SP3223ECY-L-TR [EXAR]

Intelligent 3.0V to 5.5V RS-232 Transceivers;
SP3223ECY-L-TR
型号: SP3223ECY-L-TR
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Intelligent 3.0V to 5.5V RS-232 Transceivers

文件: 总21页 (文件大小:803K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SP3223E/EB/EU  
Intelligent +3.0V to +5.5V RS-232 Transceivers  
FEATURES  
• Meets true EIA/TIA-232-F Standards  
EN  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
SHUTDOWN  
Vcc  
from a +3.0V to +5.5V power supply  
• Interoperable with EIA/TIA-232 and  
adheres to EIA/TIA-562 down to a +2.7V  
power source  
C1+  
V+  
GND  
C1-  
T1OUT  
R1IN  
• AUTO ON-LINE® circuitry automatically  
wakes up from a ꢀµA shutdown  
• Minimum 250Kbps data rate under load  
(EB)  
SP3223E  
C2+  
C2-  
V-  
R1OUT  
14  
13  
ONLINE  
T1IN  
• ꢀ Mbps data rate for high speed RS-232  
(EU)  
• Regulated Charge Pump Yields Stable  
RS-232 Outputs Regardless of VCC  
Variations  
T2OUT  
R2IN  
8
9
12 T2IN  
10  
R2OUT  
11 STATUS  
• ESD Specifications:  
+ꢀ5KV Human Body Model  
+ꢀ5KV IEC6ꢀ000-4-2 Air Discharge  
+8KV IEC6ꢀ000-4-2 Contact Discharge  
Now Available in Lead Free Packaging  
DESCRIPTION  
The SP3223 products are RS-232 transceiver solutions intended for portable applications  
such as notebook and hand held computers. These products use an internal high-efficiency,  
charge-pump power supply thatrequires only0.ꢀµFcapacitorsin3.3Voperation.Thischarge  
pump and Exar's driver architecture allow the SP3223 series to deliver compliant RS-232  
performance from a single power supply ranging from +3.3V to +5.0V. The SP3223 is a 2-  
driver/2-receiver device ideal for laptop/notebook computer and PDA applications.  
The AUTO ON-LINE® feature allows the device to automatically "wake-up" during a shut-  
down state when an RS-232 cable is connected and a connected peripheral is turned on.  
Otherwise, the device automatically shuts itself down drawing less than ꢀµA.  
SELECTION TABLE  
Device  
Power  
Supplies  
RS- 232  
Drivers Receivers  
RS-232  
AUTO ON-LINE ®  
TTL  
3-state  
Data Rate  
(kbps)  
SP3223E +3.0V to +5.5V  
SP3223EB +3.0V to +5.5V  
SP3223EU +3.0V to +5.5V  
2
2
2
2
2
2
YES  
YES  
YES  
YES  
YES  
YES  
ꢀ20  
250  
ꢀ000  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation  
of the device at these ratings or any other above those  
indicated in the operation sections of the specifications  
below is not implied. Exposure to absolute maximum  
rating conditions for extended periods of time may  
affect reliability and cause permanent damage to the  
device.  
Output Voltages  
TxOUT.............................................................+ꢀ3.2V  
RxOUT, STATUS.......................-0.3V to (VCC + 0.3V)  
Short-Circuit Duration  
TxOUT.....................................................Continuous  
Storage Temperature......................-65°C to +ꢀ50°C  
V
.......................................................-0.3V to +6.0V  
V+CC(NOTE ꢀ).......................................-0.3V to +7.0V  
V- (NOTE ꢀ)........................................+0.3V to -7.0V  
V+ + |V-| (NOTE ꢀ)...........................................+ꢀ3V  
Power Dissipation per package  
20-pin SSOP (derate 9.25mW/oC above +70oC)..750mW  
20-pin TSSOP (derate ꢀꢀ.ꢀmW/oC above +70oC..900mW  
I
(DC V or GND current).........................+ꢀ00mA  
InCCput VolCtaC ges  
TxIN, ONLINE,  
SHUTDOWN, EN......................-0.3V to VCC + 0.3V  
RxIN...................................................................+ꢀ5V  
NOTE 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed ꢀ3V.  
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX  
.
Typical values apply at VCC = +3.3V or +5.0V and TAMB = 25°C (Note 2).  
PARAMETER  
MIN.  
TYP.  
MAX. UNITS  
CONDITIONS  
DC CHARACTERISTICS  
All RxIN open, ONLINE = GND,  
SHUTDOWN = Vcc, TxIN = Vcc or  
GND, Vcc = +3.3V, TAMB = +25ºC  
Supply Current,  
ꢀ.0  
ꢀ0  
µA  
AUTO ON-LINE®  
SHUTDOWN = GND, TxIN =  
Supply Current, Shutdown  
ꢀ.0  
0.3  
ꢀ0  
µA  
Vcc or GND, Vcc = +3.3V, TAMB  
+25ºC  
=
Supply Current,  
AUTO ON-LINE® Disabled  
ꢀ.0  
mA  
ONLINE = SHUTDOWN = Vcc, No  
Load, Vcc = +3.3V, TAMB = +25ºC  
LOGIC INPUTS AND RECEIVER OUTPUTS  
Input Logic Threshold  
Vcc = 3.3V or 5.0V,  
LOW  
HIGH  
GND  
2.0  
0.8  
Vcc  
V
TxIN, EN, SHUTDOWN, ONLINE  
Input Leakage Current  
+/-0.0ꢀ  
+/-0.05  
+/-ꢀ.0  
+/-ꢀ0  
0.4  
µA  
µA  
TxIN, EN, ONLINE, SHUTDOWN,  
TAMB = +25ºC, Vin = 0V to Vcc  
Output Leakage Current  
Receivers disabled, Vout = 0V to  
Vcc  
Output Voltage LOW  
Output Voltage HIGH  
V
V
IOUT = ꢀ.6mA  
IOUT = -ꢀ.0mA  
Vcc - 0.6 Vcc - 0.ꢀ  
NOTE 2: C1 - C4 = 0.1µF, tested at 3.3V ±10%.  
C1 = 0.047µF, C2-C4 = 0.33µF, tested at 5V±10%.  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
2
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX  
.
Typical values apply at VCC = +3.3V or +5.0V and TAMB = 25°C (Note 2).  
PARAMETER  
MIN.  
+/-5.0  
300  
TYP.  
MAX. UNITS  
CONDITIONS  
Driver Outputs  
All Driver outputs loaded with 3kΩ  
to GND, TAMB = +25ºC  
+/-5.4  
V
Output Voltage Swing  
Output Resistance  
Vcc = V+ = V- = 0V, Vout = +/-2V  
Vout = 0V  
Output Short-Circuit Current  
