ZSPM1035D [ETC]

True Digital PWM Controller (Single-Phase, Single-Rail);
ZSPM1035D
型号: ZSPM1035D
厂家: ETC    ETC
描述:

True Digital PWM Controller (Single-Phase, Single-Rail)

文件: 总41页 (文件大小:3480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
Rev. 1.00 / December 2013  
ZSPM1035C/ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Smart Power Management ICs  
Power and Precision  
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Brief Description  
Benefits  
The ZSPM1035C and ZSPM1035D are true-digital  
single-phase PWM controllers optimally configured  
for use with the Murata Power Solutions 35A Power  
Block OKLP-X/35-W12-C in smart digital power  
solutions.  
Fast time-to-market using off-the-shelf, optimally  
configured controller and power block  
Fast configuration and design flexibility  
Simplified design and integration  
FPGA designer-friendly solution  
The ZSPM1035C and ZSPM1035D integrate a digi-  
tal control loop, optimized for maximum flexibility and  
stability as well as load step and steady-state perfor-  
mance. In addition, a rich set of protection functions  
is provided.  
Highest power density with smallest footprint  
Pin-to-pin compatible with the ZSPM1035A PWM  
controller enabling point-of-load platform designs  
with or without digital communication  
Higher energy efficiency across all output loading  
conditions  
To simplify the system design, a set of optimized  
configuration options have been pre-programmed in  
the devices. These configurations can be selected  
by setting the values of two external resistors.  
Available Support  
Reference solutions are available complete with  
layout recommendations, example circuit board  
layouts, complete bill of materials and more.  
Evaluation Kit  
Reference Solutions  
PC-based Pink Power Designer™ Graphic User  
Interface (GUI)  
Features  
Physical Characteristics  
Application-optimized digital control loop  
Advanced, digital control techniques  
Operation temperature: -40°C to +125°C  
ZSPM1035C VOUT: 0.62V to 1.20V  
ZSPM1035D VOUT: 1.25V to 3.40V  
Tru-sample Technology™  
State-Law Control™ (SLC)  
Sub-cycle Response™ (SCR)  
Lead free (RoHS compliant) 24-pin QFN package  
(4mm x 4mm)  
Improved transient response and noise immunity  
Protection features  
Over-current protection  
ZSPM1035C/D Typical Application Diagram  
Over-voltage protection (VIN, VOUT)  
Under-voltage protection (VIN, VOUT)  
Overloaded startup  
ZSPM1035  
Murata  
QFN 4x4 mm  
OKLP-X/35-W12-C  
Current Sensing  
Continuous retry (“hiccup”) mode for fault  
conditions  
VIN  
12V typical  
Digital Control Loop  
Pre-programmed for optimized use with Murata  
Power Solutions 35A Power Block OKLP-X/35-  
W12-C  
Power Management  
Driveriver  
(Sequencing, Protection,…)  
VOUT  
2-pin configuration for loop compensation, output  
voltage, and slew rate.  
Operation from a single 5V or 3.3V supply  
Housekeeping  
and  
Communication  
For more information, contact ZMDI via SPM@zmdi.com.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev.1.00 — December 3, 2013. All rights reserved. The material contained herein may not be reproduced, adapted, merged,  
translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Current Sensing  
ZSPM1025C/D Block Diagram  
ISNSP  
ISNSN  
Average Current  
Sensing  
Digital Control Loop  
VFBP  
VFBN  
VFB  
PWM  
LSE  
FLASH  
ADC  
Adaptive Digital  
Controller  
PWM  
DAC  
OC Detection  
Typical Applications  
Sequencer  
Telecom Switches  
Servers and Storage  
Base Stations  
OV Detection  
OT Detection  
Configurable  
Error Handler  
DAC  
Vin OV/UV  
Detection  
Network Routers  
Bias  
Current  
Source  
Int. Temp  
Sense  
VREFP  
VREF  
Industrial Applications  
FPGA Designs  
Vout UV Detection  
1.8V Reg  
Analog  
AVDD18  
TEMP  
CONFIG0  
CONFIG1  
VIN  
NVM  
Point-of-Load Power Solutions  
Telecommunications  
HKADC  
CPU Core  
(OTP)  
1.8V Reg  
Digital  
VDD18  
VDD33  
Single-Rail/Single-Phase  
Supplies for Processors,  
ASICs, DSPs, etc.  
GPIO  
Clock  
Generation  
3.3V  
Reg  
Ordering Information  
Sales Code  
Description  
Package  
7” Reel  
7” Reel  
Kit  
ZSPM1035CA1W 0 ZSPM1035C Lead-free QFN24 — Temperature range: -40°C to +125°C  
ZSPM1035DA1W 0 ZSPM1035D Lead-free QFN24 — Temperature range: -40°C to +125°C  
ZSPM8735-KIT  
ZSPM8835-KIT  
Evaluation Kit for ZSPM1035C with PMBus™ Communication Interface *  
Evaluation Kit for ZSPM1035D with PMBus™ Communication Interface *  
Kit  
* Pink Power Designer™ GUI can be downloaded from http://www.zmdi.com/zspm1035c and http://www.zmdi.com/zspm1035d.  
Sales and Further Information  
www.zmdi.com  
SPM@zmdi.com  
Zentrum Mikroelektronik  
Dresden AG  
Global Headquarters  
Grenzstrasse 28  
01109 Dresden, Germany  
ZMD America, Inc.  
1525 McCarthy Blvd., #212  
Milpitas, CA 95035-7453  
USA  
Zentrum Mikroelektronik  
Dresden AG, Japan Office  
2nd Floor, Shinbashi Tokyu Bldg. Keelung Road  
4-21-3, Shinbashi, Minato-ku  
Tokyo, 105-0004  
Japan  
ZMD FAR EAST, Ltd.  
3F, No. 51, Sec. 2,  
Zentrum Mikroelektronik  
Dresden AG, Korea Office  
U-space 1 Building  
11th Floor, Unit JA-1102  
670 Sampyeong-dong  
Bundang-gu, Seongnam-si  
Gyeonggi-do, 463-400  
Korea  
11052 Taipei  
Taiwan  
USA Phone +855.275.9634  
Phone +408.883.6310  
Central Office:  
Phone +49.351.8822.0  
Phone +81.3.6895.7410  
Phone +886.2.2377.8189  
Fax  
+49.351.8822.600  
Fax  
+408.883.6358  
Fax  
+81.3.6895.7301  
Fax  
+886.2.2377.8199  
Phone +82.31.950.7679  
Fax  
+82.504.841.3026  
European Technical Support  
Phone +49.351.8822.7.772  
DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Zentrum Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The  
information furnished hereby is believed to be true and accurate. However, under no circumstances shall ZMD AG be liable to any customer,  
licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or in  
any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any  
customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for  
any damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty,  
tort (including negligence), strict liability, or otherwise.  
Fax  
+49.351.8822.87.772  
European Sales (Stuttgart)  
Phone +49.711.674517.55  
Fax  
+49.711.674517.87955  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 — December 3, 2013.  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.  
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Contents  
Features................................................................................................................................................................... 2  
Benefits.................................................................................................................................................................... 2  
List of Figures .......................................................................................................................................................... 5  
List of Tables ........................................................................................................................................................... 6  
1
2
3
IC Characteristics ............................................................................................................................................. 7  
1.1. Absolute Maximum Ratings....................................................................................................................... 7  
1.2. Recommended Operating Conditions ....................................................................................................... 8  
1.3. Electrical Parameters ................................................................................................................................ 8  
Product Summary........................................................................................................................................... 11  
2.1. Overview.................................................................................................................................................. 11  
2.2. Pin Description......................................................................................................................................... 13  
2.3. Available Packages ................................................................................................................................. 14  
Functional Description.................................................................................................................................... 14  
3.1. Power Supply Circuitry, Reference Decoupling, and Grounding ............................................................14  
3.2. Reset/Start-up Behavior .......................................................................................................................... 15  
3.3. Digital Power Control............................................................................................................................... 15  
3.3.1. Overview ........................................................................................................................................... 15  
3.3.2. Output Voltage Feedback ................................................................................................................. 15  
3.3.3. Digital Compensator ......................................................................................................................... 15  
3.3.4. Power Sequencing and the CONTROL Pin...................................................................................... 16  
3.3.5. Pre-biased Start-up and Soft-Off ...................................................................................................... 18  
3.3.6. Current Sensing ................................................................................................................................ 18  
3.3.7. Temperature Measurement .............................................................................................................. 19  
3.4. Fault Monitoring and Response Generation............................................................................................ 19  
3.4.1. Output Over/Under Voltage .............................................................................................................. 19  
3.4.2. Output Current Protection................................................................................................................. 20  
3.4.3. Over-Temperature Protection ........................................................................................................... 20  
3.5. Monitoring and Debugging via I2C™ ....................................................................................................... 20  
Application Information................................................................................................................................... 21  
4.1. Typical Application Circuit ....................................................................................................................... 21  
4.2. Pin Strap Options of the ZSPM1035C/D................................................................................................. 24  
4.2.1. CONFIG0 – Output Voltage.............................................................................................................. 24  
4.2.2. CONFIG1 – Compensation Loop and Output Voltage Slew Rate....................................................25  
4.3. Typical Performance Measurements for the ZSPM1035C and ZSPM1035D.........................................28  
4.3.1. Typical Load Transient Response – ZSPM1035C – Capacitor Range #1 – Comp0........................29  
4.3.2. Typical Load Transient Response – ZSPM1035C – Capacitor Range #2 – Comp1........................30  
4.3.3. Typical Load Transient Response – ZSPM1035C – Capacitor Range #3 – Comp2........................31  
4.3.4. Typical Load Transient Response – ZSPM1035C – Capacitor Range #4 – Comp3........................32  
4.3.5. Typical Load Transient Response – ZSPM1035D – Capacitor Range #1 – Comp0........................33  
4.3.6. Typical Load Transient Response – ZSPM1035D – Capacitor Range #2 – Comp1........................34  
4
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
4 of 40  
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
4.3.7. Typical Load Transient Response – ZSPM1035D – Capacitor Range #3 – Comp2........................35  
4.3.8. Typical Load Transient Response – ZSPM1035D – Capacitor Range #4 – Comp3........................36  
Mechanical Specifications.............................................................................................................................. 38  
Glossary ......................................................................................................................................................... 39  
Ordering Information ...................................................................................................................................... 39  
Related Documents........................................................................................................................................ 40  
Document Revision History............................................................................................................................ 40  
5
6
7
8
9
List of Figures  
Figure 2.1 Typical Application Circuit with a 5V Supply Voltage .......................................................................11  
Figure 2.2 Block Diagram................................................................................................................................... 12  
Figure 2.3 Pin-Out QFN24 Package.................................................................................................................. 14  
Figure 3.1 Simplified Block Diagram for the Digital Compensation ...................................................................16  
Figure 3.2 Power Sequencing............................................................................................................................ 17  
Figure 3.3 Inductor Current Sensing Using the DCR Method............................................................................ 18  
Figure 4.1 ZSPM1035C – Application Circuit with a 5V Supply Voltage...........................................................21  
Figure 4.2 ZSPM1035D – Application Circuit with a 5V Supply Voltage...........................................................22  
Figure 4.3 ZSPM1035C with Capacitor Range #1 – Load Step 5 to 15A, Min. Capacitance............................29  
Figure 4.4 ZSPM1035C with Capacitor Range #1 – Load Step 15 to 5A, Min. Capacitance............................29  
Figure 4.5 ZSPM1035C with Capacitor Range #1 – Load Step 5 to 15A, Max. Capacitance...........................29  
Figure 4.6 ZSPM1035C with Capacitor Range #1 – Load Step 15 to 5A, Max. Capacitance...........................29  
Figure 4.7 ZSPM1035C Open Loop Bode Plots with Capacitor Range #1 .......................................................29  
Figure 4.8 ZSPM1035C with Capacitor Range #2 – Load Step 5 to 15A, Min. Capacitance............................30  
Figure 4.9 ZSPM1035C with Capacitor Range #2 – Load Step 15 to 5A, Min. Capacitance............................30  
Figure 4.10 ZSPM1035C with Capacitor Range #2 – Load Step 5 to 15A, Max. Capacitance...........................30  
Figure 4.11 ZSPM1035C with Capacitor Range #2 – Load Step 15 to 5A, Max. Capacitance...........................30  
Figure 4.12 ZSPM1035C Open Loop Bode Plots with Capacitor Range #2 .......................................................30  
Figure 4.13 ZSPM1035C with Capacitor Range #3 – Load Step 5 to 15A, Min. Capacitance............................31  
Figure 4.14 ZSPM1035C with Capacitor Range #3 – Load Step 15 to 5A, Min. Capacitance............................31  
Figure 4.15 ZSPM1035C with Capacitor Range #3 – Load Step 5 to 15A, Max. Capacitance...........................31  
Figure 4.16 ZSPM1035C with Capacitor Range #3 – Load Step 15 to 5A, Max. Capacitance...........................31  
Figure 4.17 ZSPM1035C Open Loop Bode Plots with Capacitor Range #3 .......................................................31  
Figure 4.18 ZSPM1035C with Capacitor Range #4 – Load Step 5 to 15A, Min. Capacitance............................32  
Figure 4.19 ZSPM1035C with Capacitor Range #4 – Load Step 15 to 5A, Min. Capacitance............................32  
Figure 4.20 ZSPM1035C with Capacitor Range #4 – Load Step 5 to 15A, Max. Capacitance...........................32  
Figure 4.21 ZSPM1035C with Capacitor Range #4 – Load Step 15 to 5A, Max. Capacitance...........................32  
Figure 4.22 ZSPM1035C Open Loop Bode Plots with Capacitor Range #4 .......................................................32  
Figure 4.23 ZSPM1035D with Capacitor Range #1 – Load Step 5 to 15A, Min. Capacitance............................33  
Figure 4.24 ZSPM1035D with Capacitor Range #1 – Load Step 15 to 5A, Min. Capacitance............................33  
Figure 4.25 ZSPM1035D with Capacitor Range #1 – Load Step 5 to 15A, Max. Capacitance...........................33  
Figure 4.26 ZSPM1035D with Capacitor Range #1 – Load Step 15 to 5A, Max. Capacitance...........................33  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
5 of 40  
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Figure 4.27 ZSPM1035D Open Loop Bode Plots with Capacitor Range #1 .......................................................34  
