SP332CT-L [EXAR]

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, CMOS, PDSO28, MS-013AE, SOIC-28;
SP332CT-L
型号: SP332CT-L
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, CMOS, PDSO28, MS-013AE, SOIC-28

驱动 光电二极管 接口集成电路 驱动器
文件: 总11页 (文件大小:481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SP332  
RS-232/RS-485 Multi-Mode Serial Transceiver  
Description  
FEATURES  
The SP332 is a monolithic device that contains both RS-232 and  
RS-485 line drivers and receivers. The configuration of the SP332  
can be changed at any time by changing the logic state of two control  
pins. The device also includes a loop back function which internally  
connects driver outputs to receiver inputs for a chip self test. An  
MaxLinear-patented charge pump allows 5V-only operation.  
ꢀ■  
5V only single supply operation  
Software programmable RS-232 or  
RS-485 selection  
ꢀ■  
ꢀ■  
ꢀ■  
ꢀ■  
ꢀ■  
4 drivers, 4 receivers RS-232  
2 drivers, 2 receivers RS-485  
Loop back function for self test  
28-pin WSOIC package  
Ordering Information - Back Page  
Typical Applications Circuit  
RS-232 Mode  
Full Duplex RS-485 Mode Mode  
5V  
5V  
5
5
9
9
VCC  
VCC  
C1+  
0.1µF  
0.1µF  
C1+  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
12  
11  
10  
14  
12  
11  
10  
14  
V+  
V+  
V+  
V+  
C1-  
C1-  
C2+  
C2+  
13  
24  
2
13  
24  
2
0.1µF  
23  
0.1µF  
23  
SP332  
SP332  
C2-  
C2-  
SEL A  
SEL A  
0V  
0V  
TTL/CMOS  
+5V  
+5V  
TTL/CMOS  
RS-485  
LOOPBACK  
LOOPBACK  
TX2  
V
CC  
SEL B  
TI1  
SEL B  
TI1  
V
CC  
V
CC  
V
CC  
V
CC  
7
6
400KΩ  
TX1  
T1  
26  
400KΩ  
400KΩ  
400KΩ  
400KΩ  
6
7
26  
27  
TTL/CMOS  
RS-232  
RS-232  
RS-232  
RS-232  
RS-232  
TTL/CMOS  
TTL/CMOS  
T1  
T3  
TX1  
TI2  
RS-485  
27  
TX2  
T2  
TI2  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
V
CC  
3
4
TX4  
TX3  
TX3  
T3  
400KΩ  
28 TI3  
4
RS-485  
RS-485  
28  
1
TI3  
TI4  
TTL/CMOS  
TTL/CMOS  
1
TX4  
T4  
3
TI4  
19  
RI1  
RI12  
15  
16  
15  
RX1  
RS-485  
RS-485  
R1  
19  
20  
RX1  
RX2  
GND  
RI1  
GND  
TTL/CMOS  
TTL/CMOS  
R1  
GND  
5KΩ  
5KΩ  
5KΩ  
5KΩ  
150KΩ  
150KΩ  
20  
RI2  
16  
17  
18  
RX2  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
RS-232  
RS-232  
RS-232  
R2  
GND  
RI4  
18  
17  
21  
RI3  
RX3  
RS-485  
RS-485  
R3  
R4  
21  
22  
RX3  
RX4  
GND  
RI3  
GND  
TTL/CMOS  
TTL/CMOS  
R3  
150KΩ  
150KΩ  
GND  
22  
RI4  
RX4  
GND  
8
25  
8
25  
TTL/CMOS  
TTL/CMOS  
GND  
GND  
SHUTDOWN  
SHUTDOWN  
REV 1.0.1  
1/11  
SP332  
Absolute Maximum Ratings  
These are stress ratings only and functional operation of the  
device at these ratings or any other above those indicated  
in the operation sections to the specifications below is not  
implied. Exposure to absolute maximum rating conditions  
for extended periods of time may affect reliability.  
V
..................................................................................7V  
Storage Temperature .................................. -65°C to 150°C  
Power Dissipation  
CC  
Input Voltages  
Logic........................ -0.5V to (V + 0.5V)  
