MR10Q010MB [EVERSPIN]

1 Mb High Speed Quad SPI MRAM;
MR10Q010MB
型号: MR10Q010MB
厂家: Everspin Technologies    Everspin Technologies
描述:

1 Mb High Speed Quad SPI MRAM

文件: 总72页 (文件大小:2808K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MR10Q010  
1 Mb High Speed Quad SPI MRAM  
FEATURES  
High bandwidth – Read and Write at 52MB/sec  
Quad I/O with the use of dual purpose pins to maintain a low pin count  
RoHS  
Operates in both standard, single SPI mode and high speed quad SPI mode  
Fast quad Read and Write with quad address input and quad I/O  
Intended for next generation RAID controllers, server system logs, storage device  
buffers, and embedded system data and program memory  
Data is non-volatile with retention greater than 20 years  
Automatic data protection on power loss  
Unlimited write endurance  
16-SOIC  
Low-current sleep mode  
Dual 3.3v V / 1.8v V  
power supply  
DD  
DDQ  
Tamper Detect function will detect possible data modification from outside mag-  
netic fields.  
Quad Peripheral Interface (QPI) mode is supported to enhance system performance  
for Execute in Place (XIP) operation.  
24-BGA  
MSL Level 3.  
DESCRIPTION  
The MR10Q010 is the ideal memory solution for applications that must store and retrieve data and programs quickly  
using a small number of pins, low power, and choice of a 24-ball BGA or a 16-pin SOIC package. The four I/O’s in Quad  
SPI mode allow very fast reads and writes, making it an attractive alternative to conventional parallel data bus inter-  
faces in next generation RAID controllers, server system logs, storage device buffers, and embedded system data and  
program memory.  
Using Everspin’s patented MRAM technology, both reads and writes can occur randomly in memory with no delay  
between writes.  
Standard Serial Peripheral Interface (SPI), Quad SPI and Quad Peripheral Interface (QPI) modes are supported at a clock  
rate up to 104MHz. XIP operation is supported for Read commands in all three modes.  
The MR10Q010 Quad SPI MRAM is organized as 131,072 words of 8 bits.  
Operational Overview  
Mode  
Command Set  
Utility Commands  
XIP Command Operation  
Write Enable/Disable, Sleep Mode, Read/Write  
Status Register, Tamper Detect, Read Device ID, Fast Read  
Enable QPI Mode  
Read 40MHz. Write, Fast Read  
104MHz  
SPI Mode  
Quad I/O mode Read/Write data,  
or both address and data  
Fast Read Quad Output, Fast Read  
Quad Address and Data  
Quad SPI Mode  
QPI Mode  
None.  
Enables command instruction  
entry in quad I/O mode. (2 clocks)  
Fast Read, Fast Read Quad Output,  
Fast Read Quad Address and Data  
Disable QPI Mode.  
1
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
TABLE OF CONTENTS  
Operational Overview....................................................................................................................1  
OVERVIEW ............................................................................................................................................7  
Table 1 – Operational Parameters Summary...................................................................................................... 7  
Operation in 3.3v Data Bus Systems - Evaluation Board Available .............................................7  
Figure 1 – MR10Q010 Block Diagram.................................................................................................................... 8  
Figure 2 – System Configuration............................................................................................................................. 9  
Figure 3 – 16-SOIC Package Pin Assignments..................................................................................................10  
Table 2 – 16-SOIC Pin Functions............................................................................................................................10  
Figure 4 – 24-BGA Package Ball Assignments..................................................................................................12  
Table 3 – 24-BGA Ball Functions............................................................................................................................12  
STATUS REGISTER ............................................................................................................................. 14  
Table 4 – Status Register Bit Definitions.............................................................................................................14  
Memory Protection Modes.......................................................................................................... 15  
Table 5 – Memory Protection Modes ..................................................................................................................15  
Block Protection Modes............................................................................................................... 15  
Table 6 – Block Memory Write Protection..........................................................................................................15  
SPI COMMUNICATIONS PROTOCOL................................................................................................ 16  
SPI MODE COMMANDS .................................................................................................................... 16  
Table 7 – SPI Mode Commands Overview.........................................................................................................17  
SPI Mode Commands Overview .................................................................................................. 17  
Read Status Register (RDSR)........................................................................................................ 18  
Figure 5 – Read Status Register (RDSR) Command Operation ..................................................................18  
Write Enable (WREN).................................................................................................................... 19  
Figure 6 – Write Enable (WREN) Command Operation ................................................................................19  
Write Disable (WRDI).................................................................................................................... 20  
Figure 7 – Write Disable (WRDI) Command Operation ................................................................................20  
2
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table of Contents (Cont’d)  
Write Status Register (WRSR) ...................................................................................................... 21  
Figure 8 – Write Status Register (WRSR) Command Operation ................................................................21  
Read Data Bytes (READ) ............................................................................................................... 22  
Figure 9 – Read Data Bytes (READ) Command Operation...........................................................................22  
Fast Read Data Bytes (FREAD) ..................................................................................................... 23  
Figure 10 – Fast Read Data Bytes (FREAD) Command Operation .............................................................23  
Write Data Bytes (WRITE)............................................................................................................. 24  
Figure 11 – Write Data Bytes (WRITE) Command Operation ......................................................................24  
Enter Sleep Mode (SLEEP)............................................................................................................ 25  
Figure 12 – Enter Sleep Mode (SLEEP) Command Operation.....................................................................25  
Exit Sleep Mode (WAKE)............................................................................................................... 26  
Figure 13 – Exit Sleep Mode (WAKE) Command Operation........................................................................26  
Tamper Detect (TDET).................................................................................................................. 27  
Figure 14 – Tamper Detect (TDET) Command Operation............................................................................27  
Tamper Detect Exit (TDETX) ........................................................................................................ 28  
Figure 15 – Tamper Detect Exit (TDETX) Command Operation.................................................................28  
Read ID (RDID) .............................................................................................................................. 29  
Figure 16 – Read ID (RDID) Command Operation...........................................................................................29  
Table 8 – Device ID for MR10Q010 .......................................................................................... 30  
QUAD SPI MODE COMMANDS......................................................................................................... 31  
Quad SPI Mode Commands Overview ........................................................................................ 31  
Table 9 – Quad SPI Mode Commands Overview.............................................................................................31  
Fast Read Quad Output (FRQO) .................................................................................................. 32  
Figure 17 – Fast Read Quad Output (FRQO) Command Operation..........................................................33  
Fast Read Quad Address and Data (FRQAD).............................................................................. 34  
Figure 18 – Fast Read Quad Address and Data (FRQAD) Command Operation ..................................35  
3
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table of Contents (Cont’d)  
Fast Write Quad Data (FWQD)...................................................................................................... 36  
Figure 19 – Fast Write Quad Data (FWQD) Command Operation.............................................................36  
Fast Write Quad Address and Data (FWQAD) ............................................................................. 37  
Figure 20 – Fast Write Quad Address and Data (FWQAD) Command Operation ................................37  
QPI MODE .......................................................................................................................................... 38  
Table 10 – SPI Mode Command Structures in QPI Mode .............................................................................38  
Table 11 – Quad SPI Mode Command Structures in QPI Mode .................................................................39  
Enable QPI (EQPI) Command ....................................................................................................... 40  
Figure 21 – Enable QPI Mode (EQPI) Command Operation .......................................................................40  
Disable QPI (DQPI) Command ..................................................................................................... 41  
Figure 22 – Disable QPI Mode (DQPI) Command Timing ............................................................................41  
EXECUTE IN PLACE ꢀXIPꢁ MODE....................................................................................................... 42  
Table 12 – Mode Byte Definitions to Set/Reset XIP Mode ...........................................................................42  
Table 13 – XIP Mode with FREAD Command....................................................................................................43  
Figure 23 – FREAD Command- Set XIP Mode - Initial Access .....................................................................44  