Figure 4.28 ZSPM1035D with Capacitor Range #2 – Load Step 5 to 15A, Min. Capacitance............................34  
Figure 4.29 ZSPM1035D with Capacitor Range #2 – Load Step 15 to 5A, Min. Capacitance............................34  
Figure 4.30 ZSPM1035D with Capacitor Range #2 – Load Step 5 to 15A, Max. Capacitance...........................34  
Figure 4.31 ZSPM1035D with Capacitor Range #2 – Load Step 15 to 5A, Max. Capacitance...........................34  
Figure 4.32 ZSPM1035D Open Loop Bode Plots with Capacitor Range #2 .......................................................35  
Figure 4.33 ZSPM1035D with Capacitor Range #3 – Load Step 5 to 15A, Min. Capacitance............................35  
Figure 4.34 ZSPM1035D with Capacitor Range #3 – Load Step 15 to 5A, Min. Capacitance............................35  
Figure 4.35 ZSPM1035D with Capacitor Range #3 – Load Step 5 to 15A, Max. Capacitance...........................35  
Figure 4.36 ZSPM1035D with Capacitor Range #3 – Load Step 15 to 5A, Max. Capacitance...........................35  
Figure 4.37 ZSPM1035D Open Loop Bode Plots with Capacitor Range #3 .......................................................36  
Figure 4.38 ZSPM1035D with Capacitor Range #4 – Load Step 5 to 15A, Min. Capacitance............................36  
Figure 4.39 ZSPM1035D with Capacitor Range #4 – Load Step 15 to 5A, Min. Capacitance............................36  
Figure 4.40 ZSPM1035D with Capacitor Range #4 – Load Step 5 to 15A, Max. Capacitance...........................36  
Figure 4.41 ZSPM1035D with Capacitor Range #4 – Load Step 15 to 5A, Max. Capacitance...........................36  
Figure 4.42 ZSPM1035D Open Loop Bode Plots with Capacitor Range #4 .......................................................37  
Figure 5.1 24-pin QFN Package Drawing.......................................................................................................... 38  
List of Tables  
Table 3.1  
Table 3.2  
Table 3.3  
Table 4.1  
Table 4.2  
Table 4.3  
Table 4.4  
Table 4.5  
Power Sequencing Timing................................................................................................................ 17  
Power Good (PGOOD) Output Thresholds ...................................................................................... 17  
Fault Configuration Overview ........................................................................................................... 19  
Passive Component Values for the Application Circuits ..................................................................23  
Pin Strap Resistor Values................................................................................................................. 24  
ZSPM1035C and ZSPM1035D - Nominal VOUT Pin-Strap Resistor Selection (CONFIG0 Pin).....25  
Recommended Output Capacitor Ranges........................................................................................ 26  
ZSPM1035C and ZSPM1035D - Compensator and VOUT Slew Rate Pin Strap Resistor  
Selection ........................................................................................................................................... 27  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
6 of 40  
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
1
IC Characteristics  
Note: The absolute maximum ratings are stress ratings only. The ZSPM1035C/D might not function or be  
operable above the recommended operating conditions. Stresses exceeding the absolute maximum ratings might  
also damage the device. In addition, extended exposure to stresses above the recommended operating  
conditions might affect device reliability. ZMDI does not recommend designing to the “Absolute Maximum  
Ratings.”  
1.1. Absolute Maximum Ratings  
PARAMETER  
Supply voltages  
5V supply voltage  
Maximum slew rate  
3.3V supply voltage  
1.8V supply voltage  
PINS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VDD50  
VDD33  
dV/dt < 0.15V/µs  
-0.3  
5.5  
0.15  
3.6  
V
V/µs  
V
-0.3  
-0.3  
VDD18  
2.0  
V
AVDD18  
Digital pins  
Digital I/O pins  
GPIOx  
CONTROL  
PGOOD  
LSE  
-0.3  
5.5  
V
PWM  
Analog pins  
Current sensing  
ISNSP  
ISNSN  
-0.3  
-0.3  
-0.3  
5.5  
2.0  
2.0  
V
V
V
Voltage feedback  
VFBP  
VFBN  
All other analog pins  
ADCVREF  
VREFP  
TEMP  
VIN  
CONFIGx  
Ambient conditions  
Storage temperature  
-40  
150  
°C  
V
Electrostatic discharge –  
Human Body Model 1)  
+/-2k  
Electrostatic discharge –  
Charge Device Model 1)  
+/- 500  
V
1) ESD testing is performed according to the respective JESD22 JEDEC standard.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
7 of 40  
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
1.2. Recommended Operating Conditions  
PARAMETER  
Ambient conditions  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operation temperature  
TAMB  
-40  
125  
°C  
Thermal resistance junction to  
ambient  
40  
K/W  
θJA  
1.3. Electrical Parameters  
PARAMETER  
Supply voltages  
SYMBOL  
CONDITIONS  
MIN  
4.75  
3.0  
TYP  
MAX  
5.25  
3.6  
UNITS  
5V supply voltage—VDD50 pin  
5V supply current  
VVDD50  
IVDD50  
5.0  
23  
V
mA  
V
VDD50=5.0V  
3.3V supply voltage  
VVDD33  
Supply for both the VDD33  
and VDD50 pins if the internal  
3.3V regulator is not used.  
3.3  
3.3V supply current  
IVDD33  
VDD50=VDD33=3.3V  
23  
3.3  
mA  
Internally generated supply voltages  
3.3V supply voltage—VDD33 pin  
3.3V output current  
VVDD33  
VDD50=5.0V  
VDD50=5.0V  
VDD50=5.0V  
3.0  
3.6  
2.0  
V
mA  
V
IVDD33  
1.8V supply voltages—AVDD18  
and VDD18 pins  
VAVDD18  
VVDD18  
1.72  
1.80  
1.98  
1.8V output current  
0
mA  
V
Power-on reset threshold for  
VDD33 pin – on  
VTH_POR_ON  
VTH_POR_OFF  
2.8  
2.6  
Power-on reset threshold for  
VDD33 pin – off  
V
Digital IO pins (GPIOx, CONTROL, PGOOD)  
Input high voltage  
VDD33=3.3V  
VDD33=3.3V  
VDD33=3.3V  
2.0  
2.4  
V
V
Input low voltage  
0.8  
VDD33  
0.5  
Output high voltage  
V
Output low voltage  
V
Input leakage current  
Output current - high  
Output current - low  
±1  
µA  
mA  
mA  
2.0  
2.0  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
8 of 40  
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital IO pins with tri-state capability (LSE, PWM)  
Output high voltage  
Output low voltage  
VDD33=3.3V  
2.4  
VDD33  
0.5  
V
V
Output current - high  
Output current - low  
Tri-state leakage current  
2.0  
mA  
mA  
µA  
2.0  
±1.0  
Output voltage (without external feedback divider; see section 3.3.2)  
Set-point voltage  
0
0
1.4  
V
mV  
%
Set-point resolution  
1.4  
1
Set-point accuracy  
VOUT=1.2V  
Inductor current measurement  
Common mode voltage - ISNSP  
and ISNSN pins to AGND  
5.0  
V
mV  
%
Differential voltage range across  
ISNSP and ISNSN pins  
±100  
Accuracy  
10  
Digital pulse width modulator  
Switching frequency  
Resolution  
fSW  
500  
163  
2.0  
kHz  
ps  
%
Frequency accuracy  
Duty cycle  
2.5  
0
100  
%
Over-voltage protection  
Reference DAC  
Set-point voltage  
Resolution  
1.58  
V
mV  
%
25  
2
Set point accuracy  
Comparator  
Hysteresis  
35  
mV  
V
Housekeeping analog-to-digital converter (HKADC) input pins  
Input voltage—TEMP, VIN,  
CONFIG0, and CONFIG1 pins  
0
1.44  
3
Source impedance Vin sensing  
ADC resolution  
kΩ  
0.7  
mV  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
9 of 40  
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
External temperature measurement (Note: Only PN-junction sense elements are supported)  
Bias currents for external  
60  
µA  
temperature sensing—TEMP pin  
Resolution—TEMP pin  
0.16  
±5.0  
K
K
Accuracy of measurement—  
TEMP pin  
Internal temperature measurement  
Resolution  
0.22  
±5.0  
K
K
Accuracy of measurement  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
10 of 40  
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
2
Product Summary  
2.1. Overview  
The ZSPM1035C and ZSPM1035D are true-digital single-phase PWM controllers optimally configured for use  
with the Murata Power Solutions 35A Power Block OKLP-X/35-W12-C in smart digital power solutions. The  
ZSPM1035C/D has a digital power control loop incorporating output voltage sensing, average inductor current  
sensing, and extensive fault monitoring and handling features. Several different functional units are integrated in  
the device. A dedicated digital control loop is used to provide fast loop response and optimal output voltage  
regulation. This includes output voltage sensing, average inductor current sensing, a digital control law, and a  
digital pulse-width modulator (DPWM). In parallel, a dedicated error handler allows fast and flexible detection of  
error signals and their appropriate handling. A housekeeping analog-to-digital converter (HKADC) ensures the  
reliable and efficient measurement of environmental signals, such as input voltage and temperature.  
An application-specific, low-energy integrated microcontroller is used to control the overall system. It manages  
configuration of the various logic units according to the preprogrammed configuration look-up tables and the  
external configuration resistors connected to the CONFIG0 and CONFIG1 pins. These pin-strapping resistors  
expedite configuration of output voltage, compensation, and rise time without requiring digital communication.  
ZMDI’s Pink Power Designer™ graphical user interface (GUI) allows the user to monitor the controller’s  
measurements of the environmental signals and the status of the error handler via the GPIO2 and GPIO3 pins.  
Figure 2.1  
Typical Application Circuit with a 5V Supply Voltage  
+5V  
VDD50  
VDD33  
VDD18  
C1,C2,C3  
Vin  
+5V  
GND  
AVDD18  
VREFP  
R7  
R8  
VIN  
+5V ENABLE  
R1  
ADCVREF  
AGND  
C4,C5,C6  
+Vout  
VIN  
VOUT  
GND  
Murata  
OKLP-X/35-W12-C  
PWM  
LSE  
PWM  
COUT  
CONFIG0  
CONFIG1  
CIN  
GND  
PGND  
R2,R3  
TEMP +CS -CS  
TEMP  
GPIO0  
C8  
ISNSP  
ISNSN  
GPIO1  
R6  
GPIO2  
GPIO3  
R5  
VFBP  
VFBN  
R4  
CONTROL  
PGOOD  
C7  
ZSPM1035C/D  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
11 of 40  
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
A high-reliability, high-temperature one-time programmable memory (OTP) is used to store configuration param-  
eters. All required bias and reference voltages are internally derived from the external supply voltage.  
Figure 2.2  
Block Diagram  
Current Sensing  
ISNSP  
Average Current  
Sensing  
ISNSN  
Digital Control Loop  
VFBP  
VFBN  
VFB  
DAC  
PWM  
LSE  
FLASH  
ADC  
Adaptive Digital  
Controller  
PWM  
OC Detection  
Sequencer  
OV Detection  
OT Detection  
Configurable  
Error Handler  
DAC  
Vin OV/UV  
Detection  
Bias  
Current  
Source  
Int. Temp  
Sense  
VREFP  
VREF  
Vout UV Detection  
1.8V Reg  
Analog  
AVDD18  
TEMP  
CONFIG0  
CONFIG1  
VIN  
NVM  
(OTP)  
HKADC  
CPU Core  
1.8V Reg  
Digital  
VDD18  
VDD33  
GPIO  
Clock  
3.3V  
Reg  
Generation  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
12 of 40  
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
2.2. Pin Description  
Pin  
1
Name  
AGND  
VREFP  
VFBP  
Direction  
Input  
Type  
Description  
Supply  
Supply  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Supply  
Supply  
Supply  
Supply  
Supply  
Analog  
Analog  
Analog Ground  
2
Output  
Input  
Reference Terminal  
3
Positive Input of Differential Feedback Voltage Sensing  
Negative Input of Differential Feedback Voltage Sensing  
Positive Input of Differential Current Sensing  
Negative Input of Differential Current Sensing  
Connection to External Temperature Sensing Element  
Power Supply Input Voltage Sensing  
Configuration Selection 0  
4
VFBN  
Input  
5
ISNSP  
ISNSN  
TEMP  
Input  
6
Input  
7
Input  
8
VIN  
Input  
9
CONFIG0  
CONFIG1  
PWM  
Input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
PAD  
Input  
Configuration Selection 1  
Output  
Output  
Output  
Input  
High-Side FET Control Signal  
LSE  
Low-Side FET Control Signal  
PGOOD  
CONTROL  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GND  
PGOOD Output (Internal Pull-Down)  
Control Input – Active High  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
General Purpose Input/Output Pin  
General Purpose Input/Output Pin  
General Purpose Input/Output Pin  
General Purpose Input/Output Pin  
Digital Ground  
VDD18  
VDD33  
VDD50  
AVDD18  
ADCVREF  
PAD  
Output  
Input/Output  
Input  
Internal 1.8V Digital Supply Terminal  
3.3V Supply Voltage Terminal  
5.0V Supply Voltage Terminal  
Output  
Input  
Internal 1.8V Analog Supply Terminal  
Analog-to-Digital Converter (ADC) Reference Terminal  
Exposed Pad, Digital Ground  
Input  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
13 of 40  
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
2.3. Available Packages  
The ZSPM1035C/D is available in a 24-pin QFN package. The pin-out is shown in Figure 2.3. The mechanical  
drawing of the package can be found in Figure 5.1.  
Figure 2.3  
Pin-Out QFN24 Package  
24 23  
21 20 19  
22  
1
2
3
4
5
6
AGND  
GPIO3  
18  
17  
16  
15  
14  
13  
VREFP  
GPIO2  
GPIO1  
VFBP  
PAD  
VFBN  
ISNSP  
ISNSN  
GPIO0  
CONTROL  
PGOOD  
7
8
9
10 11 12  
3
Functional Description  
3.1. Power Supply Circuitry, Reference Decoupling, and Grounding  
The ZSPM1035C/D incorporates several internal power regulators in order to derive all required supply and bias  
voltages from a single external supply voltage. This supply voltage can be either 5V or 3.3V depending on  
whether the internal 3.3V regulator should be used. If the internal 3.3V regulator is not used, 3.3V must be  
supplied to the 3.3V and 5V supply pins. Decoupling capacitors are required at the VDD33, VDD18, and AVDD18  
pins (1.0µF minimum; 4.7µF recommended). If the 5.0V supply voltage is used, i.e., the internal 3.3V regulator is  
used, a small load current can be drawn from the VDD33 pin. This can be used to supply pull-up resistors for  
example.  
The reference voltages required for the analog-to-digital converters are generated within the ZSPM1035C/D.  
External decoupling must be provided between the VREFP and ADCVREF pins. Therefore, a 4.7µF capacitor is  
required at the VREFP pin, and a 100nF capacitor is required at the ADCVREF pin. The two pins should be  
connected with approximately 50resistance in order to provide sufficient decoupling between the pins.  
Three different ground connections (the pad, AGND pin, and GND pin) are available on the outside of the  
package. These should be connected together to a single ground tie. A differentiation between analog and digital  
ground is not required.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
14 of 40  
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
3.2. Reset/Start-up Behavior  
The ZSPM1035C/D employs an internal power-on-reset (POR) circuit to ensure proper start up and shut down  
with a changing supply voltage. Once the supply voltage increases above the POR threshold voltage (refer to  
section 1.3), the ZSPM1035C/D begins the internal start-up process. Upon its completion, the device is ready for  
operation.  
3.3. Digital Power Control  
3.3.1.  
Overview  
The digital power control loop consists of the integral parts required for the control functionality of the  
ZSPM1035C/D. A high-speed analog front-end is used to digitize the output voltage. A digital control core uses  
the acquired information to provide duty-cycle information to the PWM that controls the drive signals to the power  
stage.  
3.3.2.  
Output Voltage Feedback  
The voltage feedback signal is sampled with a high-speed analog front-end. The feedback voltage is differentially  
measured and subtracted from the voltage reference provided by a reference digital-to-analog converter (DAC)  
using an error amplifier. A flash ADC is then used to convert the voltage into its digital equivalent. This is followed  
by internal digital filtering to improve the system’s noise rejection.  
3.3.2.1. ZSPM1035C  
The ZSPM1035C has been designed for an output voltage range from 0.62 to 1.20V. The VFBP pin should be  
connected to the converter output through a 1.75kΩ resistor, and a small filter capacitor, typically 22pF, should be  
connected between the VFBP and VFBN pins of the ZSPM1035C.  
3.3.2.2. ZSPM1035D  
The ZSPM1035D has been designed for an output voltage range from 1.25 to 3.40V. An external feedback divider  
is required for the ZSPM1035D. The VFBP pin should be connected to the converter output through a 1.75kΩ  
resistor, and a 1kΩ resistor should be connected between the VFBP and VFBN pin of the ZSPM1035D. A small  
filter capacitor, typically 22pF, should also be connected between the VFBP and VFBN pins of the ZSPM1035D.  
3.3.3.  
Digital Compensator  
The sampled output voltage is processed by a digital control loop in order to modulate the DPWM output signals  
controlling the power stage. This digital control loop works as a voltage-mode controller using a PID-type  
compensation. The basic structure of the controller is shown in Figure 3.1. The proprietary State-Law™ Control  
(SLC) concept features two parallel compensators, steady-state operation, and fast transient operation. The  
ZSPM1035C/D implements fast, reliable switching between the different compensation modes in order to ensure  
good transient performance and quiet steady state. This has been utilized to tune the compensators individually  
for the respective needs; i.e., quiet steady-state and fast transient performance.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
15 of 40  
 
