EMD3D256M16G2-150CBS1 [EVERSPIN]

256Mb ST-DDR3 Spin-transfer Torque MRAM;
EMD3D256M16G2-150CBS1
型号: EMD3D256M16G2-150CBS1
厂家: Everspin Technologies    Everspin Technologies
描述:

256Mb ST-DDR3 Spin-transfer Torque MRAM

双倍数据速率
文件: 总38页 (文件大小:2405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EMD3D256M08BS1  
EMD3D256M16BS1  
256Mb ST-DDR3 Spin-transfer Torque  
MRAM  
FEATURES  
• Non-volatile 256Mb (32Mb x 8, 16Mb x 16) DDR3  
• Supports standard DDR3 SDRAM features  
• VDD = 1.5v +/- 0.075v  
f
• Up to 667MHz CK (1333MT/sec/pin)  
RoHS  
• Page size of 512 bits (x8) or 1024 bits (x16)  
• On-device termination  
• On-Chip DLL aligns DQ, DQS, DQS transition with CK transition  
• All addresses and control inputs are latched on rising edge of Clock  
• Burst length of 8 with programmable Burst Chop length of 4  
• Standard 10x13mm 78-Ball (x8) or 96-ball (x16) BGA Package  
INTRODUCTION  
The EMD3D256M08/16B 256Mb DDR3 Spin-transfer Torque MRAM (STT-MRAM) is a non-  
volatile memory that offers non-volatility and high endurance at DDR3 speeds. The device is  
capable of DDR3 operation at rates of up to 1333MT/Sec/Pin. It is designed to comply with  
all DDR3 DRAM features including on-device termination (ODT) and internal ZQ calibration  
but with the benefit of data persistence and extremely high write cycle endurance. With  
Spin-Torque MRAM technology, cell refresh is not required, which greatly simplifies system  
design and reduces overhead.  
All control and address inputs are synchronized with a pair of externally supplied differential  
clocks, with input latching at clock crosspoints. I/Os are synchronized with a pair of bidirec-  
tional strobes (DQS, DQS). The device uses a RAS/CAS multiplexing scheme and operates at  
1.5V.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
1
EMD3D256M08BS1  
EMD3D256M16BS1  
DDR3 DRAM COMPATIBILITY  
Everspin DDR3 Spin-Torque MRAMs are fully compatible with DDR3 standards for DRAM operation defined  
in JEDEC Standard JESD79-3F, with exceptions and improvements as noted and defined in this data sheet.  
The Spin-Torque MRAM is a non-volatile memory. All data in closed/precharged banks are retained in  
memory whenever device power is removed for any reason.  
Command timing will be different in some cases. See “Table 11 – Timing Parameterson page 20.  
The DDR3 standard applies to densities higher than 256Mb resulting in addressing and page size dif-  
ferences.  
Burst Type/Burst Order supports only the sequential burst type for CA<2:0 = 000 or 100. See ”Burst  
Length, Type and Orderon page 30.  
This data sheet will make references to JESD79-3F when the function, timing, parameter or condition  
is identical between the MRAM and this standard. The JESD79-3F standard is available on the JEDEC  
website , registration is required.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
2
EMD3D256M08BS1  
EMD3D256M16BS1  
TABLE OF CONTENTS  
DDR3 DRAM COMPATIBILITY .............................................................................................................2  
FUNCTIONAL DESCRIPTION ...............................................................................................................6  
Basic Functionality ..........................................................................................................................6  
Figure 1 – Simplified State Diagram STT-MRAM ............................................................................................... 7  
Figure 2 – Block Diagram (32Mb x 8) STT-MRAM.............................................................................................. 8  
Figure 3 – Block Diagram (16Mb x 16) STT-MRAM ........................................................................................... 8  
Table 1 – Addressing Scheme by I/O Width........................................................................................................ 9  
PACKAGE BALL ASSIGNMENTS ....................................................................................................... 10  
Table 2 – 32Mb x 8 in 78-Ball BGA - Top View...................................................................................................10  
Table 3 – 16Mb x 16 in 96-Ball BGA - Top View.................................................................................................11  
BALL FUNCTIONS AND DESCRIPTIONS.......................................................................................... 12  
Table 4 – Ball Functions and Descriptions.........................................................................................................12  
ABSOLUTE MAXIMUM RATINGS...................................................................................................... 15  
Table 5 – Absolute Maximum Ratings.................................................................................................................15  
THERMAL CHARACTERISTICS.......................................................................................................... 16  
Table 6 – Thermal Characteristics 78-ball BGA Package...............................................................................16  
Table 7 – Thermal Characteristics 96-ball BGA Package...............................................................................16  
DC CHARACTERISTICS...................................................................................................................... 17  
Table 8 – Power Supply and Input Leakage.....................................................................................................17  
Table 9 – Input / Output Capacitance .................................................................................................................18  
Table 10 – IDD Maximum Limits ............................................................................................................................19  
TIMING PARAMETERS ...................................................................................................................... 20  
Table 11 – Timing Parameters................................................................................................................................20  
TRUTH TABLES................................................................................................................................... 21  
Command Truth Table.................................................................................................................. 21  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
3
EMD3D256M08BS1  
EMD3D256M16BS1  
Table of Contents (Cont’d)  
Table 12 – Command Truth Table .........................................................................................................................21  
CKE Truth Table............................................................................................................................. 23  
Table 13 – CKE Truth Table.......................................................................................................................................23  
FUNCTIONAL PARAMETERS ............................................................................................................ 24  
