B130 [EXAR]

3A 18V Synchronous Step-Down Converter; 3A 18V同步降压转换器
B130
型号: B130
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

3A 18V Synchronous Step-Down Converter
3A 18V同步降压转换器

转换器
文件: 总12页 (文件大小:759K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XRP7665  
3A 18V Synchronous Step-Down Converter  
March 2013  
Rev. 2.0.1  
GENERAL DESCRIPTION  
APPLICATIONS  
The XRP7665 is a synchronous current-mode  
PWM step down (buck) regulator capable of a  
constant output current up to 3 Amps. A wide  
4.50V to 18V input voltage range allows for  
single supply operations from industry  
standard 5V and 12V power rails.  
ñ Distributed Power Architectures  
ñ Point of Load Converters  
ñ Audio-Video Equipments  
ñ Medical & Industrial Equipments  
With a 340kHz constant operating frequency  
FEATURES  
and  
integrated  
high  
and  
low  
side  
100 mΩ9/0 mΩ MOS F,EthTesXRP7665 reduces  
the overall component count and solution  
footprint. Current-mode control provides fast  
transient response and cycle-by-cycle current  
limit. An adjustable soft-start prevents inrush  
current at turn-on, and in shutdown mode the  
supply current drops to 0.1µA.  
ñ Pin/Function Compatible to MP1484  
ñ 3A Continuous Output Current  
ñ 4.50V to 18V Wide Input Voltage  
ñ PWM Current Mode Control  
- 340kHz Constant Operations  
- Up to 93% Efficiency  
Built-in output over voltage (open load), over  
temperature, cycle-by-cycle over current and  
under voltage lockout (UVLO) protections  
insure safe operations under abnormal  
operating conditions.  
ñ Adjustable Output Voltage  
- 0.925V to 16V Range  
- 2.0% Accuracy  
ñ Programmable Soft-Start and Enable  
The XRP7665 is a pin and function compatible  
device to MP1484 and a 3A pin to pin upgrade  
to XRP7664.  
Function  
ñ Built-in Thermal, Over Current, UVLO  
and Output Over Voltage Protections  
The XRP7665 is offered in a RoHS compliant,  
“ g r e e n ” / h a l o-gpiennexpofsredepead S8OIC  
package.  
ñ R o HS C o mp l i a n t  
Gr e e n ” / Ha l o g  
8-Pin Exposed Pad SOIC Package  
TYPICAL APPLICATION DIAGRAM  
Fig. 1: XRP7665 Application Diagram  
Exar Corporation  
48720 Kato Road, Fremont CA 94538, USA  
www.exar.com  
Tel. +1 510 668-7000 Fax. +1 510 668-7001  
XRP7665  
3A 18V Synchronous Step-Down Converter  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RATINGS  
These are stress ratings only and functional operation of  
the device at these ratings or any other above those  
indicated in the operation sections of the specifications  
below is not implied. Exposure to absolute maximum  
rating conditions for extended periods of time may affect  
reliability.  
Input Voltage VIN .......................................4.50V to 18V  
Ambient Operating Temperature................ -40°C to 85°C  
Maximum Output Current.................................... 3A min  
T h e r ma l  
R e s JiA .s...t...a...n..c...e......θ................. 60°C/W  
Supply Voltage VIN......................................-0.3V to 20V  
Switch Node Voltage VSW ......................................... 21V  
Boost Voltage VBS ................................... -0.3 to VSW+6V  
Enable Voltage VEN......................................... -0.3 to VIN  
All Other Pins.............................................. -0.3 to +6V  
Junction Temperature ..........................................150°C  
Storage Temperature.............................. -65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ...................260°C  
ESD Rating (HBM - Human Body Model).................... 2kV  
ESD Rating (MM - Machine Model)...........................200V  
Moisture Sensitivity Level (MSL)...................................3  
ELECTRICAL SPECIFICATIONS  
Specifications are for an Operating Ambient Temperature of TA = 25°C only; limits applying over the full Ambient Operating  
Te mp e r a t u r e r a n g e a r e d e n o t e d b y “ • ” . Mi n i mduthmrouaghntdest,Mdeasxigni ,morusmtatisltiicaml i t s  
a
a r e  
correlation. Typical values represent the most likely parametric norm at TA = 25°C, and are provided for reference purposes  
only. Unless otherwise indicated, VIN = VEN = 12V, VOUT=3.3V.  
Parameter  
Min.  