Output Leakage Current  
+/-35  
+/-60  
+/-25  
mA  
µA  
Vcc = 0V or 3.0V to 5.5V, Vout =  
+/-ꢀ2V, Driver disabled  
RECEIVER INPUTS  
-ꢀ5  
+ꢀ5  
V
Input Voltage Range  
Input Threshold LOW  
Input Threshold LOW  
Input Threshold HIGH  
Input Threshold HIGH  
Input Hysteresis  
0.6  
0.8  
ꢀ.2  
ꢀ.5  
ꢀ.5  
ꢀ.8  
0.3  
5
V
V
Vcc = 3.3V  
Vcc = 5.0V  
Vcc = 3.3V  
Vcc = 5.0V  
2.4  
2.4  
V
V
V
Input Resistance  
3
7
k Ω  
AUTO ON-LINE® CIRCUITRY CHARACTERISTICS (ONLINE = GND, SHUTDOWN = Vcc)  
STATUS Output Voltage LOW  
STATUS Output Voltage HIGH  
Receiver Threshold to Drivers  
0.4  
V
V
IOUT = ꢀ.6mA  
IOUT = -ꢀ.0mA  
Figure ꢀ5  
Vcc - 0.6  
200  
0.5  
µs  
Enabled (tONLINE  
)
Receiver Positive or Negative  
Threshold to STATUS HIGH  
µs  
µs  
Figure ꢀ5  
Figure ꢀ5  
(tSTSH  
)
Receiver Positive or Negative  
Threshold to STATUS LOW  
20  
(tSTSL  
)
NOTE 2: C1 - C4 = 0.1µF, tested at 3.3V ±10%.  
C1 = 0.047µF, C2-C4 = 0.33µF, tested at 5V±10%.  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
3
TIMING CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX  
.
Typical values apply at VCC = +3.3V or +5.0V and TAMB = 25°C.  
PARAMETER  
MIN.  
TYP.  
MAX. UNITS  
CONDITIONS  
Maximum Data Rate  
SP3223E  
ꢀ20  
250  
235  
RL = 3kΩ, CL = ꢀ000pF, One  
Driver active  
SP3223EB  
SP3223EU  
kbps  
µA  
ꢀ000  
RL = 3kΩ, CL = 250pF, One Driver  
active  
Receiver Propagation Delay  
tPHL and tPLH  
0.ꢀ5  
Receiver input to Receiver output,  
CL = ꢀ50pF  
Receiver Output Enable Time  
200  
200  
ns  
ns  
Normal Operation  
Normal Operation  
Receiver Output Disable Time  
Driver Skew  
E, EB  
ꢀ00  
50  
500  
ꢀ00  
ns  
ns  
tPHL - tPLH│, TAMB = 25°C  
EU  
Receiver Skew  
E, EB, EU  
200  
90  
ꢀ000  
30  
ns  
tPHL - tPLH  
Transition-Region Slew Rate  
E, EB  
EU  
Vcc = 3.3V, RL = 3kΩ, TAMB  
25°C, measurements taken from  
-3.0V to +3.0V or +3.0V to -3.0V  
=
V/µs  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
4
TYPICAL OPERATING CIRCUIT  
Figure ꢀ. SP3223E Typical Operating Circuit  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
5
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, the following performance characteristics apply for VCC = +3.3V, 250Kbps data rate, all  
drivers loaded with 3kΩ, 0.1µF charge pump capacitors, and TAMB = +25°C.  
30  
25  
20  
15  
10  
5
6
4
- Slew  
+ Slew  
TxOUT +  
2
0
-2  
-4  
-6  
1 Transmitter at 250Kbps  
1 Transmitter at 15.6Kbps  
All drivers loaded 3K + Load Cap  
TxOUT -  
0
0
500 1000  
2000 3000 4000 5000  
0
1000  
2000  
3000  
4000  
5000  
Load Capacitance (pF)  
Load Capacitance (pF)  
Figure 2. Transmitter Output Voltage VS. Load  
Capacitance for the SP3223EB  
Figure 3. Slew Rate VS. Load Capacitance for the  
SP3223EB  
35  
30  
20  
15  
25  
20  
15  
10  
5
250Kbps  
125Kbps  
10  
20Kbps  
1 Transmitter at 250Kbps  
2 Transmitters at 15.6Kbps  
5
1 Transmitter at 250Kbps  
All drivers loaded with 3K // 1000pF  
1 Transmitter at 15.6Kbps  
All drivers loaded 3K + Load Cap  
0
0
0
1000  
2000  
3000  
4000  
5000  
2.7  
3
3.5  
4
4.5  
5
Load Capacitance (pF)  
Supply Voltage (Vdc)  
Figure 5. Supply Current VS. Supply Voltage for  
the SP3223EB  
Figure 4. Supply Current VS. Load Capacitance  
when Transmitting Data for the SP3223EB  
6
TxOUT +  
4
2
0
-2  
-4  
-6  
TxOUT -  
2.7  
3
3.5  
pl  
4
4.5  
5
S
u
p
y
V
o
lt  
a
g
(V  
d
c)  
Figure 6. Transmitter Output Voltage VS. Supply  
Voltage for the SP3223EB  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
6
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, the following performance characteristics apply for VCC = +3.3V, 000Kbps data rate, all  
drivers loaded with 3kΩ, 0.1µF charge pump capacitors, and TAMB = +25°C.  
6
4
200  
150  
100  
50  
2
1Driver at 1Mbps  
Other Drivers at 62.5Kbps  
All Drivers Loaded with 3K // 250pF  
0
-2  
-4  
-6  
T1 at 500Kbps  
T2 at 31.2Kbps  
All TX loaded 3K // CLoad  
0
0
250  
500  
1000  
1500  
2000  
2.7  
3
3.5  
4
4.5  
5
Load Capacitance (pF)  
Supply Voltage (V)  
Figure 7. Transmitter Skew VS. Load Capacitance  
for the SP3223EU  
Figure 8. Transmitter Output Voltage VS. Supply  
Voltage for the SP3223EU  
35  
30  
25  
20  
6
4
T1 at 1Mbps  
T2 at 62.5Kbps  
2
0
-2  
-4  
-6  
15  
T1 at 1Mbps  
T2 at 62.5Kbps  
10  
5
0
0
250  
500  
1000  
1500  
0
250  
500  
1000  
1500  
Load Capacitance (pF)  
Load Capacitance (pF)  
Figure 9. Transmitter Output Voltage VS. Load  
Capacitance for the SP3223EU  
Figure ꢀ0. Supply Current VS. Load Capacitance for  
the SP3223EU  
6
4
20  
15  
2
T1 at 1Mbps  
T2 at 62.5Kbps  
All Drivers loaded  
0
10  
T1 at 1Mbps  
T2 at 62.5Kbps  
All Drivers loaded  
with 3K//250pF  
-2  
5
0
with 3K//250pF  
-4  
-6  
2.7  
3
3.5  
4
4.5  
5
2.7  
3
3.5  
4
4.5  
5
Supply Voltage (V)  
Supply Voltage (V)  
Figure ꢀꢀ. Supply Current VS. Supply Voltage for  
the SP3223EU  
Figure ꢀ2. Transmitter Output Voltage VS. Supply  
Voltage for the SP3223EU  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
7
PIN DESCRIPTION  
Name  
EN  
Function  
Pin #  
Receiver Enable, Apply logic LOW for normal operation. Apply logic HIGH to  
disable receiver outputs (high-Z state).  
Cꢀ+  
V+  