Figure 24 – FREAD Command - XIP Mode Set - Next Access .....................................................................45  
Figure 25 – FREAD Command - XIP Mode Exit.................................................................................................46  
Table 14 – XIP Operation with FRQO Command.............................................................................................47  
Figure 26 – FRQO Command - Set XIP Mode - Initial Access ....................................................................48  
Figure 27 – FRQO Command - XIP Mode Set - Next Access.......................................................................49  
Figure 28 – FRQO Command - XIP Mode Exit...................................................................................................50  
Table 15 – XIP Operation with FRQAD Command..........................................................................................51  
Figure 29 – FRQAD Command - Set XIP Mode - Initial Access ..................................................................52  
Figure 30 – FRQAD Command - XIP Mode Set - Next Access ....................................................................53  
Figure 31 – FRQAD Command - XIP Mode Exit................................................................................................54  
ELECTRICAL SPECIFICATIONS ......................................................................................................... 55  
4
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table of Contents (Cont’d)  
Table 16 – Absolute Maximum Ratings ...........................................................................................................55  
Table 17 – Operating Conditions..........................................................................................................................56  
Table 18 – DC Characteristics .................................................................................................................................56  
Table 19 – Power Supply Characteristics............................................................................................................57  
Table 20 – Capacitance.............................................................................................................................................57  
TIMING SPECIFICATIONS ................................................................................................................. 58  
AC Measurement Conditions....................................................................................................... 58  
Table 21 – AC Measurement Conditions............................................................................................................58  
Figure 32 – Output Load for Impedance Parameter Measurements .......................................................58  
Figure 33 – Output Load for all Other Parameter Measurements.............................................................58  
Power Up Timing .......................................................................................................................... 59  
Table 22 – Power-Up Delay Minimum Voltages and Timing.......................................................................59  
Figure 34 – Power-Up Timing................................................................................................................................60  
AC Timing Parameters.................................................................................................................. 61  
Table 23 – AC Timing Parameters .........................................................................................................................61  
Figure 35 – Synchronous Data Timing (READ) .................................................................................................63  
Figure 36 – Synchronous Data Timing Fast Read (FREAD)...........................................................................63  
Figure 37 – Synchronous Data Timing (WRITE) ...............................................................................................64  
Figure 38 – Synchronous Data Timing Fast Write Quad Data and Fast Write Quad Address and  
Data (FWQD and FWQAD)..............................................................................................................................64  
Figure 39 – HOLD Timing.......................................................................................................................................65  
PART NUMBERS AND ORDERING .................................................................................................... 66  
Table 24 – Part Numbering System......................................................................................................................66  
Table 25 – Ordering Part Numbers.......................................................................................................................66  
PACKAGE CHARACTERISTICS .......................................................................................................... 67  
5
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table of Contents (Cont’d)  
Table 26 – Thermal Resistance 16-pin SOIC .....................................................................................................67  
Figure 40 – 16-SOIC Package Outline.................................................................................................................68  
Figure 41 – 24 Ball BGA Package Outline..........................................................................................................70  
HOW TO REACH US ........................................................................................................................... 72  
6
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
OVERVIEW  
The Serial Peripheral Interface, SPI, is becoming increasingly popular in system design due to the reduced  
pin count of the serial interface and increasing data bandwidth offered when compared against x8 or x16  
parallel interface architectures. The SPI interface has evolved from a single data line to a four data line, or  
quad architecture. This interface provides a data bandwidth in excess of 50Mbytes/sec.  
SPI is currently well-established in microcontroller/microprocessor based systems. The Everspin family of  
single I/O SPI MRAM is popular in smart meter applications and a variety of other embedded systems. How-  
ever, the 40MHz limitation with a single data I/O may be too slow for higher performance applications such  
as the next generation RAID controllers, server system logs, and storage device buffers .  
Operating at 52MB/second for both Read and Write the Everspin 1Mb Quad I/O SPI MRAM will meet the  
needs of these applications. And as a non-volatile memory with over 20 years of data retention, this SPI  
memory family is equally suited for embedded system data and program memory.  
The Quad Peripheral Interface, QPI, mode provides a lower overhead to load commands, which will improve  
system throughput when operating in an Execute in Place, XIP, environment. This added feature will make  
the device attractive in embedded applications that store program code in an external memory. QPI effec-  
tively increases the effective clock rate and, when combined with Quad SPI instructions, Quad SPI memory  
performance will outstrip asynchronous parallel memories.  
Table 1 – Operational Parameters Summary  
Standby  
Current Current Package  
(mA)  
Sleep  
Voltage  
(V)  
Read/  
Write  
Active Current  
R/W (mA)  
Density  
Interface  
(μA)  
3.3v V  
DD  
1 Mb  
104MHz Quad SPI  
52MB/sec  
60/100  
8.0  
100  
16-SOIC  
1.8v V  
DDQ  
Operation in 3.3v Data Bus Systems - Evaluation Board Available  
The Everspin MR10Q010 Quad SPI Serial MRAM requires a 3.3v V power supply and is designed to operate  
DD  
on a 1.8v I/O bus. Adapting the MR10Q010 to operate on a 3.3v data bus can be done by interfacing it to the  
bus through a level translator.  
An evaluation board is available to test this adaptation of the MR10Q010 in an existing system. It can be  
2
connected to the bus at the board position currently occupied by a SPI or Quad SPI E PROM and operate  
with the MR10Q010 I/O levels translated for operation on a 3.3v bus.  
Contact Everspin for more information about the MR10Q010 3.3v evaluation board and adapting your 3.3v  
bus system to operate with MR10Q010 MRAM.  
7
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 1 – MR10Q010 Block Diagram  
Address Register  
Counter  
SCK  
CS  
17  
Instrucon Decode  
Control Logic  
Write Protect  
Clock Generator  
SI or I/O  
0
1 Mb  
SPI MRAM  
Array  
Serial I/O  
Interface  
SO or I/O  
WP or I/O  
1
2
3
8
4
Data I/O  
Register  
NonvolaleStatus  
Register  
HOLD or I/O  
8
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 2 – System Configuration  
SCK  
MOSI or I/O  
(Master Out - Slave In)  
0
MISO or I/O  
(Master In - Slave Out)  
1
SO  
I/O  
SI  
I/O  
SCK  
SO  
I/O  
SI  
I/O  
SCK  
1
0
1
0
SPI  
Micro Controller  
WP HOLD  
I/O I/O  
WP HOLD  
I/O I/O  
CS  
CS  
2
3
2
3
CS (1)  
WP or I/O (1)  
2
HOLD or I/O (1)  
3
CS (2)  
WP or I/O (2)  
2
HOLD or I/O (2)  
3
9
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 3 – 16-SOIC Package Pin Assignments  
HOLD (I/O 3)  
SCK  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDDQ  
VDD  
NC  
SI (I/O 0)  
VSS  
NC  
16-SOIC  
16-SOIC  
TOP VIEW  
NC  
NC  
VSS  
VDD  
CS  
VSSQ  
SO (I/O 1)  
WP (I/O 2)  
Table 2 – 16-SOIC Pin Functions  
Signal  
Name  
Quad SPI  
Mode  
Pin  
SPI Mode  
Description  
1
An active low chip select for the serial MRAM. When chip select is  
high, the memory is powered down to minimize standby power,  
inputs are ignored and the serial output pin is Hi-Z. Multiple serial  
memories can share a common set of data pins by using a unique  
chip select for each memory.  
CS  
7
8
Chip Select  
Chip Select  
SPI Mode: The data output pin is driven during a read operation and  
remains Hi-Z at all other times. SO is Hi-Z when HOLD is low. Data  
transitions on the data output occur on the falling edge of SCK.  
SO (I/O )  
Serial Output  
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-  
dresses or data to the device on the rising edge of SCK or read data  
output from the device on the falling edge of SCK.  
I/O  
1
1
Table continues on next page.  
10  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
16-SOIC Pin Functions - Continued  
Signal  
Name  
Quad SPI  
Mode  
Pin  
SPI Mode  
Description  
1
SPI Mode: A low on the write protect input prevents write opera-  
tions to the Status Register.  
WP (I/O )  
9
Write Protect  
I/O  
2
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-  
dresses or data to the device on the rising edge of SCK or read data  
output from the device on the falling edge of SCK.  
2
V
11, 14  
10  
Ground  
Ground  
Ground  
Ground  
Power supply ground pin.  
I/O Voltage ground pin.  
SS  
V
SSQ  
SPI Mode: All data is input to the device through this pin. This pin  
is sampled on the rising edge of SCK and ignored at other times. SI  
can be tied to SO to create a single bidirectional data bus if desired.  
SI (I/O )  
15  
16  
Serial Input  
I/O  
0
0
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-  
dresses or data to the device on the rising edge of SCK or read data  
output from the device on the falling edge of SCK.  
Synchronizes the operation of the MRAM. The clock can operate up  
to 104 MHz to shift commands, address, and data into the memory.  
Inputs are captured on the rising edge of clock. Data outputs from  
the MRAM occur on the falling edge of clock. The serial MRAM sup-  
ports both SPI Mode 0 (CPOL=0, CPHA=0) and Mode 3 (CPOL=1,  
CPHA=1). In Mode 0, the clock is normally low. In Mode 3, the clock  