28-pin WSOIC .............................1000mW  
CC  
Drivers ..................... -0.5V to (V + 0.5V)  
Power Derating, ø  
JA  
CC  
Receivers........................ 30V ꢀ ꢁ100mA  
28-pin WSOIC ...............................40°C/W  
Driver Outputs ............................................................. 15V  
Maximum Data Rate...............................................8Mbps(1)  
Electrical Characteristics  
Limits are specified at T = 25°C and V = 5.0V unless otherwise noted.  
A
CC  
Parameters  
Min.  
Typ.  
Max.  
Units  
Conditions  
RS-485 Driver DC Characteristics  
Differential output voltage  
Vcc  
5.0  
5.0  
Volts  
Volts  
Volts  
Unloaded; R = ∞Ω; See Figure 1  
Differential output voltage  
2.0  
With load; R = 50Ω (RS-422); See Figure 1  
With load; R = 27Ω (RS-485); See Figure 1  
Differential output voltage  
1.5  
Change in magnitude of driver differential  
output voltage for complementary states  
0.2  
3
Volts  
R = 27Ω or R = 50Ω; See Figure 1  
Driver common-mode output voltage  
Input high voltage  
Input low voltage  
Volts  
Volts  
Volts  
µA  
R = 27Ω or R = 50Ω; See Figure 1  
2.0  
Applies to transmitter inputs, SEL A, SEL B, SD and LB  
Applies to transmitter inputs, SEL A, SEL B, SD and LB  
Applies to transmitter inputs, SEL A, SEL B, SD and LB  
0.8  
10  
Input current  
Pull-up current  
1.5  
µA  
Pull-down current  
3.0  
µA  
Driver short circuit current V  
Driver short circuit current V  
= HIGH  
= LOW  
35  
35  
250  
250  
mA  
-7V ≤ V ≤ 10V  
O
OUT  
OUT  
mA  
-7V ≤ V ≤ 10V  
O
RS-485 Driver AC Characteristics  
Driver data rate  
10  
Mbps  
Mbps  
ns  
Driver data rate  
8
T = 85°C(1)  
A
Driver input to output t  
Driver input to output t  
Driver skew  
70  
70  
5
180  
180  
10  
R
DIFF  
R
DIFF  
= 54Ω, C = C = 100pF; see Figures 3 and 5  
L1 L2  
PLH  
PHL  
ns  
= 54Ω, C = C = 100pF; see Figures 3 and 5  
L1 L2  
ns  
From output to output; see Figures 3 and 5  
From 10% to 90%; R  
see Figures 3 and 5  
= 54Ω, C = C = 100pF;  
L1 L2  
DIFF  
Driver rise or fall time  
3
15  
40  
ns  
REV 1.0.1  
2/11  
SP332  
Electrical Characteristics (Continued)  
Limits are specified at T = 25°C and V = 5.0V unless otherwise noted.  
A
CC  
Parameters  
Min.  
Typ.  
Max.  
Units  
Conditions  
RS-485 Receiver DC Characteristics  
Differential input threshold  
Input hysteresis  
-0.2  
3.5  
12  
0.2  
Volts  
mV  
-7V ≤ V  
≤ 12V  
CM  
70  
15  
V
CM  
= 0V  
Output voltage HIGH  
Volts  
Volts  
kΩ  
I
O
I
O
= -4mA, V = 200mV  
ID  
Output voltage LOW  
0.4  
1.5  
= 4mA, V = -200mV  
ID  
Input resistance  
-7V ≤ V  
≤ 12V  
CM  
V
IN  
= 12V, A is the non-inverting receiver input. B is the  
Input current (A, B); V = 12V  
mA  
IN  
inverting receiver input  
V = -7V  
IN  
Input current (A, B); V = -7V  
-0.8  
85  
mA  
mA  
IN  
Short circuit current  
0V ≤ V  
≤ V  
CM CC  
RS-485 Receiver AC Characteristics  
Receiver data rate  
10  
Mbps  
Mbps  
ns  
Receiver data rate  
8
T = 85°C(1)  
A
Receiver input to output t  
130  
130  
250  
250  
R
DIFF  
R
DIFF  
