI2S  
CSBIWL  
INPUT DATA MODE  
24-bit right justified  
0
0
1
0
1
0
20-bit right justified  
16-bit I2S  
24-bit I2S  
1
1
Table 4 Input Format Selection  
Note:  
In 24 bit I2S mode, any width of 24 bits or less is supported provided that LRCIN is high for a  
minimum of 24 BCKINs and low for a minimum of 24 BCKINs. If exactly 32 BCKINs occur in one  
LRCIN (16 high, 16 low) the chip will auto detect and run a 16 bit data mode.  
DE-EMPHASIS CONTROL  
In hardware mode, SDIDEM (pin 18) becomes an input control for selection of de-emphasis  
filtering to be applied.  
SDIDEM  
DE-EMPHASIS  
0
Off  
On  
1
Table 5 De-emphasis Control  
PD, Rev 4.6 August 2008  
19  
w
WM8728  
Production Data  
SOFTWARE CONTROL INTERFACE  
The software control interface may be operated using a 2-wire interface compatible or 3-wire (SPI-  
compatible) interface.  
SELECTION OF CONTROL MODE  
The WM8728 may be programmed to operate in hardware or software control modes. This is  
achieved by setting the state of the MODE pin.  
MODE  
INTERFACE FORMAT  
Hardware Control Mode  
Software Control Mode  
0
1
Table 6 Control Interface Mode Selection  
3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE  
In this mode, SDIDEM is used for the program data, SCK is used to clock in the program data  
and LATI2S is used to latch in the program data. The 3-wire interface protocol is shown in Figure  
17.  
Figure 17 3-Wire Serial Interface  
Notes:  
1. B[15:9] are Control Address Bits  
2. B[8:0] are Control Data Bits  
3. CSBIWL needs to be low during writes – see Figure 8  
2-WIRE SERIAL CONTROL MODE  
In 2-wire mode, which is the default, SDIDEM is used for the program data and SCK is used to  
clock in the program data see Figure 18.  
WM8728 has an address of 001101X (binary) which represents an audio device. The final  
address digit is dependent on pin CSBIWL, which should be tied to either DVDD or DGND. This  
allows the device to have a choice of two identification header addresses used in the 2 wire  
interface word. This feature allows more than one WM8728 device to be present on the interface  
bus.  
LATI2S should be tied to either DVDD or DGND, as it is unused. This pin if toggled from low to  
high and high to low, will cause the device to enter the 3-wire interface mode and cannot be  
placed back into 2-wire mode except by toggling the MODE pin, or powering off the device.  
Figure 18 2-Wire Serial Interface  
PD, Rev 4.6, August 2008  
20  
w
WM8728  
Production Data  
REGISTER MAP  
WM8728 uses a total of 4 program registers, which are 16-bits long. These registers are all loaded through input pin SDIDEM.  
Using either 2-wire or 3-wire serial control mode as shown Figure 8 and Figure 9  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
0
B8  
B7  
B6  
LAT6  
RAT6  
0
B5  
LAT5  
RAT5  
IW2  
B4  
LAT4  
RAT4  
IW1  
B3  
LAT3  
RAT3  
IW0  
0
B2  
LAT2  
RAT2  
B1  
LAT1  
RAT1  
B0  
LAT0  
RAT0  
M0  
M1  
M2  
M3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
UPDATEL LAT7  
UPDATER RAT7  
0
1
0
0
0
0
0
PWDN DEEMPH MUT  
I2S  
0
1
IZD  
0
BCP  
REV  
ATC  
LRP  
ADDRESS  
DATA  
Table 7 Mapping of Program Registers  
REGISTER  
ADDRESS  
(A3,A2,A1,A0)  
0000  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
[7:0]  
8
LAT[7:0] 11111111 (0dB) Attenuation data for left channel in 0.5dB steps, see Table 10  
DACL  
UPDATEL  
0
Attenuation data load control for left channel.  
Attenuation  
0: Store DACL in intermediate latch (no change to output)  
1: Store DACL and update attenuation on both channels.  
0001  
[7:0]  
8
RAT[7:0] 11111111 (0dB) Attenuation data for right channel in 0.5dB steps, see Table 10  
DACR  
Attenuation  
UPDATER  
0
0
0
0
Attenuation data load control for right channel.  
0: Store DACR in intermediate latch (no change to output)  