Typ.  
Max.  
Units  
Conditions  
Shutdown Supply Current  
Quiescent Current  
0.1  
1.2  
10  
1.4  
µA  
mA  
V
VEN0.75V  
VEN=3V, VFB=1V  
Feedback Voltage VFB  
0.925  
1.1  
0.943  
0.907  
-0.1  
Feedback Overvoltage Threshold  
Feedback Bias Current  
V
0.1  
µA  
VFB=1V  
Error Amplifier Voltage Gain AEA  
(Note 1)  
400  
800  
100  
100  
0.1  
V/V  
µA/V  
mΩ  
mΩ  
µA  
Error Amplifier  
Transconductance GEA  
High-Side switch On Resistance  
RDSONH (Note 2)  
ISW=0.2A&0.7A  
Low-Side switch On Resistance  
RDSONL (Note 2)  
ISW=-0.2A&-0.7A  
High-Side switch Leakage  
Current  
10  
VIN=18V, VEN=0V, VSW=0V  
High-Side Switch Current Limit  
Low-Side Switch Current Limit  
5.6  
1.4  
A
A
4.3  
From Drain to Source  
COMP to Current Sense  
Transconductance GCS  
5.2  
340  
90  
A/V  
kHz  
kHz  
Oscillator Frequency FOSC1  
400  
280  
Short Circuit Oscillator  
Frequency FOSC2  
Maximum Duty Cycle DMAX  
Minimum Duty Cycle DMIN  
EN Enable Threshold Voltage  
90  
%
%
V
VFB=0.85V  
VFB=1V  
0
2.5  
210  
4.00  
2.7  
2.2  
EN Enable Threshold Voltage  
Hysteresis (Note 1)  
mV  
V
UVLO Threshold  
4.25  
VIN Rising  
3.65  
© 2013 Exar Corporation  
2/12  
Rev. 2.0.1  
XRP7665  
3A 18V Synchronous Step-Down Converter  
Parameter  
UVLO Hysteresis  
Min.  
Typ.  
Max.  
Units  
Conditions  
0.20  
6
V
Soft-start Current  
µA  
ms  
°C  
VSS=0V  
Soft-start Time (Note 1)  
Thermal Shutdown (Note 1)  
15  
CSS=0.1µF  
160  
Thermal Shutdown Hysteresis  
(Note 1)  
20  
°C  
Note 1: Guaranteed by design.  
Note 2: RDSON=(VSW1-VSW2)/(ISW1-ISW2  
)
BLOCK DIAGRAM  
Fig. 2: XRP7665 Block Diagram  
PIN ASSIGNMENT  
Fig. 3: XRP7665 Pin Assignment (SOIC-8 Exposed Pad)  
3/12  
© 2013 Exar Corporation  
Rev. 2.0.1  
XRP7665  
3A 18V Synchronous Step-Down Converter  
PIN DESCRIPTION  
Name  
Pin Number  
Description  
Bootstrap pin.  
1
2
Connect a 0.01µF or greater bootstrap capacitor between the BS pin and the SW pin.  
The voltage across the bootstrap capacitor drives the internal high-side power MOSFET.  
BS  
Power input pin.  
A capacitor should be connected between the IN pin and GND pin to keep the input  
voltage constant.  
IN  
Power switch output pin.  
This pin is connected to the inductor and the bootstrap capacitor.  
3
4
SW  
Ground signal pin.  
GND  
Feedback pin.  
An external resistor divider connected to FB programs the output voltage. If the  
feedback pin exceeds 1.1V the over-voltage protection will trigger. If the feedback  
voltage drops below 0.3V the oscillator frequency is lowered to achieve short-circuit  
protection.  
5
FB  
Compensation pin.  
This is the output of transconductance error amplifier and the input to the current  
comparator. It is used to compensate the control loop. Connect an RC network form  
this pin to GND.  
6
7
COMP  
EN  
Control input pin.  
Forcing this pin above 2.7V enables the IC. Forcing this pin below 0.75V shuts down the  
I C .  
P u l l  
u p t o V I N wi t h 1 0 0 k Ω f o r  
a u t o ma t i c  
s
Soft-start control input pin.  
Connect a capacitor from SS to GND to set the soft-start period. A 0.1µF capacitor sets  
the soft start period to 15ms. To disable the soft-start feature, leave SS unconnected.  
8
SS  
-
Exposed Pad  
Connect to GND through PCB.  
EP  
ORDERING INFORMATION  
Temperature  
Part Number  
Packing  
Quantity  
Marking  
Package  
Note 1  
Note 2  
Range  
XRP7665I  
YYWWF  
X
RoHS Compliant  
Halogen Free  
2.5K/Tape & Reel  
XRP7665IDBTR-F  
XRP7665EVB  
SOIC-8(EP)  
-4 0 ° C AT+8 5 ° C  
XRP7665 Evaluation Board  
“ Y Y ”  
= YeWaWr”  
=
Wo r kWXee k= L o t ; wNhuenmabpeplircable.  
© 2013 Exar Corporation  
4/12  
Rev. 2.0.1  
XRP7665  
3A 18V Synchronous Step-Down Converter  
TYPICAL PERFORMANCE CHARACTERISTICS  
All data taken at VIN = 12V, VOUT=3.3V, TJ = TA = 25°C, unless otherwise specified - Schematic and BOM from Application  
Information section of this datasheet.  
Fig. 5: RDSONH versus case temperature  
Fig. 7: Feedback voltage versus case temperature  
Fig. 9: Output voltage versus output current  
Fig. 4: Efficiency versus output current  
Fig. 6: RDSONL versus case temperature  
Fig. 8: Quiescent current versus case temperature  
© 2013 Exar Corporation  