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Figure 3.1  
Simplified Block Diagram for the Digital Compensation  
Three different techniques are used to improve transient performance further:  
Tru-sample Technology™ is used to acquire fast, accurate, and continuous information about the output vol-  
tage so that the device can react quickly to any change in output voltage. Tru-sample Technology™ reduces  
phase-lag caused by sampling delays, reduces noise sensitivity, and improves transient performance.  
The Sub-cycle Response™ (SCR) technique, a method to drive the DPWM asynchronously during load tran-  
sients, allows limiting the maximum deviation of the output voltage and recharging the output capacitors  
faster.  
A nonlinear gain adjustment is used during large load transients to boost the loop gain and reduce the  
settling time.  
3.3.4.  
Power Sequencing and the CONTROL Pin  
The ZSPM1035C/D has a set of pre-configured power-sequencing features. The typical sequence of events is  
shown in Figure 3.2. The individual values for the delay, ramp time, and post ramp time are listed in Table 3.1.  
Note that the device is slew-rate controlled for ramping. Hence, when pin-strapping options for the output voltage  
are used, the ramp time can change based on the configured slew-rate and the actual selected output voltage.  
The slew rate can be selected in the application circuit using the pin-strap options as explained in section 4.1.  
The CONTROL pin is pre-configured for active high operation.  
The ZSPM1035C/D features a power good (PGOOD) output, which can be used to indicate the state of the power  
rail. If the output voltage level is above the power good ON threshold, the pin is set to active, indicating a stable  
output voltage on the rail. The thresholds for the power good output turn-on and turn-off are listed in Table 3.2.  
Note that the power good thresholds are stored in the device as factors relative to the nominal output voltage.  
Hence, using the strapping options (see section 4.1) to change the output voltage level also changes the PGOOD  
thresholds.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
16 of 40  
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Figure 3.2  
Power Sequencing  
VOUTnom  
VPGOOD_ON  
VPGOOD_OFF  
0 V  
t
tON_DELAY  
tON_RISE  
tOFF_DELAY  
tOFF_FALL  
Control pin  
Control pin  
tON_MAX  
tOFF_MAX  
Table 3.1  
Parameter  
tON_DELAY  
Power Sequencing Timing  
ZSPM1035C  
ZSPM1035D  
0ms  
0ms  
Pin strap selectable  
(see section 4.2)  
Pin strap selectable  
(see section 4.2)  
tON_RISE  
tON_MAX  
188ms  
0ms  
188ms  
0ms  
tOFF_DELAY  
25ms (VOUT = 1.20V)  
12ms (VOUT = 1.80V)  
tOFF_FALL  
tOFF_MAX  
*
Ramp down slew rate is 0.048V/ms  
Ramp down slew rate is 0.150V/ms  
50ms  
50ms  
* tOFF_FALL is implemented as a slew rate by the ZSPM1035C/D. Use the device-specific slew rate and the selected nominal output voltage  
to calculate the actual tOFF_FALL in milliseconds.  
Table 3.2  
Power Good (PGOOD) Output Thresholds  
Parameter  
Value  
95% of VOUT Nominal  
ON level  
VOUT nominal is pin-strap selectable (see section 4.2)  
90% of VOUT Nominal  
OFF level  
VOUT nominal is pin-strap selectable (see section 4.2)  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
17 of 40  
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
3.3.5.  
Pre-biased Start-up and Soft-Off  
Dedicated pre-biased start-up logic ensures proper start-up of the power converter when the output capacitors are  
pre-charged to a non-zero output voltage. Closed-loop stability is ensured during this phase.  
When the DC/DC converter output is disabled, i.e. when the CONTROL pin is set low, the ZSPM1035C/D will  
execute the soft-off sequence. The soft-off sequence will ramp down the output voltage to 0V and set the PWM  
output in a tri-state condition.  
3.3.6.  
Current Sensing  
The ZSPM1035C/D offers cycle-by-cycle average current sensing and over-current protection. A dedicated ADC  
is used to provide fast and accurate current information over the switching period. The acquired information is  
compared with the pre-configured over-current threshold to trigger an over-current fault event. DCR current  
sensing across the inductor on the Murata OKLP-X/35-W12-C is supported. Additionally, the device uses DCR  
temperature compensation via the external temperature sense element. This increases the accuracy of the  
current sense method by counteracting the significant change of the DCR over temperature.  
The schematic of the required current sensing circuitry is shown in Figure 3.3 for the widely-used DCR current-  
sensing method, which uses the parasitic resistance of the inductor to acquire the current information. The  
principle is based on a matched time-constant between the inductor and the low-pass filter built from a 2.15kΩ  
resistor mounted on the Murata OKLP-X/35-W12-C Power Block and C8. Resistor R6 should be a precision  
2.15kΩ resistor in order to provide good DC voltage rejection, .i.e. reduce the influence of the output voltage level  
on the current measurement.  
Figure 3.3  
Inductor Current Sensing Using the DCR Method  
Murata  
OKLP-X/35-W12-C  
L
DCR  
+Vout  
2.15 kOhm  
+CS  
-CS  
C8  
220nF  
ZSPM1035  
ISNSP  
R6  
2.15 kOhm  
ISNSN  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
18 of 40  
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
To improve the accuracy of the current measurement, which can be adversely affected by the temperature  
coefficient of the inductor’s DCR, the ZSPM1035C/D features temperature compensation via the external  
temperature sensing. The temperature of the inductor can be measured with an external temperature sense  
element placed close to the inductor. This information is used to adapt the gain of the current sense path to  
compensate for the increase in actual DCR.  
3.3.7.  
Temperature Measurement  
The ZSPM1035C/D features two independent temperature measurement units. The internal temperature sensing  
measures the temperature inside the IC; the external temperature sensing element is placed on the Murata  
OKLP-X/35-W12-C Power Block. The ZSPM1035C/D drives 60µA into the external temperature sensing element  
and measures the voltage on the TEMP pin.  
3.4. Fault Monitoring and Response Generation  
The ZSPM1035C/D monitors various signals for possible fault conditions during operation. The fault thresholds of  
the ZSPM1035C/D controllers are given in Table 3.3.  
Table 3.3  
Fault Configuration Overview  
Signal  
Fault Threshold  
Output Over-Voltage Fault  
125% of Nominal VOUT*  
Output Under-Voltage Fault  
Input Over-Voltage Fault  
75% of Nominal VOUT*  
13.80V  
7.00V  
42.0A  
105°C  
100°C  
Input Under-Voltage Fault  
Over-Current Fault  
External Over-Temperature Fault  
Internal Over-Temperature Fault  
* Nominal VOUT is selected by the pin-strap resistor on the CONFIG0 pin.  
The controller fault handling will infinitely try to restart the converter on a fault condition. In analog controllers, this  
infinite re-try feature is also known as “hiccup mode.”  
3.4.1.  
Output Over/Under Voltage  
To prevent damage to the load, the ZSPM1035C/D utilizes an output over-voltage protection circuit. The voltage  
at VFBP is continuously compared with a configurable threshold using a high-speed analog comparator. If the  
voltage exceeds the configured threshold, the fault response is generated and the PWM output is set to low.  
The ZSPM1035C/D also monitors the output voltage with a lower threshold. If the output voltage falls below the  
under-voltage fault level, a fault event is generated and the PWM output is set to low.  
Note that the fault thresholds are stored in the ZSPM1035C/D as factors relative to the nominal output voltage.  
Hence, using the strapping options (see section 4.1) to change the output voltage level, also changes the fault  
thresholds.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
19 of 40  
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
3.4.2.  
Output Current Protection  
The ZSPM1035C/D continuously monitors the average inductor current and utilizes this information to protect the  
power supply against excessive output current.  
3.4.3.  
Over-Temperature Protection  
The ZSPM1035C/D monitors internal and external temperature. For the temperature fault conditions a soft-off  
sequence is started. The soft-off sequence will ramp down the output voltage to 0V and set the PWM output in a  
tri-state condition.  
3.5. Monitoring and Debugging via I2C™  
The Pink Power Designer™ GUI can be used to monitor the internal measurement signals of the ZSPM1035C/D  
during the development phase. The status of the internal fault handler can also be monitored within the Pink  
Power Designer™ GUI.  
The Pink Power Designer™ GUI communicates with the ZSPM1035C/D via an I2C™* interface in which the SCL  
signal is connected to the GPIO3 pin and the SDA signal is connected to the GPIO2 pin.  
* I2C™ is a trademark of NXP.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
20 of 40  
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
4
Application Information  
The ZSPM1035C/D controllers have been designed and pre-configured to operate with the Murata OKLP-X/35-  
W12-C Power Block, which is a complete point-of-load solution for 35A output currents. This section includes  
information about the typical application circuits and recommended component values.  
The pin-strap configuration options for the ZSPM1035C/D are also documented in this section.  
4.1. Typical Application Circuit  
Schematics for the typical application circuits for the ZSPM1035C and ZSPM1035D respectively are shown in  
Figure 4.1 and Figure 4.2. A list of recommended component values for the passive components can be found in  
Table 4.1.  
Figure 4.1  
ZSPM1035C – Application Circuit with a 5V Supply Voltage  
U1  
+5V  
VDD50  
VDD33  
VDD18  
C1,C2,C3  
Vin  
+5V  
GND  
AVDD18  
VREFP  
R7  
R8  
U2  
VIN  
+5V ENABLE  
R1  
ADCVREF  
AGND  
C4,C5,C6  
+Vout  
VIN  
VOUT  
Murata  
OKLP-X/35-W12-C  
PWM  
LSE  
PWM  
COUT  
CONFIG0  
CONFIG1  
CIN  
GND  
PGND  
GND  
R2,R3  
TEMP +CS -CS  
TEMP  
GPIO0  
C8  
ISNSP  
ISNSN  
GPIO1  
R6  
GPIO2  
GPIO3  
R5  
VFBP  
VFBN  
CONTROL  
PGOOD  
ON/OFF  
PGOOD  
C7  
ZSPM1035C  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
21 of 40  
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Figure 4.2  
ZSPM1035D – Application Circuit with a 5V Supply Voltage  
U1  
+5V  
VDD50  
VDD33  
VDD18  
C1,C2,C3  
Vin  
+5V  
GND  
AVDD18  
VREFP  
R7  
R8  
U2  
VIN  
+5V ENABLE  
R1  
ADCVREF  
AGND  
C4,C5,C6  
+Vout  
VIN  
VOUT  
Murata  
OKLP-X/35-W12-C  
PWM  
LSE  
PWM  
COUT  
CONFIG0  
CONFIG1  
CIN  
GND  
PGND  
GND  
R2,R3  
TEMP +CS -CS  
TEMP  
GPIO0  
C8  
ISNSP  
ISNSN  
GPIO1  
R6  
GPIO2  
GPIO3  
R5  
VFBP  
VFBN  
R4  
CONTROL  
PGOOD  
ON/OFF  
PGOOD  
C7  
ZSPM1035D  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
22 of 40  
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Table 4.1  
