MR25H40CDFR [EVERSPIN]

50MHz/20ns tSCK 4Mb SPI Interface MRAM / 40MHz/25ns tSCK 4Mb SPI Interface MRAM;
MR25H40CDFR
型号: MR25H40CDFR
厂家: Everspin Technologies    Everspin Technologies
描述:

50MHz/20ns tSCK 4Mb SPI Interface MRAM / 40MHz/25ns tSCK 4Mb SPI Interface MRAM

静态存储器 光电二极管 内存集成电路
文件: 总30页 (文件大小:1649K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MR20H40 / MR25H40  
t
MR20H40 - 50MHz/20ns SCK 4Mb SPI Interface MRAM  
t
MR25H40 - 40MHz/25ns SCK 4Mb SPI Interface MRAM  
For more information on product options, see Table 16 – Ordering Part Numbers” on page 25.  
FEATURES  
No write delays  
Unlimited write endurance  
Data retention greater than 20 years  
Automatic data protection on power loss  
Fast, simple SPI interface, up to 50 MHz clock rate with MR20H40.  
3.0 to 3.6 Volt power supply range  
Low-current sleep mode  
8-DFN  
Commercial (0 to 70°C), Industrial (-40 to 85°C), Extended (-40 to 105°C), and  
AEC-Q100 Grade 1 (-40 to 125°C) temperature range options.  
8-DFN Small Flag  
Available in 8-pin DFN or 8-pin DFN Small Flag, RoHS-compliant packages.  
Direct replacement for serial EEPROM, Flash, and FeRAM  
MSL Level 3  
RoHS  
DESCRIPTION  
MR2xH40 is a family of 4,194,304-bit magnetoresistive random access memory (MRAM) devices  
organized as 524,288 words of 8 bits. They are the ideal memory solution for applications that must  
store and retrieve data and programs quickly using a small number of I/O pins. They have serial EE-  
PROM and serial Flash compatible read/write timing with no write delays and unlimited read/write  
endurance. Unlike other serial memories, with the MR2xH40 family both reads and writes can occur  
randomly in memory with no delay between writes.  
The MR2xH40 family provides highly reliable data storage over a wide range of temperatures. The  
MR20H40 (50MHz) is offered with Industrial (-40° to 85 °C) range. The MR25H40 (40MHz) is offered  
with Commercial (0 to 70°C), Industrial (-40° to 85 °C), Extended (-40 to 105°C), and AEC-Q100 Grade  
1 (-40°C to 125 °C) operating temperature range options.  
Both are available in a 5 x 6mm, 8-pin DFN package. The pinout is compatible with serial SRAM,  
EEPROM, Flash, and FeRAM products.  
1
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
TABLE OF CONTENTS  
OVERVIEW ............................................................................................................................................5  
Figure 1 – Block Diagram........................................................................................................................................... 5  
System Configuration .....................................................................................................................5  
Figure 2 – System Configuration............................................................................................................................. 5  
Pin Functions ...................................................................................................................................6  
Figure 3 – DFN Package Pin Diagram (Top View).............................................................................................. 6  
Table 1 – Pin Functions............................................................................................................................................... 6  
SPI COMMUNICATIONS PROTOCOL...................................................................................................7  
Command Codes..............................................................................................................................7  
Table 2 – Command Codes ....................................................................................................................................... 7  
Status Register, Memory Protection and Block Write Protection................................................8  
Table 3 – Status Register Bit Assignments........................................................................................................... 8  
Memory Protection Modes.............................................................................................................8  
Table 4 – Memory Protection Modes .................................................................................................................... 8  
Block Protection Modes..................................................................................................................9  
Table 5 – Block Memory Write Protection............................................................................................................ 9  
Read Status Register (RDSR)........................................................................................................ 10  
Figure 4 – Read Status Register (RDSR) Timing................................................................................................10  
Write Enable (WREN).................................................................................................................... 10  
Figure 5 – Write Enable (WREN) Timing..............................................................................................................10  
Write Disable (WRDI).................................................................................................................... 11  
Figure 6 – Write Disable (WRDI) Timing..............................................................................................................11  
Write Status Register (WRSR) ...................................................................................................... 11  
Figure 7 – Write Status Register (WRSR) Timing ..............................................................................................11  
Read Data Bytes (READ) ............................................................................................................... 12  
Figure 8 – Read Data Bytes (READ) Timing........................................................................................................12  
2
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
Table of Contents (Cont’d)  
Write Data Bytes (WRITE)............................................................................................................. 12  