= 54Ω, C = C = 100pF; Figures 3 and 6  
L1 L2  
PLH  
PHL  
Receiver input to output t  
Differential receiver skew  
ns  
= 54Ω, C = C = 100pF; Figures 3 and 6  
L1 L2  
13  
ns  
R = 54Ω, C = C = 100pF; Figures 3 and 6  
DIFF L1 L2  
|t  
- t  
|
PHL PLH  
RS-232 Driver DC Characteristics  
TTL input level V  
TTL input level V  
0.8  
Volts  
Volts  
Volts  
Volts  
Volts  
mA  
Applies to transmitter inputs, SEL A, SEL B, SD and LB  
Applies to transmitter inputs, SEL A, SEL B, SD and LB  
IL  
2.0  
5.0  
IH  
High level voltage output  
Low level voltage output  
Open circuit output  
15.0  
-5.0  
15  
R = 3kΩ to GND  
L
-15.0  
R = 3kΩ to GND  
L
R = ∞  
L
Short circuit current  
100  
V = 0V  
OUT  
Power off impedance  
300  
V
CC  
= 0V; V  
= 2V  
OUT  
RS-232 Driver AC Characteristics  
Transmission rate  
120  
kbps  
µs  
Rise/fall time, 3V to -3V; -3V to 3V, R = 3kΩ,  
L
Transition time  
1.56  
4
C = 2500pF  
L
R = 3kΩ, C = 2500pF, from 1.5V of T to 50% of  
L
L
IN  
Propagation delay; t  
2
µs  
PHL  
PLH  
V
OUT  
R = 3kΩ, C = 2500pF, from 1.5V of T to 50% of  
L
L
IN  
Propagation delay; t  
Slew rate  
2
4
µs  
V
OUT  
10  
30  
V/µs  
R = 3kΩ, C = 50pF; From 3V to -3V or -3V to 3V  
L L  
REV 1.0.1  
3/11  
SP332  
Electrical Characteristics (Continued)  
Limits are specified at T = 25°C and V = 5.0V unless otherwise noted.  
A
CC  
Parameters  
RS-232 Receiver DC Characteristics  
Min.  
Typ.  
Max.  
Units  
Conditions  
TTL output level; V  
TTL output level; V  
0.4  
Volts  
Volts  
Volts  
Volts  
Volts  
kΩ  
I
I
= 4mA  
OL  
SINK  
3.5  
= -4mA  
OH  
SOURCE  
Input high threshold  
Input low threshold  
Input voltage range  
Input impedance  
2.1  
1.6  
3.0  
0.8  
-15  
3
15  
7
5
V
V
=
15V  
IN  
Hysteresis  
0.2  
0.5  
1.0  
Volts  
= 5V  
CC  
RS-232 Receiver AC Characteristics  
Transmission rate  
120  
kbps  
ns  
Transition time  
50  
Rise/fall time, 10% to 90%  
Propagation delay t  
Propagation delay t  
100  
100  
300  
200  
ns  
PHL  
PLH  
From 50% of V to 1.5V of R  
IN  
OUT  
ns  
Power Requirements  
No load supply current  
19  
90  
5
25  
120  
50  
mA  
mA  
µA  
No load; V = 5.0V; T = 25°C  
CC A  
RS-232 drivers R = 3kΩ to GND, DC input  
L
Full load supply current  
RS-485 drivers R = 54Ω from A to B; DC input  
L
Shutdown supply current  
T = 25°C, V = 5.0V  
A CC  
NOTE  
1. Exceeding the maximum data rate may damage the device.  
REV 1.0.1  
4/11  
SP332  
Test Circuits  
A
1kΩ  
Test Point  
1kΩ  
Receiver  
Output  
V
CC  
R
R
S
1
V
OD  
C
RL  
V
OC  
S
2
B
Figure 1: RS-485 Driver DC Test Load Circuit  
Figure 2. Receiver Timing Test Load Circuit  
CL1  
A
A
DI  
RDIFF  
RO  
V
CC  
S
1
B
B
500Ω  
Output  
Under  
Test  
CL2  
15pF  
C
L
S
2
Figure 3: RS-485 Driver/Receiver Timing Test Circuit  
Figure 4: RS-485 Driver Timing Test Load #2 Circuit  
f ≥1MHz; tR ≤ 10ns; tF ≤ 10ns  
1.5V  
+3V  
1.5V  
DRIVER INPUT  
0V  
tPLH  
tPHL  
B
1/2VO  
1/2VO  
DRIVER  
OUTPUT  
VO  
A
tDPLH  
tDPHL  
+
VO  
DIFFERENTIAL  
OUTPUT  
0V  
VO  
VA VB  
tF  
tR  
tSKEW= |tDPLH-tDPHL  
|
Figure 5: RS-485 Driver Propagation Delays  
