ZSC31150FLB-R [ETC]

Fast Automotive Sensor Signal Conditioner;
ZSC31150FLB-R
型号: ZSC31150FLB-R
厂家: ETC    ETC
描述:

Fast Automotive Sensor Signal Conditioner

文件: 总25页 (文件大小:663K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
Rev. 1.08 / August 2011  
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
Brief Description  
Benefits  
The ZSC31150 is a CMOS integrated circuit for  
highly-accurate amplification and sensor-specific  
correction of bridge sensor signals. Digital  
compensation of sensor offset, sensitivity,  
No external trimming components required  
Only a few external protection devices needed  
PC-controlled configuration and One-Shot  
calibration via I²CTM or ZACwireTM interface:  
Simple, cost efficient, quick, and precise  
End-of-Line calibration via I²CTM or ZACwireTM  
temperature  
drift,  
and  
non-linearity  
is  
accomplished via an internal 16-bit RISC  
microcontroller running a correction algorithm, with  
calibration coefficients stored in an EEPROM.  
interface  
High accuracy (0.25% FSO @ -25 to 85°C;  
0.5% FSO @ -40 to 125°C)  
The ZSC31150 is adjustable to nearly all bridge  
sensor types. Measured values are provided at the  
analog voltage output or at the digital ZACwireTM  
and I²CTM interface. The digital interface can be  
The ZSC31150 is optimized for automotive  
environments by its special protection circuitry  
and excellent electromagnetic compatibility  
used for  
a
simple PC-controlled calibration  
procedure, in order to program a set of calibration  
coefficients into an on-chip EEPROM. Thus, a  
specific sensor and a ZSC31150 are mated  
digitally: fast, precise, and without the cost  
overhead associated with trimming by external  
devices or a laser.  
Available Support  
Evaluation Kits  
Application Notes  
Mass calibration setup  
Physical Characteristics  
Features  
Supply voltage 4.5 to 5.5 V  
Digital compensation of sensor offset,  
sensitivity, temperature drift, and non-linearity  
Operation temperature: -40°C to 125°C  
(-40°C to +150°C derated, depending on  
product version)  
Adjustable to nearly all bridge sensor types,  
analog gain of 420, overall gain up to 2000  
Available in SSOP14 or as die  
Output options: ratiometric analog voltage  
output (5 - 95% in maximum, 12.4 bit  
resolution) or ZACwireTM (digital one-wire-  
interface)  
ZSC31150 Application Circuit  
Temperature compensation: internal or external  
diode, bridge resistance, thermistor  
VCC  
Sensor biasing by voltage or constant current  
Sample rate up to 7.8 kHz  
Sensor  
Module  
High voltage protection up to 33 V  
OUT  
Supply current: max. 5.5mA  
ZSC  
31150  
Reverse polarity and short circuit protection  
Wide operation temperature up to -40…+150°C  
Traceability by user-defined EEPROM entries  
Several safety and diagnostic functions  
GND  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.  
The information furnished in this publication is subject to changes without notice.  
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
ZSC31150 Block Diagram  
ZACwireTM  
I2C  
RAM  
EEPROM  
Digital  
Data I/O  
Analog  
Out  
PGA  
TS  
ADC  
CMC  
DAC  
BAMP  
ROM  
Analog Block  
Digital Block  
ZSC31150  
Ordering Information  
Product Sales Code  
Description  
Package  
ZSC31150KIT  
Evaluation Kit V1.0  
Modular evaluation and development boards for  
ZSC31150  
KIT boards, IC samples, USB cable,  
DVD with software and documentation  
ZSC31150 Mass  
Modular Mass Calibration System (MSC) for  
MCS boards, cable, connectors,  
Calibration System V1.1 ZSC31150  
DVD with software and documentation  
Sales and Further Information  
www.zmdi.com  
SSC@zmdi.com  
ZMD Far East, Ltd.  
3F, No. 51, Sec. 2,  
Keelung Road  
11052 Taipei  
Taiwan  
Zentrum Mikroelektronik  
Dresden AG  
Grenzstrasse 28  
01109 Dresden  
ZMD America, Inc.  
8413 Excelsior Drive  
Suite 200  
Zentrum Mikroelektronik  
Dresden AG, Japan Office  
2nd Floor, Shinbashi Tokyu Bldg.  
4-21-3, Shinbashi, Minato-ku  
Tokyo, 105-0004  
Madison, WI 53717  
Germany  
USA  
Japan  
Phone +49 (0)351.8822.7.772  
Phone +01 (608) 829-1987  
+01 (631) 549-2882  
Phone +81.3.6895.7410  
Phone +886.2.2377.8189  
Fax  
+49(0)351.8822.87.772 Fax  
Fax  
+81.3.6895.7301  
Fax  
+886.2.2377.8199  
DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Zentrum Mikroelektronik Dresden  
AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be true and accurate.  
However, under no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential damages of any  
kind or nature whatsoever arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD  
AG to any customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for any damages in  
connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty, tort (including negligence), strict liability, or otherwise.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.  
The information furnished in this publication is subject to changes without notice.  
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
Contents  
1
Electrical Characteristics...............................................................................................................................6  
1.1. Absolute Maximum Ratings....................................................................................................................6  
1.2. Operating Conditions..............................................................................................................................6  
1.3. Electrical Parameters .............................................................................................................................7  
1.3.1. Supply Current and System Operation Conditions..........................................................................7  
1.3.2. Analog Front-End (AFE) Characteristics .........................................................................................7  
1.3.3. Temperature Measurement (refer chapter 2.4) ...............................................................................7  
1.3.4. AD-Conversion.................................................................................................................................7  
1.3.5. Sensor Connection Check ...............................................................................................................8  
1.3.6. DAC & Analog Output (Pin AOUT) .................................................................................................8  
1.3.7. System Response............................................................................................................................8  
1.4. Interface Characteristics & EEPROM.....................................................................................................9  
1.4.1. I²CTM Interface (refer 'ZSC31150 Functional Description' for timing details) ...................................9  
1.4.2. ZACwire™ One Wire Interface (OWI)..............................................................................................9  
1.4.3. EEPROM..........................................................................................................................................9  
Circuit Description .......................................................................................................................................10  
2.1. Signal Flow ...........................................................................................................................................10  
2.2. Application Modes ................................................................................................................................11  
2.3. Analog Front End (AFE) .......................................................................................................................11  
2.3.1. Programmable Gain Amplifier (PGA).............................................................................................11  