Passive Component Values for the Application Circuits  
Reference  
Designator  
Component  
value  
Description  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
1.0µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
100nF  
22pF  
Ceramic capacitor.  
Ceramic capacitor. Recommended 4.7µF; minimum 1.0µF.  
Ceramic capacitor. Recommended 4.7µF; minimum 1.0µF.  
Ceramic capacitor. Recommended 4.7µF; minimum 1.0µF.  
Ceramic capacitor. Recommended 4.7µF; minimum 1.0µF.  
Output voltage sense filtering capacitor.  
Recommended 22pF; maximum 1nF.  
C8  
CIN  
220nF*  
DCR current-sense filter capacitor.  
Input filter capacitors. Can be a combination of ceramic and electrolytic capacitors.  
COUT  
Output filter capacitors. See section 4.2.2 for more information on the output capacitor  
selection.  
R1  
51Ω*  
R2, R3  
Pin-strap configuration resistors. See sections 4.2.1 and 4.2.2 for information on  
application-specific values.  
R4  
1.0kΩ*  
Output voltage feedback divider bottom resistor. Connect between the VFBP and  
VFBN pins.  
Important: R4 must not be used with the ZSPM1035C. If R4 is used with the  
ZSPM1035C, the output voltage will be much higher than the nominal output voltage.  
R5  
1.75kΩ*  
Output voltage feedback divider top resistor. Connect between the output terminal and  
the VFBP pin.  
R6  
R7  
2.15kΩ*  
9.1kΩ*  
DCR current sense filter resistor.  
Input voltage divider top resistor. Connect between the main power input and the VIN  
pin of the ZSPM1035C/D.  
R8  
1.0kΩ*  
Input voltage divider bottom resistor. Connect between the VIN and AGND pins of the  
ZSPM1035C/D.  
* Values marked with an asterisk are fixed component values that must not be changed.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
23 of 40  
December 3, 2013  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
4.2. Pin Strap Options of the ZSPM1035C/D  
The ZSPM1035C/D provides two pin-strap configuration pins. The CONFIG0 pin is used to select the nominal  
output voltage of the non-isolated DC/DC converter. The CONFIG1 pin is used to select a set of compensation  
loop parameters in combination with the slew rate for the output voltage during the power-up sequence. There are  
four sets of compensation loop parameters that have been optimized for different ranges of output capacitance.  
The CONFIG0 and CONFIG1 pins are used to determine the index of the selected values using the resistor  
values listed in Table 4.2. Each pin provides 30 configuration indexes based on resistor values from the E96  
series. A resistor variation of ~2% is taken into account for initial tolerance and temperature dependency. The  
values are read during the initialization phase after a POR event and are then used to look up the selected index  
from the pre-configured look-up tables. Based on the index read by the ZSPM1035C/D, the controller will load the  
corresponding configuration from the OTP memory of the device.  
Table 4.2  
Pin Strap Resistor Values  
Resistor Value  
Using the E96 Series  
Resistor Value  
Using the E96 Series  
Index  
Index  
0
1
2
3
4
5
6
7
8
0Ω  
392Ω  
576Ω  
787Ω  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
5.360kΩ  
6.040kΩ  
6.810kΩ  
7.680kΩ  
8.660kΩ  
9.530kΩ  
10.50kΩ  
11.80kΩ  
13.00kΩ  
14.30kΩ  
15.80kΩ  
17.40kΩ  
19.10kΩ  
21.00kΩ  
23.20kΩ  
1.000kΩ  
1.240kΩ  
1.500kΩ  
1.780kΩ  
2.100kΩ  
2.430kΩ  
2.800kΩ  
3.240kΩ  
3.740kΩ  
4.220kΩ  
4.750kΩ  
9
10  
11  
12  
13  
14  
4.2.1.  
CONFIG0 – Output Voltage  
The nominal output voltage of the ZSPM1035C/D is set with a pin-strap resistor on the CONFIG0 pin. The  
selectable output voltages and the corresponding pin-strap resistor index are given in Table 4.3.  
The nominal output voltage set points given for the ZSPM1035C are valid without an output voltage feedback  
divider. To achieve optimal performance the low pass filter consisting of resistor R5 and C7 (see Figure 4.1)  
should be included in the application circuit.  
The nominal output voltage set points given for the ZSPM1035D are only valid if the resistors in the output voltage  
feedback divider, R4 and R5 (see Figure 4.2), have the resistances specified in Table 4.1.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
24 of 40  
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Table 4.3  
ZSPM1035C and ZSPM1035D - Nominal VOUT Pin-Strap Resistor Selection (CONFIG0 Pin)  
Resistor Value  
Using the E96 Series  
Index  
Nominal VOUT – ZSPM1035C  
Nominal VOUT – ZSPM1035D  
0
1
2
3
4
5
6
7
0Ω  
392Ω  
576Ω  
787Ω  
0.62 V  
0.64 V  
0.66 V  
0.68 V  
0.70V  
0.72V  
0.74V  
0.76 V  
0.78 V  
0.80 V  
0.82V  
0.84 V  
0.86V  
0.88 V  
0.90 V  
0.92 V  
0.94 V  
0.96 V  
0.98 V  
1.00 V  
1.02 V  
1.04 V  
1.06 V  
1.08 V  
1.10 V  
1.12 V  
1.14V  
1.16V  
1.18 V  
1.20 V  
1.25 V  
1.30 V  
1.35 V  
1.40 V  
1.45 V  
1.50 V  
1.55 V  
1.60 V  
1.65 V  
1.70 V  
1.75 V  
1.80 V  
1.85 V  
1.90 V  
1.95 V  
2.00 V  
2.10 V  
2.20 V  
2.30 V  
2.40 V  
2.50 V  
2.60 V  
2.70 V  
2.80 V  
2.90 V  
3.00 V  
3.10 V  
3.20 V  
3.30 V  
3.40 V  
1.000kΩ  
1.240kΩ  
1.500kΩ  
1.780kΩ  
2.100kΩ  
2.430kΩ  
2.800kΩ  
3.240kΩ  
3.740kΩ  
4.220kΩ  
4.750kΩ  
5.360kΩ  
6.040kΩ  
6.810kΩ  
7.680kΩ  
8.660kΩ  
9.530kΩ  
10.50kΩ  
11.80kΩ  
13.00kΩ  
14.30kΩ  
15.80kΩ  
17.40kΩ  
19.10kΩ  
21.00kΩ  
23.20kΩ  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
4.2.2.  
CONFIG1 – Compensation Loop and Output Voltage Slew Rate  
The ZSPM1035C/D controllers can be configured to operate over a wide range of output capacitance. Four  
ranges of output capacitance have been specified to match typical customer requirements (see Table 4.4).  
Typical performance measurements for both load transient performance and open-loop Bode plots can be found  
in section 4.3. Using less output capacitance than the minimum capacitance given in Table 4.4 is not  
recommended.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
25 of 40  
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Table 4.4  
Recommended Output Capacitor Ranges  
Capacitor Range  
Ceramic Capacitor  
Bulk Electrolytic Capacitors  
Minimum 200µF  
Maximum 400µF  
#1  
#2  
#3  
#4  
None  
Minimum 400µF  
None  
Maximum 1000µF  
Minimum 100µF  
Maximum 600µF  
Minimum 2 x 470µF, 7mΩ ESR  
Maximum 5 x 470µF, 7mΩ ESR  
Minimum 400µF  
Minimum 4 x 470µF, 7mΩ ESR  
Maximum 10 x 470µF, 7mΩ ESR  
Maximum 1000µF  
To get the optimal performance for a given output capacitor range, one of four sets of compensation loop  
parameters, Comp0 to Comp3, should be selected with a resistor between CONFIG1 and GND. The  
compensation loop parameters have been configured to ensure optimal transient performance and good control  
loop stability margins.  
For each set of compensation loop parameters, there is a choice of seven slew rates for the output voltage during  
power-up. The selection of the slew rate can be used to limit the input current of the DC/DC converter while it is  
ramping up the output voltage. The current needed to charge the output capacitors increases in direct proportion  
to the slew rate.  
Table 4.5 gives a complete list of the selectable compensation loop parameters and slew rates together with the  
equivalent pin-strap resistor values.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
26 of 40  
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Table 4.5  
ZSPM1035C and ZSPM1035D - Compensator and VOUT Slew Rate Pin Strap Resistor Selection  
Resistor Value  
Using the E96 Series  
Index  
Compensator  
VOUT Slew Rate  
0.10 V/ms  
0.20 V/ms  
0.50 V/ms  
1.00 V/ms  
2.00 V/ms  
5.00 V/ms  
10.00 V/ms  
0.10 V/ms  
0.20 V/ms  
0.50 V/ms  
1.00 V/ms  
2.00 V/ms  
5.00 V/ms  
10.00 V/ms  
0.10 V/ms  
0.20 V/ms  
0.50 V/ms  
1.00 V/ms  
2.00 V/ms  
5.00 V/ms  
10.00 V/ms  
0.10 V/ms  
0.20 V/ms  
0.50 V/ms  
1.00 V/ms  
2.00 V/ms  
5.00 V/ms  
10.00 V/ms  
0.10 V/ms  
0.10 V/ms  
0
0Ω  
1
392Ω  
2
576Ω  
Comp0  
3
4
787Ω  
(Capacitor Range #1)  
1.000kΩ  
1.240kΩ  
1.500kΩ  
1.780kΩ  
2.100kΩ  
2.430kΩ  
2.800kΩ  
3.240kΩ  
3.740kΩ  
4.220kΩ  
4.750kΩ  
5.360kΩ  
6.040kΩ  
6.810kΩ  
7.680kΩ  
8.660kΩ  
9.530kΩ  
10.50kΩ  
11.80kΩ  
13.00kΩ  
14.30kΩ  
15.80kΩ  
17.40kΩ  
19.10kΩ  
21.00kΩ  
23.20kΩ  
5
6
7
8
9
Comp1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
(Capacitor Range #2)  
Comp2  
(Capacitor Range #3)  
Comp3  
(Capacitor Range #4)  
Comp0  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
27 of 40  
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
4.3. Typical Performance Measurements for the ZSPM1035C and ZSPM1035D  
The pre-programmed compensation loop parameters for the ZSPM1035C and ZSPM1035D have been designed  
to ensure stability and optimal transient performance for the OKLP-X/35-W12-C Power Block from Murata in  
combination with one of the four output capacitor ranges (see Table 4.4).  
Load transient performance measurements and open-loop Bode plots for the ZSPM1035C can be found in  
sections 4.3.1 to 4.3.4. The transient load steps have been generated with a load resistor and a power MOSFET  
located on the same circuit board as the ZSPM1035C and the Murata OKLP-X/35-W12-C Power Block. The  
ZSPM8735-KIT evaluation kit can be used to further evaluate the performance of the ZSPM1035C for the four  
output capacitor ranges.  
Load transient performance measurements and open-loop Bode plots for the ZSPM1035D are shown in sections  
4.3.5 to 4.3.8. The transient load steps have been generated with a load resistor and a power MOSFET located  
on the same circuit board as the ZSPM1035D and the Murata OKLP-X/35-W12-C Power Block. The ZSPM8835-  
KIT evaluation kit can be used to further evaluate the performance of the ZSPM1035D for the four output  
capacitor ranges.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
28 of 40  
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
4.3.1.  
Typical Load Transient Response – ZSPM1035C – Capacitor Range #1 – Comp0  
Test conditions: VIN = 12.0V, VOUT = 1.20V  
Minimum output capacitance: 2 x 100µF/6.3V X5R  
Maximum output capacitance: 3 x 100µF/6.3V X5R + 2 x 47µF/10V X7R  
Figure 4.3  
ZSPM1035C with Capacitor Range #1 –  
Load Step 5 to 15A, Min. Capacitance  
Figure 4.4  
ZSPM1035C with Capacitor Range #1 –  
Load Step 15 to 5A, Min. Capacitance  
Ch1 (Blue): VOUT 100mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Ch1 (Blue): VOUT 100mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Figure 4.5  
ZSPM1035C with Capacitor Range #1 –  
Load Step 5 to 15A, Max. Capacitance  
Figure 4.6  
ZSPM1035C with Capacitor Range #1 –  
Load Step 15 to 5A, Max. Capacitance  
Ch1 (Blue): VOUT 100mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Ch1 (Blue): VOUT 100mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Figure 4.7  
ZSPM1035C Open Loop Bode Plots with Capacitor Range #1  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
0
Max Caps - Gain  
Min Caps - Gain  
Max Caps - Phase  
Min Caps - Phase  
-30  
-60  
-90  
-120  
-150  
-180  
1
10  
Frequency [kHz]  
100  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
29 of 40  
 
