ST16C654CJ68 [EXAR]

2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO; 具有64字节FIFO 2.97V至5.5V UART QUAD
ST16C654CJ68
型号: ST16C654CJ68
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO
具有64字节FIFO 2.97V至5.5V UART QUAD

先进先出芯片
文件: 总51页 (文件大小:911K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
OCTOBER 2003  
REV. 5.0.0  
FEATURES  
GENERAL DESCRIPTION  
1
Pin-to-pin compatible with ST16C454, ST16C554  
The ST16C654/654D (654) is an enhanced quad  
Universal Asynchronous Receiver and Transmitter  
(UART) each with 64 bytes of transmit and receive  
FIFOs, transmit and receive FIFO trigger levels,  
automatic hardware and software flow control, and  
data rates of up to 1.5 Mbps. Each UART has a set of  
registers that provide the user with operating status  
and control, receiver error indications, and modem  
serial interface controls. Selectable interrupt polarity  
provides flexibility to meet design requirements. An  
internal loopback capability allows onboard  
diagnostics. The 654 is available in 64 pin TQFP, 68  
pin PLCC and 100 pin QFP packages. The 64 pin  
package only offers the 16 mode interface, but the 68  
and 100 pin packages offer an additional 68 mode  
interface which allows easy integration with Motorola  
processors. The ST16C654CQ64 (64 pin) offers  
and TI’s TL16C554AFN and TL16C754BFN  
Intel or Motorola Data Bus Interface select  
Four independent UART channels  
Register Set Compatible to 16C550  
Data rates of up to 1.5 Mbps  
64 Byte Transmit FIFO  
64 Byte Receive FIFO with error tags  
4 Selectable TX and RX FIFO Trigger Levels  
Automatic Hardware (RTS/CTS) Flow Control  
Automatic Software (Xon/Xoff) Flow Control  
Progammable Xon/Xoff characters  
Wireless Infrared (IrDA 1.0) Encoder/Decoder  
Full modem interface  
2.97V to 5.5V supply operation  
three  
state  
interrupt  
output  
while  
the  
Sleep Mode (200 uA typical)  
ST16C654DCQ64 provides continuous interrupt  
output. The 100 pin package provides additional  
FIFO status outputs (TXRDY# and RXRDY# A-D),  
separate infrared transmit data outputs (IRTX A-D)  
and channel C external clock input (CHCCLK). The  
ST16C654/654D is compatible with the industry  
standard ST16C454 and ST16C654/554D.  
Crystal oscillator or external clock input  
APPLICATIONS  
Portable Appliances  
Telecommunication Network Routers  
Ethernet Network Routers  
NOTE: 1 Covered by U.S. Patent #5,649,122.  
Cellular Data Devices  
Factory Automation and Process Controls  
FIGURE 1. ST16C654 BLOCK DIAGRAM  
2.97V to 5.5V VCC  
GND  
A2:A0  
D7:D0  
UART Channel A  
64 Byte TX FIFO  
IOR#  
IOW#  
UART  
TXA, RXA, IRTXA, DTRA#,  
DSRA#, RTSA#, CTSA#,  
CDA#, RIA#  
Regs  
IR  
ENDEC  
TX & RX  
CSA#  
CSB#  
CSC#  
CSD#  
BRG  
64 Byte RX FIFO  
TXB, RXB, IRTXB, DTRB#,  
DSRB#, RTSB#, CTSB#,  
CDB#, RIB#  
UART Channel B  
(same as Channel A)  
INTA  
INTB  
INTC  
Data Bus  
Interface  
TXC, RXC, IRTXC, DTRC#,  
DSRC#, RTSC#, CTSC#,  
CDC#, RIC#  
UART Channel C  
(same as Channel A)  
INTD  
CHCCLK  
TXRDY# A-D  
RXRDY# A-D  
Reset  
TXD, RXD, IRTXD, DTRD#,  
DSRD#, RTSD#, CTSD#,  
CDD#, RID#  
UART Channel D  
(same as Channel A)  
16/68#  
INTSEL  
CLKSEL  
XTAL1  
XTAL2  
Crystal Osc/Buffer  
654 BLK  
Exar Corporation 48720 Kato Road, Fremont CA, 94538(510) 668-7000 FAX (510) 668-7017 www.exar.com  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 2. PIN OUT ASSIGNMENT FOR 100-PIN QFP PACKAGES IN 16 AND 68 MODE  
2
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 3. PIN OUT ASSIGNMENT FOR PLCC PACKAGES IN 16 AND 68 MODE AND TQFP PACKAGES  