2.3.2. Offset Compensation .....................................................................................................................12  
2.3.3. Measurement Cycle.......................................................................................................................12  
2.3.4. Analog-to-Digital Converter............................................................................................................13  
2.4. Temperature Measurement..................................................................................................................14  
2.5. System Control and Conditioning Calculation......................................................................................15  
2.5.1. Operation Modes............................................................................................................................15  
2.5.2. Start Up Phase...............................................................................................................................15  
2.5.3. Conditioning Calculation ................................................................................................................15  
2.6. Analog Output AOUT............................................................................................................................16  
2.7. Serial Digital Interface ..........................................................................................................................16  
2.8. Failsafe Features, Watchdog and Error Detection...............................................................................16  
2.9. High Voltage, Reverse Polarity and Short Circuit Protection ...............................................................17  
Application Circuit Examples.......................................................................................................................18  
Pin Configuration, Latch-Up and ESD Protection .......................................................................................20  
4.1. Pin Configuration and Latch-up Conditions..........................................................................................20  
4.2. ESD-Protection.....................................................................................................................................20  
Package.......................................................................................................................................................21  
Quality and Reliability..................................................................................................................................21  
Customization..............................................................................................................................................21  
Ordering Information ...................................................................................................................................22  
Additional Documents .................................................................................................................................22  
2
3
4
5
6
7
8
9
10 Glossary ......................................................................................................................................................23  
11 Document Revision History.........................................................................................................................24  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
4 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
List of Figures  
Figure 2.1 Block Diagram of the ZSC31150 ...................................................................................................10  
Figure 2.2: Measurement Cycle.......................................................................................................................13  
Figure 3.1: Bridge in Voltage Mode, External Diode Temperature Sensor .....................................................18  
Figure 3.2: Bridge in Voltage Mode, External Thermistor................................................................................19  
Figure 3.3: Bridge in Current Mode, Temperature Measurement via Bridge TC.............................................19  
Figure 5.1: ZSC31150 Pin Diagram.................................................................................................................21  
List of Tables  
Table 1.1  
Table 1.2  
Table 2.1  
Table 2.2  
Absolute Maximum Ratings.............................................................................................................6  
Operating Conditions.......................................................................................................................6  
Adjustable Gains, Resulting Sensor Signal Spans and Common Mode Ranges .........................11  
Analog Zero Point Shift Ranges (XZC)..........................................................................................12  
Table 2.3: Analog Output Resolution Versus Sample Rate............................................................................14  
Table 3.1: Application Circuit Parameters ......................................................................................................18  
Table 4.1: Pin Configuration and Latch-Up Conditions ..................................................................................20  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
5 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
1
Electrical Characteristics  
1.1. Absolute Maximum Ratings  
Parameters apply in operation temperature range and without time limitations.  
Table 1.1  
No.  
Absolute Maximum Ratings  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
1.1.1  
Supply Voltage 1  
VDDEAMR To VSSE, refer to chapter  
3 for application circuits  
-33  
33  
VDC  
1.1.2  
1.1.3  
Potential at pin AOUT 1  
VOUT  
VDDAAMR Related to VSSA,  
VDDE - VDDA < 0.35 V  
Related to VSSA  
Related to VSSE  
-33  
33  
VDC  
VDC  
1
Analog Supply Voltage  
-0.3  
6.5  
1.1.4  
1.1.5  
Voltage at all analog and  
digital IO – Pins  
VA_IO  
VD_IO  
-0.3  
-55  
VDDA + 0.3  
150  
VDC  
Storage temperature  
TSTG  
C  
1.2. Operating Conditions  
All voltages are related to VSSA.  
Table 1.2  
No.  
Operating Conditions  
Parameter  
Symbol  
TAMB  
Conditions  
TQE  
Min  
Typ  
Max  
150  
125  
Unit  
C  
2
1.2.1  
Ambient temperature  
-40  
-40  
1.2.2.1  
Ambient temperature  
TAMB_TQA  
TQA  
C  
advanced performance 4  
1.2.2.2  
Ambient temperature  
TAMB_TQI  
TQI  
-25  
85  
C  
advanced performance 4  
1.2.3  
1.2.4  
1.2.5  
Supply Voltage  
VDDE  
RBR_V  
RBR_C  
4.5  
2
5.0  
5.5  
25  
10  
VDC  
k  
3, 4  
Bridge Resistance  
Bridge Voltage Mode  
Bridge Resistance 3, 4  
Bridge Current Excitation,  
note IBR_MAX  
k  
4
1.2.6  
Resistor RIBR  
RIBR  
IBR = VDDA / (16 * RIBR  
)
0.07 *  
RBR  
k  
1.2.7  
1.2.8  
Maximum Bridge Current  
IBR_MAX  
2
mA  
Maximum Bridge Top  
Voltage  
VBR_TOP  
(15/16 * VDDA) - 0.3  
V
1.2.9  
TC Current Reference  
TC RIBR  
Behavior influences  
generated current  
50 ppm/K  
4
Resistor  
1
Refer to the 'ZSC31150 High Voltage Protection Description' for specification and detailed conditions  
2
3
Notice temperature profile description in the 'ZSC31150 Dice Package Document' for operation in temperature range > 125 °C  
Symmetric behavior and identical electrical properties (especially with regard to the low pass characteristic) of both sensor inputs of  
the ZSC31150 are required. Unsymmetrical conditions of the sensor and/or external components connected to the sensor input pins of  
ZSC31150 can generate a failure in signal operation  
4
No measurement in mass production, parameter is guaranteed by design and/or quality observation.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
6 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
 