Positive terminal of the voltage doubler charge-pump capacitor  
Regulated +5.5V output generated by charge pump  
Negative terminal of the voltage doubler charge-pump capacitor  
Positive terminal of the inverting charge-pump capacitor  
Negative terminal of the inverting charge-pump capacitor  
Regulated -5.5V output generated by charge pump  
RS-232 Driver output  
2
3
Cꢀ-  
4
C2+  
5
C2-  
6
V-  
7
T2OUT  
R2IN  
R2OUT  
STATUS  
T2IN  
8
RS-232 receiver input  
9
TTL/CMOS receiver output  
ꢀ0  
ꢀꢀ  
ꢀ2  
ꢀ3  
TTL/CMOS output indicating online and shutdown status  
TTL/CMOS driver input  
TIN  
TTL/CMOS driver input  
Apply logic HIGH to override AUTO ON-LINE ® circuitry keeping drivers active  
(SHUTDOWN must also be logic HIGH, refer to table 2).  
ONLINE  
ꢀ4  
ROUT  
RIN  
TTL/CMOS receiver output  
RS-232 receiver input  
RS-232 Driver output  
Ground  
ꢀ5  
ꢀ6  
ꢀ7  
ꢀ8  
ꢀ9  
TOUT  
GND  
Vcc  
+3.0V to +5.5V supply voltage  
Apply logic LOW to shut down drivers and charge pump. This overrides all  
AUTO ON-LINE ® circuitry and ONLINE (refer to table 2).  
SHUTDOWN  
20  
Table 2. Pin Description  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
8
DESCRIPTION  
THEORY OF OPERATION  
The SP3223 is a 2-driver/2-receiver device  
ideal for portable or handheld applications.  
TheSP3223 transceiversmeettheEIA/TIA-  
232 and ITU-T V.28/V.24 communication  
protocolsandcanbeimplementedinbattery-  
powered,portable,orhandheldapplications  
such as notebook or handheld computers.  
The SP3223 devices feature Exar's propri-  
etary on-board charge pump circuitry that  
generates±5.5VRS-232voltagelevelsfrom  
a single +3.0V to +5.5V power supply.  
The SP3223 series is made up of four basic  
circuit blocks:  
ꢀ. Drivers, 2. Receivers, 3. The Exar pro-  
prietary charge pump, and 4. AUTO ON-  
LINE® circuitry.  
Drivers  
The drivers are inverting level transmitters  
thatconvertTTLorCMOSlogiclevelsto5.0V  
EIA/TIA-232 levels with an inverted sense  
relativetotheinputlogiclevels. Typically,the  
RS-232 output voltage swing is +5.4V with  
no load and +5V minimum fully loaded. The  
driver outputs are protected against infinite  
short-circuits to ground without degrada-  
tion in reliability. These drivers comply with  
the EIA-TIA-232F and all previous RS-232  
versions. Unused driver inputs should be  
connected to GND or VCC.  
These devices are an ideal choice for power  
sensitivedesigns.FeaturingAUTOON-LINE®  
circuitry,theSP3223reducesthepowersup-  
ply drain to a ꢀµA supply current. In many  
portableorhandheldapplications,anRS-232  
cable can be disconnected or a connected  
peripheral can be turned off. Under these  
conditions, the internal charge pump and  
thedriverswillbeshutdown. Otherwise, the  
system automatically comes online. This  
feature allows design engineers to address  
powersavingconcernswithoutmajordesign  
changes.  
The drivers can guarantee output data  
rates fully loaded with 3kΩ in parallel with  
ꢀ000pF, (SP3223EU, CL= 250pF) ensuring  
compatibility with PC-to-PC communication  
software.  
VCC  
The slew rate of the driver output on the  
E and EB versions is internally limited to a  
maximum of 30V/µs in order to meet the EIA  
standards(EIARS-232D2.ꢀ.7,Paragraph5).  
The Slew Rate of EU version is not limited  
to enable higher speed data transfers. The  
transition of the loaded output from HIGH to  
LOW also meets the monotonicity require-  
ments of the standard.  
+
+
19  
CC  
0.1µF  
C5  
C1  
V
2
3
7
C1+  
V+  
V-  
+
+
0.1µF  
C3  
C4  
0.1µF  
0.1µF  
4
5
C1-  
C2+  
SP3223E  
+
0.1µF  
C2  
6
C2-  
T1OUT  
T2OUT  
T1IN  
17  
8
11  
12  
RS-232  
TTL/CMOS INPUTS  
T2IN  
OUTPUTS  
UART  
or  
R1IN  
R2IN  
R1OUT  
R2OUT  
16  
9
15  
10  
RS-232  
INPUTS  
5KΩ  
5KΩ  
Serial µC  
TTL/CMOS OUTPUTS  
Figure4showsaloopbacktestcircuitused  
to test the RS-232 Drivers. Figure 15 shows  
the test results where one driver was active  
at 250kbps and all drivers are loaded with  
anRS-232receiverinparallelwitha000pF  
capacitor. RS-232 data transmission rate of  
ꢀ20kbpstoMbps providecompatibilitywith  
designs in personal computer peripherals  
and LAN applications.  
EN  
V
CC  
20  
14  
SHUTDOWN  
ONLINE  
11  
STATUS  
GND  
18  
µP  
Supervisor  
IC  
VIN  
RESET  
Figure ꢀ3. Interface Circuitry Controlled by Micropro-  
cessor Supervisory Circuit  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
9
Device: SP3223  
SHUTDOWN  
EN  
0
TXOUT  
RXOUT  
Active  
High Z  
Active  
High Z  
0
0
High Z  
High Z  
Active  
Active  
0
Table 3. SHUTDOWN and EN Truth Tables  
Note: In AUTOON-LINE® ModewhereONLINE=GND  
and SHUTDOWN = VCC, the device will shut down if  
there is no activity present at the Receiver inputs.  
Receivers  
The receivers convert ±5.0V EIA/TIA-232  
levels to TTL or CMOS logic output levels.  
Receivers have an inverting output that can  
be disabled by using the EN pin.  
Figure ꢀ4. Loopback Test Circuit for RS-232 Driver  
Data Transmission Rates  
Receivers are active when the AUTO ON-  
LINE® circuitry is enabled or when in shut-  
down.Duringtheshutdown,thereceiverswill  
continue to be active. If there is no activity  
present at the receivers for a period longer  
