CLC4000 [EXAR]

High Output Current Dual and Quad Amplifiers;
CLC4000
型号: CLC4000
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

High Output Current Dual and Quad Amplifiers

文件: 总18页 (文件大小:1324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
Comlinear® CLC2000, CLC4000  
High Output Current Dual and Quad Amplifiers  
F E A T U R E S  
General Description  
nꢀ  
9.4V output drive into R = 25  
Ω
pp  
L
The Comlinear CLC2000 and CLC4000 are dual and quad voltage feedback  
amplifiers that offer ±200mA of output current at 9.4V . The CLC2000  
nꢀ  
Using both amplifiers, 18.8V  
pp  
pp  
differential output drive into R = 25  
Ω
L
and CLC4000 are capable of driving signals to within 1V of the power rails.  
When connected as a differential line driver, the amplifier drives signals up to  
18.8Vpp into a 25Ω load, which supports the peak upstream power levels for  
upstream full-rate ADSL CPE applications.  
nꢀ  
nꢀ  
±200mA @ V = 9.4V  
pp  
0.009%/0.06˚ differential gain/  
phase error  
o
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
250MHz -3dB bandwidth at G = 2  
510MHz -3dB bandwidth at G = 1  
210V/μs slew rate  
The Comlinear CLC2000 and CLC4000 can operate from single or dual sup-  
plies from 5V to 12V. It consumes only 7mA of supply current per chan-  
nel. The combination of wide bandwidth, low noise, low distortion, and high  
output current capability makes the CLC2000 and CLC4000 ideally suited for  
Customer Premise ADSL or video line driving applications.  
4.5nV/  
Hz input voltage noise  
Hz input current noise  
2.7pA/√  
7mA supply current  
Fully specified at 5V and 12V supplies  
A P P L I C A T I O N S  
Typical Application - ADSL Application  
nꢀ  
ADSL PCI modem cards  
nꢀ  
ADSL external modems  
+Vs  
nꢀ  
Cable drivers  
nꢀ  
Video line driver  
nꢀ  
Twisted pair driver/receiver  
+
nꢀ  
Power line communications  
1/2  
CLC2000  
R
f+  
R
=12.5Ω  
=12.5Ω  
o+  
V
o+  
1:2  
R
g
V
IN  
R =100Ω  
L
V
OUT  
V
o-  
R
R
o-  
f-  
1/2  
CLC2000  
-
-Vs  
Ordering Information  
Part Number  
Package  
SOIC-8  
Pb-Free  
Operating Temperature Range Packaging Method  
CLC2000ISO8X  
CLC2000ISO8  
CLC4000ISO14X  
CLC4000ISO14  
Yes  
Yes  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Reel  
Rail  
Reel  
Rail  
SOIC-8  
SOIC-14  
SOIC-14  
Moisture sensitivity level for all parts is MSL-1.  
Exar Corporation  
48720 Kato Road, Fremont CA 94538, USA  
www.exar.com  
Tel. +1 510 668-7000 - Fax. +1 510 668-7001  
Data Sheet  
CLC2000 Pin Assignments  
CLC2000 Pin Configuration  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
3
4
8
7
+V  
S
OUT1  
-IN1  
1
2
3
4
5
6
7
8
Output, channel 1  
Negative input, channel 1  
Positive input, channel 1  
Negative supply  
OUT2  
-IN2  
6
5
+IN1  
+IN1  
-V  
S
+IN2  
-V  
S
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
Positive supply  
OUT2  
+V  
S
CLC4000 Pin Assignments  
CLC4000 Pin Configuration  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
Output, channel 1  
1
2
3
4
14  
13  
12  
11  
10  
9
OUT1  
-IN1  
OUT4  
-IN4  
Negative input, channel 1  
Positive input, channel 1  
Positive supply  
3
+IN1  
+IN1  
+VS  
+IN4  
-VS  
4
+V  
S
5
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
6
5
6
7
+IN2  
+IN3  
-IN3  
7
OUT2  
OUT3  
-IN3  
8
Output, channel 3  
-IN2  
9
Negative input, channel 3  
Positive input, channel 3  
Negative supply  
8
OUT2  
OUT3  
10  
11  
12  
13  
14  
+IN3  
-V  
S
+IN4  
-IN4  
Positive input, channel 4  
Negative input, channel 4  
Output, channel 4  
OUT4  
©2007-2013 Exar Corporation  
2/18  
Rev 1D  
Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper device  
function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
0
Max  
Unit  
Supply Voltage  