COMMAND DESCRIPTIONS.............................................................................................................. 25  
ACTIVE Command......................................................................................................................... 25  
t
t
Figure 4 – ACTIVE Command Example: Meeting RRD (MIN) and RCD (MIN)......................................26  
PRECHARGE Command ................................................................................................................ 26  
Figure 5 – PRECHARGE Command Timing ........................................................................................................26  
READ Command ........................................................................................................................... 27  
Figure 6 – READ Command Timing......................................................................................................................27  
WRITE Command .......................................................................................................................... 28  
Figure 7 – WRITE Burst Operation WL = 5 (AL = 0 CWL = 5, BL8)...............................................................29  
Burst Length, Type and Order ..................................................................................................... 30  
Table 14 – Burst Length, Type and Order...........................................................................................................30  
PART NUMBER DECODER................................................................................................................. 31  
Table 15 – 256Mb x8 / x16 STT-MRAM Ordering Part Number Decoder...............................................31  
ORDERING PART NUMBERS............................................................................................................. 32  
Table 16 – Ordering Part Numbers.......................................................................................................................32  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
4
EMD3D256M08BS1  
EMD3D256M16BS1  
Table of Contents (Cont’d)  
PACKAGE OUTLINE DRAWING......................................................................................................... 33  
Figure 8 – 78-Ball BGA Package Outline (x8) ....................................................................................................33  
Figure 9 – 78-Ball BGA Package Outline (x8) Dimensions............................................................................34  
Figure 10 – 96-Ball BGA Package Outline (x16)................................................................................................35  
Figure 11 – 96-Ball BGA Package Outline (x16) Dimensions.......................................................................36  
Table 17 – Revision History .....................................................................................................................................37  
HOW TO CONTACT US....................................................................................................................... 38  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
5
EMD3D256M08BS1  
EMD3D256M16BS1  
FUNCTIONAL DESCRIPTION  
Basic Functionality  
The DDR3 STT-MRAM is a high-speed Spin-Torque Magnetoresistive Random Access Memory inter-  
nally configured as an eight-bank RAM. It uses an 8n prefetch architecture to achieve high-speed  
operation. The 8n prefetch architecture is combined with an interface designed to transfer two  
data words per clock cycle at the I/O pins. A single read or write operation for the DDR3 MRAM  
consists of a single 8n-bit wide, four clock data transfer at the internal STT-MRAM core and two cor-  
responding n-bit wide, one-half clock cycle data transfers at the I/O pins.  
READ and write operations to the DDR3 STT-MRAM are burst oriented, start at a selected location,  
and continue for a burst length of eight or a “choppedburst of four in a programmed sequence.  
Operation begins with the registration of an Active command, which is then followed by a READ  
or WRITE command. The address bits registered coincident with the Active command are used to  
select the bank and row to be activated ([BA0:BA2] select the bank; A0-A13 select the row); refer to  
Table 1 – Addressing Scheme by I/O Widthon page 9for specific requirements. The address  
bits registered coincident with the READ or WRITE command are used to select the starting column  
location for the burst operation, determine if the auto precharge command is to be issued (via A10),  
and select BC4 or BL8 mode ‘on the fly(via A12) if enabled in the mode register.  
Prior to normal operation, the DDR3 STT-MRAM must be powered up and initialized in a predefined  
manner.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
6
EMD3D256M08BS1  
EMD3D256M16BS1  
Figure 1 – Simplified State Diagram STT-MRAM  
This simplified State Diagram is intended to provide an overview of the possible state transitions and the  
commands to control them. Situations involving more than one bank, the enabling or disabling of on-die  
termination, and some other events are not captured in full detail.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
7
EMD3D256M08BS1  
EMD3D256M16BS1  
Figure 2 – Block Diagram (32Mb x 8) STT-MRAM  
Figure 3 – Block Diagram (16Mb x 16) STT-MRAM  
s 0, 1 and 2  
15  
128  
18  
32K  
DQS, DQS#  
(32,768 x 8 x 128)  
15  
128  
1024  
DQS, DQS#  
(1, 2 )  
A[14:0]  
18  
128  
3
DM  
6
3
0, 1 and 2  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
8
EMD3D256M08BS1  
EMD3D256M16BS1  
Table 1 – Addressing Scheme by I/O Width  
The addressing scheme is shown in the Table 1 below. The Bank and Row Address is presented during an  
ACTIVE command. The Column Address is selected during a READ or WRITE command. Further explanation  
is given in the COMMAND section.  
Configuration  
# of Banks  
32Mb x 8  
8
16Mb x 16  
8
Bank Address  
Auto Precharge  
BC Switch on the fly  
# Rows  
BA0 - 2  
A10/AP  
A12/BC  
64K  
BA0 - 2  
A10/AP  
A12/BC  
32K  
Row Address  
# Columns  
A0 - A15  
64  
A0 - A14  
64  
Column Address  
Page Size  
A0 - A5  
512 bits  
A0 - A5  
1024 bits  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
9
EMD3D256M08BS1  
EMD3D256M16BS1  
PACKAGE BALL ASSIGNMENTS  
256Mb x8 and x16 package ball assignments conform to JESD79-3F Standard DDR3 SDRAM footprints and  
pin assignments.  
Table 2 – 32Mb x 8 in 78-Ball BGA - Top View  
Row  
A
1
2
3
4
5
6
7
8
9
Row  
A
NC  
NF/TDQS  
V
V
V
V
DD  
SS  
SS  
DD  
SS  
B
C
D
DQ0  
DQS  
DQS  
DM/TDQS  
DQ1  
B
C
D
V
V
V
V
DDQ  
SSQ  
SSQ  
DQ2  
DQ6  
DQ3  
V
V
DDQ  
SSQ  
SSQ  
V
V
V
V
SSQ  
DD  
SS  
V
V
DDQ  
E
F
DQ4  
RAS  
CAS  
WE  
BA2  
A0  
DQ7  
CK  
DQ5  
E
F
V
REFDQ  
NC  
DDQ  
NC  
CKE  
NC  
V
V
SS  
SS  
G
H
J
ODT  
NC  
CK  
G
H
J
V
V
DD  
DD  
CS  
A10/AP  
A15  
ZQ  
V
BA0  
A3  
V
V
REFCA  
BA1  
SS  
SS  
K
L
A12/BC  
A1  
K
L
V
V
DD  
DD  
A5  
A2  
A4  
A6  
V
V
SS  
SS  
M
N
A7  
A9  
A11  
M
N
V
V
DD  
DD  
RESET  
2
A13  
3
A14  
7
A8  
8
V
V
SS  
SS  
1
4
5
6
9
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
10  
EMD3D256M08BS1  
EMD3D256M16BS1  
Table 3 – 16Mb x 16 in 96-Ball BGA - Top View  