is normally high. Memory operation is static so the clock can be  
stopped at any time.  
SCK  
Clock  
Clock  
SPI Mode: A low on the HOLD pin interrupts a memory operation  
for another task. When HOLD is low, the current operation is sus-  
pended. The device will ignore transitions on the CS and SCK when  
HOLD is low. All transitions of HOLD must occur while CS is low.  
HOLD  
1
HOLD  
I/O  
3
(I/O )  
3
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-  
dresses or data to the device on the rising edge of SCK or read data  
output from the device on the falling edge of SCK.  
V
3, 6  
2
Power Supply  
Power Supply Power supply voltage from +3.0 to +3.6 volts.  
DD  
I/O Bus Power  
Supply  
I/O Bus Power  
V
I/O Bus supply voltage from +1.7 volts to +1.9 volts.  
Supply  
DDQ  
11  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 4 – 24-BGA Package Ball Assignments  
1
NC NC NC NC  
24-ball BGA package.  
VSS  
NC  
NC SCK  
VDD NC  
8mm x 6mm package outline.  
Serial NOR Flash pinout compatible.  
WP  
NC  
IOꢀ  
V
on ball E4 to support 1.8v I/O.  
ball.  
NC  
NC  
CS  
DDQ  
No V  
SSQ  
SO  
SO  
HOLD  
NC  
IOꢁ  
IOꢂ  
IOꢃ  
VDDQ  
NC NC NC  
NC  
Table 3 – 24-BGA Ball Functions  
Signal  
Name  
Quad SPI  
Mode  
Ball  
SPI Mode  
Description  
1
An active low chip select for the serial MRAM. When chip select is  
high, the memory is powered down to minimize standby power,  
inputs are ignored and the serial output pin is Hi-Z. Multiple serial  
memories can share a common set of data pins by using a unique  
chip select for each memory.  
CS  
C2  
Chip Select  
Chip Select  
SPI Mode: The data output pin is driven during a read operation and  
remains Hi-Z at all other times. SO is Hi-Z when HOLD is low. Data  
transitions on the data output occur on the falling edge of SCK.  
SO (I/O )  
D2  
Serial Output  
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-  
dresses or data to the device on the rising edge of SCK or read data  
output from the device on the falling edge of SCK.  
I/O  
1
1
Table continues on next page.  
12  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
24-BGA Ball Functions - Continued  
Signal  
Name  
Quad SPI  
Mode  
Ball  
SPI Mode  
Description  
1
SPI Mode: A low on the write protect input prevents write opera-  
tions to the Status Register.  
WP (I/O )  
C4  
Write Protect  
I/O  
2
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-  
dresses or data to the device on the rising edge of SCK or read data  
output from the device on the falling edge of SCK.  
2
V
B3  
Ground  
Ground  
Power supply ground pin.  
SS  
SPI Mode: All data is input to the device through this pin. This pin  
is sampled on the rising edge of SCK and ignored at other times. SI  
can be tied to SO to create a single bidirectional data bus if desired.  
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-  
dresses or data to the device on the rising edge of SCK or read data  
output from the device on the falling edge of SCK.  
SI (I/O )  
D3  
Serial Input  
I/O  
0
0
Synchronizes the operation of the MRAM. The clock can operate up  
to 104 MHz to shift commands, address, and data into the memory.  
Inputs are captured on the rising edge of clock. Data outputs from  
the MRAM occur on the falling edge of clock. The serial MRAM sup-  
ports both SPI Mode 0 (CPOL=0, CPHA=0) and Mode 3 (CPOL=1,  
CPHA=1). In Mode 0, the clock is normally low. In Mode 3, the clock  
is normally high. Memory operation is static so the clock can be  
stopped at any time.  
SCK  
B2  
Clock  
Clock  
SPI Mode: A low on the HOLD pin interrupts a memory operation  
for another task. When HOLD is low, the current operation is sus-  
pended. The device will ignore transitions on the CS and SCK when  
HOLD is low. All transitions of HOLD must occur while CS is low.  
HOLD  
D4  
HOLD  
I/O  
3
(I/O )  
3
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-  
dresses or data to the device on the rising edge of SCK or read data  
output from the device on the falling edge of SCK.  
V
B4  
E4  
Power Supply  
Power Supply Power supply voltage from +3.0 to +3.6 volts.  
DD  
I/O Bus Power  
Supply  
I/O Bus Power  
V
I/O Bus supply voltage from +1.7 volts to +1.9 volts.  
Supply  
DDQ  
13  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
STATUS REGISTER  
The status register consists of the 8 bits shown in Table 3 below.  
The Status Register Write Disable bit (SRWD, Bit 7) is used in conjunction with the Write Enable Latch (WEL,  
bit 1) and the Write Protection pin (WP) to provide hardware memory block protection. Their usage for  
memory block protection is defined in “Table 5 – Memory Protection Modes. The Status Register Write Dis-  
able bit is non-volatile and will remain set whenever power is removed from the memory. The WEL bit (Bit 7)  
is volatile and set by the Write Enable command. It is set to “0at power up and reset to “0when recovering  
from a loss of power.  
The status of memory block protection is indicated by the states of bits BP0 and BP1 (Bits 2 and 3) and are  
also defined in “Table 5 – Memory Protection Modeson page 15. BP0 and BP1 are non-volatile and re-  
main set if power is removed from the memory.  
The QPI Mode bit (Bit 6) indicates whether the memory is in QPI mode or not. Its value is set when the En-  
able QPI (EQPI) or Disable QPI (DQPI) commands are invoked. Logic “1indicates QPI mode is enabled. The  
QPI Mode Bit is volatile and set to “0at power up and reset to “0when recovering from a loss of power.  
The fast writing speed of the MR10Q010 does not require write status bit information (Normally Bit 0). The  
state of reserved bits 4, 5, and 0 can be modified by the user but do not affect memory operation.  
All bits in the status register are pre-set at the factory to the “0state.  
Non-reserved Status Register bits are non-volatile with the exception of the WEL and QPI Mode which are  
reset to 0 upon power cycling.  
Table 4 – Status Register Bit Definitions  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
QPI Mode  
(Volatile)  
SRWD  
(Non volatile)  
BP1  
BP0  
WEL  
(Volatile)  
R2  
R1  
R0  
(Non-Volatile) (Non-Volatile)  
Bit Definitions:  
7 - SRWD - Status Register Write Disable  
6 - QPI Mode bit. Logic 1 = The device is in QPI Mode. Set by the Enable QPI (page 40) and Disable QPI Commands (page  
41). Cannot be modified by the Write Status Register Command (page 21). Reset to “0upon any power cycling.  
5 - R2 - Reserved bit 2  
4 - R1 - Reserved bit 1  
3 - BP1 - Block Protect bit 1  
2 - BP0 - Block Protect bit 0  
1 - WEL - Write Enable Latch bit. Set by the Write Enable (page 19) Command. Reset to “0upon any power cycling.  
0 - R0 - Reserved bit 0. This is the “Write in Progressbit for many memory devices. For MR10Q010, the “Write in progressbit (bit  
0) is not written by the memory because there is no write delay with MRAM.  
14  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Memory Protection Modes  
When WEL is reset to 0, writes to all blocks and the status register are protected. When WEL is set to 1, BP0  
and BP1 determine which memory blocks are protected. While SRWD is reset to 0 and WEL is set to 1, status  
register bits BP0 and BP1 can be modified. Once SRWD is set to 1, WP must be high to modify SRWD, BP0 and  
BP1.  
Table 5 – Memory Protection Modes  
Status  
WEL  
SRWD  
WP  
Protected Blocks  
Unprotected Blocks  
Register  
Protected  
Writable  
0
1
1
1
X
0
1
1
X
X
Protected  
Protected  
Protected  
Protected  
Protected  
Writable  
Writable  
Writable  
Low  
High  
Protected  
Writable  
Block Protection Modes  
The memory enters hardware block protection when the WP input is low and the Status Register Write Dis-  
able (SRWD) Bit is set to 1. The memory leaves hardware block protection only when the WP pin goes high.  
While WP is low, the write protection blocks for the memory are determined by the status register bits BP0  
and BP1 and cannot be modified without taking the WP signal high again.  
If the WP signal is high (independent of the status of SRWD Bit), the memory is in software protection mode.  
This means that block write protection is controlled solely by the status register BP0 and BP1 block write pro-  
tect bits and this information can be modified using the WRSR command.  
Table 6 – Block Memory Write Protection  
Status Register  
Memory Contents  
BP1  
BP0  
Protected Area  
Unprotected Area  
0
0
None  
All Memory  
0
1
Upper Quarter  
Lower Three-Quarters  
1
1
0
1
Upper Half  
All  
Lower Half  
None  
15  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
SPI COMMUNICATIONS PROTOCOL  
The MR10Q010 can be operated in either SPI Mode 0 (CPOL=0, CPHA =0) or SPI Mode 3 (CPOL=1, CPHA=1).  
For both modes, inputs are captured on the rising edge of the clock and data outputs occur on the falling  
edge of the clock. When not conveying data, SCK remains low for Mode 0; while in Mode 3, SCK is high.  
The memory determines the mode of operation (Mode 0 or Mode 3) based upon the state of the SCK when  
CS falls.  
All memory transactions start when CS is brought low to the memory. The first byte is a command code.  
Depending upon the command, subsequent bytes of address are input. Data is either input or output.  
There is only one command performed per CS active period. CS must go inactive before another command  
can be accepted. To ensure proper part operation according to specifications, it is necessary to terminate  
each access by raising CS at the end of a byte (a multiple of 8 clock cycles from CS dropping to avoid partial  
or aborted accesses.  
SPI MODE COMMANDS  
All memory transactions start when CS is brought low, selecting the memory. The first byte is an 8-bit com-  
mand code in hexadecimal. The subsequent 24 bits entered are address input. Following the address input  
(except for the FREAD command) the device will read/write data beginning at the address entered.  
For the FREAD command the Mode Byte must be entered following the address. The Mode Byte will either  
set or reset the XIP mode. See ”Execute in Place (XIP) Modeon page 42.  
There is only one command performed per CS active period. CS must go inactive before another command  
can be accepted. Note: To avoid partial or aborted accesses, memory access must remain active (CS low) for  
a multiple of 8 clocks from CS going low (the end of a byte.)  
At power up, the default operational mode is SPI mode.  
16  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table 7 – SPI Mode Commands Overview  
SPI Mode Commands Overview  
Code  
Description  
Name  
Operation  
RDSR  
Read Status Register  
05h  
Returns the contents of the 8 Status Register bits.  
Sets the Write Enable Latch (WEL) bit in the status register to 1.  
Sets the Write Enable Latch (WEL) bit in the status register to 0.  
Writes new values to the entire Status Register.  
Continuously reads data bytes starting at an initial address specified.  
High-speed READ with XIP operation option.  
WREN  
WRDI  
WRSR  
READ  
Write Enable  
Write Disable  
06h  
04h  
01h  
03h  
0Bh  
02h  
B9h  
ABh  
17h  
4Bh  
Write Status Register  
Read Data Bytes  
Fast Read Data Bytes  
Write Data Bytes  
Enter Sleep Mode  
Exit Sleep Mode  
Tamper Detect  
Read ID  
1
FREAD  
WRITE  
SLEEP  
WAKE  
TDET  
Continuously writes data bytes starting at an address specified.  
Initiates Sleep Mode.  
Terminates Sleep Mode.  
Returns 4 data bytes indicating corrupted or uncorrupted memory.  
Returns the Everspin device ID assigned by JEDEC.  
RDID  
Notes:  
1. FREAD has the option of using XIP operational mode. See “Execute in Place (XIP) Modeon page 42 for details of XIP mode  
with the FREAD command.  
17  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Read Status Register (RDSR)  
The Status Register can be read at any time to check the status of the Write Enable Latch Bit, status register  