±7 or 14  
V
V
Input Voltage Range  
-V -0.5V  
s
+V +0.5V  
s
Reliability Information  
Parameter  
Min  
-65  
Typ  
Max  
Unit  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
Package Thermal Resistance  
8-Lead SOIC  
150  
150  
260  
°C  
°C  
°C  
100  
88  
°C/W  
°C/W  
14-Lead SOIC  
Notes:  
Package thermal resistance (q ), JDEC standard, multi-layer test boards, still air.  
JA  
ESD Protection  
Product  
Human Body Model (HBM)  
2.5kV  
2kV  
Charged Device Model (CDM)  
Recommended Operating Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Operating Temperature Range  
Supply Voltage Range  
-40  
+85  
°C  
V
±2.5  
±6.5  
©2007-2013 Exar Corporation  
3/18  
Rev 1D  
Data Sheet  
Electrical Characteristics  
T = 25°C, V = 5V, R = R = 510Ω, R = 100Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
g
L
S
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Frequency Domain Response  
UGBW  
BWSS  
-3dB Bandwidth  
-3dB Bandwidth  
G = +1, VOUT = 0.2Vpp, Rf = 0  
G = +2, VOUT = 0.2Vpp  
G = +2, VOUT = 2Vpp  
422  
236  
68  
MHz  
MHz  
MHz  
MHz  
BWLS  
Large Signal Bandwidth  
BW0.1dB  
0.1dB Gain Flatness  
77  
G = +2, VOUT = 0.2Vpp  
Time Domain Response  
tR, tF  
tS  
Rise and Fall Time  
VOUT = 1V step; (10% to 90%)  
VOUT = 2V step  
3.7  
20  
6
ns  
ns  
Settling Time to 0.1%  
Overshoot  
OS  
SR  
VOUT = 0.2V step  
%
Slew Rate  
VOUT = 2V step  
200  
V/µs  
Distortion/Noise Response  
2Vpp, 100KHz, RL = 25Ω  
2Vpp, 1MHz, RL = 100Ω  
2Vpp, 100KHz, RL = 25Ω  
2Vpp, 1MHz, RL = 100Ω  
NTSC (3.58MHz), DC-coupled, RL = 150Ω  
NTSC (3.58MHz), DC-coupled, RL = 150Ω  
> 1MHz  
-83  
-85  
-86  
-82  
0.01  
0.05  
4.2  
dBc  
dBc  
HD2  
HD3  
2nd Harmonic Distortion  
dBc  
3rd Harmonic Distortion  
dBc  
DG  
DP  
en  
in  
Differential Gain  
Differential Phase  
Input Voltage Noise  
Input Current Noise  
Crosstalk  
%
°
nV/√Hz  
pA/√Hz  
dB  
> 1MHz  
2.7  
Channel-to-channel 5MHz  
XTALK  
-63  
DC Performance  
VIO  
dVIO  
IIO  
Input Offset Voltage  
Average Drift  
0.3  
0.383  
0.2  
mV  
µV/°C  
µA  
Input Offset Current  
Input Bias Current  
Average Drift  
Ib  
10  
µA  
dIbni  
PSRR  
AOL  
IS  
2.5  
nA/°C  
dB  
Power Supply Rejection Ratio  
Open-Loop Gain  
DC  
81  
RL = 25Ω  
per channel  
76  
dB  
Supply Current  
6.75  
mA  
Input Characteristics  
RIN  
CIN  
Input Resistance  
Non-inverting  
2.5  
MΩ  
Input Capacitance  
1
pF  
0.4 to  
4.6  
CMIR  
Common Mode Input Range  
Common Mode Rejection Ratio  
V
CMRR  
DC  
80  
dB  
Output Characteristics  
Closed Loop, DC  
0.01  
Ω
RO  
Output Resistance  
0.95 to  
4.05  
RL = 25Ω  
V
VOUT  
Output Voltage Swing  
0.75 to  
4.25  
RL = 1kΩ  
V
ISC  
Short-Circuit Output Current  
VOUT = VS / 2  
1000  
mA  
©2007-2013 Exar Corporation  
4/18  
Rev 1D  
Data Sheet  
Electrical Characteristics  
T = 25°C, V = 12V, R = R = 510Ω, R = 100Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
g
L
S
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Frequency Domain Response  
UGBW  
BWSS  
-3dB Bandwidth  
-3dB Bandwidth  
G = +1, VOUT = 0.2Vpp, Rf = 0  
G = +2, VOUT = 0.2Vpp  
G = +2, VOUT = 4Vpp  
510  
250  
35  
MHz  
MHz  
MHz  
MHz  
BWLS  
Large Signal Bandwidth  
BW0.1dB  
0.1dB Gain Flatness  
32  
G = +2, VOUT = 0.2Vpp  
Time Domain Response  
tR, tF  
tS  
Rise and Fall Time  
VOUT = 4V step; (10% to 90%)  
VOUT = 2V step  
13.3  
20  
ns  
ns  
Settling Time to 0.1%  
Overshoot  
OS  
SR  
VOUT = 0.2V step  
2
%
Slew Rate  
VOUT = 4V step  
210  
V/µs  
Distortion/Noise Response  
2Vpp, 100KHz, RL = 25Ω  
2Vpp, 1MHz, RL = 100Ω  
8.4Vpp, 100KHz, RL = 25Ω  
8.4Vpp, 1MHz, RL = 100Ω  
2Vpp, 100KHz, RL = 25Ω  
2Vpp, 1MHz, RL = 100Ω  
8.4Vpp, 100KHz, RL = 25Ω  
8.4Vpp, 1MHz, RL = 100Ω  