5/12  
Rev. 2.0.1  
XRP7665  
3A 18V Synchronous Step-Down Converter  
Fig. 10: Output voltage ripple, IOUT=3A  
Fig. 11: Load transient (IOUT=1.5A to 3A)  
Fig. 12: Enable turn on  
Fig. 13: Enable turn off  
CC mode, VIN=12V, VOUT=VEN=3.3, IOUT=3A  
CC mode, VIN=12V, VOUT=VEN=3.3, IOUT=3A  
Fig. 14: Short-circuit protection  
Fig. 15: Short-circuit recovery  
© 2013 Exar Corporation  
6/12  
Rev. 2.0.1  
XRP7665  
3A 18V Synchronous Step-Down Converter  
THEORY OF OPERATION  
OVERCURRENT PROTECTION OCP  
The OCP protects against accidental increase  
in load current that can cause the regulator to  
FUNCTIONAL DESCRIPTION  
fail. The current of internal switch M1 is  
monitored. If this current reaches 5.6A then  
M1 is turned off until next switching cycle.  
The XRP7665 is a synchronous, current-mode,  
step-down regulator. It regulates input  
voltages from 4.5V to 18V and supplies up to  
3A of continuous load current. The XRP7665  
uses current-mode control to regulate the  
output voltage. The output voltage is  
measured at FB through a resistive voltage  
divider and input to a transconductance error  
amplifier. The high-side switch current is  
compared to the output of the error amplifier  
to control the output voltage. The regulator  
utilizes internal N-channel MOSFETs to step-  
down the input voltage. A bootstrapping  
capacitor connected between BS and SW acts  
as a supply for high-side MOSFET. This  
capacitor is charged from the internal 5V  
supply when SW node is low. The XRP7665  
has several powerful protection features  
including OCP, OVP, OTP, UVLO and output  
short-circuit.  
SHORT-CIRCUIT PROTECTION  
If there is short-circuit across the output, the  
feedback voltage VFB will droop. If VFB drops  
below 0.3V the XRP7665 will detect a short-  
circuit condition and reduce the switching  
frequency to 90kHz for system protection. The  
regulator will restart once the short-circuit has  
been removed.  
OVERVOLTAGE PROTECTION OVP  
The XRP7665 has internal OVP. When VOUT  
exceeds the OVP threshold (when VFB exceeds  
1.1V) the power switching will be turned off.  
The XRP7665 will restart when overvoltage  
condition is removed.  
PROGRAMMABLE SOFT-START  
OVER-TEMPERATURE PROTECTION OTP  
The soft-start time is fully programmable via  
CSS capacitor, placed between the SS and  
GND pin. The CSS is charged by a 6µA  
constant-current source, generating a ramp  
signal fed into non-inverting input of the error  
amplifier. This ramp regulates the voltage on  
comp pin during the regulator startup, thus  
realizing soft-start. Calculate the required CSS  
from:  
If the junction temperature exceeds 160°C the  
OTP circuit is triggered, turning off the internal  
control circuit and switched M1 and M2. When  
junction temperature drops below 140°C the  
XRP7665 will restart.  
APPLICATION INFORMATION  
6μ  
=
×
SETTING THE OUTPUT VOLTAGE  
Where:  
Use an external resistor divider to set the  
output voltage. Program the output voltage  
from:  
tss is the required soft-start time  
VFB is the feedback voltage (0.925V nominal)  
1 = 2 ×  
− 1  
0.9 2 5  
ENABLE FUNCTION  
Where:  
R1 is the resistor between VOUT and FB  
The XRP7665 is enabled by raising the voltage  
on the EN pin above 2.5V nominally. Connect  
the EN pin to the VIN via a 1 0 0 k Ω r e s i s t o r  
f o r  
R2 is the resistor between FB and GND  
automatic start-up. Shutdown is achieved by  
pulling the EN pin voltage below 1.1V  
nominally.  
( n o mi n a l l y 1 0 k )  
0.925V is the nominal feedback voltage.  
7/12 Rev. 2.0.1  
© 2013 Exar Corporation  
XRP7665  
3A 18V Synchronous Step-Down Converter  
of thumb, should be at least twice the output  
voltage. When calculating the required  
OUTPUT INDUCTOR  
Select the output inductor for inductance L, DC  
current rating IDC and saturation current rating  
ISAT. IDC should be larger than regulator output  
current. ISAT, as a rule of thumb, should be  
50% higher than the regulator output current.  
Since the regulator is rated at 3A then IDC3A  
and ISAT4.5A. Calculate the inductance from:  
capacitance,  
usually  
the  
overriding  
requirement is current load-step transient. If  