Figure 9 – Write Data Bytes (WRITE) Timing......................................................................................................13  
Enter Sleep Mode (SLEEP)............................................................................................................ 13  
Figure 10 – Enter Sleep Mode (SLEEP) Timing..................................................................................................13  
Exit Sleep Mode (WAKE)............................................................................................................... 14  
Figure 11 – Exit Sleep Mode (WAKE) Timing.....................................................................................................14  
ELECTRICAL SPECIFICATIONS ......................................................................................................... 15  
Absolute Maximum Ratings ........................................................................................................ 15  
Table 6 – Absolute Maximum Ratings ..............................................................................................................15  
Table 7 – Operating Conditions.............................................................................................................................16  
Table 8 – DC Characteristics....................................................................................................................................16  
Table 9 – Power Supply Characteristics..............................................................................................................17  
TIMING SPECIFICATIONS ................................................................................................................. 18  
Capacitance................................................................................................................................... 18  
Table 10 – Capacitance.............................................................................................................................................18  
AC Measurement Conditions....................................................................................................... 18  
Table 11 – AC Measurement Conditions............................................................................................................18  
Figure 12 – Output Load for Impedance Parameter Measurements .......................................................18  
Figure 13 – Output Load for all Other Parameter Measurements.............................................................18  
Power Up Timing .......................................................................................................................... 19  
Table 12 – Power-Up Timing...................................................................................................................................19  
Figure 14 – Power-Up Timing................................................................................................................................19  
AC Timing Parameters.................................................................................................................. 20  
f
Table 13 – MR20H40 ( SCK = 50MHz) AC Timing Parameters.....................................................................20  
f
Table 14 – MR25H40 ( SCK = 40MHz) AC Timing Parameters.....................................................................21  
3
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
Table of Contents (Cont’d)  
Figure 15 – Synchronous Data Timing................................................................................................................23  
Figure 16 – HOLD Timing........................................................................................................................................23  
PART NUMBERS AND ORDERING .................................................................................................... 24  
Table 15 – Part Numbering System......................................................................................................................24  
Table 16 – Ordering Part Numbers.......................................................................................................................25  
PACKAGE OUTLINE DRAWINGS....................................................................................................... 26  
Figure 17 – DFN Package Outline........................................................................................................................26  
Figure 18 – DFN Small Flag Package....................................................................................................................27  
REVISION HISTORY ........................................................................................................................... 28  
HOW TO REACH US ........................................................................................................................... 29  
4
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
OVERVIEW  
The MR2xH40 family is an SPI interface MRAM family with a memory array logically organized as 512Kx8  
using the four pin interface of chip select (CS), serial input (SI), serial output (SO) and serial clock (SCK) of the  
serial peripheral interface (SPI) bus. The MRAM implements a subset of commands common to SPI EEPROM  
and SPI Flash components. This allows the SPI MRAM to replace these components in the same socket  
and interoperate on a shared SPI bus. The SPI MRAM offers superior write speed, unlimited endurance, low  
standby & operating power, and simple, reliable data retention compared to other serial memory alterna-  
tives.  
Figure 1 – Block Diagram  
Instruction Decode  
Clock Generator  
Control Logic  
WP  
CS  
HOLD  
SCK  
Write Protect  
512Kb x 8  
MRAM ARRAY  
Instruction Register  
19  
8
Address Register  
Counter  
SO  
Data I/O Register  
SI  
4
Nonvolatile Status  
Register  
System Configuration  
Single or multiple devices can be connected to the bus as shown in Figure 2. Pins SCK, SO and SI are com-  
mon among devices. Each device requires CS and HOLD pins to be driven separately.  
Figure 2 – System Configuration  
SCK  
MOSI  
MISO  
SO  
SI  
SCK  
SO  
SI  
SCK  
SPI  
EVERSPIN SPI MRAM 1  
EVERSPIN SPI MRAM 2  
Micro Controller  
CS  
HOLD  
CS  
HOLD  