NTSC (3.58MHz), DC-coupled, RL = 150Ω  
NTSC (3.58MHz), DC-coupled, RL = 150Ω  
> 1MHz  
-84  
-86  
-63  
-82  
-88  
-80  
-63  
-83  
0.009  
0.06  
4.5  
dBc  
dBc  
HD2  
HD3  
2nd Harmonic Distortion  
dBc  
dBc  
dBc  
dBc  
3rd Harmonic Distortion  
dBc  
dBc  
DG  
DP  
en  
in  
Differential Gain  
Differential Phase  
Input Voltage Noise  
Input Current Noise  
Crosstalk  
%
°
nV/√Hz  
pA/√Hz  
dB  
> 1MHz  
2.7  
Channel-to-channel 5MHz  
XTALK  
-62  
DC Performance  
VIO  
dVIO  
IIO  
Input Offset Voltage(1)  
-6  
-2  
0.3  
0.383  
0.2  
10  
6
mV  
µV/°C  
µA  
Average Drift  
Input Offset Current(1)  
Input Bias Current(1)  
Average Drift  
2
Ib  
20  
µA  
dIbni  
PSRR  
AOL  
IS  
2.5  
81  
nA/°C  
dB  
Power Supply Rejection Ratio(1)  
DC  
73  
Open-Loop Gain  
Supply Current(1)  
RL = 25  
per channel  
76  
dB  
7
12  
mA  
Input Characteristics  
RIN  
CIN  
Input Resistance  
Non-inverting  
2.5  
MΩ  
Input Capacitance  
1
pF  
0.6 to  
11.4  
CMIR  
Common Mode Input Range  
V
CMRR  
Common Mode Rejection Ratio(1)  
DC  
70  
79  
dB  
Output Characteristics  
Closed Loop, DC  
0.01  
Ω
RO  
Output Resistance  
1.2 to  
10.8  
RL = 25Ω (1)  
1.5  
10.5  
V
VOUT  
Output Voltage Swing  
0.8 to  
11.2  
RL = 1kΩ  
V
ISC  
Short-Circuit Output Current  
VOUT = VS / 2  
1000  
mA  
Notes:  
1. 100% tested at 25°C  
©2007-2013 Exar Corporation  
5/18  
Rev 1D  
Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = 12V, R = 510Ω, R = 100Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
L
S
Non-Inverting Frequency Response  
Non-Inverting Frequency Response (V =5V)  
S
1
0
2
G = 1  
Rf = 0  
1
0
-1  
G = 10  
-2  
-3  
-1  
-2  
-3  
-4  
-5  
-6  
G = 10  
G = 2  
G = 5  
G = 2  
G = 5  
-4  
-5  
G = 1  
Rf = 0  
-6  
-7  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
Inverting Frequency Response  
Inverting Frequency Response (V =5V)  
S
1
0
1
0
G = -1  
G = -2  
G = -1  
G = -2  
-1  
-1  
-2  
-2  
G = -10  
G = -10  
-3  
-3  
-4  
-4  
G = -5  
G = -5  
-5  
-6  
-7  
-5  
-6  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
-7  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. R  
Frequency vs. R (V = 5V)  
L S  
L
2
1
2
1
RL = 5kΩ  
RL = 1kΩ  
RL = 5kΩ  
RL = 1kΩ  
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-5  
-6  
RL = 150Ω  
RL = 150Ω  
RL = 50Ω  
RL = 50Ω  
-5  
-6  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
RL = 25Ω  
RL = 25Ω  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
©2007-2013 Exar Corporation  
6/18  
Rev 1D  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = 12V, R = 510Ω, R = 100Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
L
S
Frequency vs. C  
Frequency vs. C (V = 5V)  
L
L
S
1
0
1
0
CL = 1000pF  
CL = 1000pF  
Rs = 5Ω  
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
R
s = 5Ω  
CL = 500pF  
s = 6Ω  
CL = 500pF  
s = 6Ω  
R
R
C
R
L = 100pF  
s = 13Ω  
C
R
L = 100pF  
s = 13Ω  
CL = 50pF  
CL = 50pF  
R
s = 20Ω  
Rs = 25Ω  
CL = 10pF  
s = 30Ω  
CL = 10pF  
s = 45Ω  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
R
R
-7  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Recommended R vs. C  
Recommended R vs. C (V = 5V)  
S
L
S
L
S
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
45  
40  
35  
30  
25  
20  
15  
10  
5
6
4
2
0
VOUT = 0.2Vpp  
RS optimized for <1dB peaking  
VOUT = 0.2Vpp  
RS optimized for <1dB peaking  
0
10  
100  
CL (pf)  
1000  
10  
100  
CL (pF)  
1000  
Frequency Response vs. V  
Frequency Response vs. V (V = 5V)  
OUT S  
OUT  
1
0
1
0
VOUT = 1Vpp  
VOUT = 1Vpp  
-1  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
VOUT = 5Vpp  
VOUT = 2Vpp  
VOUT = 2Vpp  
-2  
-3  
-4  
-5  
-6  
-7  
VOUT = 4Vpp  
VOUT = 3Vpp  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