 
 
 
 
 
 
 
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
1.3. Electrical Parameters  
All parameter values are valid on behalf on in chapter 1.2 specified operating conditions (special definitions  
excluded). All Voltages related to VSSA.  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.3.1. Supply Current and System Operation Conditions  
1.3.1.1  
1.3.1.2  
Supply current  
TADV  
Without bridge and load  
current, fCLK 3 MHz  
5.5  
4 1  
mA  
Clock frequency  
TAMB_TQA  
Guaranteed adjustment  
range  
2 1  
3
MHz  
1.3.2. Analog Front-End (AFE) Characteristics  
1.3.2.1  
1.3.2.2  
Input Span  
VIN_SP  
Analog gain: 420 to 2.8  
1
275  
300  
mV/V  
Analog Offset  
Compensation Range  
Depends on gain adjust,  
refer to chapter 2.3.2  
-300  
% VIN_SP  
1.3.2.3  
1.3.2.4  
Parasitic differential input  
offset current 1  
IIN_OFF  
VIN_CM  
Within TAMB;  
Within TAMB_TQI  
-10  
-2  
10  
2
nA  
nA  
Common mode input  
range  
Depends on gain adjust,  
no XZC, refer to chapter  
2.3.1  
0.29 *  
VDDA  
0.65 *  
VDDA  
V
1.3.3. Temperature Measurement (refer chapter 2.4)  
1.3.3.1  
1.3.3.2  
1.3.3.3  
1.3.3.4  
1.3.3.5  
External temperature  
diode channel gain  
ATSED  
300  
1300  
20  
ppm FS  
/ (mV/V)  
External temperature  
diode bias current  
ITSE  
6
10  
A  
External temperature  
diode input range 1  
0
1.5  
V
External temperature  
resistor channel gain  
ATSER  
VTSER  
1200  
0
3500  
600  
ppm FS  
/ (mV/V)  
External temperature  
resistor / input voltage  
mV/V  
1
range  
1.3.3.6 Internal temperature diode  
sensitivity  
STTSI  
raw values – without  
conditioning  
700  
13  
2700  
ppm FS  
/ K  
1.3.4. AD-Conversion  
1.3.4.1  
1.3.4.2  
1.3.4.3  
1.3.4.4  
1.3.4.5  
A/D Resolution 1  
DNL 1  
rADC  
16  
0.95  
4
Bit  
LSB  
DNLADC  
INLADC  
INLADC  
Range  
rADC =13Bit, fCLK=3MHz,  
best fit, 2nd order,  
complete AFE, 1.3.4.5  
INL TQA 1  
LSB  
INL TQE  
5
LSB  
ADC Input Range  
10  
90  
%VDDA  
1
No measurement in mass production, parameter is guaranteed by design and/or quality observation.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
notice.  
Data Sheet  
August 16, 2011  
7 of 24  
 
 
 
 
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.3.5. Sensor Connection Check  
1.3.5.1  
1.3.5.2  
Sensor connection loss  
Sensor input short  
RSCC_min  
RSSC_short  
detection threshold  
100  
0
k  
short detection  
guaranteed  
50  
1.3.5.3  
Sensor input no short  
RSSC_pass  
short is never detected  
1000  
1.3.6. DAC & Analog Output (Pin AOUT)  
1.3.6.1  
1.3.6.2  
D/A Resolution  
rDAC  
analog output, 10-90%  
12  
Bit  
Output current sink and  
source for VDDE=5V  
ISRC/SINK_OUT  
VOUT: 5-95%,  
RLOAD>=2k  
2.5  
5
mA  
VOUT: 10-90%,  
RLOAD>=1kΩ  
1.3.6.3  
Short circuit current  
IOUT_max  
to VSSE/VDDE 1  
-25  
25  
mA  
1.3.6.4 Addressable output signal  
range  
VSR_OUT95  
VSR_OUT90  
0.05  
0.1  
0.95  
0.9  
VDDE  
@ RLOAD>=2k  
@ RLOAD>=1k  
2
1.3.6.5  
1.3.6.6  
Output slew rate  
SROUT  
CLOAD < 50nF  
0.1  
V/µs  
Output resistance in  
diagnostic mode  
ROUT_DIA  
Diagnostic Range:  
<4|96>%, RLOAD>=2k  
<8|92>%, RLOAD>=1k  
82  
1.3.6.7  
1.3.6.8  
1.3.6.9  
1.3.6.10  
Load capacitance 2  
DNL  
CLOAD  
DNLOUT  
INLOUT  
INLOUT  
ILEAK_OUT  
C3 + CL (refer chapter 3)  
150  
1.5  
5
nF  
-1.5  
-5  
LSB  
LSB  
LSB  
µA  
INL TQA 2  
best fit, rDAC =12Bit  
best fit, rDAC =12Bit  
INL TQE  
-8  
8
1.3.6.11 Output Leakage current @  
150grd  
in case of power or  
ground loss  
-25  
25  
1.3.7. System Response  
3
1.3.7.1  
Startup time  
tSTA  
to 1st output, fCLK=3MHz,  
no ROM check, ADC:  
14bit & 2nd order  
5
ms  
1.3.7.2  
1.3.7.3  
1.3.7.4  
Response time  
(100% jump) 2  
tRESP  
fCLK=4MHz, 13Bit, 2nd  
order, refer Table 2.3  
256  
512  
µs  
Bandwidth 2  
comparable to analog  
SSCs  
5
kHz  
mV  
Analog Output Noise  
Peak-to-Peak 2  
VNOISE,PP  
shorted inputs, gain=  
10  
3
bandwidth 10kHz  
1.3.7.5  
Analog Output Noise  
RMS 2  
VNOISE,RMS  
shorted inputs, gain=  
mV  
bandwidth 10kHz  
1
2
3
minimum output voltage to VDDE or maximum output voltage to VSSE  
No measurement in mass production, parameter is guaranteed by design and/or quality observation.  
Depends on resolution and configuration - start routine begins approximately 0.8ms after power on  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
notice.  
Data Sheet  
August 16, 2011  
8 of 24  
 
 
 