CS  
1
HOLD  
1
2
CS  
2
HOLD  
MOSI = Master Out Slave In  
MISO = Master In Slave Out  
5
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
Pin Functions  
Figure 3 – DFN Package Pin Diagram (Top View)  
1
8
CS  
V
DD  
2
3
4
7
6
5
HOLD  
SCK  
SI  
SO  
WP  
V
SS  
Table 1 – Pin Functions  
Signal  
Name  
Pin I/O  
Function  
Description  
An active low chip select for the serial MRAM. When chip select is high, the  
memory is powered down to minimize standby power, inputs are ignored  
and the serial output pin is Hi-Z. Multiple serial memories can share a com-  
mon set of data pins by using a unique chip select for each memory.  
CS  
1
2
Input  
Chip Select  
The data output pin is driven during a read operation and remains Hi-Z at  
all other times. SO is Hi-Z when HOLD is low. Data transitions on the data  
output occur on the falling edge of SCK.  
SO  
Output  
Input  
Serial Output  
A low on the write protect input prevents write operations to the Status  
Register.  
WP  
3
4
Write Protect  
Ground  
Refer-  
ence  
V
Power supply ground pin.  
SS  
All data is input to the device through this pin. This pin is sampled on the  
rising edge of SCK and ignored at other times. SI can be tied to SO to create  
a single bidirectional data bus if desired.  
SI  
5
Input  
Input  
Serial Input  
Synchronizes the operation of the MRAM. The clock can operate up to 50  
MHz to shift commands, address, and data into the memory. Inputs are  
captured on the rising edge of clock. Data outputs from the MRAM occur  
on the falling edge of clock. The serial MRAM supports both SPI Mode 0  
(CPOL=0, CPHA=0) and Mode 3 (CPOL=1, CPHA=1). In Mode 0, the clock is  
normally low. In Mode 3, the clock is normally high. Memory operation is  
static so the clock can be stopped at any time.  
SCK  
6
Serial Clock  
A low on the Hold pin interrupts a memory operation for another task.  
When HOLD is low, the current operation is suspended. The device will  
ignore transitions on the CS and SCK when HOLD is low. All transitions of  
HOLD must occur while CS is low.  
HOLD  
7
8
Input  
Hold  
V
Supply  
Power Supply  
Power supply voltage from +3.0 to +3.6 volts.  
DD  
6
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
SPI COMMUNICATIONS PROTOCOL  
The MR2xH40 can be operated in either SPI Mode 0 (CPOL=0, CPHA =0) or SPI Mode 3 (CPOL=1, CPHA=1).  
For both modes, inputs are captured on the rising edge of the clock and data outputs occur on the falling  
edge of the clock. When not conveying data, SCK remains low for Mode 0; while in Mode 3, SCK is high.  
The memory determines the mode of operation (Mode 0 or Mode 3) based upon the state of the SCK when  
CS falls.  
All memory transactions start when CS is brought low to the memory. The first byte is a command code.  
Depending upon the command, subsequent bytes of address are input. Data is either input or output.  
There is only one command performed per CS active period. CS must go inactive before another command  
can be accepted. To ensure proper part operation according to specifications, it is necessary to terminate  
each access by raising CS at the end of a byte (a multiple of 8 clock cycles from CS dropping) to avoid partial  
or aborted accesses.  
Command Codes  
Table 2 – Command Codes  
Instruction  
Description  
Binary Code  
Hex Code  
Address Bytes  
Data Bytes  
WREN  
Write Enable  
0000 0110  
06h  
0
0
WRDI  
Write Disable  
Read Status Register  
Write Status Register  
Read Data Bytes  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
1011 1001  
1010 1011  
04h  
05h  
01h  
03h  
02h  
B9h  
ABh  
0
0
0
3
3
0
0
0
1
RDSR  
1
WRSR  
READ  
WRITE  
SLEEP  
WAKE  
1
1 to ∞  
1 to ∞  
0
Write Data Bytes  
Enter Sleep Mode  
Exit Sleep Mode  
0
Note:  
1. An RDSR command cannot immediately follow a READ command. If an RDSR command immediately follows a READ com-  
mand, the output data will not be correct. Any other sequence of commands is allowed. If an RDSR command is required  
immediately following a READ command, it is necessary that another command be inserted before the RDSR is executed.  
Alternatively, two successive RDSR commands can be issued following the READ command. The second RDSR will output the  
proper state of the Status Register.  
7
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
Status Register, Memory Protection and Block Write Protection  
The status register consists of the 8 bits listed in Table 3. As seen in Table 4, the Status Register Write Disable  
bit (SRWD) is used in conjunction with bit 1 (WEL) and the Write Protection pin (WP) to provide hardware  
memory block protection. Bits BP0 and BP1 define the memory block arrays that are protected as described  
in Table 5. The fast writing speed of the MR2xH40 does not require write status bits. The state of bits 6,5,4,  
and 0 can be user modified and do not affect memory operation. All bits in the status register are pre-set  
from the factory in the “0state.  
Table 3 – Status Register Bit Assignments  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SRWD  
Don’t Care Don’t Care Don’t Care  
BP1  
BP0  
WEL  
Don’t Care  
Memory Protection Modes  
When WEL is reset to 0, writes to all blocks and the status register are protected. When WEL is set to 1, BP0  
and BP1 determine which memory blocks are protected. While SRWD is reset to 0 and WEL is set to 1,  
status register bits BP0 and BP1 can be modified. Once SRWD is set to 1, WP must be high to modify SRWD,  
BP0 and BP1.  
Table 4 – Memory Protection Modes  
Status  
WEL  
SRWD  
WP  
Protected Blocks  
Unprotected Blocks  
Register  
Protected  
Writable  
0
1
1
1
X
0
1
1
X
X
Protected  
Protected  
Protected  
Protected  
Protected  
Writable  
Writable  
Writable  
Low  
High  
Protected  
Writable  
8
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
Block Protection Modes  
The memory enters hardware block protection when the WP input is low and the Status Register Write Dis-  
able (SRWD) bit is set to 1. The memory leaves hardware block protection only when the WP pin goes high.  
While WP is low, the write protection blocks for the memory are determined by the status register bits BP0  
and BP1 and cannot be modified without taking the WP signal high again.  
If the WP signal is high (independent of the status of SRWD bit), the memory is in software protection mode.  