©2007-2013 Exar Corporation  
7/18  
Rev 1D  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = 12V, R = 510Ω, R = 100Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
L
S
Frequency Response vs. Temperature  
Frequency vs. Temperature (V = 5V)  
S
1
0
1
0
- 40degC  
+ 25degC  
+ 85degC  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
+ 25degC  
- 40degC  
+ 85degC  
VOUT = 2V
VOUT = .2V
pp
pp
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
-3dB Bandwidth vs. Output Voltage  
-3dB Bandwidth vs. Output Voltage (V =5V)  
S
275  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
50  
50  
25  
25  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOUT (VPP  
)
VOUT (VPP)  
Open Loop Transimpendance Gain/Phase vs. Frequency  
Input Voltage Noise  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-20  
Gain  
40  
30  
20  
10  
0
-40  
-60  
-80  
Phase  
-100  
-120  
-140  
-160  
-180  
-200  
-10  
-20  
1k  
10k  
100k  
1M  
10M 100M  
1G  
0.0001 0.001 0.01  
0.1  
1
10  
100  
Frequency (Hz)  
Frequency (MHz)  
©2007-2013 Exar Corporation  
8/18  
Rev 1D  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = 12V, R = 510Ω, R = 100Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
L
S
2nd Harmonic Distortion vs. R  
3rd Harmonic Distortion vs. R  
L
L
-20  
-30  
-40  
-20  
-30  
-40  
RL = 25Ω  
RL = 25Ω  
RL = 100Ω  
RL = 100Ω  
-50  
-60  
-50  
-60  
-70  
-70  
RL = 1kΩ  
RL = 1kΩ  
-80  
-80  
-90  
-90  
VOUT = 2Vpp  
VOUT = 2Vpp  
-100  
-100  
0
5
10  
Frequency (MHz)  
15  
20  
0
5
10  
Frequency (MHz)  
15  
20  
2nd Harmonic Distortion vs. V  
3rd Harmonic Distortion vs. V  
OUT  
OUT  
-20  
-30  
-40  
-20  
-30  
-40  
-50  
-50  
10MHz  
10MHz  
-60  
-70  
-80  
-90  
-60  
-70  
5MHz  
5MHz  
-80  
-90  
1MHz  
1MHz  
-100  
-100  
0.5  
0.75  
1
1.25 1.5  
1.75  
2
2.25 2.5  
2.75  
3
0.5  
0.75  
1
1.25 1.5  
1.75  
2
2.25 2.5  
2.75  
3
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
Differential Gain & Phase AC Coupled  
Differential Gain & Phase DC Coupled  
0.01  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
RL = 150Ω  
AC coupled into 220µF  
0.0075  
0.005  
0.0025  
0
DP  
DG  
-0.0025  
-0.005  
-0.0075  
-0.01  
DG  
-0.01  
DP  
RL = 150Ω  
DC coupled  
-0.02  
-0.03  
VOUT = 2Vpp  
-0.7  
-0.5  
-0.3  
-0.1  
0.1  
0.3  
0.5  
0.7  
-0.7  
-0.5  
-0.3  
-0.1  
0.1  
0.3  
0.5  
0.7  
Input Voltage (V)  
Input Voltage (V)  
©2007-2013 Exar Corporation  
9/18  
Rev 1D  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = 12V, R = 510Ω, R = 100Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
L
S
2nd Harmonic Distortion vs. R (V =5V)  
3rd Harmonic Distortion vs. R (V =5V)  
L
S
L
S
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
RL = 25Ω  
RL = 25Ω  
RL = 100Ω  
RL = 100Ω  
RL = 1kΩ  
RL = 1kΩ  
VOUT = 2Vpp  
VOUT = 2Vpp  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
2nd Harmonic Distortion vs. V  
(V =5V)  
S
3rd Harmonic Distortion vs. V (V =5V)  
OUT S  
OUT  
-45  
-50  
-45  
-50  
10MHz  
-55  
-55  
10MHz  
-60  
-65  
-70  
-75  
-80  
-60  
-65  
-70  
-75  
5MHz  
5MHz  
1MHz  
-80  
1MHz  
-85  
-90  
-85  
-90  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
2.75  
3
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
2.75  
3
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
Differential Gain & Phase AC Coupled (V =5V)  
Differential Gain & Phase DC Coupled (V =5V)  
S
S
0.01  
0.04  
RL = 150Ω  
AC coupled into 220µF  
RL = 150Ω  
DC coupled  
0.0075  
0.005  
0.0025  
0
DG  
0.03  
0.02  
DG  
0.01  
-0.0025  
-0.005  
-0.0075  
-0.01  
0
DP  
-0.01  
DP  
-0.02  
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
-0.4  
-0.2  
0
0.2  
0.4  
Input Voltage (V)  