 
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.3.7.6  
Ratiometricity Error  
REOUT_5  
maximum error of  
1000  
ppm  
VDDE=5V to 4.5/5.5V  
1.3.7.7  
Overall failure (deviation  
from ideal line including  
INL, gain, offset & temp  
errors)  
FALL TQI  
13Bit 2nd order ADC,  
0.25 (0.1)  
0.5 (0.25)  
1.0 (0.5)  
% FS  
F
ALL TQA  
f
CLK<=3MHz,  
FALL TQE  
XZC=01,  
no sensor caused effects;  
inside of parenthesis:  
digital readout  
1.4. Interface Characteristics & EEPROM  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.4.1. I²CTM Interface (refer 'ZSC31150 Functional Description' for timing details)  
1.4.1.1  
1.4.1.2  
1.4.1.3  
1.4.1.4  
1.4.1.5  
1.4.1.6  
Input-High-Level 2  
Input-Low-Level 2  
VI²C_IN_H  
VI²C_IN_L  
VI²C_OUT_L  
CSDA  
0.8  
VDDA  
VDDA  
VDDA  
pF  
0.2  
0.15  
400  
400  
100  
Output-Low-Level 2  
Open Drain, IOL<2mA  
SDA load capacitance 2  
SCL clock frequency 2  
Internal pull-up resistor 2  
fSCL  
kHz  
RI²C  
25  
k  
1.4.2. ZACwire™ One Wire Interface (OWI)  
1.4.2.1  
1.4.2.2  
1.4.2.3  
1.4.2.4  
Input-Low-Level 2  
Input-High-Level 2  
Output-Low-Level 2  
Start Window 2  
VOWI_IN_L  
VOWI_IN_H  
0.2  
VDDA  
VDDA  
VDDA  
ms  
0.75  
96  
VOWI_OUT_L  
Open Drain, IOL<2mA  
typ: @ fCLK=3MHz  
t.b.d.  
455  
175  
1.4.3. EEPROM  
1.4.3.1  
1.4.3.2  
Ambient temperature  
TAMB_EEP  
nWRI_EEP  
-40  
150  
C  
EEPROM programming 2  
Write cycles 2  
@write <= 85°C  
@write up to 150°C  
100k  
100  
2
3
1.4.3.3  
1.4.3.4  
Read cycles  
nREAD_EEP  
tRET_EEP  
<=175°C  
8 * 108  
Data retention 2  
1300h @ 175°C  
15  
a
4
(=100000h@55°C &  
27000h@125°C &  
3000h@150°C)  
1.4.3.5  
Programming time 2  
tWRI_EEP  
per written word,  
12  
ms  
f
CLK=3MHz  
1
2
3
4
XZC is active: additional overall failure of 25ppm/K for XZC=31 in maximum, failure decreases linear for XZC adjusts lower than 31  
No measurement in mass production, parameter is guaranteed by design and/or quality observation.  
valid for the dice, notice additional package and temperature version caused restrictions  
over lifetime and valid for the dice, use calculation sheet 'ZMDI Temperature Profile Calculation Sheet' for temperature stress  
calculation, notice additional package and temperature version caused restrictions  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
9 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
 
 
 
 
 
 
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
2
Circuit Description  
2.1. Signal Flow  
The ZSC31150’s signal path is partly analog and partly digital. The analog part is realized differentially – this  
means, the differential bridge sensor signal is internally handled via two signal lines, which are rejected  
symmetrically around an internal common mode potential (analog ground = VDDA/2).  
Consequently, it is possible to amplify positive and negative input signals, which are located within the  
common mode range of the signal input.  
Figure 2.1  
Block Diagram of the ZSC31150  
ZACwireTM  
I2C  
RAM  
EEPROM  
Digital  
Data I/O  
Analog  
Out  
PGA  
TS  
ADC  
CMC  
DAC  
BAMP  
ROM  
Analog Block  
Digital Block  
ZSC31150  
PGA  
Programmable Gain Amplifier  
Multiplexer  
MUX  
ADC  
Analog-to-Digital Converter  
Calibration Microcontroller  
Digital-to-Analog Converter  
CMC  
DAC  
BAMP  
EEPROM  
TS  
Buffer Amplifier – output buffer OPAMP  
Non Volatile Memory for Calibration Parameters and Configuration  
On-chip Temperature Sensor (pn-junction)  
ROM  
RAM  
Memory for Correction Formula and –Algorithm  
Volatile Memory for Calibration Parameters and Configuration  
The differential signal from the bridge sensor is pre-amplified by the Programmable Gain Amplifier (PGA). The  
Multiplexer (MUX) transmits the signals from either the bridge sensor, the external diode, or the separate  
temperature sensor, to the Analog-to-Digital Converter (ADC) in a certain sequence (instead of the  
temperature diode, the internal pn-junction (TS) can be used optionally). Afterwards, the ADC converts these  
signals into digital values.  
The digital signal correction takes place in the calibration microcontroller (CMC). It is based on a correction  
formula located in the ROM and on sensor-specific coefficients stored in the EEPROM during calibration.  
Dependent on the programmed output configuration, the corrected sensor signal is output as an analog value  
or in a digital format (I²CTM or ZACwireTM). The configuration data and the correction parameters can be  
programmed into the EEPROM via the digital interfaces.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
10 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
2.2. Application Modes  
For each application, a configuration set has to be established (generally prior to calibration) by programming  
the on-chip EEPROM regarding to the following modes:  
Sensor Channel  
- Sensor Mode: Ratiometric bridge excitation in voltage or current supply mode.  
- Input Range: The gain adjustment of the AFE with respect to the maximum sensor signal span and  
the zero point of the ADC have to be chosen.  
- Additional Offset Compensation (XZC): The extended analog offset compensation has to be enabled,  
if required; e.g., if the sensor offset voltage is near to or larger than the sensor span.  
- Resolution/Response Time: The A/D converter has to be configured for resolution and converting  
scheme or ADC order (first or second order). These settings influence the sampling rate and the  
signal integration time, and thus, the noise immunity.  
Temperature  
- Temperature Measurement: The source for the temperature correction has to be chosen.  
2.3. Analog Front End (AFE)  
The Analog Front End (AFE) consists of the Programmable Gain Amplifier (PGA), the Multiplexer (MUX), and  
the Analog-to-Digital Converter (ADC).  
2.3.1.  
Programmable Gain Amplifier (PGA)  
Table 2.1 shows the adjustable gains, the sensor signal spans, and the allowed common mode range.  
Table 2.1  
Adjustable Gains, Resulting Sensor Signal Spans and Common Mode Ranges  
No.  
Overall Gain  
aIN  
Max. Span  
VIN_SP  
[mV/V]  
Gain  
Amp1  
Gain  
Amp2  
Gain  
Amp3  
Input common mode range  
VIN_CM as % of VDDA 14  
13  
XZC = Off  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
32 to 57  
XZC = On  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
not applicable  
1
2
420  
280  
210  
140  
105  
70  
1.8  
2.7  
30  
30  
15  
15  
7.5  
7.5  
3.75  
3.75  
3.75  
1
7
4.66  
7
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3.6  
4
5.4  
4.66  
7
5
7.1  
6
10.7  
14.3  
21.4  
28.5  
53.75  
80  
4.66  
7
7
52.5  
35  
8
4.66  
3.5  
7
9
26.3  
14  
10  
11  
12  
13  
9.3  
7
1
4.66  
3.5  
1.4  
107  
267  
1
2.8  
1
13  
Recommended internal signal range is 75% of supply voltage in maximum.  
Span is calculated by the following formula: Span = 75% / gain  
Bridge in voltage mode, containing maximum input signal (with XZC: +300% Offset), 14-bit accuracy. Refer to the 'ZSC31150  
Functional Description' for usable input signal/common mode range at bridge in current mode.  
14  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
notice.  
Data Sheet  
August 16, 2011  
11 of 24  
 