 
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
4.3.2.  
Typical Load Transient Response – ZSPM1035C – Capacitor Range #2 – Comp1  
Test conditions: VIN = 12.0V, VOUT = 1.20V  
Minimum output capacitance: 3 x 100µF/6.3V X5R + 2 x 47µF/10V X7R  
Maximum output capacitance: 7 x 100µF/6.3V X5R + 4 x 47µF/10V X7R  
Figure 4.8  
ZSPM1035C with Capacitor Range #2 –  
Load Step 5 to 15A, Min. Capacitance  
Figure 4.9  
ZSPM1035C with Capacitor Range #2 –  
Load Step 15 to 5A, Min. Capacitance  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Figure 4.10 ZSPM1035C with Capacitor Range #2 –  
Load Step 5 to 15A, Max. Capacitance  
Figure 4.11 ZSPM1035C with Capacitor Range #2 –  
Load Step 15 to 5A, Max. Capacitance  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Figure 4.12 ZSPM1035C Open Loop Bode Plots with Capacitor Range #2  
40  
30  
20  
0
Max Caps - Gain  
Min Caps - Gain  
Max Caps - Phase  
Min Caps - Phase  
-30  
-60  
10  
0
-90  
-10  
-20  
-30  
-40  
-120  
-150  
-180  
1
10  
Frequency [kHz]  
100  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
30 of 40  
 