than00µsorwhenSHUTDOWNisenabled,  
the device goes into a standby mode where  
the circuit draws ꢀµA. Driving EN to a logic  
HIGHforcestheoutputsofthereceiversinto  
high-impedance. The truth table logic of the  
SP3223 driver and receiver outputs can be  
found in Table 2.  
Figure ꢀ5. Loopback Test Circuit result at 250Kbps  
(All Drivers Fully Loaded)  
Since receiver input is usually from a trans-  
mission line where long cable lengths and  
system interference can degrade the signal,  
the inputs have a typical hysteresis margin  
of 300mV. This ensures that the receiver  
is virtually immune to noisy transmission  
lines. Should an input be left unconnected,  
aninternal 5kpull-downresistortoground  
will commit the output of the receiver to a  
HIGH state.  
Charge Pump  
The charge pump uses a unique approach  
compared to older less–efficient designs.  
The charge pump still requires four external  
capacitors, but uses a four–phase voltage  
shifting technique to attain symmetrical  
5.5V power supplies. The internal power  
supply consists of a regulated dual charge  
pump that provides output voltages of  
+/-5.5V regardless of input voltage (VCC)  
over the +3.0V to +5.5V range. This  
is important to maintain compliant RS-  
232 levels regardless of power supply  
fluctuations.  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
ꢀ0  
The charge pump operates in a discontinu-  
ous mode using an internal oscillator. If the  
output voltages are less than a magnitude  
of 5.5V, the charge pump is enabled. If the  
outputvoltages exceedamagnitudeof5.5V,  
the charge pump is disabled. This oscillator  
controls the four phases of the voltage shift-  
ing. A description of each phase follows.  
as the operational conditions for the internal  
oscillator are present.  
Since both V+ and Vare separately gener-  
ated from VCC, in a no–load condition V+  
and Vwill be symmetrical. Older charge  
pump approaches that generate Vfrom  
V+ will show a decrease in the magnitude  
of Vcompared to V+ due to the inherent  
inefficiencies in the design.  
Phase 1  
— VSS charge storage — During this phase  
oftheclockcycle,thepositivesideofcapaci-  
tors Cand C2 are initially charged to VCC.  
Cl+ is then switched to GND and the charge  
in Cis transferred to C . Since C2+ is con-  
nected to V , the volta2ge potential across  
capacitor C2CCis now 2 times VCC.  
The Exar charge pump is designed to  
operate reliably with a range of low cost  
capacitors. Either polarized or non polar-  
ized capacitors may be used. If polarized  
capacitorsareusedtheyshouldbeoriented  
as shown in the Typical Operating Circuit.  
TheV+capacitormaybeconnectedtoeither  
ground or Vcc (polarity reversed.)  
Phase 2  
— V transfer — Phase two of the clock  
connSeSctsthenegativeterminalofC totheVSS  
storagecapacitorandthepositivet2erminalof  
C2 to GND. This transfers a negative gener-  
ated voltage to C3. This generated voltage is  
regulated to a minimum voltage of -5.5V.  
Simultaneous with the transfer of the volt-  
age to C3, the positive side of capacitor Cꢀ  
is switched to VCC and the negative side is  
connected to GND.  
The charge pump operates with 0.ꢀµF  
capacitors for 3.3V operation. For other  
supply voltages, see table 4 for required  
capacitor values. Do not use values smaller  
than those listed. Increasing the capacitor  
values (e.g., by doubling in value) reduces  
ripple on the transmitter outputs and may  
slightlyreducepowerconsumption. C2, C3,  
and C4 can be increased without changing  
Cꢀ’s value.  
Phase 3  
— VDD charge storage — The third phase of  
the clock is identical to the first phase — the  
charge transferred in Cproduces –VCC in  
the negative terminal of C , which is applied  
to the negative side of capacitor C2. Since  
C + is at V , the voltage potential across C2  
is22 timesCVCCC.  
For best charge pump efficiency locate the  
charge pump and bypass capacitors as  
close as possible to the IC. Surface mount  
capacitors are best for this purpose. Using  
capacitors with lower equivalent series re-  
sistance (ESR) and self-inductance, along  
with minimizing parasitic PCB trace induc-  
tance will optimize charge pump operation.  
Designers are also advised to consider that  
capacitor values may shift over time and  
operating temperature.  
Phase 4  
— VDD transfer — The fourth phase of  
the clock connects the negative terminal  
of C2 to GND, and transfers this positive  
generated voltage across C2 to C4, the  
VDD storage capacitor. This voltage is  
regulated to +5.5V. At this voltage, the in-  
ternal oscillator is disabled. Simultaneous  
with the transfer of the voltage to C4, the  
positivesideofcapacitorCisswitchedtoVCC  
andthenegativesideisswitchedtoGND,al-  
lowingthechargepumpcycletobeginagain.  
The charge pump cycle will continue as long  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
ꢀꢀ  
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
+
C
C
2
1
C
–5V  
–5V  
3
Figure ꢀ6. Charge Pump - Phase ꢀ  
V
= +5V  
CC  
C
4
+
+
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
+
C
C
2
1
V
C
–10V  
3
Figure ꢀ7. Charge Pump - Phase 2  
[
T
]
+6V  
a) C2+  
T
T
0V  
0V  
1