ORDERING INFORMATION  
OPERATING  
TEMPERATURE  
RANGE  
OPERATING  
TEMPERATURE  
RANGE  
DEVICE  
STATUS  
DEVICE  
STATUS  
PART NUMBER  
PACKAGE  
PART NUMBER  
PACKAGE  
ST16C654CJ68 68-Lead PLCC 0°C to +70°C  
Active ST16C654DCQ64 64-Lead TQFP  
0°C to +70°C  
Active  
ST16C654IJ68 68-Lead PLCC -40°C to +85°C Active  
ST16C654DIQ64 64-Lead TQFP -40°C to +85°C Active  
0°C to +70°C Active  
100-Lead QFP -40°C to +85°C Active  
ST16C654CQ64 64-Lead TQFP 0°C to +70°C  
Active ST16C654CQ100 100-Lead QFP  
ST16C654IQ64 64-Lead TQFP -40°C to +85°C Active  
ST16C654IQ100  
3
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
PIN DESCRIPTIONS  
Pin Description  
64-TQFP  
PIN #  
100-QFP  
PIN #  
68-PLCC  
PIN#  
NAME  
TYPE  
DESCRIPTION  
DATA BUS INTERFACE  
A2  
A1  
A0  
22  
23  
24  
32  
33  
34  
37  
38  
39  
I
Address data lines [2:0]. These 3 address lines select one of the  
internal registers in UART channel A-D during a data bus transac-  
tion.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
60  
59  
58  
57  
56  
55  
54  
53  
5
4
95  
94  
93  
92  
91  
90  
89  
88  
I/O Data bus lines [7:0] (bidirectional).  
3
2
1
68  
67  
66  
IOR#  
40  
52  
66  
I
When 16/68# pin is at logic 1, the Intel bus interface is selected and  
this input becomes read strobe (active low). The falling edge insti-  
gates an internal read cycle and retrieves the data byte from an  
internal register pointed by the address lines [A2:A0], puts the data  
byte on the data bus to allow the host processor to read it on the ris-  
ing edge.  
(VCC)  
When 16/68# pin is at logic 0, the Motorola bus interface is selected  
and this input is not used and should be connected to VCC.  
IOW#  
9
18  
15  
I
When 16/68# pin is at logic 1, it selects Intel bus interface and this  
input becomes write strobe (active low). The falling edge instigates  
the internal write cycle and the rising edge transfers the data byte on  
the data bus to an internal register pointed by the address lines.  
(R/W#)  
When 16/68# pin is at logic 0, the Motorola bus interface is selected  
and this input becomes read (logic 1) and write (logic 0) signal.  
CSA#  
(CS#)  
7
16  
20  
50  
54  
13  
17  
64  
68  
I
I
I
I
When 16/68# pin is at logic 1, this input is chip select A (active low)  
to enable channel A in the device.  
When 16/68# pin is at logic 0, this input becomes the chip select  
(active low) for the Motorola bus interface.  
CSB#  
(A3)  
11  
38  
42  
When 16/68# pin is at logic 1, this input is chip select B (active low)  
to enable channel B in the device.  
When 16/68# pin is at logic 0, this input becomes address line A3  
which is used for channel selection in the Motorola bus interface.  
CSC#  
(A4)  
When 16/68# pin is at logic 1, this input is chip select C (active low)  
to enable channel C in the device.  
When 16/68# pin is at logic 0, this input becomes address line A4  
which is used for channel selection in the Motorola bus interface.  
CSD#  
(VCC)  
When 16/68# pin is at logic 1, this input is chip select D (active low)  
to enable channel D in the device.  
When 16/68# pin is at logic 0, this input is not used and should be  
connected VCC.  
4
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
Pin Description  
64-TQFP  
PIN #  
100-QFP  
PIN #  
68-PLCC  
PIN#  
NAME  
TYPE  
DESCRIPTION  
INTA  
6
15  
12  
O
When 16/68# pin is at logic 1 for Intel bus interface, this ouput  
becomes channel A interrupt output.  