Write Protect Bit, QPI mode, and the block write protect bits. The RDSR command is entered by driving CS  
low, sending the command code, and then driving CS high.  
See “Table 3 – Status Register Bit Definitionson page 11 for Status Register Bit definitions.  
Figure 5 – Read Status Register (RDSR) Command Operation  
2
Clock Number  
1
0 - 7  
8 - 15  
16 - 23  
-
24 - 31  
-
32 - 39  
-
40 - n  
Name  
Operation  
3
RDSR  
Read Status Register  
05h  
S7-S0  
-
Notes:  
1. Clocks 0 - 7 are the command byte.  
2. See “AC Timing Parameterson page 61 for timing requirements.  
3. See “Table 3 – Status Register Bit Definitionson page 11 for status register bit definitions.  
CS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Mode 3  
Mode 0  
SCK  
Instruction (05h)  
0
0
0
0
0
1
0
1
SI  
Status Register Bits  
High Impedance  
High Z  
SO  
7
6
5
4
3
2
1
0
18  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Write Enable (WREN)  
The Write Enable (WREN) command sets the Write Enable Latch Bit (WEL) in the status register (Bit 1). The  
Write Enable Latch must be set prior to writing in the status register or the memory. The WREN command is  
entered by driving CS low, sending the command code, and then driving CS high.  
See “Table 3 – Status Register Bit Definitionson page 11 for Status Register Bit definitions.  
Figure 6 – Write Enable (WREN) Command Operation  
1
Clock Number  
2
0 - 7  
8 - 15  
-
16 - 23  
-
24 - 31  
-
32 - 39  
-
40 - n  
Name  
Operation  
WREN  
Write Enable  
06h  
-
Notes:  
1. See “AC Timing Parameterson page 61 for timing requirements.  
2. Clocks 0 - 7 are the command byte.  
CS  
Mode 3  
Mode 0  
Mode 3  
0
1
2
3
4
5
6
7
SCK  
Mode 0  
Instruction (06h)  
SI  
0
0
0
0
0
1
1
0
High Impedance  
SO  
19  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Write Disable (WRDI)  
The Write Disable (WRDI) command resets the Write Enable Latch (WEL) bit in the status register (bit 1) to 0.  
This prevents writes to status register or memory. The WRDI command is entered by driving CS low, sending  
the command code, and then driving CS high.  
The Write Enable Latch (WEL) is reset to 0 on power-up or when the WRDI command is completed.  
See “Table 3 – Status Register Bit Definitionson page 11 for Status Register bit definitions.  
Figure 7 – Write Disable (WRDI) Command Operation  
1
Clock Number  
2
0 - 7  
04h  
8 - 15  
-
16 - 23  
-
24 - 31  
-
32 - 39  
-
40 - n  
Name  
Operation  
WRDI  
Write Disable  
-
Notes:  
1. See “AC Timing Parameterson page 61 for timing requirements.  
2. Clocks 0 - 7 are the command byte.  
CS  
Mode 3  
Mode 0  
Mode 3  
0
1
2
3
4
5
6
7
Mode 0  
SCK  
Instruction (04h)  
0
0
0
0
0
1
0
0
SI  
High Impedance  
SO  
20  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Write Status Register (WRSR)  
The Write Status Register (WRSR) command allows new values for certain bits to be written to the Status  
Register. The WRSR command cannot be executed unless the Write Enable Latch (WEL) has been set to 1 by  
executing a WREN command while pin WP the SRWD Bit correspond to values that make the status register  
writable as seen in Table 5 on page 15.  
QPI Mode Bit, Bit 6, and the WEL Bit, Bit 0, are set by other commands and cannot be changed by this com-  
mand.  
The WRSR command is entered by driving CS low, sending the command code and status register write data  
byte, and then driving CS high.  
Figure 8 – Write Status Register (WRSR) Command Operation  
Clock Number  
1
2
0 - 7  
8 - 15  
16 - 23  
-
24 - 31  
-
32 - 39  
-
40 - n  
Name  
Operation  
WRSR  
Write Status Register  
01h  
S7-S0  
-
Notes:  
1. Clocks 0 - 7 are the command byte.  
2. Neither the QPI Mode Bit, Bit 6, or the WEL Bit, bit 0, can be changed by this command.  
CS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Mode 3  
Mode 0  
SCK  
SI  
1
Instruction (01h)  
Status Register In  
6 (DC)  
0 (DC)  
0
0
0
0
0
0
0
1
7
5
4
3
2
1
MSB  
High Impedance  
SO  
Notes:  
1. Neither the QPI Mode Bit, Bit 6, or the WEL Bit, bit 0, can be changed by this command. Treat as Don’t Care.  
21  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Read Data Bytes (READ)  
The Read Data Bytes (READ) command allows data bytes to be continuously read starting at an initial ad-  
dress specified by the 24-bit address entry. The data bytes are read out sequentially from memory until the  
read operation is terminated by bringing CS high. The entire memory can be read in a single command.  
The address counter will roll over to 0000H when the address reaches the top of memory.  
The READ command is entered by driving CS low and sending the command code. The memory drives the  
read data bytes on the SO pin. Reads continue as long as the memory is clocked. (Maximum READ clock  
frequency 40MHz.) The command is terminated by bringing CS high.  
Figure 9 – Read Data Bytes (READ) Command Operation  
Clock Number  
1
0 - 7  
8 - 15  
16 - 23  
24 - 31  
A7-A0  
32 - 39  
40 - n  
Name  
Operation  
READ  
Read Data Bytes  
03h  
A23-A16  
A15-A8  
D7-D0, until CS high  
Notes:  
1. Clocks 0 - 7 are the command byte.  
2. For timing details, see “Figure 35 – Synchronous Data Timing (READ)on page 63.  
CS  
0
1
2
3
4
5
6
7
8
9
10  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Mode 3  
Mode 0  
SCK  
Instruction (03h)  
24-Bit Address  
3
0
0
0
0
0
0
1
1
23  
MSB  
High Impedance  
22  
21  
2
1
0
SI  
Data Out 1  
Data Out 2  
7
6
5
4
3
2
1
0
7
SO  
Data Clocked Out Continuously until CS high.  
22  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Fast Read Data Bytes (FREAD)  
The Fast Read Data Bytes FREAD command is similar to the READ command except that the device can be  
f
operated at the highest frequency ( SCK = 104MHz ) and the command has an XIP operation option. For  
more detail on the XIP option, see “Table 13 – XIP Mode with FREAD Commandon page 43.  
The FREAD command is entered by driving CS low and sending the command code. The memory drives the  
read data bytes on the SO pin. Reads continue as long as the memory is clocked. The command is termi-  
nated by bringing CS high.  
Figure 10 – Fast Read Data Bytes (FREAD) Command Operation  
Clock Number  
1
0 - 7  
8 - 15  
16 - 23  
24 - 31  
32 - 39  
40 - n  
Name  
Operation  
2
D7-D0, until  
CS high  
Mode bits  
(7-0)  
FREAD  
Fast Read Data Bytes  
0Bh  
A23-A16  
A15-A8  
A7-A0  
Notes:  
1. Clocks 0 - 7 are the command byte.  
2. Mode Byte to Set/Reset XIP operation. Set/Continue XIP Mode = EFh. Reset XIP Mode FFh (exit XIP). See “Execute in Place  
(XIP) Modeon page 42 for more detailed information on XIP operation with FREAD.  
3. For timing details, see “Figure 36 – Synchronous Data Timing Fast Read (FREAD)on page 63.  
CS  
0
1
2
3
4
5
6
7
8
9
10  
28  
29  
2
30  
1
31  
Mode 3  
SCK Mode 0  
Instruction (0Bh)  
24-Bit Address  
3
0
0
0
0
1
0
1
1
23  
MSB  
High Impedance  
22  
21  
0
SI  
LSB  
SO  
CS  
31  
32  
33  
34  
35  
36  
37  
38  
39 40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
SCK  
Mode Bits Set /Reset XIP Mode  
M7 M6 M5 M4 M3 M2  
0
M1 M0  
SI  
Data Out 1  
Data Out 2  
High Impedance  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
SO  
Data Clocked Out Continuously until CS high.  
23  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Write Data Bytes (WRITE)  
The Write Data Bytes (WRITE) command allows data bytes to be written starting at an address specified by  
the 24-bit address. The data bytes are written sequentially in memory until the write operation is terminat-  
ed by bringing CS high. The entire memory can be written in a single command. The address counter will  
roll over to 0000h when the address reaches the top of memory.  
MRAM is a random access memory rather than a page, sector, or block organized memory so it is ideal for  
both program and data storage. Unlike EEPROM or Flash Memory, MRAM can write data bytes continuously  
at its maximum rated clock speed without write delays or data polling. Back to back WRITE commands to  
any random location in memory can be executed without write delay.  
The WRITE command is entered by driving CS low, sending the command code, and then sequential write  
data bytes. Writes continue as long as the memory is clocked. The command is terminated by bringing CS  
high.  
Figure 11 – Write Data Bytes (WRITE) Command Operation  
Clock Number  
1
0 - 7  
8 - 15  
16 - 23  
24 - 31  
A7-A0  
32 - 39  
40 - n  
Name  
Operation  
WRITE  
Write Data Bytes  
02h  
A23-A16  
A15-A8  
D7-D0, until CS high  
Notes:  
1. Clocks 0 - 7 are the command byte.  
2. For timing details see “Figure 37 – Synchronous Data Timing (WRITE)on page 64.  
CS  
0
1
2
3
4
5
6
7
8
9
10  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Mode 3  
Mode 0  
SCK  
SI  
Instruction (02h)  
24-Bit Address  
3
Data Byte 1  
0
0
0
0
0
0
1
0
23  
MSB  
High Impedance  
22  
21  
2
1
0
7
6
5
4
3
2
1
0
MSB  
SO  
CS  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
SCK  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SI  
MSB  
MSB  
High Impedance  
SO  
24  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Enter Sleep Mode (SLEEP)  
The Enter Sleep Mode (SLEEP) command turns off all MRAM power regulators in order to reduce the overall  
chip standby power to 15 μA typical. The SLEEP command is entered by driving CS low, sending the com-  
t
mand code, and then driving CS high. The standby current is achieved after time, DP. See “Table 23 – AC  
t
Timing Parameterson page 61 for the DP value.  
If power is removed when the part is in sleep mode, upon power restoration, the part enters normal standby.  
The only valid command following SLEEP mode entry is a WAKE command.  
Figure 12 – Enter Sleep Mode (SLEEP) Command Operation  
Clock Number  
1
0 - 7  
8 - 15  
-
16 - 23  
-
24 - 31  
-
32 - 39  
-
40 - n  
Name  
Operation  
SLEEP  
Enter Sleep Mode  
B9h  
-
Notes:  
1. Clocks 0 - 7 are the command byte.  
CS  
t DP  
0
1
2
3
4
5
6
7
Mode 3  
Mode 0  
SCK  
Instruction (B9h)  
1
0
1
1
1
0
0
1
SI  
Active Current  
Standby Current  
Sleep Mode Current  
SO  
25  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Exit Sleep Mode (WAKE)  
The Exit Sleep Mode (WAKE) command turns on internal MRAM power regulators to allow normal operation.  
The WAKE command is entered by driving CS low, sending the command code, and then driving CS high.  
t
The memory returns to standby mode after RDP. See “Table 23 – AC Timing Parameterson page 61 for  
t
the RPD value.  
t
The CS pin must remain high until the RDP period is over. WAKE must be executed after sleep mode entry  
and prior to any other command when the device is in Sleep mode.  
Figure 13 – Exit Sleep Mode (WAKE) Command Operation  
Clock Number  
1
0 - 7  
8 - 15  
-
16 - 23  
-
24 - 31  
-
32 - 39  
-
40 - n  
Name  
Operation  
WAKE  
Exit Sleep Mode  
ABh  
-
Notes:  
1. Clocks 0 - 7 are the command byte.  
CS  
t RDP  
0
1
2
3
4
5
6
7
Mode 3  
Mode 0  
SCK  
Instruction (ABh)  
1
0
1
0
1
0
1
1
SI  
Sleep Mode Current  
Standby Current  
SO  
26  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Tamper Detect (TDET)  
The Tamper Detect command is used to check whether the memory contents have been corrupted by ex-  
posure to external magnetic fields. The command is invoked by entering the command code followed by  
the 8-bit Mode Byte. The device reads dedicated pre-programmed memory bits located around the memory  
physical array. The contents of these bits are compared to reference bits that are hard programmed into the  
device via a metal mask. The result of the comparison is returned in 32 status bits of data on SO beginning  
after the last Mode Byte clock.  
All 0’s in the 32 TDET status bits indicates that the tamper check bits are correct against the reference bits  
and the memory has not been corrupted. Presence of any 1’s in the 32-bit string indicates that at least one  