2
2
b) C  
2
-
-6V  
Ch1 2.00V Ch2 2.00V M 1.00ms Ch1 1.96V  
Figure ꢀ8. Charge Pump Waveforms  
V
= +5V  
CC  
C
+
+5V  
4
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
+
C
C
2
1
C
–5V  
–5V  
3
Figure ꢀ9. Charge Pump - Phase 3  
V
= +5V  
CC  
C
+
+10V  
4
+
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
+
C
C
2
1
V
C
3
Figure 20. Charge Pump - Phase 4  
Minimum recommended charge pump capacitor value  
Input Voltage VCC  
Charge pump capacitor value  
3.0V to 3.6V  
4.5V to 5.5V  
3.0V to 5.5V  
Cꢀ - C4 = 0.ꢀµF  
Cꢀ = 0.047µF, C2-C4 = 0.33µF  
Cꢀ - C4 = 0.22µF  
Table 4. Minimum Charge Pump Capacitor values  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
ꢀ2  
The second stage of the AUTO ON-LINE®  
circuitry, shown in Figure 23, processes  
the receiver's RXINACT signal with an ac-  
cumulated delay that disables the device to  
a ꢀµA typical supply current. The STATUS  
pin goes to a logic LOW when the cable  
is disconnected, the external transmit-  
ter is disabled, or the SHUTDOWN pin is  
invoked. The typical accumulated delay  
is around 20µs. When the SP3223 drivers  
and internal charge pump are disabled, the  
supply current is reduced to ꢀµA typical.  
This can commonly occur in handheld or  
portable applications where the RS-232  
cable is disconnected or the RS-232 drivers  
of the connected peripheral are truned off.  
TheAUTOON-LINE® modecanbedisabled  
by the SHUTDOWN pin. If this pin is a logic  
LOW, the AUTO ON-LINE® function will not  
operate regardless of the logic state of the  
ONLINE pin. Table 5 summarizes the logic  
of the AUTO ON-LINE® operating modes.  
ThetruthtablelogicoftheSP3223driverand  
receiver outputs can be found in Table 3.  
AUTO ON-LINE® Circuitry  
The SP3223 device has AUTO ON-LINE®  
circuitry on board that saves power in ap-  
plicationssuchaslaptopcomputers, PDA's,  
and other portable systems.  
The SP3223 device incorporates an AUTO  
ON-LINE® circuit that automatically enables  
itselfwhentheexternaltransmitterisenabled  
and the cable is connected. Conversely,  
the AUTO ON-LINE® circuit also disables  
mostoftheinternalcircuitrywhenthedevice  
is not being used and goes into a standby  
mode where the device typically draws ꢀµA.  
This function is externally controlled by the  
ONLINE pin. When this pin is tied to a logic  
LOW, the AUTO ON-LINE® function is ac-  
tive. Once active, the device is enabled until  
there is no activity on receiver inputs. The  
receiver input typically sees at least ±3V,  
which are generated from the transmitter  
at the other end of the cable with a ±5V  
minimum. When the external transmitter is  
disabled or the cable is disconnected, the  
receiver input will be pulled down by its  
internal 5kΩ resistor to ground. When this  
occurs over a period of time, the internal  
transmitters will be disabled and the device  
goes into a shutdown or standby mode.  
When the ONLINE pin is HIGH, the AUTO  
ON-LINE® mode is disabled.  
The STATUS pin outputs a logic LOW signal  
if the device is shutdown. This pin goes to  
a logic HIGH when the external transmitter  
is enabled and the cable is connected.  
When the SP3223 device is shutdown, the  
charge pumps are turned off. V+ charge  
pump output decays to VCC,the V- output  
decays to GND. The decay time will depend  
on the size of capacitors used for the charge  
pump. Once in shutdown, the time required  
to exit the shut down state and have valid  
V+ and V- levels is typically 200µs.  
The AUTO ON-LINE® circuit has two  
stages:  
ꢀ) Inactive Detection  
2) Accumulated Delay  
For easy programming, the STATUS can  
be used to indicate DTR or a Ring Indicator  
signal. Tying ONLINE and SHUTDOWN  
together will bypass the AUTO ON-LINE®  
circuitry so this connection acts like a shut-  
down input pin  
The first stage, shown in Figure 22, detects  
an inactive input. A logic HIGH is asserted  
on RXINACT if the cable is disconnected  
or the external transmitters are disabled.  
Otherwise, RXINACT will be at a logic LOW.  
Thiscircuitisduplicatedforeachoftheother  
receivers.  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
ꢀ3  
S
H
U
T
+2.7V  
0V  
-2.7V  
RECEIVER  
RS-232 INPUT  
VOLTAGES  
D
O
W
N
VCC  
STATUS  
0V  
t
STSL  
tSTSH  
tONLINE  
+5V  
DRIVER  
RS-232 OUTPUT  
VOLTAGES  
0V  
-5V  
Figure 2ꢀ. AUTO ON-LINE® Timing Waveforms  
RS-232 SIGNAL  
TRANSCEIVER  
STATUS  
AT RECEIVER  
INPUT  
SHUTDOWN  
ONLINE  
STATUS  
Normal Operation  
(AUTO ON-LINE©)  
YES  
NO  
HIGH  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
Normal Operation  
Shutdown  
(AUTO ON-LINE©)  
NO  
YES  
NO  
LOW  
LOW  
HIGH/LOW  
HIGH/LOW  
HIGH  
LOW  
Shutdown  
Shutdown  
Table 5. AUTO ON-LINE® Logic  
R INACT  
X
Inactive Detection Block  
RS-232  
Receiver Block  
R IN  
X
R OUT  
X
Figure 22. Stage I of AUTO ON-LINE® Circuitry  
Delay  
Buffer  
Delay  
Buffer  
INACTIVE  
R1ON  
R2ON  
SHUTDOWN  
Figure 23. Stage II of AUTO ON-LINE® Circuitry  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
ꢀ4  
ESD TOLERANCE  
is applied to points and surfaces of the  
equipment that are accessible to personnel  
during normal usage. The transceiver IC  