Input Voltage (V)  
©2007-2013 Exar Corporation  
10/18  
Rev 1D  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = 12V, R = 510Ω, R = 100Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
L
S
Small Signal Pulse Response  
Large Signal Pulse Response  
6.15  
9.0  
VOUT = 4Vpp  
6.1  
6.05  
6
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
VOUT = 2Vpp  
5.95  
5.9  
5.85  
0
20  
40  
60  
80  
100 120 140 160 180 200  
Time (ns)  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
Time (ns)  
Small Signal Pulse Response (V =5V)  
Large Signal Pulse Response (V =5V)  
S
S
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
4.5  
VOUT = 3Vpp  
4.0  
3.5  
VOUT = 2Vpp  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
40  
60  
80  
100 120 140 160 180 200  
Time (ns)  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
Time (ns)  
Crosstalk vs. Frequency  
Crosstalk vs. Frequency (V =5V)  
S
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
VOUT = 2Vpp  
VOUT = 2Vpp  
-90  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
©2007-2013 Exar Corporation  
11/18  
Rev 1D  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = 12V, R = 510Ω, R = 100Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
L
S
Closed Loop Output Impedance vs. Frequency  
CMRR vs. Frequency  
10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
1
0.1  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k 100k 1M 10M 100M  
100M  
Frequency (Hz)  
Frequency (Hz)  
PSRR vs. Frequency  
Input Voltage vs. Output Current  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
1.25  
1.00  
0.75  
IOUT+  
0.50  
0.25  
0.00  
-0.25  
-0.50  
IOUT-  
-0.75  
RL = 2.668Ω  
G = -1  
VS = ±6V  
-1.00  
-1.25  
-100  
1.0  
1.5  
2.0  
2.5  
3.0  
VIN (±V)  
3.5  
4.0  
4.5  
5.0  
10  
100  
1k  
10k 100k 1M 10M 100M  
Frequency (Hz)  
©2007-2013 Exar Corporation  
12/18  
Rev 1D  
Data Sheet  
Two decoupling capacitors should be placed on each pow-  
er pin with connection to a local PC board ground plane. A  
large, usually tantalum, 10μF to 47μF capacitor is required  
to provide good decoupling for lower frequency signals  
and to provide current for fast, large signal changes at the  
CLC2000/CLC4000 outputs. It should be within 0.25” of  
the pin. A secondary smaller 0.1μF MLCC capacitor should  
located within 0.125” to reject higher frequency noise on  
the power line.  
Application Information  
Basic Operation  
Figures 1 and 2 illustrate typical circuit configurations for  
non-inverting, inverting, and unity gain topologies for dual  
supply applications. They show the recommended bypass  
capacitor values and overall closed loop gain equations.  
+Vs  
6.8μF  
Power Dissipation  
Power dissipation is an important consideration in applica-  
tions with low impedance DC, coupled loads. Guidelines  
listed below can be used to verify that the particular ap-  
plication will not cause the device to operate beyond its  
intended operating range. Calculations below relate to a  
single amplifier. For the CLC2000/CLC4000, all amplifiers  
power contribution needs to be added for the total power  
dissipation.  
0.1μF  
Input  
+
-
Output  
RL  
0.1μF  
6.8μF  
Rf  
Rg  
G = 1 + (Rf/Rg)  
-Vs  
Maximum power levels are set by the absolute maximum  
junction rating of 150°C. To calculate the junction tem-  
Figure 1. Typical Non-Inverting Gain Circuit  
perature, the package thermal resistance value Theta  
JA  
+Vs  
6.8μF  
(Ө ) is used along with the total die power dissipation.  
JA  
T
= T + (Ө × P )  
Ambient JA D  
Junction  
R1  
0.1μF  
+
Output  
Rg  
Where T  
ment.  
is the temperature of the working environ-  
Ambient  
Input  
-
RL  
0.1μF  
Rf  
In order to determine P , the power dissipated in the load  