of the check bits does not match its reference bit and the memory contents have likely been corrupted.  
Following CS high, any new command can be entered on the next access, except another TDET command.  
If it is necessary to immediately enter another TDET command, a Tamper Detect Exit (TDETX) command must  
be issued first to reset the device for another Tamper Detect sequence.  
Figure 14 – Tamper Detect (TDET) Command Operation  
Clock Number  
1
0 - 7  
8 - 15  
16 - 47  
48 - n  
Name  
Operation  
Mode Byte  
bits 7 - 0 3  
2
TDET  
Tamper Detect  
17h  
T31 - T0  
CS high  
Notes:  
1. Clocks 0 - 7 are the command byte.  
2. 32 Tamper Detect indication bits. Any 1’s present in the 32-bit string indicate probable corruption of the memory contents.  
3. In the TDET command operation, the Mode Byte is used as a time delay to read the check and reference bits. The Mode Byte  
must be set to FFh.  
CS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
44 45  
46  
47  
SCK  
SI  
Mode Bits 1  
Instruction (4Bh)  
Don’t Care  
Don’t Care  
M7  
1
M6  
1
M5  
1
M4  
1
M3  
M2  
M1  
M0  
0
1
0
0
1
0
1
1
1
1
1
1
High Impedance  
High-Z  
T29  
T1  
T0  
T2  
T31  
T30  
T3  
SO  
Notes:  
1. In the TDET command operation, the Mode Byte must be set to FFh.  
27  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Tamper Detect Exit (TDETX)  
After running a TDET command, any other command can be run as the next command, except another TDET  
command. If another TDET command is to be run, then the Tamper Detect Exit (TDETX) command must  
be run first to reset the device. This is necessary only if immediately running another TDET command. See  
Tamper Detect (TDET)on page 27.  
Figure 15 – Tamper Detect Exit (TDETX) Command Operation  
Clock Number  
1
2
0 - 7  
8 - n  
Name  
Operation  
TDETX  
Tamper Detect Exit  
07h  
CS high. Any command can be entered on next access.  
Notes:  
1. Clocks 0 - 7 are the command byte.  
2. After CS goes high any other command can be given on the next access.  
28  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Read ID (RDID)  
The Read Device ID command (RDID) returns 40 bits of information that identify the Everspin device. The  
command is invoked with CS low, and sending command code 4Bh on the Serial Input (SI) pin. See “Fig-  
ure 16 – Read ID (RDID) Command Operationbelow. After 8 clocks for the Mode Byte, 40 bits of data  
uniquely identifying the Everspin device are returned on the Serial Out (SO) pin. See “Table 8 – Device ID for  
MR10Q010. If CS remains low after reading the 40 ID bits, additional clocks with CS low will return zeros on  
SO until CS goes high.  
Figure 16 – Read ID (RDID) Command Operation  
Clock Number  
1
0 - 7  
8 - 15  
16 - 23  
24 - 31  
32 - 39  
40 - n  
Name  
Operation  
Mode Byte 2  
Bits 7 - 0  
3
RDID  
Read ID  
4Bh  
Device ID Clocks 16 - 55  
Notes:  
1. Clocks 0 - 7 are the command byte.  
2. In the RDID command operation, the Mode Byte is used as a time delay to read the device ID bits. The Mode Byte must be  
set to FFh.  
3. For the Everspin device ID codes, see “Table 8 – Device ID for MR10Q010on page 30.  
CS  
0
0
1
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
50 51  
52  
53  
54 55  
Mode 3  
Mode 0  
SCK  
Mode Bits 1  
Instruction (4Bh)  
M7  
1
M6  
1
M5  
1
M4  
1
M3  
M2  
M1  
M0  
Don’t Care  
0
0
1
0
1
1
1
1
1
1
SI  
High Impedance  
High-Z  
Bit 39  
Bit 38  
Bit 37  
Bit 36  
Bit 35  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SO  
Device ID Data Bits  
Notes:  
1. In the RDID command operation, the Mode Byte must be set to FFh.  
29  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table 8 – Device ID for MR10Q010  
RDID Device ID for MR10Q010  
Bit #  
39 - 24  
23 - 20  
19 - 16  
15 - 12  
Speed  
11 - 8  
7 - 4  
3 - 0  
Manufacturers ID  
(JEP 106AH)  
Meaning  
Technology  
Interface  
Density  
Voltage  
Die Rev  
Toggle  
MRAM  
3.3v V  
1.8v V  
/
DD  
MR10Q010  
Binary  
6Bh, eighth bank  
Quad IO SPI  
0001  
104MHz  
0001  
1 Mb  
0001  
A
DDQ  
0000_0111_0110_1011  
0001  
0001  
0001  
Complete Hexadecimal and Binary Device ID for MR10Q010  
Hexadecimal  
Binary  
076B111111  
0000_0111_0110_1011_0001_0001_0001_0001_0001_0001  
30  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
QUAD SPI MODE COMMANDS  
Quad SPI commands allow data to be transferred to or from the device at least four times the rate of conven-  
tional SPI mode. When using Quad SPI commands the DI and DO pins become bidirectional IO and IO , and  
0
1
the WP and HOLD pins become IO and IO respectively. Address and data information can be input to the  
2
3
device on four IO’s and data output can be read from four IO’s, offering a significant improvement in continu-  
ous and random access transfers. XIP mode operation is available for FRQO and FRQAD commands.  
Quad SPI Mode Commands Overview  
Table 9 – Quad SPI Mode Commands Overview  
Name  
Operation  
Code Description  
Initial address entry on IO , returns data continuously in Quad SPI  
Mode on all four I/O. Has XIP operation option.  
1
0
FRQO  
Fast Read Quad Output  
6Bh  
32h  
EBh  
12h  
Initial address entry on IO , writes data continuously in Quad SPI  
0
FWQD  
Fast Write Quad Data  
Mode on all four I/O.  
Fast Read Quad Address  
and Data  
Initial address entry on all four IO’s, returns data continuously in  
quad mode on all four I/O’s. Has XIP operation option.  
1
FRQAD  
Fast Write Quad Address  
and Data  
Initial address entry on all four IO’s, writes data continuously in quad  
mode on all four I/O’s.  
FWQAD  
Notes:  
1. XIP mode option. See “Execute in Place (XIP) Modeon page 42 for details of how to use FRQD and FRQAD in XIP mode.  
31  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Fast Read Quad Output (FRQO)  
The Fast Read Quad Output (6Bh) command is similar to the Fast Read Output except that a data byte is  
output on the four I/O pins, requiring only two clocks. An XIP mode is available for this command. See  
Table 14 – XIP Operation with FRQO Commandon page 47 for more information about XIP mode op-  
eration. The I/O pins should be high impedance prior to the falling edge of the first Mode clock. The FRQO  
command is entered by driving CS low and sending the command code. The memory drives the read data  
bytes on the IO pins. Reads continue as long as the memory is clocked. The command is terminated by  
bringing CS high.  
Commmand Operation and Timing next page.  
32  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 17 – Fast Read Quad Output (FRQO) Command Operation  
Clock Number  
24 - 31  
1
0 - 7  
8 - 15  
16 - 23  
32 - 33  
34 - 35  
36 - n  
Name  
Title  
2
3
FRQO  
Fast Read Quad Output  
6Bh  
A23-A16 A15 - A8  
A7- A0 M7- M0  
D7 - D0, until CS high  
Notes:  
1. Clocks 0 - 7 are the command byte. All commands and address bits on I/O .  
0
2. Mode Byte. See “Execute in Place (XIP) Modeon page 42 for more information on XIP operation with FRQO.  
t
3. Quad Mode data output. I/O switches from Input to Output. I/O active outputs until CS returns high. CSH must be ob-  
0
1-3  
served for valid output when bringing CS high.  
CS  
0
1
2
3
4
5
6
7
8
9
10  
28  
29  
2
30  
1
31  
Mode 3  
SCK Mode 0  
Instruction (6Bh)  
24-Bit Address  
3
IO0  
0
1
1
0
1
0
1
1
23  
22  
21  
0
MSB  
LSB  
High Impedance  
IO1  
IO2  
IO3  
High  
High  
(Low)  
CS  
31 32  
33  
1
34  
35  
36  
37  
38  
39  
40  
1
41  
SCK  
Mode Bits  
Set / Reset XIP  
IO switches from Input to Output  
LSB  
0
IO0  
IO1  
IO2  
IO3  
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
M4 M0  
M5 M1  
M6 M2  
M7 M3  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Data Clocked Out Continuously until CS high.  
Note:  
1. The I/O pins should be high impedance prior to the falling edge of the second mode clock.  
33  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Fast Read Quad Address and Data (FRQAD)  
The Fast Read Quad Address and Data (FRQAD) command is similar to the FRQO command except that the  
address bits are loaded into the four I/O’s, requiring six clocks instead of 24. The data bytes also are read  
from the four I/O’s as shown in Figure 18 below. An XIP operating mode is available for this command. See  
Table 15 – XIP Operation with FRQAD Commandon page 51 for more information on the XIP operating  
mode for this command. The FRQAD command is entered by driving CS low and sending the command  
code. The memory drives the read data bytes on the IO pins. Reads continue as long as the memory is  
clocked. The command is terminated by bringing CS high.  
Commmand Operation and Timing next page.  
34  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 18 – Fast Read Quad Address and Data (FRQAD) Command Operation  
Clock Number  
16 - 17  
1
4
2
0 - 7  
8 - 13  
14- 15  
18 - n  
Name  
Description  
Fast Read Quad Address  
and Data  
2
3
FRQAD  
EBh  
A23 - A0 M7 - M0  
D7 - D0 every two clocks until CS high  
Notes:  
1. Clocks 0 - 7 are the command byte. All commands and address bits on I/O .  
0
2. Mode Byte. See “Execute in Place (XIP) Modeon page 42 for more information on XIP operation with FRQAD.  
t
3. Quad Mode data output. I/O switches from Input to Output. I/O active outputs until CS returns high. CSH must be ob-  
0
1-3  
served for valid output when bringing CS high.  
4. For timing details, see “Figure 38 – Synchronous Data Timing Fast Write Quad Data and Fast Write Quad Address and Data  
(FWQD and FWQAD)on page 64.  
CS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Mode 3  
SCK Mode 0  
24-Bit Address  
A15 - 8  
Instruction (EBh)  
A23 - 16  
A7 - 0  
Mode Bits  
IO0  
1
1
1
0
1
0
1
1
12  
20  
16  
8
4
0
High Impedance  
IO1  
IO2  
IO3  
21 17  
22 18  
23 19  
13  
14  
15  
9
5
6
7
1
2
3
High  
High  
10  
11  
(Low)  
CS  
13 14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
SCK  
1
Mode  
Bits  
IO switches from Input to Output  
IO0  
IO1  
IO2  
IO3  
M4 M0  
M5 M1  
M6 M2  
M7 M3  
4
5
6
7
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
0
1
2
3
1
2
3
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Data Clocked Out Continuously until CS high.  
Note:  
1. The I/O pins should be high impedance prior to the falling edge of the second mode clock.  
35  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Fast Write Quad Data (FWQD)  
The Fast Write Quad Data FWQD command provides a high speed write capability to the memory using four  
f
I/O’s for data input. The FWQD command can operate at the highest frequency, SCK = 104MHz.  
The FWQD command is entered by driving CS low and sending the command code (32h). Data is input on  
all four I/O’s and Writes continue as long as the memory is clocked. The command is terminated by bringing  
CS high.  
Figure 19 – Fast Write Quad Data (FWQD) Command Operation  
Clock Number  
1
0 - 7  
8 - 15  
16 - 23  
24 - 31  
A7- A0  
32 - 33  
34 - 35  
36 - n  
Name  
Title  
D7 - D0 every two clocks until CS  
FWQD  
Fast Write Quad Data  
32h  
A23-A16 A15 - A8  
2
high  
Notes:  
1. Clocks 0 - 7 are the command byte. All commands and address bits on I/O .  
0
2. Quad Mode address input. I/O remains input. I/O active inputs until CS returns high.  
0
1-3  
3. For timing details, see “Figure 38 – Synchronous Data Timing Fast Write Quad Data and Fast Write Quad Address and Data  
(FWQD and FWQAD)on page 64.  
CS  
0
1
2
3
4
5
0
6
1
7
0
8
9
10  
29  
30  
1
31  
0
Mode 3  
SCK Mode 0  
Instruction (32h)  
24-Bit Address  
2
21  
IO0  
23  
22  
0
0
1
1
0
IO1  
IO2  
IO3  
High Impedance  
High  
High  
(Low)  
CS  
31 32  
33  
34  
35  
36  
37  
38  
39  
SCK  
Data Bytes  
IO0  
4
0
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
IO1  
IO2  
IO3  
5
6
7
1
2
3
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Byte n  
Data Writes Continuously until CS high.  
36  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Fast Write Quad Address and Data (FWQAD)  