receives most of the ESD current when the  
ESDsourceisappliedtotheconnectorpins.  
The test circuit for IEC6ꢀ000-4-2 is shown  
on Figure 25. There are two methods within  
IEC6ꢀ000-4-2,theAirDischargemethodand  
the Contact Discharge method. With the Air  
DischargeMethod,anESDvoltageisapplied  
to the equipment under test (EUT) through  
air. This simulates an electrically charged  
person ready to connect a cable onto the  
rear of the system only to find an unpleas-  
ant zap just before the person touches the  
backpanel. Thehighenergypotentialonthe  
person discharges through an arcing path  
to the rear panel of the system before he or  
she even touches the system. This energy,  
whether discharged directly or through air,  
is predominantly a function of the discharge  
current rather than the discharge voltage.  
Variables with an air discharge such as  
approach speed of the object carrying the  
ESD potential to the system and humidity  
will tend to change the discharge current.  
For example, the rise time of the discharge  
current varies with the approach speed.  
The Contact Discharge Method applies the  
ESDcurrentdirectlytotheEUT. Thismethod  
was devised to reduce the unpredictability  
of the ESD arc. The discharge current rise  
time is constant since the energy is directly  
transferred without the air-gap arc. In situ-  
ations such as hand held systems, the ESD  
charge can be directly discharged to the  
equipment from a person already holding  
the equipment. The current is transferred  
on to the keypad or the serial port of the  
equipment directly and then travels through  
the PCB and finally to the IC.  
The SP3223 series incorporates  
ruggedized ESD cells on all driver output  
andreceiverinputpins.TheESDstructureis  
improved over our previous family for more  
rugged applications and environments  
sensitive to electro-static discharges and  
associated transients. The improved ESD  
tolerance is at least +ꢀ5kV without damage  
nor latch-up.  
There are different methods of ESD testing  
applied:  
a) MIL-STD-883, Method 30ꢀ5.7  
b) IEC6ꢀ000-4-2 Air-Discharge  
c) IEC6ꢀ000-4-2 Direct Contact  
The Human Body Model has been the  
generally accepted ESD testing method  
for semiconductors. This method is also  
specified in MIL-STD-883, Method 3015.7  
forESDtesting.ThepremiseofthisESDtest  
is to simulate the human body’s potential to  
store electro-static energy and discharge it  
to an integrated circuit. The simulation is  
performed by using a test model as shown  
in Figure 24. This method will test the IC’s  
capability to withstand an ESD transient  
during normal handling such as in manu-  
facturing areas where the IC's tend to be  
handled frequently.  
The IEC-6ꢀ000-4-2, formerly IEC80ꢀ-2, is  
generallyusedfortestingESDonequipment  
and systems. For system manufacturers,  
they must guarantee a certain amount of  
ESD protection since the system itself is ex-  
posedtotheoutsideenvironmentandhuman  
presence. The premise with IEC6ꢀ000-4-2  
is that the system is required to withstand  
an amount of static electricity when ESD  
Figure 24. ESD Test Circuit for Human Body Model  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
ꢀ5  
Figure 25. ESD Test Circuit for IEC6ꢀ000-4-2  
The circuit model in Figures 24 and 25 rep-  
resentthetypicalESDtestingcircuitusedfor  
allthreemethods. TheCS isinitiallycharged  
with the DC power supply when the first  
switch (SWꢀ) is on. Now that the capacitor  
is charged, the second switch (SW2) is on  
while SWꢀ switches off. The voltage stored  
in the capacitor is then applied through R ,  
the current limiting resistor, onto the devicSe  
under test (DUT). In ESD tests, the SW2  
switch is pulsed so that the device under  
test receives a duration of voltage.  
30A  
ꢀ5A  
0A  
For the Human Body Model, the current  
limitingresistor(RS)andthesourcecapacitor  
(CS) are 1.5kΩ an 100pF, respectively. For  
IEC-6ꢀ000-4-2, the current limiting resistor  
(R ) and the source capacitor (CS) are 330Ω  
anSꢀ50pF, respectively.  
t=30ns  
t=0ns  
t →  
Figure 26. ESD Test Waveform for IEC6ꢀ000-4-2  
The higher CS value and lower R value in  
the IEC6ꢀ000-4-2 model are moreSstringent  
than the Human Body Model. The larger  
storage capacitor injects a higher voltage  
to the test point when SW2 is switched on.  
The lower current limiting resistor increases  
the current charge onto the test point.  
DEVICE PIN  
TESTED  
HUMAN BODY  
MODEL  
IEC61000-4-2  
Air Discharge Direct Contact  
Level  
Driver Outputs  
Receiver Inputs  
±15kV  
±15kV  
±15kV  
±15kV  
±8kV  
±8kV  
4
4
Table 6. Transceiver ESD Tolerance Levels  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
ꢀ6  
PACKAGE: 20 Pin TSSOP  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
ꢀ7  
PACKAGE: 20 Pin SSOP  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
ꢀ8  
ORDERING INFORMATION  
Part Number  
Temperature Range  
Package Types  
SP3223EBCA-L...................................................0°C to +70°C-------------------------------------------- 20-pin SSOP  
SP3223EBCA-L/TR.............................................0°C to +70°C-------------------------------------------- 20-pin SSOP  