f = 1MHz; t  
1.5V  
; t  
≤ 10ns  
F
≤10ns  
R
+
V
OD2  
0V  
0V  
A – B  
INPUT  
V
OD2  
V
OH  
1.5V  
RECEIVER OUT  
OUTPUT  
V
OL  
t
t
PHL  
PLH  
Figure 6: RS-485 Receiver Propagation Delays  
REV 1.0.1  
5/11  
SP332  
Pin Configuration  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
TI4  
SEL_B  
TX4  
TX3  
VCC  
TX1  
TX2  
GND  
C1+  
V+  
TI3  
TI2  
TI1  
SD  
SEL_A  
LB  
RX4  
RX3  
RX2  
RX1  
RI4  
C2+  
C1–  
C2–  
V–  
RI3  
RI2  
RI1  
Typical Applications Circuits  
RS-232 Mode  
Full Duplex RS-485 Mode Mode  
5V  
5V  
5
5
9
9
VCC  
C1+  
VCC  
C1+  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
12  
11  
10  
12  
11  
10  
14  
V+  
V+  
V+  
V+  
C1-  
C1-  
14  
C2+  
C2+  
0.1µF  
13  
24  
2
13  
24  
2
0.1µF  
23  
0.1µF  
23  
SP332  
SP332  
C2-  
C2-  
0V  
0V  
SEL A  
TTL/CMOS  
+5V  
+5V  
SEL A  
TTL/CMOS  
RS-485  
LOOPBACK  
LOOPBACK  
TX2  
V
CC  
SEL B  
TI1  
SEL B  
TI1  
V
CC  
V
CC  
V
CC  
V
CC  
7
400KΩ  
TX1  
T1  
26  
400KΩ  
400KΩ  
400KΩ  
400KΩ  
6
7
26  
27  
TTL/CMOS  
RS-232  
RS-232  
RS-232  
RS-232  
RS-232  
TTL/CMOS  
TTL/CMOS  
T1  
T3  
TX1 6  
TI2  
RS-485  
27  
TX2  
T2  
TI2  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
V
CC  
3
4
TX4  
TX3  
TX3  
T3  
400KΩ  
28 TI3  
4
RS-485  
RS-485  
28  
1
TI3  
TI4  
TTL/CMOS  
TTL/CMOS  
1
TX4  
T4  
3
TI4  
19  
RI1  
RI12  
15  
16  
15  
RX1  
RS-485  
RS-485  
R1  
19  
20  
RX1  
RX2  
GND  
RI1  
GND  
TTL/CMOS  
TTL/CMOS  
R1  
GND  
5KΩ  
5KΩ  
5KΩ  
5KΩ  
150KΩ  
150KΩ  
20  
RI2  
16  
17  
18  
RX2  
TTL/CMOS  
TTL/CMOS  
TTL/CMOS  
RS-232  
RS-232  
RS-232  
R2  
GND  
RI4  
18  
17  
21  
RI3  
RX3  
RS-485  
RS-485  
R3  
R4  
21  
22  
RX3  
RX4  
GND  
RI3  
GND  
TTL/CMOS  
TTL/CMOS  
R3  
150KΩ  
150KΩ  
GND  
22  
RI4  
RX4  
GND  
8
25  
8
25  
TTL/CMOS  
TTL/CMOS  
GND  
GND  
SHUTDOWN  
SHUTDOWN  
REV 1.0.1  
6/11  
SP332  
SP332 Control Logic Configuration  
SEL A  
SEL B  
LB  
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
0
SD  
26 TI1  
27 TI2  
28 TI3  
TX1  
TX2  
6
7
26 TI1  
27 TI2  
TX1  
TX2  
6
7
T1  
T2  
T3  
T4  
T1  
T2  
TX1  
TX2  
6
7
TX1  
TX2  
6
7
TI1  
26  
TI1  
26  
T1  
T3  
T1  
28 TI3  
TX3  
TX4  
4
3
TX3  
TX4  
4
3
T3  
T4  
TX3  
TX4  
4
3
TX3  
TX4  
4
3
28 TI3  
TI3  
28  
T3  
1
TI4  
1
TI4  
RX1  
RX2  
19  
20  
RI1 15  
RI2 16  
RX1  
RX2  
19  
20  
RI1 15  
RI2 16  
RI1 15  
RI2 16  
R1  
RI1 15  
RI2 16  
R1  
19 RX1  
21 RX3  
19 RX1  
R1  
R1  
R2  
R3  
R4  
R2  
R3  
RX3  
RX4  
21  
22  
RI3 17  
RI4 18  
R3  
R4  
RI3 17  
RI4 18  
RX3  
RX4  
21  
22  
RI3 17  
RI4 18  
R3  
RI3 17  
RI4 18  
21 RX3  
SEL A  
SEL B  
LB  
0
0
1
1
0
0
0
1
0
0
0
0
0
1
0
0
SD  
26 TI1  
27 TI2  
28 TI3  
TX1  
TX2  
6
7
26  
27  
TI1  
TI2  
TX1  
TX2  
6
7
T1  
T2  
T3  
T4  
T1  
TX1  
TX2  
6
7
TX1  
6
7
TI1  
TI1  
T1  
26  
26  
T1  
TX2  
T2  
T3  
28 TI3  
TX3  
TX4  
4
3
TX3  
TX4  
4
T3  
T4  
TX3  
TX4  
4
3
TX3  
TX4  
4
28 TI3  
TI3  
28  
T3  
3
1
TI4  
3
1
TI4  
RX1  
RX2  
19  
RI1 15  
RI2 16  
RX1  
RX2  
19  
20  
RI1 15  
R1  