the unloading transient (i.e., when load  
transitions from a high to a low current) is  
met, then usually the loading transient (when  
load transitions from a low to a high current)  
is met as well. Therefore calculate the COUT  
based on the unloading transient requirement  
from:  
(
)
=
×
×
Where:  
=
×
(
)
+
Δ I is peak-to-peak inductor current ripple  
L
nominally set to 30%-40% of IOUT  
Where:  
fS is nominal switching frequency (340kHz)  
L is the inductance calculated in the preceding  
step  
As an example, inductor values for several  
common output voltages are shown in tables 1  
and 2. Note that example inductors shown in  
tables 1 and 2 are Wurth shielded inductors. If  
the target application is not sensitive to EMI  
then unshielded inductors may be used.  
IHigh is the value of load-step prior to  
unloading. This is nominally set equal to  
regulator current rating (3A).  
ILow is the value of load-step after unloading.  
This is nominally set equal to 50% of regulator  
current rating (1.5A).  
Inductor  
Example  
Vtransient is the maximum permissible voltage  
transient corresponding to the load step  
mentioned above. Vtransient is typically specified  
VOUT(V) ΔIL(p-p)(A)  
L(µH)  
744314101  
744314101  
744314101  
744314760  
744314760  
744314490  
0.9  
0.7  
0.6  
0.6  
0.5  
0.6  
10  
10  
10  
7.6  
7.6  
4.9  
5.0  
3.3  
2.5  
1.8  
1.5  
1.2  
from 3% to 5% of VOUT  
.
ESR of the capacitor has to be selected such  
that the output voltage ripple requirement  
Δ V , nominally 1% of VOUT, is met. Voltage  
OUT  
ripple Δ V  
is mainly composed of two  
Table 1: Suggested inductor values for VIN=12V and  
IOUT=3A  
OUT  
components: the resistive ripple due to ESR  
and capacitive ripple due to COUT charge  
transfer. For applications requiring low voltage  
ripple, ceramic capacitors are recommended  
because of their low ESR which is typically in  
Inductor  
VOUT(V) ΔIL(p-p)(A)  
L(µH)  
Example  
744314490  
744314490  
744314490  
744314490  
744314490  
0.7  
0.8  
0.7  
0.6  
0.5  
4.9  
4.9  
4.9  
4.9  
4.9  
3.3  
2.5  
1.8  
1.5  
1.2  
the range of 5 m. Therefore Δ V  
capacitive. For ceramic capacitors calculate  
is mainly  
OUT  
the Δ V from:  
OUT  
=
8 ×  
×
Table 2: Suggested inductor values for VIN=5V and  
IOUT=3A  
Where:  
Δ I is from table 1 or 2  
L
COUT is the value calculated above  
OUTPUT CAPACITOR COUT  
fs is nominal switching frequency (340kHz)  
Select the output capacitor for voltage rating,  
capacitance COUT and Equivalent Series  
Resistance ESR. The voltage rating, as a rule  
© 2013 Exar Corporation  
8/12  
Rev. 2.0.1  
XRP7665  
3A 18V Synchronous Step-Down Converter  
If tantalum or electrolytic capacitors are used  
t h e nVOUTΔis essentially a function of ESR:  
Circuit configuration is shown in figures 16 and  
17. The external bootstrap diode is also  
recommended where duty cycle (VOUT/VIN) is  
larger than 65%.  
=
×
INPUT CAPACITOR CIN  
Select the input capacitor for voltage rating,  
RMS current rating and capacitance. The  
voltage rating should be at least 50% higher  
than the regulatorsmaximum input voltage.  
C a l c u l a t e t h e c a p a c i t o r ’ s c u r r e n t  
1N4148  
VIN = 5V  
IN  
BS  
r m:  
10nF  
XRP7665  
( )  
× 1 −  
=
×
,
Where:  
IOUT i s r e g u l a t o r ’ s ma3xAi) mu m c u r r e n t  
SW  
(
Fig. 16: Optional external bootstrap diode  
where input voltage is fixed at 5V  
D is duty cycle (D=VOUT/VIN)  
Calculate the CIN capacitance from:  
(
)
×
×
1N4148  
BS  
=
×
×
Where:  
10nF  
XRP7665  
VOUT = 5V  
or 3.3V  
Δ V is the permissible input voltage ripple,  
IN  
SW  
nominally set at 1% of VIN  
COUT  
OPTIONAL SCHOTTKY DIODE  
An optional Schottky diode may be paralleled  
between the GND pin and SW pin to improve  
the regulator efficiency. Examples are shown  
in Table 3.  
Fig. 17: Optional external bootstrap diode  
where output voltage is 5V or 3.3V  
LOOP COMPENSATION  
XRP7665 utilizes current-mode control. This  
allows using minimum of external  
a
Voltage/Current  
components to compensate the regulator. In  
general only two components are needed: RC  
and CC. Proper compensation of the regulator  
(determining RC and CC) results in optimum  