1: Store DACR and update attenuation on both channels.  
Left and right DACs soft mute control.  
0: No mute  
0010  
0
1
2
MUT  
DAC Control  
1: Mute  
DEEMPH  
PWDN  
De-emphasis control.  
0: De-emphasis off  
1: De-emphasis on  
Left and Right DACs Power-down Control  
0: All DACs running, output is active  
1: All DACs in power saving mode, output muted  
Audio data format select, see Table 15  
Audio data format select, see Table 15  
Polarity select for LRCIN/DSP mode select.  
0: normal LRCIN polarity/DSP late mode  
1: inverted LRCIN polarity/DSP early mode  
Attenuator Control.  
[5:3]  
0
IW[2:0]  
I2S  
0
0
0
0011  
Interface  
Control  
1
LRP  
2
ATC  
0
0: All DACs use attenuation as programmed.  
1: Right channel DACs use corresponding left DAC  
attenuation  
4
5
REV  
BCP  
0
0
Output phase reverse.  
BCKIN Polarity  
0 : normal BCKIN polarity  
1: inverted BCKIN polarity  
8
IZD  
0
Infinite ZERO detection circuit control and automute control  
0: Infinite ZERO detect disabled  
1: Infinite ZERO detect enabled  
Table 8 Register Bit Descriptions  
PD, Rev 4.6 August 2008  
21  
w
WM8728  
Production Data  
ATTENUATION CONTROL  
Each DAC channel can be attenuated digitally before being applied to the digital filter. Attenuation  
is 0dB by default but can be set between 0 and 127.5dB in 0.5dB steps using the 8 Attenuation  
control bits. All attenuation registers are double latched allowing new values to be pre-latched to  
both channels before being updated synchronously. Setting the UPDATE bit on any attenuation  
write will cause all pre-latched values to be immediately applied to the DAC channels.  
REGISTER  
ADDRESS  
BITS  
LABEL  
DEFAULT  
DESCRIPTION  
0000  
[7:0]  
LAT[7:0]  
11111111 (0dB)  
Attenuation data for Left channel DACL in 0.5dB steps.  
Attenuation  
DACL  
8
UPDATEL  
0
Controls simultaneous update of all Attenuation Latches  
0: Store DACL in intermediate latch (no change to output)  
1: Store DACL and update attenuation on all channels.  
Attenuation data for Right channel DACR in 0.5dB steps.  
0001  
[7:0]  
8
RAT[7:0]  
11111111 (0dB)  
0
Attenuation  
DACR  
UPDATER  
Controls simultaneous update of all Attenuation Latches  
0: Store DACR in intermediate latch (no change to output)  
1: Store DACR and update attenuation on all channels.  
Table 9 Attenuation Register Map  
Note:  
1. The UPDATE bit is not latched. If UPDATE=0, the Attenuation value will be written to the pre-latch but not applied to the  
relevant DAC. If UPDATE=1, all pre-latched values and the current value being written will be applied on the next input  
sample.  
2. Care should be used in reducing the attenuation as rapid large volume changes can introduce zipper noise.  
DAC OUTPUT ATTENUATION  
Registers LAT and RAT control the left and right channel attenuation. Table 9 shows how the  
attenuation levels are selected from the 8-bit words.  
XAT[7:0]  
ATTENUATION LEVEL  
00(hex)  
dB (mute)  
01(hex)  
127dB  
:
126.5 dB  
:
:
:
:
FE(hex)  
FF(hex)  
0.5dB  
0dB  
Table 10 Attenuation Control Levels  
MUTE MODES  
Setting the MUT register bit will apply a 'soft' mute to the input of the digital filters:  
REGISTER ADDRESS  
0010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Soft Mute select  
0
MUT  
0
DAC Control  
0 : Normal Operation  
1: Soft mute all channels  
Table 11 Mute control  
PD, Rev 4.6, August 2008  
22  
w
WM8728  
Production Data  
DE-EMPHASIS MODE  
Setting the DEEMPH register bit puts the digital filters into de-emphasis mode:  
REGISTER ADDRESS  
0010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
1
DEEMPH  
0
De-emphasis mode select:  
0 : De-emphasis Off  
DAC Control  
1: De-emphasis On  
Table 12 De-emphasis Control  
POWERDOWN MODE  
Setting the PWDN register bit immediately connects all outputs to VMID and selects a low power  