R2  
RI1 15  
RI2 16  
RI1 15  
RI2 16  
R1  
RX1  
RX3  
RX4  
RX1  
19  
21  
22  
19  
21  
R1  
R3  
R4  
R1  
R3  
20  
21  
22  
RI2 16  
RI3 17  
R2  
R3  
RI3 17  
RI4 18  
RI3 17  
RI4 18  
RX3  
RX4  
RI3 17  
RI4 18  
RX3  
R3  
R4  
21  
RX3  
18  
RI4  
Receiver Inputs are inactive in Loopback Mode (LOOPBACK = 0)  
Driver Outputs are Tri-stated in Loopback Mode (LOOPBACK = 0)  
Unused Outputs are Tri-stated  
REV 1.0.1  
7/11  
SP332  
Functional Description  
The SP332 is single chip device that can be configured via  
software for either RS-232, RS-485 or both interface modes  
at any time. The SP332 is made up of three basic circuit  
elements, single-ended drivers and receivers, differential  
drivers and receivers and charge pump.  
7kΩ over a 15V range. The maximum operating  
voltage range for the receiver is 30V, under these  
conditions the input current to the receiver must  
be limited to less than 100mA. Due to the on-chip  
ESD protection circuitry, the receiver inputs will be  
clamped to 15V levels. The RS-232 receivers can  
operate up to 120kbps.  
Differential Driver/Receiver  
RS-485, RS-422 Drivers  
Charge–Pump  
The differential drivers and receivers comply with  
the RS-485 and RS-422 standards. The driver  
circuits are able to drive a minimum of 1.5V when  
terminated with a 54Ω resistor across the two  
outputs. The typical propagation delay from driver  
input to output is 60ns. The driver outputs are  
current limited to less than 250mA, and can tolerate  
shorts to ground, or to any voltage within a 10V to  
-7V range with no damage.  
The charge pump is a MaxLinear–patented  
design (U.S. 5,306,954) and uses a unique  
approach compared to older less efficient designs.  
The charge pump still requires four external  
capacitors, but uses  
shifting technique  
10V power supplies. Figure 7(a) shows the  
waveform found on the positive side of capacitor  
C , and Figure 7(b) shows the negative side of  
2
a
four–phase voltage  
attain symmetrical  
to  
capacitor C . There is a free–running oscillator that  
RS-485, RS-422 Receivers  
2
controls the four phases of the voltage shifting. A  
description of each phase follows.  
The differential receivers of the SP332 comply with  
the RS-485 and RS-422 standards. The input to the  
receiver is equipped with a common mode range of  
12V to -7V. The input threshold over this range is a  
minimum of 200mV. The differential receivers can  
receive data up to 10Mbps. The typical propagation  
delay from the receiver input to output is 90ns.  
Phase 1 — V charge storage  
SS  
During this phase of the clock cycle, the positive  
side of capacitors C and C are initially charged  
1
2
to 5V. C + is then switched to ground and charge  
l
on C is transferred to C . Since C + is connected  
1
2
2
Single Ended Driver / Receiver  
to 5V, the voltage potential across capacitor C is  
2
RS-232 (V.28) Drivers  
now 10V.  
The single-ended drivers and receivers comply  
with the RS-232 and V.28 standards. The drivers  
are inverting transmitters which accept either TTL  