 
 
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
2.3.2.  
Offset Compensation  
The ZSC31150 supports two methods of sensor offset compensation (zero shift):  
Digital offset correction  
XZC - Analog compensation for large offset values (up to in maximum approximately 300% of span,  
depending on gain adjustment)  
Digital sensor offset correction will be processed during the digital signal correction/conditioning by the  
calibration microcontroller (CMC). Analog sensor offset pre-compensation will be needed for compensation of  
large offset values, which would overdrive the analog signal path by uncompensated gaining. For analog  
sensor offset pre-compensation, a compensation voltage will be added in the analog pre-gaining signal path  
(coarse offset removal). The analog offset compensation in the AFE can be adjusted by 6 EEPROM bits.  
Table 2.2  
PGA gain  
aIN  
Analog Zero Point Shift Ranges (XZC)  
Max. Span VIN_SP  
[mV/V]  
Offset shift per step  
in % of full span  
Approx. maximum  
offset shift [mV/V]  
Approx. maximum shift  
[% VIN_SP] (@ ± 31)  
420  
280  
210  
140  
105  
70  
1.8  
2.7  
12.5 %  
7.6 %  
12.5 %  
7.6 %  
12,5 %  
7.6 %  
7.8  
7.1  
15.5  
14.2  
31  
388 %  
237 %  
388 %  
237 %  
388 %  
237 %  
388 %  
237 %  
161 %  
388 %  
237 %  
161 %  
26 %  
3.6  
5.4  
7.1  
10.7  
14.3  
21.4  
28.5  
53.75  
80  
28  
52.5  
35  
12,5 %  
7.6 %  
32  
57  
26.3  
14  
5.2 %  
52  
12.5 %  
7.6 %  
194  
189  
161  
72  
9.3  
7
107  
267  
5.2 %  
2.8  
0.83 %  
2.3.3.  
Measurement Cycle  
The Multiplexer selects, depending on EEPROM settings, the following inputs in a certain sequence.  
Temperature measured by external diode or thermistor, internal pn-junction or bridge  
Internal offset of the input channel (VOFF  
)
Pre-amplified bridge sensor signal  
The complete measurement cycle is controlled by the CMC. The cycle diagram at Figure 2.2 shows its  
principle structure.  
The EEPROM adjustable parameters are:  
n=<1,31>: Pressure measurement count  
After power on the start routine is called, that contains all needed measurements once.  
Remark: The tasks “CMV”, “SSC/SCC+” and “SSC/SCC-“ are contained independent from EEPROM  
configuration always in every cycle.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
notice.  
Data Sheet  
August 16, 2011  
12 of 24  
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
Figure 2.2: Measurement Cycle  
Start routine  
1
Temperature Auto Zero  
Pressure measurement  
Temp measurement  
Pressure measurement  
Pressure auto zero  
Pressure measurement  
CMV  
n
1
n
1
n
1
n
1
n
1
n
Pressure measurement  
SSC/SCC+  
Pressure measurement  
SSC/SCC-  
Pressure measurement  
2.3.4.  
Analog-to-Digital Converter  
The ADC is an integrating AD-Converter in full differential switched capacitor technique.  
Programmable ADC-resolutions are rADC=<13, 14> and with segmentation <15, 16> bit.  
It can be used as first or second order converter. In the first order mode it is inherently monotone and  
insensitive against short and long term instability of the clock frequency. The conversion cycle time depends  
on the desired resolution and can be roughly calculated by:  
tCYC_1 = 2r / 2 / fCLK  
In the second order mode two conversions are stacked with the advantage of much shorter conversion cycle  
time and the drawback of a lower noise immunity caused by the shorter signal integration period. The  
conversion cycle time at this mode is roughly calculated by:  
tCYC_2 = 2(r+3)/2 / 2 / fCLK  
The calculation formulas give an overview about conversion time for one AD-conversion. Refer Calculation  
sheet 'ZSC31150 Bandwidth Calculation Sheet' for detailed calculation of sampling time and bandwidth.  
The result of the AD conversion is a relative counter result corresponding to the following equation:  
ZADC = 2r * (VADC_DIFF / VADC_REF - RSADC  
)
ZADC  
r:  
:
number of counts (result of the conversion)  
adjusted resolution in bit  
VADC/REF_DIFF  
RSADC  
:
differential input/reference voltage of ADC  
digital ADC Range Shift (RSADC = 1/16, 1/8, 1/4, 1/2, controlled by the EEPROM content)  
:
With the RSADC value a sensor input signal can be shifted in the optimal input range of the ADC.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
notice.  
Data Sheet  
August 16, 2011  
13 of 24  
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
Table 2.3:  
Analog Output Resolution Versus Sample Rate  
ADC  
Adjustment  
Approximated Output  
Resolution 15  
Sample Rate  
Averaged  
Bandwidth @  
16  
fCON  
Order  
OADC  
rADC  
[Bit]  
13  
Digital  
[Bit]  
13  
Analog  
[Bit]  
12  
fCLK=3MHz  
fCLK=4MHz  
[Hz]  
fCLK=3MHz  
fCLK=4MHz  
[Hz]  
172  
[Hz]  
345  
[Hz]  
130  
67  
460  
14  
14  
12  
178  
237  
89  
1
15  
14  
12  
90  
120  
34  
45  
16  
14  
12  
45  
61  
17  
23  
13  
13  
12  
5859  
3906  
2930  
1953  
7813  
5208  
3906  
2604  
2203  
1469  
1101  
734  
2937  
1958  
1468  
979  
14  
14  
12  
2
15  
14  
12  
16  
14  
12  
Remark: ADCs reference voltage ADCVREF is defined by the potential between <VBR_T> and <VBR_B> (or  
<VDDA> to <VSSA>, if CFGAPP:BREF=1). The theoretically input range ADCRANGE_INP of the ADC  
is equivalent to ADCs reference voltage.  
In practice ADCs input range should be used in maximum from 10% to 90% of ADCRANGE_INP - a necessary  
condition for abiding specified accuracy, stability and nonlinearity parameters of AFE. This condition is also  
valid for whole temperature range and all applicable sensor tolerances. Inside of ZSC31150 is no failsafe task  
implemented, which verifies abiding of this condition.  
2.4. Temperature Measurement  
The ZSC31150 supports four different methods for temperature data acquiring needed for calibration of the  
sensor signal in temperature range. Temperature data can be acquired using:  
an internal pn-junction temperature sensor,  
an external pn-junction temperature sensor connected to sensor top potential (VBRTOP),  
an external resistive half bridge temperature sensor and  
the temperature coefficient of the sensor bridge at bridge current excitation.  
Refer 'ZSC31150 Functional Description' for a detailed explanation of temperature sensor adaptation and  
adjustment.  
15  
ADC resolution should be one bit higher then applied output resolution, if AFE gain is adjusted in such manner, that input range is  
used more than 50%. Otherwise ADC resolution should be more than one bit higher than applied output resolution.  
The sampling rate (AD conversion time) is only a part of the whole cycle, refer “ZSC31150 bandwidth calculation sheet” for detailed  
16  
information  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
14 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
 