mode. All trace of the previous input samples is removed, and all control register settings are  
cleared. When PWDN is cleared again the first 16 input samples will be ignored, as the FIR will  
repeat it's power-on initialisation sequence.  
REGISTER ADDRESS  
0010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Power Down Mode Select:  
0 : Normal Mode  
2
PWDN  
0
DAC Control  
1: Power Down Mode  
Table 13 Powerdown control  
DIGITAL AUDIO INTERFACE CONTROL REGISTERS  
The WM8728 has a fully featured digital audio interface that is a superset of that contained in the  
WM8716. Interface format is selected via the IWL[2:0] register bits in register M2 and the I2S  
register bit in M3.  
REGISTER ADDRESS  
0010  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
5:3  
IWL[2:0]  
000000  
Interface format Select  
DAC Control  
0011  
0
I2S  
0
Interface format Select  
Interface Control  
Table 14 Interface Format Controls  
IW2  
I2S  
IW1  
IW0  
AUDIO INTERFACE DESCRIPTION  
(NOTE 1)  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
16 bit right justified mode  
20 bit right justified mode  
24 bit right justified mode  
24 bit left justified mode  
16 bit I2S mode  
24 bit I2S mode  
20 bit I2S mode  
20 bit left justified mode  
16 bit DSP mode  
20 bit DSP mode  
24 bit DSP mode  
32 bit DSP mode  
16 bit left justified mode  
Table 15 Audio Data Input Format  
Note:  
In all modes, the data is signed 2's complement. The digital filters always input 24-bit data. If the  
DAC is programmed to receive 16 or 20 bit data, the WM8728 pads the unused LSBs with  
ZEROS. If the DAC is programmed into 32-bit mode, the 8 LSBs are treated as zero.  
PD, Rev 4.6 August 2008  
23  
w
WM8728  
Production Data  
SELECTION OF LRCIN POLARITY  
In left justified, right justified or I2S modes, the LRP register bit controls the polarity of LRCIN. If  
this bit is set high, the expected polarity of LRCIN will be the opposite of that shown in Figure 10,  
Figure 11 and Figure 12. Note that if this feature is used as a means of swapping the left and right  
channels, a 1 sample phase difference will be introduced.  
REGISTER ADDRESS  
0011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
1
LRP  
0
LRCIN Polarity (normal)  
0 : normal LRCIN polarity  
1: inverted LRCIN polarity  
Interface Control  
Table 16 LRCIN Polarity Control  
In DSP modes, the LRCIN register bit is used to select between early and late modes (see Figure  
13 and Figure 14.  
REGISTER ADDRESS  
0011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
1
LRP  
0
DSP Format (DSP modes)  
0 : Late DSP mode  
Interface Control  
1: Early DSP mode  
Table 17 DSP Format Control  
In DSP early mode, the first bit is sampled on the BCKIN rising edge following the one that  
detects a low to high transition on LRCIN. In DSP late mode, the first bit is sampled on the BCKIN  
rising edge, which detects a low to high transition on LRCIN. No BCKIN edges are allowed  
between the data words. The word order is DIN left, DIN right.  
ATTENUATOR CONTROL MODE  
Setting the ATC register bit causes the left channel attenuation settings to be applied to both left  
and right channel DACs from the next audio input sample. No update to the attenuation registers  
is required for ATC to take effect.  
REGISTER ADDRESS  
0011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
2
ATC  
0
Attenuator Control Mode:  
0 : Right channels use Right  
attenuation  
Interface Control  
1: Right Channels use Left  
Attenuation  
Table 18 Attenuation Control Select  
OUTPUT PHASE REVERSAL  
The REV register bit controls the phase of the output signal. Setting the REV bit causes the  
phase of the output signal to be inverted.  
REGISTER ADDRESS  
0011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Analogue Output Phase  
0: Normal  
4
REV  
0
Interface Control  