This means that block write protection is controlled solely by the status register BP0 and BP1 block write pro-  
tect bits and this information can be modified using the WRSR command.  
Table 5 – Block Memory Write Protection  
Status Register  
Memory Contents  
BP1  
BP0  
Protected Area  
Unprotected Area  
0
0
None  
All Memory  
0
1
Upper Quarter  
Lower Three-Quarters  
1
1
0
1
Upper Half  
All  
Lower Half  
None  
9
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
Read Status Register (RDSR)  
The Read Status Register (RDSR) command allows the Status Register to be read. The Status Register can be  
read to check the status of write enable latch bit, status register write protect bit, and block write protect  
bits. For MR2xH40, the write in progress bit (bit 0) is not written by the memory because there is no write  
delay. The RDSR command is entered by driving CS low, sending the command code, and then driving CS  
high. An RDSR command cannot immediately follow a READ command. If an RDSR command immediately  
follows a READ command, the output data will not be correct. Any other sequence of commands is allowed.  
If an RDSR command is required immediately following a READ command, it is necessary that another com-  
mand be inserted before the RDSR is executed. Alternatively, two successive RDSR commands can be issued  
following the READ command. The second RDSR will output the proper state of the Status Register.  
Figure 4 – Read Status Register (RDSR) Timing  
CS  
Mode 3  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Mode 0  
SCK  
0
0
0
0
0
1
0
1
SI  
MSB  
Status Register Out  
High Impedance  
High Z  
SO  
7
6
5
4
3
2
1
0
MSB  
Write Enable (WREN)  
Figure 5 – Write Enable (WREN) Timing  
CS  
Mode 3  
Mode 0  
Mode 3  
0
1
2
3
4
5
6
7
SCK  
Mode 0  
Instruction (06h)  
SI  
0
0
0
0
0
1
1
0
High Impedance  
SO  
The Write Enable (WREN) command sets the Write Enable Latch (WEL) bit in the status register (bit 1). The  
Write Enable Latch must be set prior to writing either bit in the status register or the memory. The WREN  
command is entered by driving CS low, sending the command code, and then driving CS high.  
10  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
Write Disable (WRDI)  
The Write Disable (WRDI) command resets the Write Enable Latch (WEL) bit in the status register (bit 1) to 0.  
This prevents writes to status register or memory. The WRDI command is entered by driving CS low, sending  
the command code, and then driving CS high.  
The Write Enable Latch (WEL) is reset to 0 on power-up or when the WRDI command is completed.  
Figure 6 – Write Disable (WRDI) Timing  
CS  
Mode 3  
Mode 0  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
SCK  
Instruction (04h)  
0
0
0
0
0
1
0
0
SI  
High Impedance  
SO  
Write Status Register (WRSR)  
The Write Status Register (WRSR) command allows new values to be written to the Status Register. The  
WRSR command is not executed unless the Write Enable Latch (WEL) has been set to 1 by executing a WREN  
command while pin WP and the Status Register SRWD (Bit 7) correspond to values that make the status reg-  
ister writable as seen in Table 4 on page 8. Status Register bits are non-volatile with the exception of the  
WEL which is reset to 0 upon power cycling.  
The WRSR command is entered by driving CS low, sending the command code and status register write data  
byte, and then driving CS high.  
Figure 7 – Write Status Register (WRSR) Timing  
CS  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SCK  
Instruction (01h)  
Status Register In  
0
0
0
0
0
0
0
1
7
6
5
4
3
2
1
0
SI  
MSB  
High Impedance  
SO  
11  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
Read Data Bytes (READ)  
The Read Data Bytes (READ) command allows data bytes to be read starting at an address specified by the  
24-bit address. Only address bits 0-18 are decoded by the memory. The data bytes are read out sequentially  
from memory until the read operation is terminated by bringing CS high. The entire memory can be read in  
a single command. The address counter will roll over to 0000H when the address reaches the top of memo-  
ry.  
The READ command is entered by driving CS low and sending the command code. The memory drives the  
read data bytes on the SO pin. Reads continue as long as the memory is clocked. The command is termi-  
nated by bringing CS high.  
Figure 8 – Read Data Bytes (READ) Timing  
CS  
0
1
2
3
4
5
6
7
8
9
10  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
SCK  
Instruction (03h)  
24-Bit Address  
3
0
0
0
0
0
0
1
1
23  
MSB  
High Impedance  
22  
21  
2
1
0
SI  
Data Out 1  
Data Out 2  
7
6
5
4
3
2
1
0
7
SO  
MSB  
Write Data Bytes (WRITE)  
The Write Data Bytes (WRITE) command allows data bytes to be written starting at an address specified by  
the 24-bit address. Only address bits 0-18 are decoded by the memory. The data bytes are written sequen-  
tially in memory until the write operation is terminated by bringing CS high. The entire memory can be  
written in a single command. The address counter will roll over to 0000H when the address reaches the top  
of memory.  
Unlike EEPROM or Flash Memory, MRAM can write data bytes continuously at its maximum rated clock speed  
without write delays or data polling. Back to back WRITE commands to any random location in memory can  
be executed without write delay. MRAM is a random access memory rather than a page, sector, or block  
organized memory so it is ideal for both program and data storage.  
The WRITE command is entered by driving CS low, sending the command code, and then sequential write  
data bytes. Writes continue as long as the memory is clocked. The command is terminated by bringing CS  
high.  
12  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
Figure 9 – Write Data Bytes (WRITE) Timing  
CS  
0
1
2
3
4
5
6
7
8
9
10  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
SCK  
Instruction (02h)  
24-Bit Address  
3
0
0
0
0
0
0
1
0
23  
MSB  
High Impedance  
22  
21  
2
1
0
7
6
5
4
3
2
1
0
SI  
MSB  
SO  
CS  
Mode 3  
Mode 0  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
SCK  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SI  
MSB  
MSB  
High Impedance  
SO  
Enter Sleep Mode (SLEEP)  