The Fast Write Quad Address and Data Command (FWQAD) provides a very fast write at both the highest  
frequency and fewest clock cycles. The 24-bit address is input on all four I/O’s, reducing the number of clock  
cycles. The data bytes to be written are also input on all four I/O’s following the address bits. The FWQAD  
f
command can operate at the highest frequency, SCK = 104MHz.  
The FWQAD command is entered by driving CS low and sending the command code (12h). Data are input  
on all four I/O’s and Writes continue as long as the memory is clocked. The command is terminated by bring-  
ing CS high.  
Figure 20 – Fast Write Quad Address and Data (FWQAD) Command Operation  
Clock Number  
1
4
2
0 - 7  
8 - 13  
14 - 15  
16 - n  
Name  
Description  
Fast Write Quad Address  
and Data  
2
FWQAD  
12h  
A23 - A0  
D7 - D0 every two clocks until CS high  
Notes:  
1. Clocks 0 - 7 are the command byte. All commands and address bits on I/O .  
0
2. Quad Mode address input. I/O remains input. I/O active inputs until CS returns high.  
0
1-3  
CS  
0
0
1
2
3
4
5
0
6
1
7
0
8
9
10  
11  
12  
13  
Mode 3  
SCK Mode 0  
24-Bit Address  
A15 - 8  
Instruction (12h)  
A23 - 16  
20 16  
A7 - 0  
0
IO0  
0
0
1
0
12  
8
4
IO1  
IO2  
IO3  
21 17  
22 18  
23 19  
13  
14  
15  
9
5
6
7
1
2
3
High Impedance  
High  
10  
11  
High  
(Low)  
CS  
13 14  
15  
16  
17  
18  
19  
20  
21  
SCK  
Data Bytes  
IO0  
IO1  
IO2  
IO3  
4
5
6
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
4
0
1
2
3
5
6
7
1
2
7
3
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Byte n  
Data Writes Continuously until CS high.  
37  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
QPI MODE  
QPI Mode is designed to reduce command entry overhead in an XIP environment. QPI mode allows the  
instruction code to be entered on all four I/O’s, which reduces the number of clock cycles required for com-  
mand entry to two from eight. Otherwise, all SPI or Quad SPI commands operate normally.  
In SPI or Quad SPI mode device operation is determined by which command is entered. To operate in QPI  
Mode, the device must be specifically placed into QPI Mode by invoking the Enable QPI Command. When  
in QPI Mode, the Status Register Bit 6 is set to 1 and will reset to 0 when either power is removed from the  
device or the QPI Mode is exited with an DQPI command.  
At power up, QPI mode is disabled.  
Table 10 – SPI Mode Command Structures in QPI Mode  
Clock Number  
1
0 - 1  
2 - 9  
10 - 17  
-
18 - 25  
-
26 - 33  
-
34 - n  
Name  
Description  
RDSR  
Read Status Register  
05h  
S7-S0  
-
WREN  
WRDI  
WRSR  
READ  
Write Enable  
Write Disable  
06h  
04h  
01h  
03h  
-
-
-
-
-
-
-
-
-
-
-
-
-
Write Status Register  
Read Data Bytes  
S7-S0  
A23-A16  
-
A15-A8  
A7-A0  
D7-D0 until CS high  
D7-D0 until  
CS high  
2
FREAD  
WRITE  
Fast Read Data Bytes  
Write Data Bytes  
08h  
02h  
A23-A16  
A23-A16  
A15-A8  
A15-A8  
A7-A0  
A7-A0  
M7 - M0  
D7-D0 until CS high  
SLEEP  
WAKE  
TDET  
RDID  
DQPI  
Enter Sleep Mode  
Exit Sleep Mode  
Tamper Detect  
Read ID  
B9h  
ABh  
17h  
4Bh  
FFh  
-
-
-
-
-
-
-
-
-
-
3
M7 - M0  
M7 - M0  
-
T7 - T0  
3
Device ID 40 bits  
Disable QPI  
-
-
-
-
Notes:  
1. Clocks 0 - 1 are the command bits while in QPI mode.  
2. M7 - M0 is the Mode Byte to Set/Reset XIP Mode. Set XIP Mode = EFh; Reset XIP Mode = FFh.  
3. Mode Byte must be FFh for TDET and RDID.  
38  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table 11 – Quad SPI Mode Command Structures in QPI Mode  
Clock Number  
1
0 - 1  
FFh  
2 - 9  
-
10 - 17  
18 - 25  
-
26 - 27  
-
28 - n  
Name  
Description  
DQPI  
Disable QPI  
-
-
D7-D0 until  
CS high  
Fast Read Quad  
Output  
2
FRQO  
6Bh  
32h  
A23-A16  
A23-A16  
A15-A8  
A7-A0  
A7-A0  
M7 - M0  
FWQD  
Fast Write Quad Data  
A15-A8  
D7-D0 until CS high  
Clock Number  
1
0 - 1  
2 - 3  
4 - 5  
6 - 7  
8 - 9  
10 - n  
Name  
Description  
D7-D0 until  
CS high  
Fast Read Quad Ad-  
dress and Data  
2
FRQAD  
EBh  
A23-A16  
A15-A8  
A7-A0  
M7 - M0  
Fast Write Quad Ad-  
dress and Data  
FWQAD  
12h  
A23-A16  
A15-A8  
A7-A0  
D7-D0 until CS high  
Notes:  
1. Clocks 0 - 1 are the command bits while in QPI mode.  
2. Mode Byte. Set/Reset XIP operating mode. See “Execute in Place (XIP) Modeon page 42.  
39  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Enable QPI (EQPI) Command  
The Enable QPI command is used to enter the device into QPI mode. The command code, 38h, is entered  
on the DI pin. The command is entered by driving CS low and sending the command code. The command is  
terminated by driving CS high. When in QPI Mode, the Status Register Bit 6 is set to “1and the device stays  
in QPI mode until a power-on reset or the Disable QPI command is entered.  
Figure 21 – Enable QPI Mode (EQPI) Command Operation  
Clock Number  
1
0 - 7  
8
9 - n  
Name  
Description  
EQPI  
Enable QPI Mode  
38h  
CS high  
In QPI Mode  
Notes:  
1. Clocks 0 - 7 are the command byte.  
CS  
0
0
1
0
2
3
4
5
0
6
0
7
0
Mode 3  
SCK Mode 0  
Instruction (38h)  
SI  
1
1
1
High Impedance  
SO  
40  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Disable QPI (DQPI) Command  
The Disable QPI command is used to exit QPI mode and return to the standard SPI/Quad SPI mode and set  
the Status Register Bit 6 to “0.  
The command code FFh is entered on all four IO’s in just two clock cycles as shown below. The command is  
entered by driving CS low and sending the command code. The command is terminated by driving CS high.  
Figure 22 – Disable QPI Mode (DQPI) Command Timing  
Clock Number  
1
0 - 1  
FFh  
2
9 - n  
Name  
Description  
DQPI  
Disable QPI Mode  
CS high  
Now in SPI / Quad SPI Mode  
Notes:  
1. Clocks 0 - 1 are the command byte on all four I/O.  
CS  
0
1
Mode 3  
SCK  
Mode 0  
Instruction (FFh)  
IO0  
IO1  
IO2  
IO3  
1
1
1
1
1
1
1
1
41  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
EXECUTE IN PLACE ꢀXIPꢁ MODE  
Execute in Place (XIP) mode provides faster read operations by not requiring a command code for each  
new starting address during consecutive reads. This improves random access time and eliminates the need  
to shadow code onto RAM for fast execution. The read commands supported in XIP mode are FREAD (SPI  
Mode), FRQO, and FRQAD (both Quad SPI Mode commands).  
XIP may be run when in QPI mode. Entering or exiting XIP mode will not affect other aspects of QPI mode  
operation. The device will stay in QPI mode until QPI is disabled with the DQPI command.  
XIP mode for these commands is Set or Reset by entering the Mode Byte as shown in “Table 12 – Mode Byte  
Definitions to Set/Reset XIP Modeon page 42 below.  
In XIP Mode it is possible to perform a series of reads beginning at different addresses without having to  
load the command code for every new starting address / CS cycle. XIP can be entered or exited during  
these commands at any time and in any sequence. If it is necessary to perform another operation, not  
supported by XIP, such as a write, then XIP must be exited before the new command code is entered for the  
desired operation.  
Table 12 – Mode Byte Definitions to Set/Reset XIP Mode  
XIP Operation  
Hex  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
1
1
0
1
1
Set/Continue  
EF  
1
1
1
1
1
1
1
1
Reset/Stop (Default)  
FF  
1
1
1
42  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table 13 – XIP Mode with FREAD Command  
Initial Command  
SPI Mode  
Clock Number  
1
0 - 7  
0 - 1  
8 - 31  
3 - 26  
32 - 39  
27 - 34  
40 - 47  
35 - 42  
48 - n  
43 - n  
1
QPI Mode  
2
FREAD  
Fast Read Data Bytes  
0Bh  
A23-A0  
M7 - M0  
Set XIP  
D7 - D0  
Read Next Byte  
Read Data  
Byte  
24-bit Address  
Repeat until CS goes high.  
3
Mode  
Notes:  
1. Command code eight bits.  
2. Mode Byte will Set/Reset the XIP mode. See “Table 12 – Mode Byte Definitions to Set/Reset XIP Modeon page 42 above  
for the Set/Reset XIP mode bit definitions.  
3. If the XIP mode is not Set on the initial command, the command operates in normal SPI Mode until CS high. And, on the next  
new address, the FREAD the command must be reentered. If XIP Mode has been Set during this initial command entry, the  
command still operates normally until CS goes high. But on the next CS low, the device remains in FREAD Command mode.  
No command is entered and the initial read address is entered on the first clock. See the table below.  
If XIP Set - Next CS Low  
Clock Number  
32 - 39  
1
Either SPI or QPI Mode  
0 - 23  
24 - 31  
40 - n  
FREAD  
Fast Read Data Bytes  
A23-A0  
M7 - M0  
D7 - D0  
Read Next Byte  
If XIP Mode is Set, the Command need  
not be reentered. Initial 24-bit ad-  
dress entry begins on the first clock.  
Set/Reset XIP  
Mode  
Read Data  
Byte  
24-bit Address  
Repeat until CS goes high.  
Notes:  
1. In XIP mode, the last command code sent remains in effect. The starting address is entered beginning on the first clock after  
CS low.  
2. If XIP Mode is Reset, the device is out of XIP mode and any command may be entered on the next access.  
43  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 23 – FREAD Command- Set XIP Mode - Initial Access  
CS  
0
1
2
3
4
5
6
7
8
9
10  
28  
29  
2
30  
1
31  
Mode 3  
SCK Mode 0  
Instruction (0Bh)  
24-Bit Address  
3
0
0
0
0
1
0
1
1
23  
MSB  
High Impedance  
22  
21  
0
SI  
LSB  
SO  
CS  
31  
32  
33  
34  
35  
36  
37  
38  
39 40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
SCK  
SI  
1
1
EFh Set XIP Mode  
0
1
1
1
0
1
1
1
LSB  
Read Data Byte  
Read Next Byte  
High Impedance  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO  
Data Clocked Out Continuously until CS high.  
Note:  
1. Initial FREAD access, XIP mode set for next access.  
Copyright © 2018 Everspin Technologies, Inc.  
44  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 24 – FREAD Command - XIP Mode Set - Next Access  
CS  
0
1
2
20  
21  
2
22  
1
23  
Mode 3  
SCK Mode 0  
24-Bit Address  
3
23  
MSB  
22  
21  
0
SI  
LSB  
High Impedance  
SO  
CS  
23  
24  
25  
26  
27  
28  
29  
30  
31 32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
SCK  
SI  
1
EFh Continue XIP Mode  
0
1
1
1
0
1
1
1
1
LSB  
Read Data Byte  
Read Next Byte  
High Impedance  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO  
Data Clocked Out Continuously until CS high.  
Note:  
1. Continue FREAD in XIP Mode after this access.  
45  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 25 – FREAD Command - XIP Mode Exit  
CS  
0
1
2
20  
21  
2
22  
1
23  
Mode 3  
SCK Mode 0  
24-Bit Address  
3
23  
MSB  
22  
21  
0
SI  
LSB  
High Impedance  
SO  
CS  
23  
24  
25  
26  
27  
28  
29  
30  
31 32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
SCK  
SI  
1
FFh Exit XIP Mode  
0
1
1
1
1
1
1
1
1
LSB  
Read Data Byte  
Read Next Byte  
High Impedance  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SO  
Data Clocked Out Continuously until CS high.  
Note:  
1. XIP Mode code FFh: Reset XIP Mode. After this access a comnmand must be entered on the next access. Any new command may be en-  
tered, including the original command.  
46  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table 14 – XIP Operation with FRQO Command  
Initial Command  
Quad SPI Mode  
QPI Mode  
Clock Number  
1
0 - 7  
0 - 1  
8 - 31  
2 - 25  
32 - 33  
26 - 27  
34 - 35  
28 - 29  
36 - n  
30 - n  
1
Fast Read Quad  
Output  
2
FRQO  
6Bh  
A23-A0  
M7 - M0  
Set XIP  
D7 - D0  
Read Next Byte  
Read Data  
Byte  
24-bit Address  
Repeat until CS goes high.  
3
Mode  
Notes:  
1. Command code eight bits.  
2. Mode Byte entered Set/Reset the XIP mode. See “Table 12 – Mode Byte Definitions to Set/Reset XIP Modeon page 42  
above for the Set/Reset XIP mode bit definitions.  
3. If the XIP mode is not set on the initial command, the command operates in normal SPI Mode until CS high. And, on the next  
FRQO the command must be reentered. If XIP has been set during this initial command entry, the command still operates  