(IRQ#)  
(OD)  
When 16/68# pin is at logic 0 for Motorola bus interface, this output  
becomes device interrupt output (active low, open drain). An exter-  
nal pull-up resistor is required for proper operation.  
INTB  
INTC  
INTD  
(N.C.)  
12  
37  
43  
21  
49  
55  
18  
63  
69  
O
When 16/68# pin is at logic 1 for Intel bus interface, these ouputs  
become the interrupt outputs for channels B, C, and D.  
When 16/68# pin is at logic 0 for Motorola bus interface, these out-  
puts are unused and will stay at logic zero level. Leave these out-  
puts unconnected.  
INTSEL  
-
65  
87  
I
Interrupt Select (active high, input with internal pull-down).  
When 16/68# pin is at logic 1 for Intel bus interface, this pin can be  
used in conjunction with MCR bit-3 to enable or disable the INT A-D  
pins or override MCR bit-3 and enable the interrupt outputs. Inter-  
rupt outputs are enabled continuously by making this pin a logic 1.  
Making this pin a logic 0 allows MCR bit-3 to enable and disable the  
interrupt output pins. In this mode, MCR bit-3 is set to a logic 1 to  
enable the continuous output. See MCR bit-3 description for full  
detail. This pin must be at logic 0 in the Motorola bus interface  
mode. Due to pin limitations on 64 pin packages, this pin is not  
available. To cover this limitation, two 64 pin TQFP packages ver-  
sions are offered. This pin is bonded to VCC internally in the  
ST16C654D so the INT outputs operate in the continuous interrupt  
mode. This pin is bonded to GND internally in the ST16C654 and  
therefore requires setting MCR bit-3 for enabling the interrupt output  
pins.  
UART channels A-D Transmitter Ready (active low). The outputs  
provide the TX FIFO/THR status for transmit channels A-D. See  
Table 5. If these outputs are unused, leave them unconnected.  
TXRDYA#  
TXRDYB#  
TXRDYC#  
TXRDYD#  
-
-
-
-
-
-
-
-
5
O
O
25  
56  
81  
RXRDYA#  
RXRDYB#  
RXRDYC#  
RXRDYD#  
-
-
-
-
-
-
-
-
100  
31  
UART channels A-D Receiver Ready (active low). This output pro-  
vides the RX FIFO/RHR status for receive channels A-D. See  
Table 5. If these outputs are unused, leave them unconnected.  
50  
82  
TXRDY#  
-
39  
45  
O
O
Transmitter Ready (active low). This output is a logically ANDed  
status of TXRDY# A-D. See Table 5. If this output is unused, leave  
it unconnected.  
RXRDY#  
-
38  
44  
Receiver Ready (active low). This output is a logically ANDed status  
of RXRDY# A-D. See Tabl e 5. If this output is unused, leave it  
unconnected.  
5
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
Pin Description  
64-TQFP  
100-QFP  
PIN #  
68-PLCC  
PIN#  
NAME  
TYPE  
DESCRIPTION  
PIN #  
FSRS#  
-
-
76  
I
FIFO Status Register Select (active low input with internal pull-up).  
The content of the FSTAT register is placed on the data bus when  
this pin becomes active. However it should be noted, D0-D3 con-  
tain the inverted logic states of TXRDY# A-D pins, and D4-D7 the  
logic states (un-inverted) of RXRDY# A-D pins. A valid address is  
not required when reading this status register.  
MODEM OR SERIAL I/O INTERFACE  
TXA  
TXB  
TXC  
TXD  
8
17  
19  
51  
53  
14  
16  
65  
67  
O
UART channels A-D Transmit Data and infrared transmit data.  
Standard transmit and receive interface is enabled when MCR[6] =  
0. In this mode, the TX signal will be a logic 1 during reset, or idle  
(no data). Infrared IrDA transmit and receive interface is enabled  
when MCR[6] = 1. In the Infrared mode, the inactive state (no data)  
for the Infrared encoder/decoder interface is a logic 0.  