The Enter Sleep Mode (SLEEP) command turns off all MRAM power regulators in order to reduce the overall  
chip standby power to 15 μA typical. The SLEEP command is entered by driving CS low, sending the com-  
t
mand code, and then driving CS high. The standby current is achieved after time, DP. If power is removed  
when the part is in sleep mode, upon power restoration, the part enters normal standby. The only valid  
command following SLEEP mode entry is a WAKE command.  
Figure 10 – Enter Sleep Mode (SLEEP) Timing  
CS  
t DP  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
SCK  
Instruction (B9h)  
1
0
1
1
1
0
0
1
SI  
Active Current  
Standby Current  
Sleep Mode Current  
SO  
13  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
Exit Sleep Mode (WAKE)  
The Exit Sleep Mode (WAKE) command turns on internal MRAM power regulators to allow normal operation.  
The WAKE command is entered by driving CS low, sending the command code, and then driving CS high.  
t
t
The memory returns to standby mode after RDP. The CS pin must remain high until the RDP period is over.  
WAKE must be executed after sleep mode entry and prior to any other command.  
Figure 11 – Exit Sleep Mode (WAKE) Timing  
CS  
t RDP  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
SCK  
Instruction (ABh)  
1
0
1
0
1
0
1
1
SI  
Sleep Mode Current  
Standby Current  
SO  
14  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
This device contains circuitry to protect the inputs against damage caused by high static voltages or electric  
fields. However, it is advised that normal precautions be taken to avoid application of any voltage greater  
than maximum rated voltages to these high-impedance (Hi-Z) circuits.  
The device also contains protection against external magnetic fields. Precautions should be taken to avoid  
application of any magnetic field more intense than the maximum field intensity specified in the maximum  
ratings.  
Table 6 – Absolute Maximum Ratings  
Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to  
recommended operating conditions. Exposure to excessive voltages or magnetic fields could affect device reliability.  
Symbol Parameter  
Conditions  
Value  
Unit  
2
V
Supply voltage  
-0.5 to 4.0  
V
DD  
2
V
Voltage on any pin  
-0.5 to V + 0.5  
V
mA  
W
IN  
DD  
I
Output current per pin  
20  
OUT  
3
P
Package power dissipation  
0.600  
D
Commercial  
-10 to 85  
-45 to 95  
°C  
Industrial  
°C  
T
Temperature under bias  
Storage Temperature  
BIAS  
Extended  
-45 to 115  
-45 to 135  
-55 to 150  
260  
°C  
°C  
°C  
°C  
AEC-Q100 Grade 1  
T
stg  
T
Lead temperature during solder (3 minute max)  
Lead  
H
Maximum magnetic field during write  
Write  
12,000  
12,000  
A/m  
A/m  
max_write  
Maximum magnetic field during read or  
standby  
H
Read or Standby  
max_read  
Notes:  
1. All voltages are referenced to V . The DC value of V must not exceed actual applied V by more than 0.5V. The AC value of  
SS  
IN  
DD  
V
must not exceed applied V by more than 2V for 10ns with I limited to less than 20mA.  
IN  
DD IN  
2. Power dissipation capability depends on package characteristics and use environment.  
15  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
Table 7 – Operating Conditions  
Symbol  
Parameter  
Temp Grade  
Min  
Max  
Unit  
V
Power supply voltage  
3.0  
3.6  
V
DD  
V
Input high voltage  
Input low voltage  
2.2  
V
+ 0.3  
V
V
IH  
DD  
V
-0.5  
0.8  
IL  
Commercial  
Industrial  
0
70  
85  
°C  
°C  
°C  
°C  
-40  
-40  
-40  
T
Ambient temperature under bias  
A
Extended  
105  
125  
1
AEC-Q100 Grade 1  
Notes:  
1. AEC-Q100 Grade 1 temperature profile assumes 10 percent duty cycle at maximum temperature (2 years out of 20-year life.)  
Table 8 – DC Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
I
Input leakage current  
-
1
μA  
LI  
I
Output leakage current  
Output low voltage  
-
-
1
μA  
V
LO  
I
I
I
I
= +4 mA  
0.4  
OL  
V
OL  
= +100 μA  
-
V
+ 0.2v  
V
OL  
SS  
= -4 mA  
2.4  
-
-
V
OH  
V
Output high voltage  
OH  
= -100 μA  
V
- 0.2  
V
OH  
DD  
16  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
Table 9 – Power Supply Characteristics  
Symbol Parameter  
Conditions  
Typical  
Max  
Unit  
@ 1 MHz  
5.0  
11  
mA  
I
Active Read Current  
@ 40 MHz  
@ 50MHz  
@ 1 MHz  
12  
13.8  
9.0  
28  
17  
18.5  
25  
mA  
mA  
mA  
mA  
mA  
μA  
DDR  
I
Active Write Current  
@ 40 MHz  
@ 50 MHz  
@ 40 MHz  
@ 50 MHz  
42  
DDW  
33  
46.5  
400  
750  
180  
40  
250  
650  
90  
I
AC Standby Current (CS High)  
SB1  
μA  
I
CMOS Standby Current (CS High)  
μA  
SB2  
I
Standby Sleep Mode Current (CS High)  
15  
μA  
ZZ  
17  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
TIMING SPECIFICATIONS  
Capacitance  
Table 10 – Capacitance  
Symbol Parameter  
Typical  
Max  
Unit  
1
1
C
Control input capacitance  
-
6
pF  
In  
C
Input/Output capacitance  
-
8
pF  
I/O  
Notes:  
1. ƒ = 1.0 MHz, dV = 3.0 V, T = 25 °C, periodically sampled rather than 100% tested.  
A
AC Measurement Conditions  
Table 11 – AC Measurement Conditions  
Parameter  
Value  
Unit  
Logic input timing measurement reference level  
Logic output timing measurement reference level  
Logic input pulse levels  
1.5  
V
1.5  
0 or 3.0  
2
V
V
Input rise/fall time  
ns  
Output load for low and high impedance parameters  
Output load for all other timing parameters  
See Figure 12  
See Figure 13  
Figure 12 – Output Load for Impedance Parameter Measurements  
ZD= 50 Ω  
Output  
RL = 50 Ω  
VL = 1.5 V  
Figure 13 – Output Load for all Other Parameter Measurements  
3.3 V  
590 Ω  
Output  
30 pF  
435 Ω  
18  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
Power Up Timing  
t
The MR2xH40 is not accessible for a start-up time, PU= 400 μs after power up. Users must wait this time  
from the time when V (min) is reached until the first CS low to allow internal voltage references to become  
DD  
stable. The CS signal should be pulled up to V so that the signal tracks the power supply during power-up  
DD  
sequence.  
Table 12 – Power-Up Timing  
Symbol  
Parameter  
Min  
Typical  
Max  
Unit  
V
Write Inhibit Voltage  
2.2  
-
-
V
WI  
t
PU  
Startup Time  
400  
-
-
μs  
Figure 14 – Power-Up Timing  
VDD  
DD(max)  
V
Chip Selection not allowed  
DD(min)  
V
Reset state  
of the  
Normal Operation  
t PU  
device  
VWI  
Time  