1: Inverted  
Table 19 Output Phase Control  
BCKIN POLARITY  
By default, LRCIN and DIN are sampled on the rising edge of BCKIN and should ideally change  
on the falling edge. Data sources which change LRCIN and DIN on the rising edge of BCKIN can  
be supported by setting the BCP register bit. Setting BCP to 1 inverts the polarity of BCKIN to the  
inverse of that shown in Figure 10, Figure 11, Figure 12, Figure 13 and Figure 14.  
REGISTER ADDRESS  
0011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
BCKIN Polarity  
5
BCP  
0
0 : normal BCKIN polarity  
1: inverted BCKIN polarity  
Interface Control  
Table 20 BCKIN Polarity Control  
PD, Rev 4.6, August 2008  
24  
w
WM8728  
Production Data  
INFINITE ZERO DETECTION  
Setting the IZD register bit determines whether the device is automuted when a sequence of more  
than 1024 ZEROS is detected.  
REGISTER ADDRESS  
0011  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
8
IZD  
0
Infinite ZERO detection circuit  
control and automute control  
Interface Control  
0: Infinite ZERO detect disabled  
1: Infinite ZERO detect enabled  
Table 21 IZD Control  
DIGITAL FILTER CHARACTERISTICS  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
-3dB  
MIN  
TYP  
MAX  
UNIT  
Passband Edge  
Passband Ripple  
Stopband Attenuation  
0.487fs  
f < 0.444fs  
f > 0.555fs  
0.05  
dB  
dB  
-60  
Table 22 Digital Filter Characteristics  
DAC FILTER RESPONSES  
0.2  
0.15  
0.1  
0
-20  
-40  
0.05  
0
-60  
-0.05  
-0.1  
-0.15  
-0.2  
-80  
-100  
-120  
0
0.5  
1
1.5  
2
2.5  
3
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Frequency (Fs)  
Figure 19 DAC Digital Filter Frequency Response  
-44.1, 48 and 96kHz  
Figure 20 DAC Digital Filter Ripple  
-44.1, 48 and 96kHz  
0.2  
0
-20  
-40  
-60  
-80  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Frequency (Fs)  
Figure 21 DAC Digital Filter Frequency Response  
-192kHz  
Figure 22 DAC Digital Filter Ripple  
-192kHz  
PD, Rev 4.6 August 2008  
25  
w
WM8728  
Production Data  
DIGITAL DE-EMPHASIS CHARACTERISTICS  
0
1
0.5  
0
-2  
-4  
-0.5  
-1  
-6  
-1.5  
-2  
-8  
-2.5  
-3  
-10  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Frequency (kHz)  
Frequency (kHz)  
Figure 23 De-Emphasis Frequency Response (32kHz)  
Figure 24 De-Emphasis Error (32kHz)  
0
0.4  
0.3  
0.2  
0.1  
0
-2  
-4  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-8  
-10  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (kHz)  
Frequency (kHz)  
Figure 25 De-Emphasis Frequency Response (44.1kHz)  
Figure 26 De-Emphasis Error (44.1kHz)  
0
1
0.8  
0.6  
0.4  
0.2  
0
-2  
-4  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-8  
-10  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (kHz)  
Frequency (kHz)  
Figure 27 De-Emphasis Frequency Response (48kHz)  
Figure 28 De-Emphasis Error (48kHz)  
PD, Rev 4.6, August 2008  
26  
w
WM8728  
Production Data  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS (PCM AUDIO)  
Figure 29 External Components Diagram  
RECOMMENDED EXTERNAL COMPONENTS VALUES  
COMPONENT  
REFERENCE  
SUGGESTED  
VALUE  
DESCRIPTION  
C1 and C5  
C2 to C4  
C6 and C7  
C8  
10µF  
0.1µF  
10µF  
0.1µF  
10µF  
10µF  
10k  
33Ω  
De-coupling for DVDD and AVDD/VREFP  
De-coupling for DVDD and AVDD/VREFP  
Output AC coupling caps to remove midrail DC level from outputs.  
Reference de-coupling capacitors for VMID pin.  
C9  
C10  
Filtering for VREFP. Omit if AVDD low noise.  
10k pull-up to DVDD  
R1  
R2  
Filtering for VREP. Use 0if AVDD low noise.  
Table 23 External Components Description  
PD, Rev 4.6 August 2008  
27  
w
WM8728  
Production Data  
RECOMMENDED ANALOGUE LOW PASS FILTER FOR PCM DATA FORMAT  
(OPTIONAL)  
4.7k  
4.7k  
+VS  
_
51  
10uF  
1.8kΩ  
7.5KΩ  
+
+
-VS  
1.0nF  
680pF  
47kΩ  
Figure 30 Recommended Low Pass Filter (Optional)  