D
needs to be subtracted from the total power delivered by  
the supplies.  
6.8μF  
G = - (Rf/Rg)  
-Vs  
For optimum input offset  
voltage set R1 = Rf || Rg  
P = P  
- P  
load  
D
supply  
Figure 2. Typical Inverting Gain Circuit  
Supply power is calculated by the standard power equa-  
tion.  
Power Supply and Decoupling  
P
= V × I  
supply (RMS supply)  
supply  
The CLC2000 and CLC4000 can be powered with a low  
noise supply anywhere in the range from +5V to +13V.  
Ensure adequate metal connections to power pins in the  
PC board layout with careful attention paid to decoupling  
the power supply.  
V
= V  
- V  
(S-)  
supply  
(S+)  
Power delivered to a purely resistive load is:  
2
P
= ((V  
)
) / Rload  
eff  
load  
LOAD RMS  
The effective load resistor will need to include the effect  
High quality capacitors with low equivalent series resis-  
tance (ESR) such as multilayer ceramic capacitors (MLCC)  
should be used to minimize supply voltage ripple and  
power dissipation.  
of the feedback network. For instance,  
Rload in figure 1 would be calculated as:  
eff  
R || (R + R )  
L
f
g
©2007-2013 Exar Corporation  
13/18  
Rev 1D  
Data Sheet  
These measurements are basic and are relatively easy to  
perform with standard lab equipment. For design purposes  
however, prior knowledge of actual signal levels and load  
impedance is needed to determine the dissipated power.  
In the event of a short circuit condition, the CLC2000/  
CLC4000 has circuitry to limit output drive capability to  
±1000mA. This will only protect against a momentary  
event. Extended duration under these conditions will  
cause junction temperatures to exceed 150°C. Due to  
internal metallization constraints, continuous output cur-  
rent should be limited to ±100mA.  
Here, P can be found from  
D
P = P  
+ P  
- P  
D
Quiescent  
Dynamic Load  
Quiescent power can be derived from the specified I val-  
S
ues along with known supply voltage, V . Load power  
Supply  
can be calculated as above with the desired signal ampli-  
tudes using:  
Driving Capacitive Loads  
Increased phase delay at the output due to capacitive load-  
ing can cause ringing, peaking in the frequency response,  
and possible unstable behavior. Use a series resistance,  
(V  
)
= V  
/ √2  
LOAD RMS  
PEAK  
( I  
)
= (V  
)
/ Rload  
LOAD RMS  
LOAD RMS eff  
R , between the amplifier and the load to help improve  
S
stability and settling performance. Refer to Figure 4.  
The dynamic power is focused primarily within the output  
stage driving the load. This value can be calculated as:  
Input  
+
-
Rs  
Output  
P
= (V - V  
)
× (I )  
LOAD RMS  
DYNAMIC  
S+  
LOAD RMS  
CL  
RL  
Rf  
Assuming the load is referenced in the middle of the pow-  
er rails or V /2.  
supply  
Rg  
Figure 3 shows the maximum safe power dissipation in  
the package vs. the ambient temperature for the 8 Lead  
SOIC packages.  
Figure 4. Addition of R for Driving  
S
Capacitive Loads  
Table 1 provides the recommended R for various capaci-  
S
2.5  
tive loads. The recommended R values result in <=1dB  
S
SOIC-14  
peaking in the frequency response. The Frequency Re-  
2
sponse vs. C plots, on page 7, illustrates the response of  
L
the CLC2000.  
1.5  
C (pF)  
L
R (Ω)  
S
-3dB BW (MHz)  
SOIC-8  
1
10  
20  
40  
24.5  
20  
275  
250  
175  
135  
75  
0.5  
0
50  
100  
500  
1000  
13.5  
6
-40  
-20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
5
45  
Figure 3. Maximum Power Derating  
Table 1: Recommended R vs. C  
S
L
Better thermal ratings can be achieved by maximizing  
PC board metallization at the package pins. However, be  
careful of stray capacitance on the input pins.  
For a given load capacitance, adjust R to optimize the  