Row  
A
1
2
3
4
5
6
7
8
9
Row  
A
DQU5  
DQU7  
DQU4  
V
V
V
V
DDQ  
DDQ  
SS  
B
C
DQSU  
DQSU  
DQU6  
DQU2  
B
C
V
V
V
V
SSQ  
SSQ  
DD  
SS  
DQU3  
DQU1  
V
DDQ  
DDQ  
D
E
DMU  
DQL0  
DQSL  
DQSL  
DQU0  
DML  
D
E
V
V
V
V
SSQ  
DDQ  
SSQ  
DD  
V
V
V
V
SS  
SSQ  
SSQ  
DDQ  
F
DQL2  
DQL6  
DQL1  
DQL3  
F
V
V
DDQ  
SSQ  
G
G
V
V
V
V
SSQ  
DD  
SS  
SSQ  
H
DQL4  
DQL7  
DQL5  
H
V
V
DDQ  
V
DDQ  
REFDQ  
NC  
J
K
L
RAS  
CAS  
WE  
BA2  
A0  
CK  
CK  
NC  
CKE  
NC  
J
K
L
V
V
SS  
SS  
ODT  
NC  
V
V
DD  
DD  
CS  
BA0  
A3  
A10/AP  
A15  
ZQ  
M
N
P
R
T
M
N
P
R
T
V
V
V
SS  
SS  
REFCA  
BA1  
A12/BC  
A1  
V
V
DD  
DD  
A5  
A2  
A4  
A6  
V
V
SS  
SS  
A7  
A9  
A11  
V
V
DD  
DD  
RESET  
2
A13  
3
A14  
7
A8  
8
V
V
SS  
SS  
1
4
5
6
9
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
11  
EMD3D256M08BS1  
EMD3D256M16BS1  
BALL FUNCTIONS AND DESCRIPTIONS  
Table 4 – Ball Functions and Descriptions  
Symbol  
Type  
Name  
Description  
Clock: CK and CK are differential clock inputs. All control and address input signals  
are sampled on the crossing of the positive edge of CK and the negative edge of CK.  
Output data strobe (DQS, DQS) is referenced to the crossings of CK and CK.  
CK, CK  
Input  
Clock  
Clock enable: CKE enables (registered HIGH) and disables (registered LOW) internal  
circuitry and clocks on the STT-MRAM. The specific circuitry that is enabled/ dis-  
abled is dependent upon the DDR3 STT-MRAM configuration and operating mode.  
CKE  
Input  
Clock Enable Taking CKE LOW provides PRECHARGE POWER-DOWN, or active power-down (row  
active in any bank). CKE is synchronous for power-down entry and exit. Input buf-  
fers (excluding CK, CK, CKE, RESET, and ODT) are disabled during POWER-DOWN.  
CKE is referenced to V  
.
REFCA  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for  
CS  
Input  
Input  
Chip Select  
external Rank selection on systems with multiple Ranks. CS is considered part of  
the command code.  
On Die Termination: ODT (registered HIGH) enables termination resistance internal  
to the DDR3 STT-MRAM. When enabled, ODT is only applied to each DQ, DQS, DQS  
and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode Register A11=1 in MR1)  
signal for x8 configurations. The ODT pin will be ignored if MR1 is programmed to  
disable ODT.  
On-Die Termi-  
nation  
ODT  
Command  
Inputs  
Command Inputs: RAS, CAS and WE (along with CS) define the command being  
entered.  
RAS, CAS, WE Input  
Input Data Mask: DM is an input mask signal for write data. Input data is masked  
when DM is sampled HIGH coincident with that input data during a WRITE access.  
DM is sampled on both edges of DQS. For x8 device, the function of DM or TDQS/  
TDQS is enabled by Mode Register A11 setting in MR1. For x16 DML is associated  
with DQ0-7 while DMU is associated with DQ8-15.  
Input Data  
Mask  
DM  
Input  
Bank address inputs: BA[2:0] define the bank to which an ACTIVE, READ, WRITE, or  
Bank Address PRECHARGE command is being applied. BA[2:0] define which mode register (MR0,  
BA0, BA1, BA2 Input  
Inputs  
MR1, MR2, or MR3) is loaded during the LOAD MODE command. BA[2:0] are refer-  
enced to V  
.
REFCA  
Address Inputs: Provide the row address for Active commands and the column  
address for READ/WRITE commands to select one location out of the memory array  
in the respective bank. (A10/AP and A12/BC have additional functions, see below).  
The address inputs also provide the op-code during Mode Register Set commands.  
In using the device in x16 mode A15 needs to be pulled to logic HIGH.  
Address  
Inputs  
A0-A15  
Input  
Table continues on the next page.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
12  
EMD3D256M08BS1  
EMD3D256M16BS1  
Ball Functions and Descriptions (Continued)  
Symbol  
Type  
Name  
Description  
Auto-precharge: A10 is sampled during READ/WRITE commands to determine  
whether Autoprecharge should be performed to the accessed bank after the READ/  
WRITE operation. (HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled  
during a Precharge command to determine whether the Precharge applies to one  
bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the  
bank is selected by bank addresses.  
Auto Pre-  
charge  
A10/AP  
Input  
Burst Chop: A12 / BC is sampled during READ and WRITE commands to determine  
if burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst  
chopped). See command truth table for details.  
A12/BC  
RESET  
Input  
Burst Chop  
Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive  
Acitve Low  
Asynchro-  
nous Reset  
when RESET is HIGH. RESET must be HIGH during normal operation. RESET is a  
CMOS rail-to-rail signal with DC high and low at 80% and 20% of VDD, i.e. 1.20V for  
DC high and 0.30V for DC low.  
Input  
Input/  
Output Output  
Data Input/  
Data Input/ Output: Bi-directional data bus. DQ0-7 (x8) and DQ8-15 (x16) are refer-  
DQ  
enced to V  
.
REFDQ in  
Data strobe: Output with read data. Edge-aligned with read data. Input with write  
data. Center-aligned to write data. For x16 operation DQSL/DQSL is associated with  
DQ0-7 and DQSU/DQSU is associated with DQ8-15.  
Input/  
DQS/DQS  
Data Strobe  
Output  
Output  
Termination data strobe: Applies to the x8 configuration only. When enabled via  
Mode Register A11=1 in MR1, STT-MRAM will enable the same termination resis-  
tance function on TDQS/TDQS that is applied to DQS/DQS. When disabled via  
mode register A11=0 in MR1, DM/TDQS will provide the data mask function and  
TDQS is not used.  
Termination  
Data Strobe  
TDQS, TDQS  
VDD  
Supply  
Supply  
Supply  
Supply  
Power Supply Power supply: 1.5V 0.075V.  
VDDQ  
DQ Power  
Supply  
DQ power supply: 1.5V 0.075V. Isolated on the device for improved noise immu-  
nity.  
VSS  
Ground  
Ground  
VSSQ  
DQ Ground  
DQ ground: Isolated on the device for improved noise immunity.  
Reference  
Voltage for  
Control, Com-  
mand and  
Address  
Reference voltage for control, command, and address: V  
at all times for proper device operation.  
must be maintained  
REFCA  
VREFCA  
Supply  
Table continues on the next page.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
13  
EMD3D256M08BS1  
EMD3D256M16BS1  
Ball Functions and Descriptions (Concluded)  
Symbol  
Type  
Name  
Description  
Reference  
Voltage for  
Data  
V
Reference voltage for data: V  
device operation.  
must be maintained at all times for proper  
REFDQ  
Supply  
REFDQ  
External Ref-  
Refer-  
ence  
erence Ball for External reference ball for output drive calibration: This ball is tied to an external  
Output Drive 240Ω resistor (RZQ), which is tied to V  
Calibratoin  
ZQ  
.
SSQ  
NC  
NF  
-
-
No Connect  
No Function  
No Connect: These balls should be left unconnected (the ball has no connection).  
No Function  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
14  
EMD3D256M08BS1  
EMD3D256M16BS1  
ABSOLUTE MAXIMUM RATINGS  
Table 5 – Absolute Maximum Ratings  
Min  
Symbol Parameter  
Max  
Unit  
Notes  
VDD  
VDD supply voltage relative to VSS  
VDDQ  
VIN, VOUT  
TOPER  
-0.4  
1.975  
V
1
VDD supply voltage relative to VSSQ  
Voltage on any pin relative to VSS  
Normal operating temperature  
Storage temperature  
0
85  
°C  
°C  