normally until CS goes high. But on the next CS low, the device remains in FRQO Command mode, and the initial read ad-  
dress is entered on the first clock. See the table below.  
If XIP Set - Next CS Low  
Either Quad SPI or QPI Mode  
0 - 23  
24 - 25  
26 - 27  
D7 - D0  
28 - n  
Fast Read Quad  
FRQO Set  
Output  
A23-A0  
M7 - M0  
Read Next Byte  
If XIP Mode is Set, the Command  
need not be reentered. Initial 24-bit  
address entry begins on the first  
clock.  
Set/Reset XIP  
Mode  
24-bit Address  
Read Data Byte  
Repeat until CS goes high.  
Notes:  
1. In XIP operating mode, the last command code sent remains in effect and no command entry is required on the next access.  
47  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 26 – FRQO Command - Set XIP Mode - Initial Access  
CS  
0
1
2
3
4
5
6
7
8
9
10  
28  
29  
2
30  
1
31  
Mode 3  
SCK Mode 0  
Instruction (6Bh)  
24-Bit Address  
3
IO0  
0
1
1
0
1
0
1
1
23  
MSB  
22  
21  
0
LSB  
High Impedance  
IO1  
IO2  
IO3  
High  
High  
(Low)  
CS  
31 32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
SCK  
1,2  
EFh  
Set XIP  
Mode  
IO switches from Input to Output 2  
LSB  
IO0  
IO1  
IO2  
IO3  
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
1
1
1
0
1
1
1
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Data Clocked Out Continuously until CS high.  
Notes:  
1. Initial access, XIP Mode Byte set for next access.  
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.  
48  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 27 – FRQO Command - XIP Mode Set - Next Access  
CS  
0
1
2
20  
21  
2
22  
1
23  
Mode 3  
SCK Mode 0  
24-Bit Address  
3
IO0  
23  
MSB  
22  
21  
0
LSB  
High Impedance  
IO1  
IO2  
IO3  
High  
High  
(Low)  
CS  
23 24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
SCK  
1,2  
EFh  
Set (Continue)  
XIP  
2
IO switches from Input to Output  
Mode  
LSB  
IO0  
IO1  
IO2  
IO3  
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
0
1
1
1
1
1
1
1
0
5
6
7
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Data Clocked Out Continuously until CS high.  
Notes:  
1. Next access, set to continue XIP Mode.  
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.  
49  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 28 – FRQO Command - XIP Mode Exit  
CS  
0
1
2
20  
21  
2
22  
1
23  
Mode 3  
SCK Mode 0  
24-Bit Address  
3
IO0  
23  
MSB  
22  
21  
0
LSB  
High Impedance  
IO1  
IO2  
IO3  
High  
High  
(Low)  
CS  
23 24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
SCK  
1,2  
FFh  
Reset  
XIP  
Mode  
2
IO switches from Input to Output  
LSB  
IO0  
IO1  
IO2  
IO3  
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
1
1
0
1
1
1
1
1
1
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Data Clocked Out Continuously until CS high.  
Notes:  
1. XIP Mode Byte FFh. Exit XIP Mode.  
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.  
3. After this access a command must be entered on the next access. Any new command may be entered, including the original  
command.  
50  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table 15 – XIP Operation with FRQAD Command  
Initial Command  
Quad SPI Mode  
QPI Mode  
Clock Number  
1
0 - 7  
0 - 1  
8 - 13  
2 - 7  
14 - 15  
8 - 9  
16 - 17  
10 - 11  
18 - n  
12 - n  
1
Fast Read Quad Ad-  
dress and Data  
2
FRQAD  
EBh  
A23-A0  
M7 - M0  
Set XIP  
D7 - D0  
Read Next Byte  
Read Data  
Byte  
24-bit Address  
Repeat until CS goes high.  
3
Mode  
Notes:  
1. Command code eight bits.  
2. Mode Byte entered Set/Reset the XIP mode. See “Table 12 – Mode Byte Definitions to Set/Reset XIP Modeon page 42  
above for the Set/Reset XIP mode bit definitions.  
3. If the XIP mode is not set on the initial command, the command operates in normal SPI Mode until CS high. And, on the next  
FRQAD the command must be reentered. If XIP has been set during this initial command entry, the command still operates  
normally until CS goes high. But on the next CS low, the device remains in FREAD Command mode, and the initial read ad-  
dress is entered on the first clock. See the table below.  
If XIP Set - Next CS Low  
Either Quad SPI or QPI Mode  
0 - 5  
6 - 7  
8 - 9  
10 - n  
Fast Read Quad Ad-  
dress and Data  
FRQAD Set  
A23-A0  
M7 - M0  
D7 - D0  
Read Next Byte  
If XIP Mode is Set, the Command  
need not be reentered. Initial 24-bit  
address entry begins on the first  
clock.  
Set/Reset XIP  
Mode  
24-bit Address  
Read Data Byte  
Repeat until CS goes high.  
Notes:  
1. In XIP operating mode, the last command code sent remains in effect and no command entry is required on the next access.  
51  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 29 – FRQAD Command - Set XIP Mode - Initial Access  
CS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
Mode 3  
SCK Mode 0  
24-Bit Address  
A15 - 8  
Instruction (EBh)  
A23 - 16  
A7 - 0  
IO0  
1
1
1
0
1
0
1
1
12  
20  
16  
8
4
0
High Impedance  
IO1  
IO2  
IO3  
21 17  
22 18  
23 19  
13  
14  
15  
9
5
6
7
1
2
3
High  
High  
10  
11  
(Low)  
CS  
13 14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
SCK  
1
EFh  
IO switches from Input to Output2  
Set XIP  
Mode  
IO0  
IO1  
IO2  
IO3  
0
1
1
1
1
4
5
6
7
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
0
1
2
3
1
1
1
1
2
3
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Data Clocked Out Continuously until CS high.  
Notes:  
1. Initial access, XIP Mode Byte set for next access.  
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.  
52  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 30 – FRQAD Command - XIP Mode Set - Next Access  
CS  
0
1
2
3
4
5
Mode 3  
SCK Mode 0  
24-Bit Address  
A15 - 8  
A23 - 16  
A7 - 0  
0
IO0  
12  
20  
16  
8
4
IO1  
IO2  
IO3  
21 17  
22 18  
23 19  
13  
14  
15  
9
5
6
7
1
2
3
10  
11  
(Low)  
CS  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SCK  
1
EFh  
IO switches from Input to Output2  
Set (Continue)  
XIP Mode  
IO0  
0
1
1
1
1
1
1
1
4
5
6
7
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
0
IO1  
1
IO2  
2
IO3  
3
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Data Clocked Out Continuously until CS high.  
Notes:  
1. Next access, set to continue XIP Mode.  
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.  
53  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 31 – FRQAD Command - XIP Mode Exit  
CS  
0
1
2
3
4
5
Mode 3  
SCK Mode 0  
24-Bit Address  
A15 - 8  
A23 - 16  
A7 - 0  
0
IO0  
12  
20  
16  
8
4
IO1  
IO2  
IO3  
21 17  
22 18  
23 19  
13  
14  
15  
9
5
6
7
1
2
3
10  
11  
(Low)  
CS  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SCK  
1
FFh  
IO switches from Input to Output2  
Reset (Exit)  
XIP Mode  
IO0  
1
1
1
1
1
1
1
1
4
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
0
IO1  
5
6
7
1
IO2  
2
IO3  
3
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Data Clocked Out Continuously until CS high.  
Notes:  
1. XIP Mode Byte FFh. Exit XIP Mode.  
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.  
3. After this access a command must be entered on the next access. Any new command may be entered, including the original  
command.  
54  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
ELECTRICAL SPECIFICATIONS  
This device contains circuitry to protect the inputs against damage caused by high static voltages or electric  
fields. However, it is advised that normal precautions be taken to avoid application of any voltage greater  
than maximum rated voltages to these high-impedance (Hi-Z) circuits.  
The device also contains protection against external magnetic fields. Precautions should be taken to avoid  
application of any magnetic field more intense than the maximum field intensity specified in the maximum  
ratings.  
Table 16 – Absolute Maximum Ratings  
Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to  
recommended operating conditions. Exposure to excessive voltages or magnetic fields could affect device reliability.  
Symbol Parameter  
Conditions  
Value  
Unit  
1
V
Supply voltage  
-0.5 to 4.0  
V
DD  
1
V
I/O Bus Supply voltage  
-0.5 to 2.4  
V
V
DDQ  
1
V
Voltage on any pin  
-0.5 to V  
+ 0.5  
DDQ  
IN  
I
Output current per pin  
20  
mA  
°C  
OUT  
T
Temperature under bias  
Storage Temperature  
Commercial Grade  
-45 to 95  
BIAS  
T
stg  
-55 to 150  
260  
°C  
°C  
T
Lead temperature during solder (3 minute max)  
Lead  
H
Maximum magnetic field during write  
Write  
12,000  
12,000  
A/m  
A/m  
max_write  
Maximum magnetic field during read or  
standby  
H
Read or Standby  
max_read  
Notes:  
1. All voltages are referenced to V . The DC value of V must not exceed actual applied V by more than 0.5V. The AC value of  
SS  
IN  
DD  
V
must not exceed applied V by more than 2V for 10ns with I limited to less than 20mA.  
DD IN  
IN  
55  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table 17 – Operating Conditions  
Symbol  
Parameter  
Conditions  
Min  
Typical  
Max  
Unit  
V
Power supply voltage  
3.0  
3.3  
3.6  
V
DD  
V
I/O Bus Power supply voltage  
Input high voltage  
1.7  
1.4  
1.8  
2.0  
V
V
DDQ  
V
V
+ 0.2  
DDQ  
IH  
V
Input low voltage  
-0.2  
0
0.4  
70  
V
IL  
Commercial Grade  
°C  
°C  
°C  
Ambient temperature  
under bias  
T
Industrial Grade  
Extended Grade  
-40  
-40  
85  
A
105  
Table 18 – DC Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
I
Input leakage current  
-
-
-
2
μA  
μA  
V
IL  
I
Output leakage current  
Output low voltage  
Output high voltage  
2
0.4  
-
OL  
V
I
I
= 4mA  
OL  
OL  
V
= -100μA  
1.4  
V
OH  
OH  
56  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Table 19 – Power Supply Characteristics  
Symbol Parameter  
Conditions  
Typical  
Max  
Unit  
SPI @ 1 MHz  
5.0  
11  
mA  
SPI @ 40 MHz  
12  
-
17  
60  
mA  
mA  
I
Active Read Current  
DDR  
Quad SPI @  
104MHz  
@ 1 MHz  
9.0  
28  
25  
42  
mA  
mA  
@ 40 MHz  
I
Active Write Current  
DDW  
Quad SPI @  
104MHz  
-
-
100  
3
mA  
mA  
I
Active V  
Current  
Note 1  
DDQ  
DDQ  
AC Standby Current (CS High = V . No other  
restrictions on other inputs.)  
IH  
I
f ≤104MHz  
-
8
mA  
SB1  
AC Standby Current on V  
supply (CS High =  
DDQ  
I
f ≤104MHz  
f = 0 MHz  
-
-
-
-
1
3
mA  
mA  
μA  
SB1Q  
V . No other restrictions on other inputs.)  
IH  
I
CMOS Standby Current (CS High)  
SB2  
CMOS Standby Current on V  
High)  
Supply (CS  
DDQ  
I
f = 0 MHz  
10  
100  
SB2Q  
I
Standby Sleep Mode Current (CS High)  
Sleep Mode  
μA  
ZZ  
Note  
1.  
I
Conditions: Quad SPI at 104MHz, V  
= 2.0v, V = 1.8v, V = 0v.  
DDQ IH IL  
DDQ  
Table 20 – Capacitance  
Symbol Parameter  
Typical  
Max  
Unit  
1
1
C
Control input capacitance  
-
6
pF  
In  
C
Input/Output capacitance  
-
8
pF  
I/O  
Notes:  
1. ƒ = 1.0 MHz, dV = 3.0 V, T = 25 °C, periodically sampled rather than 100% tested.  
A
57  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
TIMING SPECIFICATIONS  
AC Measurement Conditions  
Table 21 – AC Measurement Conditions  
Parameter  
Value  
Unit  
Logic input timing measurement reference level  
Logic output timing measurement reference level  
Logic input pulse levels  
0.9  
V
0.9  
0 to 1.6  
2
V
V
ns  
Input rise/fall time  
Output load for low and high impedance parameters  
Output load for all other timing parameters  
See Figure 32  
See Figure 33  
Figure 32 – Output Load for Impedance Parameter Measurements  
Output  
RL = 50Ω  
VL = VDCQ /2  
Figure 33 – Output Load for all Other Parameter Measurements  
1.8ꢄ  
R1  
ꢀꢁꢂꢃꢁꢂ  
ꢅ0 ꢃꢆ  
R2  
58  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Power Up Timing  
To provide protection for data during initial power up, power loss or brownout, whenever V falls below  
DD  
V
or V  
falls below V  
the device cannot be selected (CS is restricted from going low) and the  
WIDD  
DDQ  
WIDDQ  
device is inhibited from Read or Write operations. See “Table 22 – Power-Up Delay Minimum Voltages and  