tradeoff between settling time and bandwidth. In general,  
S
reducing R will increase bandwidth at the expense of ad-  
S
ditional overshoot and ringing.  
In addition, increased airflow across the package can also  
help to reduce the effective Ө of the package.  
JA  
©2007-2013 Exar Corporation  
14/18  
Rev 1D  
Data Sheet  
Overdrive Recovery  
+Vs  
An overdrive condition is defined as the point when ei-  
ther one of the inputs or the output exceed their specified  
voltage range. Overdrive recovery is the time needed for  
the amplifier to return to its normal or linear operating  
point. The recovery time varies, based on whether the in-  
put or output is overdriven and by how much the range is  
exceeded. The CLC2000/CLC4000 will typically recover in  
less than 40ns from an overdrive condition. Figure 5 shows  
the CLC2000 in an overdriven condition.  
+
1/2  
CLC2000  
R
f+  
R
=12.5Ω  
=12.5Ω  
o+  
V
o+  
1:2  
R
g
V
R =100Ω  
L
V
OUT  
IN  
V
o-  
R
R
o-  
f-  
3
2
6
VIN = 2.5Vpp  
G = 5  
1/2  
CLC2000  
-
4
Input  
1
2
0
0
-Vs  
-1  
-2  
-3  
-2  
-4  
-6  
Figure 6: Typical Differential Transmission Line Driver  
Output  
80  
For any transmission requirement, the fundamental de-  
sign parameters needed are the effective impedance of  
the transmission line, the power required at the load, and  
knowledge concerning the content of the transmitted sig-  
nal. The basic design of such a circuit is briefly outlined  
below, using the ADSL parameters as a guideline.  
0
20  
40  
60  
100 120 140 160 180 200  
Time (ns)  
Figure 5. Overdrive Recovery  
Using the CLC2000/CLC4000 as a Differential Line Driver  
Data transmission techniques, such as ADSL, utilize ampli-  
tude modulation techniques which are sensitive to output  
clipping. A signal’s PEAK to RMS ratio, or Crest Factor (CF),  
can be used to determine the adequate peak signal levels  
to insure fidelity for a given signal.  
The combination of good large signal bandwidth and high  
output drive capability makes the CLC2000/CLC4000 well  
suited for low impedance line driver applications, such  
as the upstream data path for a ADSL CPE modem. The  
dual channel configuration of the CLC2000 provides bet-  
ter channel matching than a typical single channel device, For an ADSL system, the signal consists of 256 indepen-  
resulting in better overall performance in differential ap- dent frequencies with varying amplitudes. This results in  
plications. When configured as a differential amplifier as a noise-like signal with a crest factor of about 5.3. If the  
in figure 6, it can easily deliver the 13dBm to a standard driver does not have enough swing to handle the signal  
100Ω twisted-pair CAT3 or CAT5 cable telephone network, peaks, clipping will occur and amplitude modulated infor-  
as required in a ADSL CPE application.  
mation can be corrupted, causing degradation in the sig-  
nals Bit Error Rate.  
Differential circuits have several advantages over single-  
ended configurations. These include better rejection of To determine the required swing, first use the specified  
common mode signals and improvement of power-supply load impedance to convert the RMS power to an RMS volt-  
rejection. The use of differential signaling also improves age. Then, multiply the RMS voltage by the crest factor to  
overall dynamic performance. Total harmonic distortion get the peak values. For example 13dBm, as referenced to  
(THD) is reduced by the suppression of even signal har- 1mW, is ~20mW. 20mW into the 100Ω CAT5 impedance  
monics and the larger signal swings allow for an improved yields a RMS voltage of 1.413 VRMS . Using the ADSL crest  
signal to noise ratio (SNR).  
factor of 5.3 yields ~ ±7.5V peak signals.  