2
-
TSTG  
-55  
150  
Hmax  
Maximum magnetic field during read, write, standby or  
power off.  
-
2,000  
A/m  
Notes:  
1. VDD and VDDQ must be within 300mV of each other at all times, and VREF must not be greater than 0.6 × VDDQ  
VDDQ are <500mV, VREF can be ≤300mV.  
.
When VDD and  
2. The normal temperature range specifies the temperature at which all STT-MRAM specifications will be supported. During  
operation, the STT-MRAM case temperature must be maintained between 0°C to 85°C under all operating conditions.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
15  
EMD3D256M08BS1  
EMD3D256M16BS1  
THERMAL CHARACTERISTICS  
Table 6 – Thermal Characteristics 78-ball BGA Package  
Symbol Parameter  
Value  
Unit  
TOPER  
ΘJA  
Maximum Operating Temperature  
Thermal Resistance Junction to Ambient  
Thermal Resistance Junction to Case  
0 to 85  
26.4  
°C  
°C/watt  
°C/watt  
ΘJC  
2.3  
Table 7 – Thermal Characteristics 96-ball BGA Package  
Symbol Parameter  
Value  
Unit  
TOPER  
ΘJA  
Maximum Operating Temperature  
0 to 85  
25.6  
°C  
Thermal Resistance Junction to Ambient  
Thermal Resistance Junction to Case  
°C/watt  
°C/watt  
ΘJC  
2.3  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
16  
EMD3D256M08BS1  
EMD3D256M16BS1  
DC CHARACTERISTICS  
DC Characteristics are defined under standard measurement conditions specified in JEDEC Standard  
JESD79-3F.  
Table 8 – Power Supply and Input Leakage  
All voltages referenced to VSS  
Symbol Parameter/Condition  
Min  
Nom  
Max  
Unit  
Notes  
VDD  
Supply Voltage  
1.425  
1.425  
1.5  
1.5  
1.575  
1.575  
V
V
1, 2  
1, 2  
VDDQ  
I/O supply voltage  
Input leakage current  
Any input 0V ≤ VIN ≤ VDD, VREF pin 0V ≤  
VIN ≤ 1.1V  
II  
-2  
-1  
-
-
2
1
μA  
μA  
3
(All other pins not under test = 0V)  
VREF supply leakage current  
IVREF  
VREFDQ = VDD/2 or VREFCA = VDD/2  
(All other pins not under test = 0V)  
3, 4  
Notes:  
1. VDD and VDDQ must track one another. VDDQ must be ≤ VDD. VSS = VSSQ  
.
2. VDD and VDDQ may include AC noise of 50mV (250 kHz to 20 MHz) in addition to the DC (0 Hz to 250 kHz) specifications. VDD  
and VDDQ must be at same level for valid AC timing parameters.  
3. VREF (see JESD79-3F Section 8, AC and DC Input Measurement Levels)  
4. The minimum limit requirement is for testing purposes. The leakage current on the VREF pin should be minimal.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
17  
EMD3D256M08BS1  
EMD3D256M16BS1  
Table 9 – Input / Output Capacitance  
Note 1 applies to the entire Table.  
DDR3-All Bins  
Unit  
Symbol  
Parameter  
Min  
Max  
CCK  
CK and CK  
0.8  
1.6  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
CDCK  
ΔC: CK to CK  
0
1.5  
1.5  
0
0.15  
3.0  
3.0  
0.2  
0.3  
1.5  
0.3  
0.5  
3.0  
3.0  
Single-end I/O: DQ, DM  
Differential I/O: DQS, DQS, TDQS, TDQS  
ΔC: DQS to DQS, TDQS,TDQS  
ΔC: DQ to DQS  
2
3
3
4
5
6
7
CIO  
CDQQS  
CDIO  
-0.5  
0.75  
-0.5  
-0.5  
-
CI  
Inputs (CTRL, CMD, ADDR)  
ΔC: CTRL to CK  
CDI_CTRL  
CDI_CMD_ADDR  
CZQ  
ΔC: CMD_ADDR to CK  
ZQ pin capacitance  
Reset pin capacitance  
CRE  
-
Notes:  
1. VDD = 1.5V 0.075mV, VDDQ = VDD, VREF = VSS, f = 100 MHz, TC = 25°C. VOUT(DC) = 0.5 × VDDQ, VOUT = 0.1V (peak-to-peak).  
2. DM input is grouped with I/O pins, reflecting the fact that they are matched in loading.  
3. Includes TDQS, TDQS. CDDQS is for DQS vs. DQS and TDQS vs. TDQS separately.  
4. CDIO = CIO(DQ) - 0.5 × (CIO(DQS) + CIO(DQS)).  
5. Excludes CK, CK; CTRL = ODT, CS, and CKE; CMD = RAS, CAS, and WE; ADDR = A[n:0], BA[2:0].  
6. CDI_CTRL = CI(CTRL) - 0.5 × (CCK(CK) + CCK(CK)).  
7. CDI_CMD_ADDR = CI(CMD_ADDR) - 0.5 × (CCK(CK) + CCK(CK)).  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
18  
EMD3D256M08BS1  
EMD3D256M16BS1  
Table 10 – IDD Maximum Limits  
2
1333MT/sec/pin  
1
IDD  
Units  
x8  
x16  
220  
220  
55  
220  
220  
55  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD0  
IDD1  
IDD2P0 (slow)  
IDD2P1(fast)  
IDD2Q  
60  
60  
90  
90  
90  
90  
IDD2N  
90  
90  
IDD2NT  
IDD3P  
60  
60  
90  
90  
IDD3N  
135  
165  
90  
135  
185  
90  
IDD4R  
IDD4W  
IDD5B  
45  
45  
IDD6  
2
490  
45  
667  
45  
IDD7  
IDD8  
Notes:  
1. Refer to JESD79-3F Section 10, IDD and IDDQ Specification Parameters and Test Conditions, with some patterns that are STT-  
MRAM specific.  
2
t
t
t
2. In order to limit power dissipation, IDD7 is specified with FAW = 190ns for the x8 and FAW = 230ns for the x16. The FAW can  
be reduced per Table 11 but IDD7 will increase.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
19  
EMD3D256M08BS1  
EMD3D256M16BS1  
TIMING PARAMETERS  
Table 11 – Timing Parameters  
Parameter  
Symbol  
I/O  
Min  
Max  
Unit  
Notes  
t
Internal READ to first data  
AA  
x8, x16  
x8  
14  
95  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
4
4
4
4
t
ACTIVE to internal READ or WRITE delay time  
Precharge command period  
RCD  
x16  
x8  
190  
66  
t
RP  
x16  
134  
x8  
x16  
170  
332  
103  
198  
30  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
4
4
4
4
4
t
ACTIVE to ACTIVE command period  
RC  
x8  
t
ACTIVE to Precharge command period  
ACT to ACT Command Period, different banks  
Four ACTIVE Window  
RAS  
x16  
t
RRD  
x8, x16  
x8  
120  
-
ns  
4
t
FAW  
x16  
160  
-
-
8.5  
ns  
V/ns  
nCK  
nCK  
Unit  
ns  
4
Output slew rate  
SRQ  
x8, x16  
x8, x16  
x8, x16  
4
t
DQS, DQS# Output high time for 1333 speed bin  
DQS, DQS# Output low time for 1333 speed bin  
QSH  
-
.38  
4
t
QSL  
-
.38  
4
Speed Bin  
CL  
CWL  
CWL = 5  
Symbol  
Min  
2.5  
Max  
3.3  
Notes  
t
t
t
CK (Avg)  
2
3
2
3
2
3
800  
CL = 6  
CWL = 6,7,8,9  
CWL = 6  
Reserved  
1.875  
Reserved  
1.5  
CK (Avg)  
CK (Avg)  
< 2.5  
ns  
ns  
1
1066  
CL = 8  
CL=10  
CWL= 5,7,8,9  
CWL=7  
<1.875  
1
1333  
CWL= 5,6,8,9  
Reserved  
6,8,10  
5,6,7  
Supported CL settings  
Supported CWL settings  
CK  
CK  
1. The 1333 and 1066 speed grade ordering options are backward compatible with lower speed grade operation.  
t
t
2. The CL and CWL settings result in CK requirements. When making a selection of CK, both CL and CWL requirement set-  
tings need to be fulfilled.  
3. Reserved settings are not allowed.  
4. Parameter is different than Standard DDR3 due to STT-MRAM design  
Note: Dynamic ODT timings are intended to follow the JEDEC specification but have not been characterized.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
20  
EMD3D256M08BS1  
EMD3D256M16BS1  
TRUTH TABLES  
Command Truth Table  
Table 12 – Command Truth Table  
Notes 1-5 apply to the entire Table.  
CKE  
BA  
A13-  
A15  
A10/ A0-A9,  
A12/  
BC  
Symbol  
Notes  
Function  
CS RAS CAS WE  
[2:0]  
AP  
A11  
Prev.  
Next  
Mode Register Set  
Refresh  
MRS  
REF  
H
H
L
L
L
L
BA  
Op. Code  
Self Refresh Entry  
Self Refresh Exit  
SRE  
Not used for STT-MRAM  
SRX  
Single Bank Precharge  
Precharge All Banks  
Bank ACTIVE  
PRE  
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
L
L
L
H
L
L
L
BA  
L
V
L
V
L
L
V
V
PREA  
ACT  
WR  
H
L
BA  
Row Address (RA)  
WRITE (Fixed BL8 pr BC4)  
WRITE (BC4 on the Fly)  
WRITE (BL8 on the Fly)  
H
H
H
BA RFU  
BA RFU  
BA RFU  
V
L
L
L
L
V, CA  
V, CA  
V, CA  
7
7
7
WRS4  
WRS8  
L
L
H
WRITE w/ Auto Precharge  