19  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
AC Timing Parameters  
Table 13 – MR20H40 (fSCK = 50MHz) AC Timing Parameters  
Industrial Temperature Range, V =3.0 to 3.6 V, C = 30 pF for all values.  
DD  
L
Symbol Parameter  
Temp Range  
Min  
Typical  
Max  
Unit  
f
SCK  
SCK Clock Frequency  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
0
-
50  
MHz  
t
RI  
Input Rise Time  
Input Fall Time  
SCK High Time  
SCK Low Time  
-
-
-
-
-
-
50  
50  
-
ns  
ns  
ns  
ns  
t
RF  
t
WH  
7
7
t
WL  
-
Synchronous Data Timing see Figure 15  
t
CS  
CS High Time  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
40  
5
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CSS  
CS Setup Time  
CS Hold Time  
t
CSH  
5
-
t
SU  
Data In Setup Time  
Data In Hold Time  
Output Valid  
2
-
t
H
5
-
t
V
0
9
-
t
HO  
Output Hold Time  
0
HOLD Timing see Figure 16  
t
HD  
HOLD Setup Time  
Industrial  
Industrial  
Industrial  
5
5
-
-
-
-
-
-
ns  
ns  
ns  
t
CD  
HOLD Hold Time  
t
LZ  
HOLD to Output Low Impedance  
20  
HOLD to Output High Imped-  
ance  
t
HZ  
Industrial  
-
-
20  
ns  
Other Timing Specifications  
t
WPS  
WP Setup To CS Low  
WP Hold From CS High  
Sleep Mode Entry Time  
Sleep Mode Exit Time  
Output Disable Time  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
5
5
-
-
-
-
-
-
-
-
-
-
ns  
ns  
μs  
μs  
ns  
t
WPH  
t
DP  
3
t
RDP  
400  
12  
t
DIS  
20  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
Table 14 – MR25H40 (fSCK = 40MHz) AC Timing Parameters  
Commercial Industrial, Extended and AEC-Q100 Grade 1 Temperature Ranges, V =3.0 to 3.6 V, C = 30 pF  
DD  
L
for all values.  
Symbol Parameter  
Temp Grade  
Min  
Typical  
Max  
Unit  
f
SCK  
SCK Clock Frequency  
All  
0
-
40  
MHz  
t
RI  
Input Rise Time  
Input Fall Time  
SCK High Time  
SCK Low Time  
All  
All  
All  
All  
-
-
-
-
-
50  
50  
-
ns  
ns  
ns  
ns  
t
RF  
-
t
WH  
11  
11  
t
WL  
-
Synchronous Data Timing see Figure 15  
t
CS  
CS High Time  
All  
40  
10  
10  
5
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CSS  
CS Setup Time  
CS Hold Time  
All  
t
CSH  
All  
-
t
SU  
Data In Setup Time  
Data In Hold Time  
All  
-
t
H
All  
5
-
Comm./Ind./Ext.  
AEC-Q100 Grade 1  
All  
0
9
10  
-
t
V
Output Valid  
0
t
HO  
Output Hold Time  
0
Table continues next page.  
21  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
f
Table 14 (Cont’d) - MR25H40 ( SCK = 40MHz) AC Timing Parameters  
Commercial, Industrial, Extended and AEC-Q100 Grade 1 Temperature Ranges, V =3.0 to 3.6 V, C = 30 pF  
DD  
L
for all values.  
HOLD Timing see Figure 16  
Symbol Parameter  
Temp Grade  
Min  
Typical  
Max  
Unit  
t
HD  
HOLD Setup Time  
All  
10  
-
-
ns  
t
CD  
HOLD Hold Time  
All  
All  
All  
10  
-
-
-
-
-
ns  
ns  
ns  
t
LZ  
HOLD to Output Low Impedance  
HOLD to Output High Impedance  
20  
20  
t
HZ  
-
Other Timing Specifications  
t
WPS  
WP Setup To CS Low  
WP Hold From CS High  
Sleep Mode Entry Time  
Sleep Mode Exit Time  
Output Disable Time  
All  
All  
All  
All  
All  
5
5
-
-
-
-
-
-
-
-
-
-
ns  
ns  
μs  
μs  
ns  
t
WPH  
t
DP  
3
t
RDP  
400  
12  
t
DIS  
22  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
Figure 15 – Synchronous Data Timing  
Figure 16 – HOLD Timing  
CS  
tCD  
tCD  
SCK  
tHD  
tHD  
HOLD  
SO  
tHZ  
tLZ  
23  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
PART NUMBERS AND ORDERING  
Table 15 – Part Numbering System  
Product Family Number  
MR  
Memory  
MR  
25H  
Interface  
25H  
40  
Density  
40  
Revision Temp Package Grade  
DC ES  
Ordering Part Number  
C
MRAM  
MR  
20H  
25H  
256  
512  
10  
50 MHz Serial Family  
40 MHz Serial Family  
256 Kb  
512 Kb  
1 Mb  
4 Mb  
40  
No Revision  
Revision A  
Revision B  
Commercial  
Industrial  
Extended  
Blank  
A
B
Blank  
C
V
0 to 70°C  
-40 to 85°C  
-40 to 105°C  
AEC Q-100 Grade 1 -40 to 125°C  
8-pin DFN in Tray  
M
DC  
8-pin DFN Tape and Reel  
8-pin DFN (small ag) in Tray  
8-pin DFN (small ag) Tape and Reel  
Engineering Samples  
DCR  
DF  
DFR  
ES  
Customer Samples  
Mass Producon  
Blank  
Blank  
Product Family Number and Ordering Part Number given are for illustraon only.  
24  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
Table 16 – Ordering Part Numbers  
Speed  
Grade  
Tempera-  
ture  
Shipping Con-  
tainer  
Temp Grade  
Package  
Order Part Number  
Trays  
MR20H40CDF  
8-DFN Small  
Flag  
50MHz  
Industrial  
-40 to +85 C  
0 to +70 C  
Tape and Reel MR20H40CDFR  
Trays MR25H40DF  
Tape and Reel MR25H40DFR  
8-DFN Small  
Flag  
Commercial  
Industrial  
Extended  
1
Trays  
MR25H40CDC  
1
8-DFN  
1
Tape and Reel  
Trays  
MR25H40CDCR  
MR25H40CDF  
-40 to +85 C  
8-DFN Small  
Flag  
40 MHz  
Tape and Reel MR25H40CDFR  
Trays MR25H40VDF  
Tape and Reel MR25H40VDFR  
Trays MR25H40MDF  
Tape and Reel MR25H40MDFR  
8-DFN Small  
Flag  
-40 to +105 C  
8-DFN Small  
Flag  
AEC-Q100 Grade 1 -40 to +125 C  
Note:  
1. The DC pckage option (8-DFN) is not recommended for new designs. Please select the DF (8-DFN small  
flag) option for new designs.  
25  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
PACKAGE OUTLINE DRAWINGS  
Figure 17 – DFN Package Outline  
Exposed metal Pad. Do not  
connect anything except V  
SS  
A
8
5
DAP Size  
4.4 x 4.4  
J
B
I
L
G
H
M
4
1
Pin 1 Index  
Detail A  
F
C
K
N
D
E
Detail A  
Dimension  
Max.  
A
B
6.10  
5.90  
C
D
E
0.45  
0.35  
F
G
H
0.70  
0.50  
I
J
4.20  
4.00  
K
L
M
N
0.05  
0.00  
5.10  
4.90  
1.00 1.27  
BSC  
0.90  
0.05  
0.00  
4.20  
4.00  
0.261  
0.195  
0.35  
Ref.  
C0.35 R0.20  
Min.  
Notes:  
1. Reference JEDEC MO-229.  
2. All dimensions are in mm. Angles in degrees.  
3. Coplanarity applies to the exposed pad as well as the terminals. Coplanarity shall be within 0.08 mm.  
4. Warpage shall not exceed 0.10 mm.  
26  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
Figure 18 – DFN Small Flag Package  
Exposed metal Pad. Do not  
connect anything except V  
SS  
A
2X 0.10 C  
5
8
2X 0.10 C  
J
B
I
L
G
H
M
4
K
1
Pin 1 Index  
Detail A  
F
C
N
D
E
Detail A  
Dimension  
Max.  
A
5.10  
B
6.10  
C
0.90  
D
E
F
G
1.60  
H
0.70  
I
J
K
.210  
L
M
N
0.05  
0.45 0.05  
2.10 2.10  
1.27  
BSC  
C0.45 R0.20  
Min.  
4.90  
5.90  
0.80  
0.35 0.00  
1.20  
0.50  
1.90 1.90  
.196  
0.00  
Notes:  
1. Reference JEDEC MO-229.  