or CMOS inputs and output the RS-232 signals  
with an inverted sense relative to the input logic  
levels. Typically, the RS-232 driver output voltage  
swing is 9V with no load and is guaranteed to be  
greater than 5V under full load. The drivers rely on  
the V+ and V- voltages generated by the on-chip  
charge pump to maintain proper RS-232 output  
levels. With worst case load conditions of 3kΩ and  
2500pF, the four RS-232 drivers can still maintain  
5V output levels. The drivers can operate up to  
120kbps; the propagation delay from input to output  
is typically 2µs.  
Phase 2 — V transfer  
Phase two of the clock connects the negative  
SS  
terminal of C to the V storage capacitor and the  
2
SS  
positive terminal of C to ground, and transfers the  
2
generated –10V to C . Simultaneously, the positive  
3
side of capacitor C is switched to 5V and the  
1
negative side is connected to ground.  
Phase 3 — V charge storage  
DD  
The third phase of the clock is identical to the first  
phase — the charge transferred in C produces  
1
–5V in the negative terminal of C , which is applied  
1
to the negative side of capacitor C . Since C + is at  
2
2
RS-232 (V.28) Receivers  
+5V, the voltage potential across C is 10V.  
2
The RS-232 receivers convert RS-232 input signals  
to inverted TTL signals. Each of the four receivers  
features 500mV of hysteresis margin to minimize  
the affects of noisy transmission lines. The inputs  
also have a 5kΩ resistor to ground, in an open  
circuit situation the input of the receiver will be  
forced low, committing the output to a logic high  
state. The input resistance will maintain 3kΩ to  
Phase 4 — V transfer  
DD  
The fourth phase of the clock connects the negative  
terminal of C to ground and transfers the generated  
2
10V across C to C , the V storage capacitor.  
2
4
DD  
Again, simultaneously with this, the positive side  
of capacitor C is switched to 5V and the negative  
1
REV 1.0.1  
8/11  
SP332  
magnitude of Vcompared to V+ due to the inherent  
inefficiencies in the design.  
side is connected to ground, and the cycle begins  
again.  
Since both V+ and Vare separately generated  
The clock rate for the charge pump typically  
operates at 15kHz. The external capacitors must  
be 0.1µF with a 16V breakdown rating.  
from V in a no–load condition, V+ and Vwill be  
CC  
symmetrical. Older charge pump approaches that  
generate Vfrom V+ will show a decrease in the  
+10V  
a) C2+  
GND  
GND  
b) C2-  
-10V  
Figure 7: Charge Pump Waveforms  
V
= +5V  
V
= +5V  
CC  
CC  
C
C
4
+10V  
+5V  
4
+
+
+
+
V
V
Storage Capacitor  
Storage Capacitor  
V
V
Storage Capacitor  
Storage Capacitor  
DD  
DD  
+
+
+
+
C
C
C
C
2
1
2
1
SS  
SS  
C
C
3
–5V  
–5V  
3
Figure 8: Charge Pump Phase 1  
Figure 9: Charge Pump Phase 3  
V
= +5V  
V
= +5V  
CC  
CC  
C
C
4
+5V  
4
+
+
+
+
V
V
Storage Capacitor  
Storage Capacitor  
V
V
Storage Capacitor  
Storage Capacitor  
DD  
DD  
+
+
+
+
C
C
C
C
2
1
2
1
SS  
SS  
C
C
3
–10V  
–5V  
–5V  
3
Figure 10: Charge Pump Phase 2  
Figure 11: Charge Pump Phase 4  
REV 1.0.1  