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
2.5. System Control and Conditioning Calculation  
The system control supports the following tasks/features:  
control the measurement cycle regarding to the EEPROM-stored configuration data  
16 bit correction calculation for each measurement signal using the EEPROM stored calibration  
coefficients and ROM-based algorithms = signal conditioning  
manage start up sequence and start signal conditioning  
handle communication requests received by the digital interface  
failsafe tasks for the functions of ZSC31150 and message detected errors with diagnostic states  
Refer 'ZSC31150 Functional Description' for a detailed description.  
2.5.1. Operation Modes  
The internal state machine represents three main states:  
the continuous running signal conditioning mode – called Normal Operation Mode: NOM  
the calibration mode with access to all internal registers and states – called Command Mode: CM  
the failure messaging mode – called Diagnostic Mode: DM  
2.5.2.  
Start Up Phase17  
The start up phase consists of following parts:  
1. internal supply voltage settling phase (=potential VDDA-VSSA) – finished by disabling the reset signal  
through the power on clear block (POC). Refer 'ZSC31150 High Voltage Protection Description',  
chapter 4 for power on/off thresholds.  
Time (for beginning with VDDA-VSSA=0V): 500µs to 2000µs, AOUT: tristate  
2. system start, EEPROM read out and signature check (and ROM-check, if CFGAPP:CHKROM=1).  
Time: ~200µs (~9000µs with ROM-check – 28180clocks ), AOUT: LOW (DM)  
3. processing the start routine of signal conditioning (all measures & conditioning calculation).  
Time: 5x AD conversion time, AOUT behavior depending on adjusted OWI mode (refer 2.6):  
- OWIANA & OWIDIS => AOUT: LOW (DM)  
- OWIWIN & OWIENA => AOUT: tristate  
The analog output AOUT will be activated at the end of start up phase depending on adjusted output and  
communication mode (refer chapter 2.6). In case of detected errors Diagnostic Mode (DM) is activated and  
diagnostic output signal is driven at the output.  
After the start up phase the continuous running measurement and calibration cycle is started. Refer  
'ZSC31150 Bandwidth Calculation Sheet' for detailed information about output update rate.  
2.5.3.  
Conditioning Calculation  
The digitalized value for pressure (acquired raw data) is processed with the correction formula to remove  
offset and temperature dependency and to compensate non-linearity up to 3rd order. The result of the  
correction calculation is a non-negative 15 Bit value for pressure (P) in the range [0; 1). This value P is clipped  
with programmed limitation coefficients and continuously written to the output register of the digital serial  
interface and the output DAC.  
Note:  
The conditioning includes up to third order nonlinearity sensor input correction. The available  
adjustment ranges depend on the specific calibration parameters, for a detailed description refer to  
'ZSC31150 Functional Description'. To give a rough idea: Offset compensation and linear  
correction are only limited by the loose of resolution it will cause, the second order correction is  
possible up to about 30% full scale difference to straight line, third order up to about 20% (ADC  
resolution = 13bit). The used calibration principle is able to reduce present nonlinearity errors of  
17  
All described timings are roughly estimated values and correlates with internal clock frequency. Timings estimated for fclk=3MHz.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
15 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
 