(Fixed BL8 or BC4)  
WRAP  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
L
L
BA RFU  
BA RFU  
BA RFU  
V
L
H
H
H
V, CA  
V, CA  
V, CA  
7
7
7
WRITE w/ Auto Precharge  
(BC4 On the Fly)  
WRAPS4  
WRAPS8  
WRITE w/ Auto Precharge  
(BL8 On the Fly)  
H
READ (Fixed BL8 or BC4)  
READ (BC4, on the Fly)  
READ (BL8, on the Fly)  
RD  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA RFU  
BA RFU  
BA RFU  
V
L
L
L
L
V, CA  
V, CA  
V, CA  
7
7
7
RDS4  
RDS8  
H
Table continues with notes next page.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
21  
EMD3D256M08BS1  
EMD3D256M16BS1  
Command Truth Table (Continued)  
CKE  
BA  
[2:0]  
A13- A12/ A10/ A0-A9,  
Notes  
Symbol  
CS  
RAS  
CAS  
WE  
Function  
A15  
BC  
AP  
A11  
Prev.  
Next  
READ with Auto Precharge  
(Fixed BL8 or BC4)  
RDAP  
H
H
L
H
L
H
BA RFU  
BA RFU  
BA RFU  
V
H
V, CA  
7
7
READ with Auto Precharge  
(BC4, on the Fly)  
RDAPS4  
H
H
L
H
L
H
L
H
V, CA  
READ (BL8, on the Fly)  
No Operation  
RDAPS8  
NOP  
H
H
H
H
H
H
L
L
H
H
L
H
H
H
V
X
H
V
X
V, CA  
7
8
9
H
V
X
V
X
V
X
Device Deselected  
DES  
H
L
X
H
V
H
V
X
H
V
H
V
X
H
V
H
V
Power Down Entry  
PDE  
PDX  
H
L
L
V
V
V
V
V
V
V
V
V
V
H
L
Power Down Exit  
H
6
H
ZQ Calibration Long  
ZQCL  
ZQCS  
H
H
H
H
L
L
H
H
H
H
L
L
X
X
X
X
X
X
H
L
X
X
10  
ZQ Calibration Short  
Notes:  
1. Commands are defined by states of CS, RAS, CAS, WE, and CKE at the rising edge of the clock. The MSB of BA, RA, and CA  
are device-, density-, and configuration-dependent.  
2. RESET is LOW enabled and used only for asynchronous reset. Thus, RESET must be held HIGH during any normal opera-  
tion.  
3. The state of ODT does not affect the states described in this table.  
4. Operations apply to the bank defined by the bank address, BA[2:0]. For MRS, BA selects one of four mode registers.  
5. “V” means “H” or “L(a defined logic level), and “X” means “Don’t Care.”  
6. See the CKE Truth Table below for additional information on CKE transition.  
7. Burst READ’s or WRITE’s cannot be terminated or interrupted. MRS (fixed) and OTF BL/BC are defined in MR0.  
8. The purpose of the NOP command is to prevent the MRAM from registering any unwanted commands. A NOP will not termi-  
nate an operation that is executing.  
9. The DES and NOP commands perform similarly.  
10. ZQ CALIBRATION LONG is used for either ZQinit (first ZQCL command during initialization) or ZQoper (ZQCL command  
after initialization).  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
22  
EMD3D256M08BS1  
EMD3D256M16BS1  
CKE Truth Table  
Table 13 – CKE Truth Table  
Notes 1,2 apply to the entire Table.  
CKE  
Previous Cycle  
5
Command (RAS,  
3
5
Current State  
Action  
Present Cycle  
CAS, WE. CS)  
4
4
(n-1)  
(n)  
L
L
H
L
L
L
L
L
L
X
Maintain Power Down  
Power Down Exit  
Power Down  
L
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
Bank(s) Active  
Reading  
H
H
H
H
H
H
Active Power Down Entry  
Power Down Entry  
Power Down Entry  
Power Down Entry  
Precharge Power Down Entry  
-
Writing  
Precharging  
6
All Banks Idle  
Notes:  
X
1. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
t
2.  
CKE (MIN) means CKE must be registered at multiple consecutive positive clock edges. CKE must remain at the valid input  
level the entire time it takes to achieve the required number of registration clocks. Thus, after any CKE transition, CKE may  
not transition from its valid level during the time period of IS + CKE (MIN) + IH.  
t
t
t
3. Current state = The state of the STT-MRAM immediately prior to clock edge n.  
4. CKE (n) is the logic state of CKE at clock edge n; CKE (n - 1) was the state of CKE at the previous clock edge.  
5. COMMAND is the command registered at the clock edge (must be a legal command as defined in Table 12 on page 21)  
Action is a result of COMMAND. ODT does not affect the states described in this table and is not listed.  
6. Idle state = All banks are closed, no data bursts are in progress, CKE is HIGH, and all timings from previous operations are  
satisfied. All power-down exit parameters are also satisfied.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
23  
EMD3D256M08BS1  
EMD3D256M16BS1  
FUNCTIONAL PARAMETERS  
Functional  
Parameter  
Level  
Description  
It is expected that bit fails will be soft and distributed through-  
out the address space so the system ECC built into your control-  
ler should correct them. BER is after maximum page cycles, or at  
the end of the endurance life.  
Bit Error Rate (BER)  
Limit to End of Life  
-8  
6.3 x 10  
A cycle is defined as a page access. After this number of cycles,  
the bit error rate may start to increase above the BER limit. Sys-  
tem level ECC is recommended.  
10  
Cycle Endurance  
Data Retention  
1 x10  
The data retention time starts from the last read or write cycle  
and does not differ between powered up and powered down  
conditions.  
TOPER = 70°C,  
3 months  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
24  
EMD3D256M08BS1  
EMD3D256M16BS1  
COMMAND DESCRIPTIONS  
The 256Mb STT-MRAM is fully compatible with the command descriptions of JESD79-3F, section 4, with the  
following additional considerations:  
1. Timing for Active, Precharge, Read, and Write commands are as described in JESD79-3F, with some  
exceptions due to the timing differences between DRAM and MRAM. These exceptions are noted in the  
description sections for each command.  
2. To ensure the non-volatility of any data stored in the MRAM, it is necessary to close any open page by  
issuing a PRECHARGE command to any open banks or all banks (PRE or PREA). The PRECHARGE must be  
t
completed and RP met with VDD within the specified operating range.  
ACTIVE Command  
Before any READ or WRITE commands can be issued to a bank within the MRAM, a row in that bank must be  
opened (activated). This is accomplished via the ACTIVE command, which selects both the bank and the row  
to be activated.  
After a row is opened with an ACTIVE command, a READ or WRITE command may be issued to that row,  
t
subject to the RCD specification. However, if the additive latency is programmed correctly, a READ or WRITE  
t
command may be issued prior to RCD (MIN). In this operation, the MRAM enables a READ or WRITE com-  
t
mand to be issued after the ACTIVE command for that bank, but prior to RCD (MIN) with the requirement  
t
t
that (ACTIVE-to-READ/WRITE) + AL ≥ RCD (MIN) (see Posted CAS Additive Latency). RCD (MIN) should be  
divided by the clock period and rounded up to the next whole number to determine the earliest clock edge  
after the ACTIVE command on which a READ or WRITE command can be entered. The same procedure is  
used to convert other specification limits from time units to clock cycles.  
When at least one bank is open, any READ-to-READ command delay or WRITE-to-WRITE command delay is  
t
restricted to CCD (MIN).  
A subsequent ACTIVE command to a different row in the same bank can only be issued after the previous ac-  
tive row has been closed (precharged). The minimum time interval between successive ACTIVE commands  
t
to the same bank is defined by RC. A subsequent ACTIVE command to another bank can be issued while  
the first bank is being accessed, which results in a reduction of total row-access overhead. The minimum  