Timingbelow.  
Power Up Delay Time  
t
During initial power up or when recovering from brownout or power loss, a power up delay time ( PU)  
must be added to the time required for voltages to rise to their specified minimum voltages (V  
and  
DD(min)  
V
) before normal operations may commence. This time is required to insure that the device internal  
DDQ(min)  
voltages have stabilized. See “Table 22 – Power-Up Delay Minimum Voltages and Timingbelow.  
t
PU is measured from the time that both V and V  
have reached their specified minimum voltages. See  
DD  
DDQ  
“Figure 34 – Power-Up Timingfor an illustration of the timing.  
During initial startup or power loss recovery the CS pin should always track V  
(up to V  
+ 0.2 V) or  
DDQ  
DDQ  
t
V , whichever is lower, and remain high for the total startup time, PU. In most systems, this means that CS  
IH  
should be pulled up to V  
with a resistor. Any logic that drives other inputs or IOs should hold the signals  
DDQ  
at V  
until normal operation can commence.  
DDQ  
Table 22 – Power-Up Delay Minimum Voltages and Timing  
Symbol  
Parameter  
Min  
Unit  
V
Write Inhibit Voltage  
2.2  
V
WIDD  
V
I/O Write Inhibit Voltage  
Power Up Delay Time  
1.2  
V
WIDDQ  
t
PU  
400  
μs  
59  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 34 – Power-Up Timing  
BROWNOUT or  
POWER LOSS  
INITIAL  
POWER ON  
t
t
PU  
PU  
RECOVER  
TIME  
STARTUP  
TIME  
READ/WRITE operations  
inhibited  
READ/WRITE operations  
inhibited  
NORMAL  
OPERATION  
NORMAL  
OPERATION  
VDD  
VDD min  
VWIDD  
VDDQ  
VDDQ min  
VWIQQ  
Note: CS may not be enabled until tPU startup or recovery time is met.  
60  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
AC Timing Parameters  
Table 23 – AC Timing Parameters  
Symbol Parameter  
Min  
Typical  
Max  
Unit  
SCK Clock Frequency for all instructions except READ  
-
-
104  
MHz  
f
SCK  
SCK Clock freq for READ  
-
-
-
-
-
-
-
-
40  
50  
50  
-
MHz  
ns  
t
RI  
Input Rise Time  
-
t
RF  
Input Fall Time  
-
ns  
t
WH  
SCK High Time except READ  
SCK High Time READ  
SCK Low Time except READ  
SCK Low Time READ  
4
ns  
t
WHR  
11  
4
-
ns  
t
WL  
-
ns  
t
WLR  
12  
-
ns  
Synchronous Data Timing see Figures 35, 36, 37, 38  
t
CSS  
CS Setup Time  
5
5
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CSH  
CS Hold Time  
t
SU  
Data In Setup Time  
2
-
t
H
Data In Hold Time  
5
-
t
V
Output Valid  
-
7
-
t
HO  
Output Hold Time  
1.5  
10  
50  
t
CS  
CS High Time at end of all Cycles except Writes  
CS High Time at end of Write Cycles  
-
t
CSW  
-
61  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
AC Timing Parameters - Continued  
Symbol Parameter  
Min  
Typical  
Max  
Unit  
HOLD Timing see Figure 39  
t
HD  
HOLD Setup Time  
HOLD Hold Time  
2
2
-
-
-
-
-
-
ns  
ns  
ns  
ns  
t
CD  
t
LZ  
HOLD to Output Low Impedance  
HOLD to Output High Impedance  
-
-
12  
7
t
HZ  
Other Timing Specifications  
t
WPS  
WP Setup To CS Low  
WP Hold From CS High  
Sleep Mode Entry Time  
Sleep Mode Exit Time  
Output Disable Time  
5
5
-
-
-
-
-
-
-
-
ns  
ns  
μs  
μs  
ns  
t
WPH  
t
DP  
3
t
RDP  
-
400  
7
t
DIS  
-
62  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 35 – Synchronous Data Timing (READ)  
Figure 36 – Synchronous Data Timing Fast Read (FREAD)  
63  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 37 – Synchronous Data Timing (WRITE)  
t
CSW  
CS  
t
t
CSS  
CSH  
t
t
SCK  
WH  
WL  
t
t
SU  
H
SI  
Figure 38 – Synchronous Data Timing Fast Write Quad Data and  
Fast Write Quad Address and Data (FWQD and FWQAD)  
t
CSW  
CS  
t
t
CSS  
CSH  
t
t
SCK  
WH  
WL  
t
t
SU  
H
I/O  
64  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 39 – HOLD Timing  
CS  
t
t
CD  
CD  
SCK  
t
t
HD  
HD  
HOLD  
SO  
t
t
HZ  
LZ  
65  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
PART NUMBERS AND ORDERING  
Table 24 – Part Numbering System  
Mꢀꢁꢂꢃꢄ  
ꢘꢙꢉꢁꢐꢚꢀ ꢛꢃꢗꢀꢃꢍꢆꢓ ꢑꢉꢃꢇ ꢜꢝꢁꢞꢀꢃ MR  
ꢅꢆꢇꢀꢃꢈꢉꢊꢀ ꢋꢀꢆꢌꢍꢇꢄ Rꢀꢎꢍꢌꢍꢂꢆ ꢏꢀꢁꢐ ꢑꢉꢊꢒꢉꢓꢀ  
10Q 010 ꢁꢀ  
ꢔꢕꢍꢐ  
R
ꢖꢃꢉꢗꢀ  
MRꢂM ꢃꢄoꢅꢅꢆeꢇ  
10ꢈMꢉꢊ Qꢋꢌꢍ ꢁꢎꢏ ꢐꢌꢑiꢆꢒ  
1 Mꢓ  
ꢈ Mꢓ  
16Mꢓ  
ꢔo Revision  
Revision ꢂ  
Revision ꢕ  
MR  
10Q  
010  
0ꢈ0  
160  
ꢕꢆꢌnꢖ  
ꢀoꢑꢑeꢗꢘiꢌꢆ  
ꢏnꢍꢋsꢙꢗiꢌꢆ  
ꢟꢠꢙenꢍeꢍ  
0 ꢙo ꢚ0ꢛꢀ  
ꢜꢈ0 ꢙo 85ꢛꢀ  
ꢜꢈ0 ꢙo 105ꢛꢀ  
ꢕꢆꢌnꢖ  
16ꢜꢝin ꢁꢞꢏꢀ  
2ꢈꢜꢓꢌꢆꢆ ꢕꢢꢂ  
ꢁꢀ  
Mꢕ  
ꢄꢗꢌꢒ  
ꢕꢆꢌnꢖ  
R
ꢀꢁ  
ꢄꢌꢝe ꢌnꢍ Reeꢆ  
ꢀꢋsꢙoꢑeꢗ ꢁꢌꢑꢝꢆes  
Mꢌss ꢎꢗoꢍꢋꢘꢙion  
ꢕꢆꢌnꢖ  
Table 25 – Ordering Part Numbers  
Temp Grade Temperature  
Package  
Shipping Container  
Order Part Number  
Trays  
MR10Q010SC  
16-SOIC  
Tape and Reel  
Trays  
MR10Q010SCR  
MR10Q010MB  
MR10Q010MBR  
MR10Q010CSC  
MR10Q010CSCR  
MR10Q010CMB  
MR10Q010CMBR  
MR10Q010VSC  
MR10Q010VSCR  
MR10Q010VMB  
MR10Q010VMBR  
Commercial  
0 to 70°C  
24-BGA  
16-SOIC  
Tape and Reel  
Trays  
Tape and Reel  
Trays  
Industrial  
Extended  
-40 to 85°C  
24-BGA  
16-SOIC  
24-BGA  
Tape and Reel  
Trays  
Tape and Reel  
Trays  
-40 to 105°C  
Tape and Reel  
66  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
PACKAGE CHARACTERISTICS  
Table 26 – Thermal Resistance 16-pin SOIC  
All thermal resistance values are estimated by simulation.  
1
2
3
4
5
6
Θ
Velocity  
T
P
T Max  
Θ
Θ
JB  
A
D
J
JA  
JC  
m/s  
0
°C  
W
°C  
°C/W  
71.0  
58.1  
49.9  
47.7  
46.4  
1
2
3
64.5  
62.8  
61.8  
25  
0.792  
30.6  
31.6  
Notes:  
1. T - Ambient temperature.  
A
2. P - Power dissipation at maximum V and I .  
DDW  
D
DD  
3. T Max - Maximum junction temperature reached at maximum power dissipation.  
J
4.  
5.  
Θ
Θ
- Junction to ambient.  
- Junction to board.  
JA  
JB  
6.  
Θ
- Junction to package case.  
JC  
67  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 40 – 16-SOIC Package Outline  
e
ꢀ1  
ꢃ2  
ꢃ1  
ꢄ1  
ꢄꢂ  
Dimensions next page.  
68  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
16-SOIC Package Outline - Dimensions  
Symbol  
JEDEC MS - 013 (AA)  
Everspin POD 16L SOIC PKG OUTLINE  
DWG. 300 MIL (mm)  
issue (mm)  
Ref  
A
MIN  
-
NOM  
MAX  
2.65  
0.30  
-
MIN  
2.46  
NOM  
2.56  
MAX  
2.64  
0.29  
2.39  
0.51  
0.32  
10.46  
10.63  
7.59  
1.02  
-
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
-
0.127  
2.29  
0.22  
-
2.34  
-
0.51  
0.33  
0.35  
0.41  
c
-
0.23  
0.25  
D
10.30 BSC  
10.30 BSC  
7.50 BSC  
-
10.21  
10.16  
7.44  
10.34  
10.31  
7.52  
E
E1  
L
0.40  
0°  
1.27  
8°  
0.61  
0.81  
L1  
e
1.40 REF  
1.27 BSC  
-
N/A  
1.27 BSC  
5°  
Θ
0°  
8°  
69  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
Figure 41 – 24 Ball BGA Package Outline  
Copyright © 2018 Everspin Technologies, Inc.  
70  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
REVISION HISTORY  
Revision  
Description of Change  
Date  
1.7  
February 26, 2013 Initial Release Preliminary.  
1.8  
1.9  
March 7, 2013  
May 14, 2013  
Revision to Table 5. Revision to HOLD timing Table 15. Corrected package illustration.  
Added QPI Commands.  
Removed QPI Commands, TDET and reference to XIP. These features will be released in a  
future product revision.  
2.0  
October 24, 2013  
Major revision. Complete restructure of command section. Added QPI Mode, TDET,  
TDETX commands and XIP operating mode commands, instructions and timing diagrams.  
Removed Preliminary watermark from all pages. Removed Max and Typical values for  
3.0  
April 17, 2014  
V
and V  
.
WIDD  
WIDDQ  
Added I  
, I , I  
, I  
values. Revisions to Command Descriptions for FRQO and  
SB1Q SB2 SB2Q DDQ  
December 17,  
2014  
4.0  
FRQAD. Revisions to Note 3 for Command Timing Diagrams for FRQO and FRQAD. Added  
package thermal resistance table. I values in Table 8 have been updated.  
DD  
t
t
t
4.1  
4.2  
4.3  
5.0  
March 20, 2015  
May 19, 2015  
June 11, 2015  
Revised Table 23: CS updated. V (min) now unspecified. HO (min) revised to 1.5ns.  
Revised Everspin contact information.  
Corrected Japan Sales Office telephone number.  
August 12, 2015 Added 6x8mm 24-ball BGA package outline and dimensions.  
t
t
Table 23: Revised WHR = 11ns; WLR = 12ns. 16-SOIC package options released to MP.  
24-BGA now qualified.  
5.1  
January 26, 2017  
t
t
5.2  
5.3  
5.4  
5.5  
5.6  
February 1, 2017 Figures 35 and 36 - Synchronous Data Timing. Added timing detail for V and HO.  
December 4, 2017 Figure 40 updated with new dimensions  
January 26, 2018 Added extended temperature range to the data sheet.  
March 15, 2018  
June 1, 2018  
Added extended range to Table 17  
Updated table 24  
71  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  
MR10Q010  
HOW TO REACH US  
Information in this document is provided solely to enable system and soft-  
ware implementers to use Everspin Technologies products. There are no  
express or implied licenses granted hereunder to design or fabricate any  
integrated circuit or circuits based on the information in this document.  
Everspin Technologies reserves the right to make changes without further  
notice to any products herein. Everspin makes no warranty, representa-  
tion or guarantee regarding the suitability of its products for any particu-  
lar purpose, nor does Everspin Technologies assume any liability arising  
out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential  
or incidental damages. “Typical” parameters, which may be provided in  
Everspin Technologies data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All  
operating parameters including “Typicals” must be validated for each cus-  
tomer application by customer’s technical experts. Everspin Technologies  
does not convey any license under its patent rights nor the rights of oth-  
ers. Everspin Technologies products are not designed, intended, or au-  
thorized for use as components in systems intended for surgical implant  
into the body, or other applications intended to support or sustain life, or  
for any other application in which the failure of the Everspin Technologies  
product could create a situation where personal injury or death may oc-  
cur. Should Buyer purchase or use Everspin Technologies products for any  
such unintended or unauthorized application, Buyer shall indemnify and  
hold Everspin Technologies and its officers, employees, subsidiaries, affili-  
ates, and distributors harmless against all claims, costs, damages, and ex-  
penses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that Everspin Technologies  
was negligent regarding the design or manufacture of the part. Everspin™  
and the Everspin logo are trademarks of Everspin Technologies, Inc. All  
other product or service names are the property of their respective owners.  
Contact Information:  
How to Reach Us:  
Home Page:  
www.everspin.com  
World Wide Information Request  
WW Headquarters - Chandler, AZ  
5670 W. Chandler Blvd., Suite 100  
Chandler, Arizona 85226  
Tel: +1-877-480-MRAM (6726)  
Local Tel: +1-480-347-1111  
Fax: +1-480-347-1175  
support@everspin.com  
orders@everspin.com  
sales@everspin.com  
Europe, Middle East and Africa  
Everspin Europe Support  
support.europe@everspin.com  
Japan  
Everspin Japan Support  
support.japan@everspin.com  
Asia Pacific  
Copyright © 2018 Everspin Technologies, Inc.  
Everspin Asia Support  
support.asia@everspin.com  
72  
Copyright © 2018 Everspin Technologies, Inc.  
MR10Q010 Revision 5.6, 6/2018  

相关型号:

MR10Q010MBR

1 Mb High Speed Quad SPI MRAM
EVERSPIN

MR10Q010SC

1 Mb High Speed Quad SPI MRAM
EVERSPIN

MR10Q010SCR

1 Mb High Speed Quad SPI MRAM
EVERSPIN

MR10Q010VMB

1 Mb High Speed Quad SPI MRAM
EVERSPIN

MR10Q010VMBR

1 Mb High Speed Quad SPI MRAM
EVERSPIN

MR10Q010VSC

1 Mb High Speed Quad SPI MRAM
EVERSPIN

MR10Q010VSCR

1 Mb High Speed Quad SPI MRAM
EVERSPIN

MR10V107M5X7

Ultra - Miniaturized Radial Capacitors
ETC

MR10V227M6.3X7

Ultra - Miniaturized Radial Capacitors
ETC

MR10V336M4X7

Ultra - Miniaturized Radial Capacitors
ETC

MR10V476M4X7

Ultra - Miniaturized Radial Capacitors
ETC

MR10W472-FBL

Sulfuration resistant ASTM B-809 60C 500 hrs
WALSIN