2. All dimensions are in mm. Angles in degrees.  
3. Coplanarity applies to the exposed pad as well as the terminals. Coplanarity shall be within 0.08 mm.  
4. Warpage shall not exceed 0.10 mm.  
27  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
REVISION HISTORY  
Revision  
Date  
Description of Change  
0
0 .1  
1
Jan 15, 2010  
Feb. 23, 2010  
May 5, 2010  
Product Concept Release  
Fixed typos in text.  
Removed commercial specifications. All parts meet industrial specifications.  
Preliminary Product Release. Updated description of status register non-volatility, WAKE  
command, Table 3.4.  
2
3
4
Jan 11, 2011  
Apr 25, 2011  
Removed DIP package part to seperate datasheet. Added inset detail for mechanical pack-  
age drawings.  
September 22,  
2011  
Added AEC-Q100 Grade 1 ordering option. Revised Table 3.1, Table 3.2, Table 3.4, Table 4.4  
revised and Note 2 deleted, revised Figure 5.1 and Table 5.1.  
Corrected V in Table 3.3 to read V Max = V + 0.2v. Corrected SI waveform in Figure 2.8.  
OL  
OL  
SS  
New Small Flag DFN package option added to Page 1 Features and available parts Table 5.1.  
DFN Small Flag drawing and dimensions table added as Figure 6.2. Figure 6.1, DFN Pack-  
age, cleaned up with better quality drawing and dimension table. No specifications were  
changed in Figure 6.1.  
5
6
Nov 18, 2011  
CDF and CDFR options changed to Preliminary. Added Small Flag DFN illustrations. Refor-  
matted all parametric tables. Revised 8-DFN package drawing to show correct proportion  
for flag and package. Added MR20H40 as 50MHz speed option. Deleted large flag DFN  
ordering option for AEC-Q100 products. Corrected errors in DFN package outline drawings.  
August 23, 2012  
January 17,  
2013  
7
8
Removed Preliminary status from MR25H40CDF, CDFR.  
May 24, 2013  
March 28, 2014  
July 11, 2014  
Removed Preliminary status from MR20H40CDF(R), and from MR20H40DF(R).  
Removed Preliminary status from 25H40MDF(R). V max to unspecified from TBD. Added  
WI  
9
MSL-3 status to the Features list.  
10  
MR20H40DF and MR20H40DFR withdrawn from sales status.  
11  
August 13, 2014 Added Extended temperature grade offering.  
11.1  
11.2  
12.0  
May 19, 2015  
June 11, 2015  
Revised Everspin contact information.  
Corrected Japan Sales Office telephone number.  
Clarification of RDSR command operation.  
December 9,  
2015  
Minor edits to the revised RDSR command operation. Corrected wrong bit number for the  
WEL in the WRDI command description. Clarification of SRWD bit location in the Status Reg-  
ister within the WRSR command description. Condensed Note 1 in Table 2, referring to RDSR  
operation after a READ command.  
December 18,  
2015  
12.1  
28  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  
MR20H40 / MR25H40  
REVISION HISTORY - Cont’d  
Revision  
Date  
Description of Change  
Change all large flag DFN options to “The DC pckage option (8-DFN) is not recommended  
for new designs. Please select the DF (8-DFN small flag) option for new designs.”  
December 13,  
2016  
12.2  
t
t
12.3  
12.4  
12.5  
12.6  
February 2, 2017 Added HO and V relationship to Synchronous Data Timing  
March 23, 2018 Updated the Contact Us table  
Corrected sentence in Block Protection Modes section on page 9 to ”The memory enters  
hardware block protection when the WP input is low and the Status Register Write Disable  
(SRWD) bit is set to 1.  
December 16,  
2019  
August 7, 2020  
Added a Commercial temperature range product option to MR25H40 family.  
29  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6, 8/2020  
MR20H40 / MR25H40  
HOW TO REACH US  
Everspin Technologies, Inc.  
Information in this document is provided solely to enable system and soft-  
ware implementers to use Everspin Technologies products. There are no  
express or implied licenses granted hereunder to design or fabricate any  
integrated circuit or circuits based on the information in this document.  
Everspin Technologies reserves the right to make changes without further  
notice to any products herein. Everspin makes no warranty, representa-  
tion or guarantee regarding the suitability of its products for any particu-  
lar purpose, nor does Everspin Technologies assume any liability arising  
out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential  
or incidental damages. “Typical” parameters, which may be provided in  
Everspin Technologies data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All  
operating parameters including “Typicals” must be validated for each cus-  
tomer application by customer’s technical experts. Everspin Technologies  
does not convey any license under its patent rights nor the rights of oth-  
ers. Everspin Technologies products are not designed, intended, or au-  
thorized for use as components in systems intended for surgical implant  
into the body, or other applications intended to support or sustain life, or  
for any other application in which the failure of the Everspin Technologies  
product could create a situation where personal injury or death may oc-  
cur. Should Buyer purchase or use Everspin Technologies products for any  
such unintended or unauthorized application, Buyer shall indemnify and  
hold Everspin Technologies and its officers, employees, subsidiaries, affili-  
ates, and distributors harmless against all claims, costs, damages, and ex-  
penses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that Everspin Technologies  
was negligent regarding the design or manufacture of the part. Everspin™  
and the Everspin logo are trademarks of Everspin Technologies, Inc. All  
other product or service names are the property of their respective owners.  
How to Reach Us:  
Home Page:  
www.everspin.com  
World Wide Information Request  
WW Headquarters - Chandler, AZ  
5670 W. Chandler Blvd., Suite 100  
Chandler, Arizona 85226  
Tel: +1-877-480-MRAM (6726)  
Local Tel: +1-480-347-1111  
Fax: +1-480-347-1175  
support@everspin.com  
orders@everspin.com  
sales@everspin.com  
Europe, Middle East and Africa  
Everspin Europe Support  
support.europe@everspin.com  
Japan  
Everspin Japan Support  
support.japan@everspin.com  
Asia Pacific  
Everspin Asia Support  
support.asia@everspin.com  
Copyright © Everspin Technologies, Inc. 2020  
30  
Copyright © Everspin Technologies 2020  
MR20H40 / MR25H40 Revision 12.6 8/2020  