t
time interval between successive ACTIVE commands to different banks is defined by RRD. No more than  
t
t
four bank ACTIVE commands may be issued in a given FAW (MIN) period, and the RRD (MIN) restriction still  
t
applies. The FAW (MIN) parameter applies, regardless of the number of banks already opened or closed.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
25  
EMD3D256M08BS1  
EMD3D256M16BS1  
t
t
Figure 4 – ACTIVE Command Example: Meeting RRD (MIN) and RCD (MIN)  
T12  
T13  
T14  
T47  
T48  
T49  
T50  
f
t
t
1. In this example, CK=533MHz, 1066 MT/sec/pin, CL - RCD - RP = 8- 47-36, a READ or WRITE command may be issued 47 nCK  
(clock cycles) after the Bank is Activated.  
t
2. The minimum time interval between successive ACTIVE commands to different banks is defined by RRD.  
3. After a row is opened with an ACTIVE command, a READ or WRITE command may be issued to that row, subject to the RCD  
t
specification.  
PRECHARGE Command  
Input A10 determines whether one bank or all banks are to be precharged and, in the case where only one  
bank is to be precharged, inputs BA[2:0] select the bank.  
When all banks are to be precharged, inputs BA[2:0] are treated as “Don’t Care.After a bank is precharged, it  
is in the idle state and must be activated prior to any READ or WRITE commands being issued.  
Figure 5 – PRECHARGE Command Timing  
T31  
T32  
T33  
t
t
PRCD (to next RD or WR), RPRAS (to next PRE)  
Notes:  
1. In this example, CK = 533MHz, 1066 MT/sec/pin, AL=0, CL=8 with BC4 selected.  
2. The minimum READ command to PRECHARGE command spacing to the same bank is equal to AL+ RTP, with RTP being the  
internal READ to PRECHARGE delay, 5 nCK (clock cycles).  
f
t
t
t
3. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until RP is met. This is 36  
nCK (clock cycles) from the PRECHARGE command.  
t
t
4.  
RAS min and RC min must be satisfied from the previous ACTIVE command.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
26  
EMD3D256M08BS1  
EMD3D256M16BS1  
READ Command  
READ bursts are initiated with a READ command. The starting column and bank addresses are provided  
with the READ command and auto precharge is either enabled or disabled for that burst access. If auto  
precharge is enabled, the row being accessed is automatically precharged at the completion of the burst. If  
auto precharge is disabled, the row will be left open after the completion of the burst.  
During READ bursts, the valid data-out element from the starting column address is available READ latency  
(RL) clocks later. RL is defined as the sum of posted CAS additive latency (AL) and CAS latency (CL) (RL = AL +  
CL). The value of AL and CL is programmable in the mode register via the MRS command. Each subsequent  
data-out element is valid nominally at the next positive or negative clock edge (that is, at the next crossing  
of CK and CK.) Figure 6 below illustrates an example of RL based on a CL setting of 8 and an AL setting of 0.  
Figure 6 – READ Command Timing  
T10  
T11  
T12  
Tꢀ  
T8  
Tꢁ  
Notes:  
1. Read Latency (RL) is defined as the sum of POSTED CAS ADDITIVE latency (AL) and CAS latency (CL), (RL = AL + CL). -The value  
f
of AL and CL is programmable in the mode register via the MRS command. In this example, CK = 533MHz, 1066 speed bin,  
CL=8, AL=0.  
2. DO n=data-out from column n. Subsequent elements of data-out appear in the programmed order following DO n. -The  
burst length is selected by MR0 and A12 during the READ command.  
3. Bank “awas previously opened with an ACTIVE Command.  
DQS, DQS is driven by the MRAM along with the output data. The initial LOW state on DQS and HIGH state  
t
on DQS is known as the READ preamble ( RPRE). The LOW state on DQS and the HIGH state on DQS, coinci-  
t
dent with the last data-out element, is known as the READ postamble ( RPST). Upon completion of a burst,  
t
assuming no other commands have been initiated, the DQ goes High-Z. A detailed explanation of DQSQ  
t
(valid data-out skew), QH (data-out window hold), and the valid data window are depicted in Section  
t
4.13.2.1 of JESD79-3F. A detailed explanation of DQSCK (DQS transition skew to CK) is depicted in the same  
section.  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
27  
EMD3D256M08BS1  
EMD3D256M16BS1  
Data from any READ burst may be concatenated with data from a subsequent READ command to provide a  
continuous flow of data. The first data element from the new burst follows the last element of a completed  
t
burst. The new READ command should be issued CCD cycles after the first READ command. This is shown  
t
for BL8 in Standard JESD79-3F Figure 33. If BC4 is enabled, CCD must still be met, which will cause a gap in  
the data output, as shown in JESD79-3F Figure 34. The DDR3 MRAM does not allow interrupting or truncat-  
ing any READ burst. Data from any READ burst must be completed before a subsequent WRITE burst is al-  
lowed. An example of a READ burst followed by a WRITE burst for BL8 can be found in JESD79-3F Figure 35,  
READ (BL8) to WRITE (BL8). READ to WRITE timing for BC4 can be found in JESD79-3F Figure 36, READ (BC4) to  
WRITE (BC4) OTF. To ensure the READ data is completed before the WRITE data is on the bus, the minimum  
t
t
READ-to-WRITE timing is RL + CCD - WL + 2 CK.  
For additional information on the READ command, please refer to JESD79-3F Section 4.13. Please note that  
t
in READ followed by a PRECHARGE, the MRAM RP needs to be observed for a given CL.  
WRITE Command  
WRITE bursts are initiated with a WRITE command. The starting column and bank addresses are provided  
with the WRITE command, and auto precharge is either enabled or disabled for that access. If auto-pre-  
charge is selected, the row being accessed is precharged at the end of the WRITE burst. If auto-precharge is  
not selected, the row will remain open for subsequent accesses. After a WRITE command has been issued,  
the WRITE burst may not be interrupted.  
During WRITE bursts, the first valid data-in element is registered on the first rising edge of DQS immediately  
following the WRITE latency (WL) clock time. Data elements will continue to be registered on successive  
edges of DQS.  
WRITE latency (WL) is defined as the sum of posted CAS additive latency (AL) and CAS WRITE latency (CWL):  
WL = AL + CWL. The values of AL and CWL are programmed in the MR0 and MR2 registers respectively.  
Only AL=0 is supported. Prior to the first valid DQS edge, a full cycle is needed (including a dummy cross-  
over of DQS, DQS) and specified as the WRITE preamble shown in “Figure 7 – WRITE Burst Operation WL =  
5 (AL = 0 CWL = 5, BL8)on page 29. The half cycle on DQS following the last data-in element is known as  
the WRITE postamble.  
t
The time between the WRITE command and the first valid edge of DQS is WL clocks DQSS. Standard  
t
t
t
JESD79-3F Figure 43 includes DQSS (MIN), DQSS (NOM) and DQSS (MAX) cases.  
Data may be masked from completing a WRITE using data mask. The data mask occurs on the DM ball  
aligned to the WRITE data. If DM is LOW, the WRITE completes normally. If DM is HIGH, that bit of data is  
masked.  