©2007-2013 Exar Corporation  
15/18  
Rev 1D  
Data Sheet  
Line coupling through a 1:2 transformer is used to realize Evalutaion Board Schematics  
these levels. Standard back termination is used to match  
Evaluation board schematics and layouts are shown in Fig-  
the characteristic 100Ω impedance of the CAT5 cable. For  
proper power transfer, this requires an effective 1:4 im-  
pedance match of 25Ω at the inputs of the transformer. To  
account for the voltage drop of the impedance matching  
resistors, the signal levels at the output of the amplifier  
need to be doubled. Thus each amplifier will swing ±3.75V  
about a centered common mode output voltage.  
ures 7-9. These evaluation boards are built for dual- sup-  
ply operation. Follow these steps to use the board in a  
single-supply application:  
1. Short -Vs to ground.  
2. Use C3 and C4, if the -V pin of the amplifier is not  
S
directly connected to the ground plane.  
In general, the CLC2000/CLC4000 can be used in any ap-  
plication where an economical and local hardwired con-  
nection is needed. For example, routing analog or digital  
video information for a in-cabin entertainment system.  
Networking of a local surveillance system also could be  
considered.  
Layout Considerations  
General layout and supply bypassing play major roles in  
high frequency performance. Exar has evaluation boards  
to use as a guide for high frequency layout and as aid in  
device testing and characterization. Follow the steps below  
as a basis for high frequency layout:  
• Include 6.8µF and 0.1µF ceramic capacitors for power  
supply decoupling  
• Place the 6.8µF capacitor within 0.75 inches of the power pin  
• Place the 0.1µF capacitor within 0.1 inches of the power pin  
• Remove the ground plane under and around the part,  
especially near the input and output pins to reduce para-  
sitic capacitance  
Figure 7. CEB006 Schematic  
• Minimize all trace lengths to reduce series inductances  
Refer to the evaluation board layouts below for more in-  
formation.  
Evaluation Board Information  
The following evaluation board is available to aid in the  
testing and layout of this device:  
Evaluation Board #  
CEB006  
CEB018  
Products  
CLC2000  
CLC4000  
Figure 8. CEB006 Top View  
©2007-2013 Exar Corporation  
16/18  
Rev 1D  
Data Sheet  
Figure 9. CEB006 Bottom View  
Figure 11. CEB018 Top View  
Figure 12. CEB018 Bottom View  
Figure 10. CEB018 Schematic  
©2007-2013 Exar Corporation  
17/18  
Rev 1D  
Data Sheet  
Mechanical Dimensions  
SOIC-8 Package  
SOIC-14 Package  
For Further Assistance:  
Exar Corporation Headquarters and Sales Offices  
48720 Kato Road  
Fremont, CA 94538 - USA  
Tel.: +1 (510) 668-7000  
Fax: +1 (510) 668-7001  
www.exar.com  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage  
has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
©2007-2013 Exar Corporation  
18/18  
Rev 1D  

相关型号:

CLC4000ISO14

High Output Current Dual and Quad Amplifiers
EXAR

CLC4000ISO14X

High Output Current Dual and Quad Amplifiers
EXAR

CLC4003ITP14

Operational Amplifier, 4 Func, BIPolar, PDSO14,
EXAR

CLC4003ITP14X

Operational Amplifier, 4 Func, BIPolar, PDSO14,
EXAR

CLC4007

Single, Dual, and Quad Low Cost, High Speed RRO Amplifiers
EXAR

CLC4007ISO14EVB

Single, Dual, and Quad Low Cost, High Speed RRO Amplifiers
EXAR

CLC4007ISO14MTR

IC OPAMP VFB 250MHZ RRO 14SOIC
EXAR

CLC4007ISO14X

Single, Dual, and Quad Low Cost, High Speed RRO Amplifiers
EXAR

CLC4007ITP14EVB

Single, Dual, and Quad Low Cost, High Speed RRO Amplifiers
EXAR

CLC4007ITP14MTR

Single, Dual, and Quad Low Cost, High Speed RRO Amplifiers
EXAR

CLC4007ITP14X

Video Amplifier,
EXAR

CLC400A8B

Fast Settling, Wideband Low-Gain Monolithic Op Amp
NSC