transient response. In terms of power supply  
control theory, the goals of compensation are  
to choose RC and CC such that the regulator  
loop gain has a crossover frequency fc  
between 15kHz and 34kHz. The corresponding  
phase-margin should be between 45 degrees  
and 65 degrees. An important characteristic of  
current-mode buck regulator is its dominant  
pole. The frequency of the dominant pole is  
given by:  
Part Number  
Vendor  
Rating  
Diodes, Inc.  
Diodes, Inc.  
30V/1A  
30V/1A  
B130  
SK13  
International  
Rectifier  
30V/1A  
MBRS130  
Table 3. Optional Schottky diode  
EXTERNAL BOOTSTRAP DIODE  
A low-cost diode, such as 1N4148, is  
recommended for higher efficiency when the  
input voltage is 5V or the output is 5V or 3.3V.  
© 2013 Exar Corporation  
9/12  
Rev. 2.0.1  
XRP7665  
3A 18V Synchronous Step-Down Converter  
1
XRP7665’ s  
constitute a zero. The frequency of this  
E r r o r  
A mp l i f i e r  
a n d  
=
2 ×  
×
compensating zero is given by:  
1
=
where Rload is the output load resistance.  
2 ×  
×
The uncompensated regulator has a constant  
gain up to its pole frequency, beyond which  
the gain decreases at -20dB/decade. The zero  
arising from the output capacitors ESR is  
inconsequential if ceramic COUT is used. This  
simplifies the compensation. The RC and CC,  
which are placed between the output of  
For the typical application circuit, RC=6.8k Ω  
and CC=3.9nF provide a satisfactory  
compensation. Please contact EXAR if you  
need assistance with the compensation of your  
particular circuit.  
TYPICAL APPLICATIONS  
Fig. 18: XRP7665 Typical Application Diagram - 12V to 3.3V Conversion  
© 2013 Exar Corporation  
10/12  
Rev. 2.0.1  
XRP7665  
3A 18V Synchronous Step-Down Converter  
PACKAGE SPECIFICATION  
8-PIN SOIC EXPOSED PAD  
Unit: mm (inch)  
Eject hole, oriented hole and mold mark are optional.  
© 2013 Exar Corporation  
11/12  
Rev. 2.0.1  
XRP7665  
3A 18V Synchronous Step-Down Converter  
REVISION HISTORY  
Revision  
Date  
Description  
02/14/2011  
10/13/2011  
Initial release of datasheet  
1.0.0  
1.1.0  
Added Moisture Sensitivity Level (MSL) information  
Reformat of datasheet  
Changed min operating input voltage from 4.75V to 4.5V  
Updated Electrical Specifications parameter (quiescent current, feedback voltage, high  
and low side switch on-resistance, oscillator frequency, EN shutdown threshold voltage  
and hysteresis, EN lockout threshold voltage and hysteresis, UVLO threshold and  
hysteresis, soft-start time)  
Updated figure 2: XRP7665 block diagram  
Updated Pin Description, EN pin description  
02/12/2013  
3/29/2013  
2.0.0  
2.0.1  
Updated all Typical Performance Characteristics curves  
Updated Enable pin description  
Deleted Electrical Specification parameters (shutdown supply current, EN shutdown  
threshold voltage and hysteresis, EN lockout threshold voltage and hysteresis)  
Added Electrical Specification parameters (EN enable threshold voltage and hysteresis)  
A d d e d “ E N A B L E FpaUrNagCraTphI tOoNthe theory of operation section.  
FOR FURTHER ASSISTANCE  
Email:  
customersupport@exar.com  
powertechsupport@exar.com  
Exar Technical Documentation:  
http://www.exar.com/TechDoc/default.aspx?  
EXAR CORPORATION  
HEADQUARTERS AND SALES OFFICES  
48720 Kato Road  
Fremont, CA 94538 USA  
Tel.: +1 (510) 668-7000  
Fax: +1 (510) 668-7030  
www.exar.com  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve  
design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein,  
conveys no license under any patent or other right, and makes no representation that the circuits are free of patent  
infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a  
u s e r ’ s  
s p e c i f i c  
a p p l i c a t i o n .  
Wh i l e t h e i n f o r cmhaectkeid;o nno reispnonstibhiliity,s howpeuvebr,l i c a t i o n  
is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or  
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its  
safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in  
writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all  
such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
© 2013 Exar Corporation  
12/12  
Rev. 2.0.1  