Upon completion of a burst, assuming no other commands have been initiated, the DQ will remain High-Z,  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
28  
EMD3D256M08BS1  
EMD3D256M16BS1  
and any additional input data will be ignored.  
Data for any WRITE burst may be concatenated with a subsequent WRITE command to provide a continuous  
t
flow of input data. The new WRITE command can be CCD clocks following the previous WRITE command.  
The first data element from the new burst is applied after the last element of a completed burst. Standard  
JESD79-3F Figure 51, WRITE(BL8) to WRITE(BL8) and Figure 52, WRITE (BC4) to WRITE (BC4) OTF illustrate con-  
catenated bursts.  
t
Data for any WRITE burst may be followed by a subsequent READ command after WTR has been met (see  
Standard JESD79-3F Figure 53, WRITE (BL8) to READ (BC4/BL8) OTF. ) Additional WRITE burst diagrams are  
given in Section 4.14, WRITE Operation.  
t
Data for any WRITE burst may be followed by a subsequent PRECHARGE command, providing WR has  
been met, as shown in Standard JESD79-3F Figures 49 and 50. Please note that in Write followed by a PRE-  
t
CHARGE, the MRAM RP needs to be observed for a given CL.  
t
t
Both WTR and WR starting time may vary, depending on the mode register settings (fixed BC4, BL8 versus  
OTF).  
Figure 7 – WRITE Burst Operation WL = 5 (AL = 0 CWL = 5, BL8)  
Notes:  
1. BL8, WL= 5; AL=0, CWL=5  
2. DIN n = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 [A1:0= 00] or MR0 [ A1:0 = 01] and A12 = 1 during WRITE command at T0  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
29  
EMD3D256M08BS1  
EMD3D256M16BS1  
Burst Length, Type and Order  
Accesses within a given burst may be programmed only in a sequential order which is selected via bit A3  
of Mode Register MR0=0. The ordering of accesses within a burst is determined by the burst length and the  
starting column address as shown in Table 14 below. The burst length is defined by bits A1:A0 of Mode Reg-  
ister MR0. Burst length options include fixed BC4, fixed BL8, and “on the flywhich allows BC4 or BL8 to be  
selected coincident with the registration of a Read or Write command via A12/BC_n.  
Table 14 – Burst Length, Type and Order  
Burst  
Length  
READ/  
WRITE  
Starting Column Address  
A[2,1,0]  
Burst Type = Sequencial  
(Decimal)  
000  
100  
0, 1, 2, 3, T, T, T, T  
4, 5, 6, 7, T, T, T, T  
0, 1, 2, 3, X, X, X, X  
4, 5, 6, 7, X, X, X, X  
0, 1, 2, 3, 4, 5, 6, 7  
4, 5, 6, 7, 0, 1, 2, 3  
0, 1, 2, 3, 4, 5, 6, 7  
READ  
BC4  
BL8  
0, V, V  
1, V, V  
000  
WRITE  
READ  
100  
WRITE  
V, V, V  
Burst Type/Burst Order supports only the sequential burst type for CA<2:0 = 000 or 100  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
30  
EMD3D256M08BS1  
EMD3D256M16BS1  
PART NUMBER DECODER  
Table 15 – 256Mb x8 / x16 STT-MRAM Ordering Part Number Decoder  
Note 1  
Note 2  
Device Version  
Definition  
First Version  
Device Class  
Definition  
A
B
S1  
Storage DEC  
Second Version  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
31  
EMD3D256M08BS1  
EMD3D256M16BS1  
ORDERING PART NUMBERS  
Table 16 – Ordering Part Numbers  
Shipping  
Container  
Speed  
Bin  
Org  
Temp Package  
Part Number  
Trays  
EMD3D256M08G1-150CBS1  
EMD3D256M08G1-150CBS1R  
EMD3D256M16G2-150CBS1  
EMD3D256M16G2-150CBS1R  
10x13mm  
78-ball  
BGA  
32Mb x 8 0 - 85°C  
16Mb x 16 0 - 85°C  
1333  
Tape and  
Reel  
Trays  
10x13mm  
96-ball  
BGA  
1333  
Tape and  
Reel  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
32  
EMD3D256M08BS1  
EMD3D256M16BS1  
PACKAGE OUTLINE DRAWING  
Figure 8 – 78-Ball BGA Package Outline (x8)  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
33  
EMD3D256M08BS1  
EMD3D256M16BS1  
Figure 9 – 78-Ball BGA Package Outline (x8) Dimensions  
12.90  
13.10  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
34  
EMD3D256M08BS1  
EMD3D256M16BS1  
Figure 10 – 96-Ball BGA Package Outline (x16)  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
35  
EMD3D256M08BS1  
EMD3D256M16BS1  
Figure 11 – 96-Ball BGA Package Outline (x16) Dimensions  
12.90  
13.10  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
36  
EMD3D256M08BS1  
EMD3D256M16BS1  
Table 17 – Revision History  
Revision  
Date  
Description of Change  
1.0  
February 7, 2018  
Published data sheet  
1.1  
1.2  
1.3  
March 6, 2018  
March 16, 2018  
October 15, 2018  
Updated Table 15 and 16 to remove “TOPN designation from tray parts  
Updated OPN table to change T designation for tray to blank.  
Added Figure 3 and included additional details for x16 device  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
37  
EMD3D256M08BS1  
EMD3D256M16BS1  
Everspin Technologies, Inc.  
HOW TO CONTACT US  
Information in this document is provided solely to enable system  
and software implementers to use Everspin Technologies prod-  
ucts. There are no express or implied licenses granted hereunder  
to design or fabricate any integrated circuit or circuits based  
on the information in this document. Everspin Technologies  
reserves the right to make changes without further notice to  
any products herein. Everspin makes no warranty, representa-  
tion or guarantee regarding the suitability of its products for any  
particular purpose, nor does Everspin Technologies assume any  
liability arising out of the application or use of any product or  
circuit, and specifically disclaims any and all liability, including  
without limitation consequential or incidental damages. “Typi-  
calparameters, which may be provided in Everspin Technologies  
data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All  
operating parameters including “Typicalsmust be validated for  
each customer application by customer’s technical experts. Ever-  
spin Technologies does not convey any license under its patent  
rights nor the rights of others. Everspin Technologies products  
are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other  
application in which the failure of the Everspin Technologies  
product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use Everspin Technologies  
products for any such unintended or unauthorized application,  
Buyer shall indemnify and hold Everspin Technologies and its  
officers, employees, subsidiaries, affiliates, and distributors harm-  
less against all claims, costs, damages, and expenses, and reason-  
able attorney fees arising out of, directly or indirectly, any claim  
of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that Everspin Tech-  
nologies was negligent regarding the design or manufacture of  
the part. Everspin™ and the Everspin logo are trademarks of Ever-  
spin Technologies, Inc. All other product or service names are the  
property of their respective owners.  
Home Page:  
www.everspin.com  
World Wide Information Request  
WW Headquarters - Chandler, AZ  
5670 W. Chandler Blvd., Suite 100  
Chandler, Arizona 85224  
Tel: +1-877-480-MRAM (6726)  
Local Tel: +1-480-347-1111  
Fax: +1-480-347-1175  
support@everspin.com  
Europe, Middle East and Africa  
Everspin Europe Support  
support.europe@everspin.com  
Japan  
Everspin Japan Support  
support.japan@everspin.com  
Asia Pacific  
Everspin Asia Support  
support.asia@everspin.com  
EMD3D256M08BS1/16BS1 Revision 1.3 10/2018  
Copyright © 2018 Everspin Technologies  
38  