SP3223EBCY-L...................................................0°C to +70°C-------------------------------------------20-pin TSSOP  
SP3223EBCY-L/TR.............................................0°C to +70°C-------------------------------------------20-pin TSSOP  
SP3223EBEA-L.................................................-40°C to +85°C------------------------------------------- 20-pin SSOP  
SP3223EBEA-L/TR...........................................-40°C to +85°C------------------------------------------- 20-pin SSOP  
SP3223EBEY-L.................................................-40°C to +85°C------------------------------------------20-pin TSSOP  
SP3223EBEY-L/TR ...........................................-40°C to +85°C------------------------------------------20-pin TSSOP  
SP3223ECA-L.....................................................0°C to +70°C ..................................................... 20-pin SSOP  
SP3223ECA-L/TR...............................................0°C to +70°C ..................................................... 20-pin SSOP  
SP3223ECY-L .....................................................0°C to +70°C ...................................................20-pin TSSOP  
SP3223ECY-L/TR ...............................................0°C to +70°C ...................................................20-pin TSSOP  
SP3223EEA-L...................................................-40°C to +85°C.................................................... 20-pin SSOP  
SP3223EEA-L/TR .............................................-40°C to +85°C.................................................... 20-pin SSOP  
SP3223EEY-L....................................................-40°C to +85°C..................................................20-pin TSSOP  
SP3223EEY-L/TR..............................................-40°C to +85°C..................................................20-pin TSSOP  
SP3223EUCA-L ..................................................0°C to +70°C ..................................................... 20-pin SSOP  
SP3223EUCA-L/TR ............................................0°C to +70°C ..................................................... 20-pin SSOP  
SP3223EUCY-L...................................................0°C to +70°C ...................................................20-pin TSSOP  
SP3223EUCY-L/TR.............................................0°C to +70°C ...................................................20-pin TSSOP  
SP3223EUEA-L.................................................-40°C to +85°C.................................................... 20-pin SSOP  
SP3223EUEA-L/TR...........................................-40°C to +85°C.................................................... 20-pin SSOP  
SP3223EUEY-L.................................................-40°C to +85°C..................................................20-pin TSSOP  
SP3223EUEY-L/TR...........................................-40°C to +85°C..................................................20-pin TSSOP  
Note: "-L" indicates lead free packaging, "/TR" is for tape and reel option  
PRODUCT NOMENCLATURE  
SP3223 E U EY L /TR  
Tape and Reel options  
“L” suffix indicates Lead Free packaging  
Package Type A= SSOP  
Y=TSSOP  
Part Number  
Temperature Range C= Commercial Range 0ºc to 70ºC  
E= Extended Range -40ºc to 85ºC  
Speed Indicator Blank= 120Kbps  
B= 250Kbps  
U= 1Mbps  
ESD Rating E= 15kV HBM and IEC 1000-4  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
ꢀ9  
REVISION HISTORY  
DATE  
REVISION  
---  
DESCRIPTION  
ꢀ0-06-06  
Nov 20ꢀ0  
Legacy Sipex data sheet  
ꢀ.0.0  
Convert to Exar data sheet format and remove EOL parts.  
June 20ꢀ2  
ꢀ.0.ꢀ  
Correct type error on page ꢀ pin diagram. Pin 9 should be R2IN not RꢀIN,  
Change ESD protection levels to IEC6ꢀ000-4-2.  
Notice  
EXAR Corporation reserves the right to make changes to any products contained in this publication in order to improve design, performance or  
reliability. EXAR Corporation assumes no representation that the circuits are free of patent infringement. Charts and schedules contained herein are  
only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully  
checked;  
no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can  
reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for  
use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been  
minimized ; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.  
Copyright 20ꢀ2 EXAR Corporation  
Datasheet June 20ꢀ2  
For technical support please email Exar's Serial Technical Support group at: serialtechsupport@exar.com  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (5ꢀ0)668-70ꢀ7 • www.exar.com  
SP3223E/EB/EU_ꢀ0ꢀ_0627ꢀ2  
20  
Mouser Electronics  
Authorized Distributor  
Click to View Pricing, Inventory, Delivery & Lifecycle Information:  
Exar:  
SP3223ECY-L SP3223EEA-L SP3223EEY-L SP3223ECA-L SP3223ECA-L/TR SP3223EUEY-L SP3223EBCY-  
L/TR SP3223EEA-L/TR SP3223EUEA-L SP3223EBCY-L SP3223ECY-L/TR SP3223EEY-L/TR SP3223EUCA-L  
SP3223EBEY-L SP3223EUEY-L/TR SP3223EBCA-L/TR SP3223EUEA-L/TR SP3223EUCY-L SP3223EBEA-L  
SP3223EUCY-L/TR SP3223EUCA-L/TR SP3223EBEA-L/TR SP3223EBCA-L SP3223EBEY-L/TR  