相关型号:

B130-13

1.0A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER
DIODES

B130-13-F

1.0A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER
DIODES

B130-7

Rectifier Diode, Schottky, 1 Element, 1A, 30V V(RRM), Silicon, PLASTIC, SMA, 2 PIN
DIODES

B130-7-F

Rectifier Diode, Schottky, 1 Element, 1A, 30V V(RRM), Silicon, ROHS COMPLIANT, PLASTIC, SMA, 2 PIN
DIODES

B130-E3

DIODE 1 A, 30 V, SILICON, SIGNAL DIODE, DO-214AC, LEAD FREE, PLASTIC, SMA, 2 PIN, Signal Diode
VISHAY

B130-E3/5AT

Diode Schottky 30V 1A 2-Pin SMA T/R
VISHAY

B130-E3/61T

DIODE SCHOTTKY 30V 1A DO214AC
VISHAY

B130-E35AT

Surface Mount Schottky Barrier Rectifier
VISHAY

B130-E361T

Surface Mount Schottky Barrier Rectifier
VISHAY

B130-M3

Surface Mount Schottky Barrier Rectifier
VISHAY

B130-M3/5AT

DIODE SCHOTTKY 30V 1A DO214AC
VISHAY

B130-M3/61T

DIODE SCHOTTKY 30V 1A DO214AC
VISHAY