相关型号:

EMD3D256M16G2-150CBS1R

256Mb ST-DDR3 Spin-transfer Torque MRAM
EVERSPIN

EMD3S

SINGLE-PHASE GLASS PASSIVATED MINI SUPER FAST SURFACE MOUNT BRIDGE RECTIFIER
RECTRON

EMD3S-W

Bridge Rectifier Diode, 1 Phase, 0.5A, 150V V(RRM), Silicon, ROHS COMPLIANT, PLASTIC, MD-S, 4 PIN
RECTRON

EMD3T2R

General purpose (dual digital transistors)
ROHM

EMD4

General purpose (dual digital transistors)
ROHM

EMD40-1800H

E-Series HMIC Double Balanced Mixer 1400 - 2000 MHz
TE

EMD40-1800HTR

E-Series HMIC Double Balanced Mixer 1400 - 2000 MHz
TE

EMD40-1800L

E-Series HMIC Double Balanced Mixer 1400 - 2000 MHz
TE

EMD40-1800LTR

E-Series HMIC Double Balanced Mixer 1400 - 2000 MHz
TE

EMD40-2400L

E-Series HMIC Double Balanced Mixer 1400 - 2500 MHz
TE

EMD40-2400LTR

E-Series HMIC Double Balanced Mixer 1400 - 2500 MHz
TE

EMD40-900H

E-Series HMIC Double Balanced Mixer 700 - 1400 MHz
TE