 
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
4.3.3.  
Typical Load Transient Response – ZSPM1035C – Capacitor Range #3 – Comp2  
Test conditions: VIN = 12.0V, VOUT = 1.20V  
Minimum output capacitance: 1 x 100µF/6.3V X5R + 2 x 470 µF/6.3V/7mΩ Aluminum Electrolytic Capacitor  
Maximum output capacitance: 6 x 100 µF/6.3V X5R + 5 x 470 µF/6.3V/7mΩ Aluminum Electrolytic Capacitor  
Figure 4.13 ZSPM1035C with Capacitor Range #3 –  
Load Step 5 to 15A, Min. Capacitance  
Figure 4.14 ZSPM1035C with Capacitor Range #3 –  
Load Step 15 to 5A, Min. Capacitance  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Figure 4.15 ZSPM1035C with Capacitor Range #3 –  
Load Step 5 to 15A, Max. Capacitance  
Figure 4.16 ZSPM1035C with Capacitor Range #3 –  
Load Step 15 to 5A, Max. Capacitance  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Figure 4.17 ZSPM1035C Open Loop Bode Plots with Capacitor Range #3  
40  
30  
20  
0
Max Caps - Gain  
Min Caps - Gain  
Max Caps - Phase  
Min Caps - Phase  
-30  
-60  
10  
0
-90  
-10  
-20  
-30  
-40  
-120  
-150  
-180  
1
10  
100  
Frequency [kHz]  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
31 of 40  
 