 
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
the sensor up to 90%. The temperature calibration includes first and second order correction and  
should be fairly sufficient in all relevant cases. ADC resolution influences also calibration  
possibilities – 1 bit more resolution reduces calibration range by approximately 50%. Calculation  
input data width is in maximum 14bit. 15 & 16bit ADC resolution mode uses only a 14 bit segment  
of ADC range.  
2.6. Analog Output AOUT  
The analog output is used for output the analog signal conditioning result and for “End of Line” communication  
via the ZACwireTM interface (one wire communication interface - OWI). The ZSC31150 supports four different  
modes of the analog output in combination with OWI behavior:  
OWIENA:  
OWIDIS:  
OWIWIN:  
analog output is deactivated, OWI communication is enabled  
analog output is active (~2ms after power on), OWI communication is disabled  
analog output will be activated after time window,  
OWI communication is enabled in time window of ~500ms in maximum,  
transmission of “START_CM” command has to be finished during time window  
analog output will be activated after ~2ms power on time,  
OWIANA:  
OWI communication is enabled in time window of ~500ms in maximum,  
transmission of “START_CM” command has to be finished during time window,  
to communicate the internal driven potential at AOUT has to be overwritten  
by the external communication master (AOUT drive capability is current limited)  
The analog output potential is driven by a unity gain output buffer, those input signal is generated by a 12.4bit  
resistor string DAC. The output buffer (BAMP) – a rail-to-rail OPAMP - is offset compensated and current  
limited. So a short circuit of analog output to ground or power supply does not damage the ZSC31150.  
2.7. Serial Digital Interface  
The ZSC31150 includes a serial digital interface (SIF), which is used for communication with the circuit to  
realize calibration of the sensor module. The serial interface is able to communicate with two communication  
protocols – I²CTM and ZACwireTM (a one wire communication interface – also called OWI). The OWI can be  
used to realize an “End of Line” calibration via the analog output AOUT of the complete assembled sensor  
module.  
Refer 'ZSC31150 Functional Description' for a detailed description of the serial interfaces and communication  
protocols.  
2.8. Failsafe Features, Watchdog and Error Detection  
The ZSC31150 detects various possible errors. A detected error is signalized by changing the internal status  
in diagnostic mode (DM). In this case the analog output is set to LOW (minimum possible output value = lower  
diagnostic range – LDR) and the output registers of the digital serial interface are set to a significant error  
code.  
A watchdog oversees the continuous working of the CMC and the running measurement loop. The operation  
of the internal clock oscillator is verified continuously by oscillator fail detection.  
A check of the sensor bridge for broken wires is done permanently by two comparators watching the input  
voltage of each input (sensor connection and short check). Additionally the common mode voltage of the  
sensor and sensor input short is watched permanently (sensor aging).  
Different functions and blocks in digital part - like RAM-, ROM-, EEPROM- and register content - are watched  
continuously. Refer 'ZSC31150 Functional Description' for a detailed description of safety features and  
methods of error messaging.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
16 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
2.9. High Voltage, Reverse Polarity and Short Circuit Protection  
The ZSC31150 is designed for 5V power supply operation.  
The ZSC31150 and the connected sensor are protected from overvoltage and reverse polarity damage by an  
internal supply voltage limiter. The analog output AOUT can be connected (short circuit, overvoltage and  
reverse) with all potentials in protection range under all potential conditions at the pins VDDE and VSSE.  
All external components – explained in application circuit in chapter 3 – are required to guarantee this  
operation. The protection is no time limited. Refer 'ZSC31150 High Voltage Protection Description' for a  
detailed description of protection cases and conditions.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
17 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
3
Application Circuit Examples  
The application circuits contain external components, which are needed for overvoltage, reverse polarity, and  
short circuit protection.  
Note:  
Table 3.1:  
Symbol  
C1  
Check also the available 'ZSC31150 Application Notes' for application examples and board layout.  
Application Circuit Parameters  
Parameter  
Min  
100  
100  
4
Typ  
Max  
Unit  
nF  
Notes  
C
C
C
470  
C2  
nF  
18, 2  
C3  
47  
160  
10  
nF  
The value of C3 is the sum of the load  
capacitor and the cable capacitance  
19  
C4, C5  
C
0
nF  
Recommended to increase EMC immunity.  
The value of C4, C5 is the sum of the load  
capacitor and the cable capacitance  
R1  
10  
kꢀ  
RIBR  
R
Refer to chapter 1.2  
Figure 3.1: Bridge in Voltage Mode, External Diode Temperature Sensor  
18  
value of C3 summarizes load capacitor and cable capacity  
higher values for C3, C4 and C5 increase EMC immunity  
19  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
notice.  
Data Sheet  
August 16, 2011  
18 of 24  
 
 
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
Figure 3.2: Bridge in Voltage Mode, External Thermistor  
Figure 3.3: Bridge in Current Mode, Temperature Measurement via Bridge TC  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
notice.  
Data Sheet  
August 16, 2011  
19 of 24  
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
4
Pin Configuration, Latch-Up and ESD Protection  
4.1. Pin Configuration and Latch-up Conditions  
Table 4.1:  
Pin Configuration and Latch-Up Conditions  
Pin  
Name  
VDDA  
VSSA  
SDA  
Description  
Remarks  
Usage/  
Latch-up Related Application  
Connection 20 Circuit Restrictions and/or Remarks  
1
2
Positive analogue supply  
voltage  
Analog IO Required/-  
Analog IO Required/-  
Negative analogue supply  
voltage  
3
I²CTM data IO  
Digital IO, -/VDDA  
pull-up  
Trigger Current/Voltage to  
VDDA/VSSA:  
+/-100mA or 8/-4V  
4
SCL  
I²CTM clock  
Digital IN, -/VDDA  
pull-up  
6
VDD  
Positive digital supply  
voltage  
Analog IO Required or  
open/-  
only capacitor to VSSA is allowed,  
otherwise no application access  
7
VDDE  
VSSE  
AOUT  
VBN  
Positive external supply  
voltage  
Supply  
Ground  
IO  
Required/-  
Required/-  
Required/-  
Trigger Current/Voltage: -100mA/33V  
Trigger Current/Voltage: -100mA/33V  
8
Negative external supply  
voltage  
9
Analog output & one wire  
IF IO  
10  
Negative input sensor  
bridge  
Analog IN Required/-  
11  
13  
12  
14  
VBR_B  
VBR_T  
VBP  
Bridge bottom potential  
Bridge top potential  
Analog IO Required/VSSA  
Analog IO Required/VDDA  
Depending on application circuit,  
short to VDDA/VSSA possible  
Positive input sensor bridge Analog IN Required/-  
IRTEMP Temp sensor & current  
source resistor  
Analog IO -/VDDA, VSSA  
Depending on application circuit  
4.2. ESD-Protection  
All pins have an ESD Protection of >2000V. Additionally the pins VDDE, VSSE and AOUT have an ESD  
Protection of >4000V.  
ESD Protection referred to the human body model is tested with devices in SSOP14 packages during product  
qualification. The ESD test follows the human body model with 1.5kOhm/100pF based on MIL 883, Method  
3015.7.  
20  
Usage: If “Required” is specified, an electrical connection is necessary – refer to the application circuits  
Connection: To be connected to this potential, if not used or no application/configuration related constraints are given  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
20 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
 
 
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
5
Package  
The standard package of the ZSC31150 is an SSOP14 green package (5.3mm body width) with a lead pitch  
of 0.65 mm.  
Figure 5.1: ZSC31150 Pin Diagram  
6
Quality and Reliability  
The ZSC31150 is qualified according to the AEC-Q100 standard, operating temperature grade 0. A fit rate  
<5fit (temp=55°C, S=60%) is guaranteed. A typical fit rate of the C7D-technologie, which is used for  
ZSC31150, is 2.5fit.  
7
Customization  
For high-volume applications, which require an up- or downgraded functionality compared to the ZSC31150,  
ZMDI can customize the circuit design by adding or removing certain functional blocks.  
For it ZMDI has a considerable library of sensor-dedicated circuitry blocks.  
Thus ZMDI can provide a custom solution quickly. Please contact ZMDI for further information.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
21 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
 