PD, Rev 4.6, August 2008  
28  
w
WM8728  
Production Data  
PACKAGE DIMENSIONS  
DS: 20 PIN SSOP (7.2 x 5.3 x 1.75 mm)  
DM0015.C  
b
e
20  
11  
E1  
E
GAUGE  
PLANE  
Θ
1
10  
D
0.25  
L
c
A1  
A A2  
L
1
-C-  
0.10 C  
SEATING PLANE  
Dimensions  
(mm)  
NOM  
-----  
Symbols  
MIN  
-----  
MAX  
2.0  
-----  
1.85  
0.38  
0.25  
7.50  
A
A1  
A2  
b
c
D
e
E
E1  
L
0.05  
1.65  
0.22  
0.09  
6.90  
-----  
1.75  
0.30  
-----  
7.20  
0.65 BSC  
7.80  
7.40  
5.00  
0.55  
8.20  
5.60  
0.95  
5.30  
0.75  
L1  
θ
1.25 REF  
0o  
4o  
8o  
-
JEDEC.95, MO 150  
REF:  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.20MM.  
D. MEETS JEDEC.95 MO-150, VARIATION = AE. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
PD, Rev 4.6 August 2008  
29  
w
WM8728  
Production Data  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (“Wolfson”) products and services are sold subject to Wolfson’s terms and conditions of sale,  
delivery and payment supplied at the time of order acknowledgement.  
Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right  
to make changes to its products and specifications or to discontinue any product or service without notice. Customers should  
therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.  
Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty.  
Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.  
In order to minimise risks associated with customer applications, the customer must use adequate design and operating  
safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product  
design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such  
selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.  
Wolfson’s products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction  
can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of  
products by the customer for such purposes is at the customer’s own risk.  
Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual  
property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be  
or are used. Any provision or publication of any third party’s products or services does not constitute Wolfson’s approval,  
licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third  
party owner.  
Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is  
accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not  
liable for any unauthorised alteration of such information or for any reliance placed thereon.  
Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this  
datasheet or in Wolfson’s standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that  
person’s own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon  
by any person.  
ADDRESS:  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PD, Rev 4.6, August 2008  
w
30  
Mouser Electronics  
Authorized Distributor  
Click to View Pricing, Inventory, Delivery & Lifecycle Information:  
Cirrus Logic:  
WM8728SEDS/V  

相关型号:

WM8728_04

24-bit, 192kHz Stereo DAC with Volume Control
WOLFSON

WM8728_12

24-bit, 192kHz Stereo DAC with Volume Control
WOLFSON

WM8729

24-bit, 192kHz Stereo DAC
WOLFSON

WM8729GED/RV

24-bit, 192kHz Stereo DAC
WOLFSON

WM8729GED/V

24-bit, 192kHz Stereo DAC
WOLFSON

WM8729_06

24-bit, 192kHz Stereo DAC
WOLFSON

WM8731

Portable Internet Audion CODEC with Headphone Driver and Programmable Sample Rates
WOLFSON

WM8731CLSEFL

Portable Internet Audio CODEC with Headphone Driver and Programmable Sample Rates
WOLFSON

WM8731CLSEFL/R

Portable Internet Audio CODEC with Headphone Driver and Programmable Sample Rates
WOLFSON

WM8731CSEFL

Portable Internet Audio CODEC with Headphone Driver and Programmable Sample Rates
WOLFSON

WM8731CSEFL/R

Portable Internet Audio CODEC with Headphone Driver and Programmable Sample Rates
WOLFSON

WM8731EDS

portable digital audio solutions
WOLFSON