 
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
4.3.4.  
Typical Load Transient Response – ZSPM1035C – Capacitor Range #4 – Comp3  
Test conditions: VIN = 12.0V, VOUT = 1.20V  
Minimum output capacitance: 3 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470 µF/6.3V/7mΩ Aluminum Electrolytic Capacitor  
Maximum output capacitance: 7 x 100 µF/6.3V X5R + 4 x 47µF/10V X7R + 10 x 470 µF/6.3V/7mΩ Aluminum Electrolytic Capacitor  
Figure 4.18 ZSPM1035C with Capacitor Range #4 –  
Load Step 5 to 15A, Min. Capacitance  
Figure 4.19 ZSPM1035C with Capacitor Range #4 –  
Load Step 15 to 5A, Min. Capacitance  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Figure 4.20 ZSPM1035C with Capacitor Range #4 –  
Load Step 5 to 15A, Max. Capacitance  
Figure 4.21 ZSPM1035C with Capacitor Range #4 –  
Load Step 15 to 5A, Max. Capacitance  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Figure 4.22 ZSPM1035C Open Loop Bode Plots with Capacitor Range #4  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
32 of 40  
 
 
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
40  
30  
0
Max Caps - Gain  
Min Caps - Gain  
Max Caps - Phase  
Min Caps - Phase  
-30  
-60  
-90  
-120  
-150  
-180  
20  
10  
0
-10  
-20  
-30  
-40  
1
10  
100  
Frequency [kHz]  
4.3.5.  
Typical Load Transient Response – ZSPM1035D – Capacitor Range #1 – Comp0  
Test conditions: VIN = 12.0V, VOUT = 1.80V  
Minimum output capacitance: 2 x 100µF/6.3V X5R  
Maximum output capacitance: 3 x 100µF/6.3V X5R + 2 x 47µF/10V X7R  
Figure 4.23 ZSPM1035D with Capacitor Range #1 –  
Load Step 5 to 15A, Min. Capacitance  
Figure 4.24 ZSPM1035D with Capacitor Range #1 –  
Load Step 15 to 5A, Min. Capacitance  
Ch1 (Blue): VOUT 100mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Ch1 (Blue): VOUT 100mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Figure 4.25 ZSPM1035D with Capacitor Range #1 –  
Load Step 5 to 15A, Max. Capacitance  
Figure 4.26 ZSPM1035D with Capacitor Range #1 –  
Load Step 15 to 5A, Max. Capacitance  
Ch1 (Blue): VOUT 100mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Ch1 (Blue): VOUT 100mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
33 of 40  
 
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Figure 4.27 ZSPM1035D Open Loop Bode Plots with Capacitor Range #1  
40  
30  
0
Max Caps - Gain  
Min Caps - Gain  
Max Caps - Phase  
Min Caps - Phase  
-30  
-60  
-90  
-120  
-150  
-180  
20  
10  
0
-10  
-20  
-30  
-40  
1
10  
100  
Frequency [kHz]  
4.3.6.  
Typical Load Transient Response – ZSPM1035D – Capacitor Range #2 – Comp1  
Test conditions: VIN = 12.0V, VOUT = 1.80V  
Minimum output capacitance: 3 x 100µF/6.3V X5R + 2 x 47µF/10V X7R  
Maximum output capacitance: 7 x 100µF/6.3V X5R + 4 x 47µF/10V X7R  
Figure 4.28 ZSPM1035D with Capacitor Range #2 –  
Load Step 5 to 15A, Min. Capacitance  
Figure 4.29 ZSPM1035D with Capacitor Range #2 –  
Load Step 15 to 5A, Min. Capacitance  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Figure 4.30 ZSPM1035D with Capacitor Range #2 –  
Load Step 5 to 15A, Max. Capacitance  
Figure 4.31 ZSPM1035D with Capacitor Range #2 –  
Load Step 15 to 5A, Max. Capacitance  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 8µs/div  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
34 of 40  
 