相关型号:

MR25H40DF

50MHz/20ns tSCK 4Mb SPI Interface MRAM / 40MHz/25ns tSCK 4Mb SPI Interface MRAM
EVERSPIN

MR25H40DFR

50MHz/20ns tSCK 4Mb SPI Interface MRAM / 40MHz/25ns tSCK 4Mb SPI Interface MRAM
EVERSPIN

MR25H40MDF

50MHz/20ns tSCK 4Mb SPI Interface MRAM / 40MHz/25ns tSCK 4Mb SPI Interface MRAM
EVERSPIN

MR25H40MDFR

50MHz/20ns tSCK 4Mb SPI Interface MRAM / 40MHz/25ns tSCK 4Mb SPI Interface MRAM
EVERSPIN

MR25H40VDF

50MHz/20ns tSCK 4Mb SPI Interface MRAM / 40MHz/25ns tSCK 4Mb SPI Interface MRAM
EVERSPIN

MR25H40VDFR

50MHz/20ns tSCK 4Mb SPI Interface MRAM / 40MHz/25ns tSCK 4Mb SPI Interface MRAM
EVERSPIN

MR25M

Fixed Resistor, Metal Film, 200V, Through Hole Mount, AXIAL LEADED, ROHS COMPLIANT
RFE

MR25MAV3-10K-F

PACKAGING SPECIFICATIONS Avisert (AV3) & Panasert (PA) Specifications
RFE

MR25MPA-10K-F

PACKAGING SPECIFICATIONS Avisert (AV3) & Panasert (PA) Specifications
RFE

MR25MR-11K5-F50-T52

RESISTOR, METAL FILM, 0.25W, 1%, 50ppm, 11500ohm, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
RFE

MR25MR-11R5-F50

RESISTOR, METAL FILM, 0.25W, 1%, 50ppm, 11.5ohm, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
RFE

MR25MR-147R-F50-T52

RESISTOR, METAL FILM, 0.25W, 1%, 50ppm, 147ohm, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
RFE