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
8
Ordering Information  
Product Sales Code  
Description  
Package  
ZSC31150KIT  
Evaluation Kit V1.0  
Modular evaluation and development boards for  
ZSC31150  
KIT boards, IC samples, USB cable,  
DVD with software and documentation  
ZSC31150 Mass  
Modular Mass Calibration System (MSC) for  
MCS boards, cable, connectors,  
Calibration System V1.1 ZSC31150  
DVD with software and documentation  
9
Additional Documents  
Document  
File Name  
ZSC31150 Feature Sheet  
ZSC31150_FeatureSheet_Rev_*.PDF  
ZSC31150_FunctionalDescription_Rev_*.PDF  
ZSC31150_HV_PROT_Rev_*.PDF  
ZSC31150_DicePackagePin_Rev_*.PDF  
ZSC31150_Bandwidth_Calculation_Rev*.xls  
ZMDI_Temperature_Profile_Rev_*.xls  
ZSC31150_APPLKIT_Rev_*.pdf  
ZSC31150 Functional Description  
ZSC31150 High Voltage Protection Description  
ZSC31150 Dice Package  
ZSC31150 Bandwidth Calculation Sheet  
ZMDI Temperature Profile Calculation Sheet  
ZSC31150 Application Kit Description  
ZSC31150 Application Notes  
ZSC31150_AN*.pdf  
Visit ZMDI’s website www.zmdi.com or contact your nearest sales office for the latest version of these  
documents.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
22 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
 
 
 
 
 
 
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
10 Glossary  
Term  
ADC  
AEC  
AFE  
Description  
Analog-to-Digital Converter  
Automotive Electronics Council  
Analog Front End  
AOUT  
BAMP  
CM  
Analog Output  
Buffer Amplifier  
Command Mode  
CMC  
CMV  
CMOS  
DAC  
DM  
Calibration Microcontroller  
Common Mode Voltage  
Complementary Metal Oxide Semiconductor  
Digital-to-Analog Converter  
Diagnostic Mode  
EEPROM  
ESD  
LDR  
MUX  
NOM  
OWI  
P
Electrically Erasable Programmable Read Only Memory  
Electrostatic Device  
Lower Diagnostic Range  
Multiplexer  
Normal Operation Mode  
One Wire Interface  
Pressure  
PGA  
POC  
RAM  
RISC  
ROM  
SCC  
SIF  
Programmable Gain Amplifier  
Power on Clear  
Random-Access Memory  
Reduced Instruction Set Computer  
Read Only Memory  
Sensor Connection Check  
Serial Interface  
SSC+  
SSC-  
TS  
Positive-biased Sensor Short Check  
Negative-biased Sensor Short Check  
Temperature Sensor  
XZC  
eXtended Zero Compensation  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
notice.  
Data Sheet  
August 16, 2011  
23 of 24  
 
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
11 Document Revision History  
Revision  
0.46  
Date  
June 12, 2008  
July 20, 2008  
Description  
First release after format update  
Update after review  
0.47  
1.01  
September 20, 2008 “6.” – fit rate added  
”1.5.2” – ROM check time revised/corrected  
”5.3.4.3” – SSC – no detection limit added  
1.02  
1.03  
1.04  
1.05  
September 20, 2009 adjust to new ZMDI template  
October 2, 2009  
October 22, 2009  
February 26, 2010  
change to ZMDI denotation  
formatting and linking issues solved  
adjust to new ZMDI template  
include 'ZSC31150 Feature Sheet' at page 2&3  
add ordering codes for ZSC31150 and evaluation kits  
extend glossary  
add new phone number for ZMD FAR EAST, Ltd. and ZMDA America Office  
Madison  
1.06  
July 29, 2010  
correct “Offset shift per step” and “Approx. maximum offset shift” in Table 2.2 for  
PGA gain = 105 and 52.5  
move 1.4.1.6 “Internal pull-up resistor” into chapter 1.4.1 in Table 1.2  
redrawing of Sensor Bridge in Figure 3.1, Figure 3.2 and Figure 3.3  
add comment for C4 and C5 in Figure 3.3  
rename ZMD31150 to ZSC31150  
1.07  
1.08  
August 31, 2010  
August 15, 2011  
Connection of RIBR in Figure 3.3 corrected  
Update ordering information with “Long Life Automotive”  
(refer Ordering Information and chapter 8)  
Sales and Further Information  
www.zmdi.com  
SSC@zmdi.com  
Zentrum Mikroelektronik  
ZMD America, Inc.  
8413 Excelsior Drive  
Suite 200  
Zentrum Mikroelektronik  
Dresden AG, Japan Office  
ZMD Far East, Ltd.  
3F, No. 51, Sec. 2,  
2nd Floor, Shinbashi Tokyu Bldg. Keelung Road  
Dresden AG  
Grenzstrasse 28  
01109 Dresden  
Germany  
Madison, WI 53717  
4-21-3, Shinbashi, Minato-ku  
Tokyo, 105-0004  
Japan  
11052 Taipei  
Taiwan  
USA  
Phone +49 (0)351.8822.7.772  
Phone +01 (608) 829-1987  
+01 (631) 549-2882  
Phone +81.3.6895.7410  
Phone +886.2.2377.8189  
Fax  
+49(0)351.8822.87.772 Fax  
Fax  
+81.3.6895.7301  
Fax  
+886.2.2377.8199  
DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Zentrum Mikroelektronik Dresden  
AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be true and accurate.  
However, under no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential damages of any  
kind or nature whatsoever arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD  
AG to any customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for any damages in  
connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty, tort (including negligence), strict liability, or otherwise.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 1.08  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
24 of 24  
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without  
August 16, 2011  
notice.  
 
Mouser Electronics  
Authorized Distributor  
Click to View Pricing, Inventory, Delivery & Lifecycle Information:  
ZMDI:  
ZSC31150FAG1-R ZSC31150FAG1-T ZSC31150FEG1-R ZSC31150FEG1-T ZSC31150FLG1-R ZSC31150FLG1-  
T

相关型号:

ZSC31150FLB-T

Fast Automotive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
ETC

ZSC31150FLC-R

Fast Automotive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
ETC

ZSC31150FLC-T

Fast Automotive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
ETC

ZSC31150FLD-R

Fast Automotive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
ETC

ZSC31150FLD-T

Fast Automotive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
ETC

ZSC31150FLG1-R

Fast Automotive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
ETC

ZSC31150FLG1-T

Fast Automotive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
ETC

ZSC31150GAB

Fast Automotive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
IDT

ZSC31150GAC

Fast Automotive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
IDT

ZSC31150GAG1

Fast Automotive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
IDT