 
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Figure 4.32 ZSPM1035D Open Loop Bode Plots with Capacitor Range #2  
40  
30  
0
Max Caps - Gain  
Min Caps - Gain  
Max Caps - Phase  
Min Caps - Phase  
-30  
-60  
-90  
-120  
-150  
-180  
20  
10  
0
-10  
-20  
-30  
-40  
1
10  
100  
Frequency [kHz]  
4.3.7.  
Typical Load Transient Response – ZSPM1035D – Capacitor Range #3 – Comp2  
Test conditions: VIN = 12.0V, VOUT = 1.80V  
Minimum output capacitance: 1 x 100µF/6.3V X5R + 2 x 470 µF/6.3V/7mΩ Aluminum Electrolytic Capacitor  
Maximum output capacitance: 6 x 100 µF/6.3V X5R + 5 x 470 µF/6.3V/7mΩ Aluminum Electrolytic Capacitor  
Figure 4.33 ZSPM1035D with Capacitor Range #3 –  
Load Step 5 to 15A, Min. Capacitance  
Figure 4.34 ZSPM1035D with Capacitor Range #3 –  
Load Step 15 to 5A, Min. Capacitance  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Figure 4.35 ZSPM1035D with Capacitor Range #3 –  
Load Step 5 to 15A, Max. Capacitance  
Figure 4.36 ZSPM1035D with Capacitor Range #3 –  
Load Step 15 to 5A, Max. Capacitance  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Ch1 (Blue): VOUT 50mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
35 of 40  
 
 
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Figure 4.37 ZSPM1035D Open Loop Bode Plots with Capacitor Range #3  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
0
Max Caps - Gain  
Min Caps - Gain  
Max Caps - Phase  
Min Caps - Phase  
-30  
-60  
-90  
-120  
-150  
-180  
1
10  
100  
Frequency [kHz]  
4.3.8.  
Typical Load Transient Response – ZSPM1035D – Capacitor Range #4 – Comp3  
Test conditions: VIN = 12.0V, VOUT = 1.80V  
Minimum output capacitance: 3 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470 µF/6.3V/7mΩ Aluminum Electrolytic Capacitor  
Maximum output capacitance: 7 x 100 µF/6.3V X5R + 4 x 47µF/10V X7R + 10 x 470 µF/6.3V/7mΩ Aluminum Electrolytic Capacitor  
Figure 4.38 ZSPM1035D with Capacitor Range #4 –  
Load Step 5 to 15A, Min. Capacitance  
Figure 4.39 ZSPM1035D with Capacitor Range #4 –  
Load Step 15 to 5A, Min. Capacitance  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Figure 4.40 ZSPM1035D with Capacitor Range #4 –  
Load Step 5 to 15A, Max. Capacitance  
Figure 4.41 ZSPM1035D with Capacitor Range #4 –  
Load Step 15 to 5A, Max. Capacitance  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
Ch1 (Blue): VOUT 20mV/div AC  
Ch2 (Cyan): PWM 5V/div DC  
Ch3: (Violet): Load Trigger 5V/div DC  
Time Scale: 20µs/div  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
36 of 40  
 
 
 
 
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
Figure 4.42 ZSPM1035D Open Loop Bode Plots with Capacitor Range #4  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
0
Max Caps - Gain  
Min Caps - Gain  
Max Caps - Phase  
Min Caps - Phase  
-30  
-60  
-90  
-120  
-150  
-180  
1
10  
100  
Frequency [kHz]  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
37 of 40  
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
5
Mechanical Specifications  
Based on JEDEC MO-220. All dimensions are in millimeters.  
Figure 5.1  
24-pin QFN Package Drawing  
Dimension  
Min (mm)  
0.8  
Max (mm)  
0.90  
A
A1  
b
0.00  
0.05  
0.18  
0.30  
e
0.5 nominal  
HD  
HE  
L
3.90  
3.90  
0.35  
4.1  
4.1  
0.45  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
38 of 40  
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
6
Glossary  
Term  
ASIC  
Description  
Application Specific Integrated Circuit  
Digital Pulse-Width Modulator  
DC Resistance  
DPWM  
DCR  
DSP  
FET  
Digital Signal Processing  
Field-Effect Transistor  
FPGA  
GPIO  
GUI  
Field-Programmable Gate Array  
General Purpose Input/Output  
Graphical User Interface  
Housekeeping Analog-To-Digital Converter  
Over-Temperature  
HKADC  
OT  
OTP  
OV  
One-Time Programmable Memory  
Over-Voltage  
PID  
Proportional/Integral/Derivative  
Power-On-Reset  
POR  
SCR  
SLC  
Sub-cycle Response™  
State-Law Control™  
SPM  
Smart Power Management  
7
Ordering Information  
Sales Code  
Description  
Package  
7” Reel  
7” Reel  
Kit  
ZSPM1035CA1W 0 ZSPM1035C Lead-free QFN24 — Temperature range: -40°C to +125°C  
ZSPM1035DA1W 0 ZSPM1035D Lead-free QFN24 — Temperature range: -40°C to +125°C  
ZSPM8735-KIT  
ZSPM8835-KIT  
Evaluation Kit for ZSPM1035C with PMBus™ Communication Interface *  
Evaluation Kit for ZSPM1035D with PMBus™ Communication Interface *  
Kit  
* Pink Power Designer™ GUI can be downloaded from http://www.zmdi.com/zspm1035c and http://www.zmdi.com/zspm1035d.  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
Data Sheet  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
39 of 40  
December 3, 2013  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
 
 
ZSPM1035C / ZSPM1035D  
True Digital PWM Controller (Single-Phase, Single-Rail)  
8
Related Documents  
Note: “RevX_xx” refers to the current revision of the document.  
Document  
File Name  
ZSPM1035C/D Pink Power Designer™ GUI Guide  
ZSPM1035C/D Feature Sheet  
ZSPM1035C-D_PPD_GUI_Guide_RevX_xy.pdf  
ZSPM1035C-D_Feature_Sheet_RevX_xy.pdf  
Visit ZMDI’s website www.zmdi.com or contact your nearest sales office for the latest version of these documents.  
9
Document Revision History  
Revision  
Date  
Description  
1.00  
December 3, 2013  
First release.  
Sales and Further Information  
www.zmdi.com  
SPM@zmdi.com  
Zentrum Mikroelektronik  
Dresden AG  
Global Headquarters  
Grenzstrasse 28  
ZMD America, Inc.  
1525 McCarthy Blvd., #212  
Milpitas, CA 95035-7453  
USA  
Zentrum Mikroelektronik  
Dresden AG, Japan Office  
2nd Floor, Shinbashi Tokyu Bldg. Keelung Road  
4-21-3, Shinbashi, Minato-ku  
Tokyo, 105-0004  
Japan  
ZMD FAR EAST, Ltd.  
3F, No. 51, Sec. 2,  
Zentrum Mikroelektronik  
Dresden AG, Korea Office  
U-space 1 Building  
11th Floor, Unit JA-1102  
670 Sampyeong-dong  
Bundang-gu, Seongnam-si  
Gyeonggi-do, 463-400  
11052 Taipei  
Taiwan  
01109 Dresden, Germany  
USA Phone +855.275.9634  
Phone +408.883.6310  
Central Office:  
Phone +49.351.8822.0  
Phone +81.3.6895.7410  
Phone +886.2.2377.8189  
Fax +886.2.2377.8199  
Korea  
Fax  
+49.351.8822.600  
Fax  
+408.883.6358  
Fax  
+81.3.6895.7301  
Phone +82.31.950.7679  
Fax  
+82.504.841.3026  
European Technical Support  
Phone +49.351.8822.7.772  
DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Zentrum Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The  
information furnished hereby is believed to be true and accurate. However, under no circumstances shall ZMD AG be liable to any customer,  
licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or in  
any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any  
customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for  
any damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty,  
tort (including negligence), strict liability, or otherwise.  
Fax  
+49.351.8822.87.772  
European Sales (Stuttgart)  
Phone +49.711.674517.55  
Fax  
+49.711.674517.87955  
© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the  
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.  
Data Sheet  
December 3, 2013  
40 of 40  
 
 
Mouser Electronics  
Authorized Distributor  
Click to View Pricing, Inventory, Delivery & Lifecycle Information:  
ZMDI:  
ZSPM1035DA1W0 ZSPM1035CA1W0  

相关型号:

ZSPM1035DA1W0

True Digital PWM Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
IDT

ZSPM1063

True Digital PWM Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
IDT

ZSPM1063-KIT02

True Digital PWM Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
IDT

ZSPM1063BA1R1

True Digital PWM Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
IDT

ZSPM1363

True Digital PWM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
IDT

ZSPM1363-KIT02

True Digital PWM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
IDT

ZSPM1363BA1R1

True Digital PWM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
IDT

ZSPM1501ZA1W0

True-Digital PWM Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
IDT

ZSPM1502ZA1W0

True-Digital PWM Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
IDT

ZSPM1503ZA1W0

True-Digital PWM Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
IDT