9/11  
SP332  
Package Description  
WSOIC28  
Top View  
Side View  
Front View  
POD-00000106  
Drawing No:  
Revision:  
A
REV 1.0.1  
10/11  
SP332  
Ordering Information(1)  
Part Number  
Operating Temperature Range  
Lead-Free  
Package  
Packaging Method  
SP332CT-L  
Tube  
Reel  
Tube  
Reel  
0°C to 70°C  
SP332CT-L/TR(3)  
SP332ET-L  
Yes(2)  
28-pin WSOIC  
-40°C to 85°C  
SP332ET-L/TR  
NOTE:  
1. Refer to www.exar.com/SP332 for most up-to-date Ordering Information.  
2. Visit www.exar.com for additional information on Environmental Rating.  
3. NRND - Not recommended for new designs.  
Revision History  
Revision  
Date  
Description  
9617RO  
-
Legacy Sipex Datasheet  
Convert to Exar Format. Add Revision History table. Change revision to 1.0.0. Add Note 1 and  
change maximum RS-485 data rate at +85C. Update ABS Max Rating table.  
01/26/10  
10/16/17  
1.0.0  
1.0.1  
Remove GND from Differential Output Voltage min (page 2). Update to MaxLinear logo.  
Update format and ordering information table. Theory of Operation section moved to after  
SP332 Control Logic Configuration section, and renamed Functional Description.  
Corporate Headquarters:  
5966 La Place Court  
Suite 100  
Carlsbad, CA 92008  
Tel.:+1 (760) 692-0711  
Fax: +1 (760) 444-8598  
www.maxlinear.com  
High Performance Analog:  
1060 Rincon Circle  
San Jose, CA 95131  
Tel.: +1 (669) 265-6100  
Fax: +1 (669) 265-6101  
Email: serial techsupportꢀexar.com  
www.exar.com  
The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes  
no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the  
user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic,  
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.  
Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support  
system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the  
risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.  
MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written  
license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.  
Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated.  
© 2010-2017 MaxLinear, Inc. All rights reserved  
SP332_DS_101617  
REV 1.0.1  
11/11  
 

相关型号:

SP332CT-L/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO28, SOIC-28
SIPEX

SP332CT/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO28, SOIC-28
SIPEX

SP332ET

RS-232/RS-485 Multi-Mode Serial Transceiver
SIPEX

SP332ET-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO28, SOIC-28
SIPEX

SP332ET-L

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, CMOS, PDSO28, MS-013AE, SOIC-28
EXAR

SP332ET/TR

Line Driver/Receiver, PDSO28
EXAR

SP332ET/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO28, SOIC-28
SIPEX

SP333

+5V Only RS-232/AppleTalk Programmable Transceiver
SIPEX

SP333CT

+5V Only RS-232/AppleTalk Programmable Transceiver
SIPEX

SP333CT-L/TR

Line Transceiver, 3 Func, 3 Driver, 5 Rcvr, CMOS, PDSO28, SOIC-28
SIPEX

SP333ET

+5V Only RS-232/AppleTalk Programmable Transceiver
SIPEX

SP333ET-L/TR

Line Transceiver, 3 Func, 3 Driver, 5 Rcvr, CMOS, PDSO28, SOIC-28
SIPEX