相关型号:

SP3223ECY-L/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO20, LEAD FREE, MO-153AC, TSSOP-20
EXAR

SP3223ECY/TR

Intelligent +3.0V to +5.5V RS-232 Transceivers
SIPEX

SP3223EEA

Intelligent +3.0V to +5.5V RS-232 Transceivers
SIPEX

SP3223EEA-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO20, LEAD FREE, MO-150, SSOP-20
SIPEX

SP3223EEA-L

Intelligent 3.0V to 5.5V RS-232 Transceivers
EXAR

SP3223EEA-L-TR

Intelligent 3.0V to 5.5V RS-232 Transceivers
EXAR

SP3223EEA-L/TR

Intelligent 3.0V to 5.5V RS-232 Transceivers
EXAR

SP3223EEA/TR

Intelligent +3.0V to +5.5V RS-232 Transceivers
SIPEX

SP3223EEP

Intelligent +3.0V to +5.5V RS-232 Transceivers
SIPEX

SP3223EEY

Intelligent +3.0V to +5.5V RS-232 Transceivers
SIPEX

SP3223EEY

DUAL LINE TRANSCEIVER, PDSO20, MO-153AC, TSSOP-20
ROCHESTER

SP3223EEY-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO20, LEAD FREE, MO-153AC, TSSOP-20
SIPEX