10  
39  
41  
IRTXA  
IRTXB  
IRTXC  
IRTXD  
-
-
-
-
-
-
-
-
6
O
UART channel A-D Infrared Transmit Data. The inactive state (no  
data) for the Infrared encoder/decoder interface is a logic 0.  
Regardless of the logic state of MCR bit-6, this pin will be operating  
in the Infrared mode.  
24  
57  
75  
RXA  
RXB  
RXC  
RXD  
62  
20  
29  
51  
7
97  
34  
47  
85  
I
UART channel A-D Receive Data or infrared receive data. Normal  
receive data input must idle at logic 1 condition.  
29  
41  
63  
RTSA#  
RTSB#  
RTSC#  
RTSD#  
5
14  
22  
48  
56  
11  
19  
62  
70  
O
13  
36  
44  
CTSA#  
CTSB#  
CTSC#  
CTSD#  
2
11  
25  
45  
59  
8
I
16  
33  
47  
22  
59  
73  
DTRA#  
DTRB#  
DTRC#  
DTRD#  
3
12  
24  
46  
58  
9
O
15  
34  
46  
21  
60  
72  
DSRA#  
DSRB#  
DSRC#  
DSRD#  
1
10  
26  
44  
60  
7
I
17  
32  
48  
23  
58  
74  
CDA#  
CDB#  
CDC#  
CDD#  
64  
18  
31  
49  
9
99  
32  
49  
83  
I
UART channels A-D Carrier-Detect (active low) or general purpose  
input.  
27  
43  
61  
6
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
Pin Description  
64-TQFP  
PIN #  
100-QFP  
PIN #  
68-PLCC  
PIN#  
NAME  
TYPE  
DESCRIPTION  
RIA#  
RIB#  
RIC#  
RID#  
63  
19  
30  
50  
8
98  
33  
48  
84  
I
UART channels A-D Ring-Indicator (active low) or general purpose  
input.  
28  
42  
62  
ANCILLARY SIGNALS  
XTAL1  
XTAL2  
16/68#  
25  
26  
-
35  
36  
31  
40  
41  
36  
I
O
I
Crystal or external clock input.  
Crystal or buffered clock output.  
Intel or Motorola Bus Select (input with internal pull-up).  
When 16/68# pin is at logic 1, 16 or Intel Mode, the device will oper-  
ate in the Intel bus type of interface.  
When 16/68# pin is at logic 0, 68 or Motorola mode, the device will  
operate in the Motorola bus type of interface.  
Motorola bus interface is not available on the 64 pin package.  
CLKSEL  
CHCCLK  
21  
30  
35  
42  
I
I
Baud-Rate-Generator Input Clock Prescaler Select for channels A-  
D. This input is only sampled during power up or a reset. Connect to  
VCC for divide by 1 (default) and GND for divide by 4. MCR[7] can  
override the state of this pin following a reset or initialization. See  
MCR bit-7 and Figure 6 in the Baud Rate Generator section.  
-
-
This input provides the clock for UART channel C. An external 16X  
baud clock or the crystal oscillator’s output, XTAL2, must be con-  
nected to this pin for normal operation. This input may also be used  
with MIDI (Musical Instrument Digital Interface) applications when  
an external MIDI clock is provided. This pin is only available in the  
100-pin QFP package.  
RESET  
27  
37  
43  
I
When 16/68# pin is at logic 1 for Intel bus interface, this input  
becomes the  
(RESET#)  
Motorola bus interface is not available on the 64 pin package.  
VCC  
GND  
N.C.  
4, 35, 52 13, 47,  
64  
10, 61,  
86  
Pwr 2.97V to 5.5V power supply. The inputs are not 5V tolerant when  
operating at 3.3V.  
14, 28, 6, 23, 40,  
20, 46,  
71, 96  
Pwr Power supply common, ground.  
45, 61  
57  
-
-
1- 4, 26-  
28, 29,  
30, 51-  
55, 77,  
78, 79,  
80  
No Connection. These pins are not used in either the Intel or Motor-  
ola bus modes. These pins are open, but typically, should be con-  
nected to GND for good design practice.  
Pin type: I=Input, O=Output, I/O= Input/output, OD=Output Open Drain.  
7
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
1.0 PRODUCT DESCRIPTION  
integrates the functions of 4 enhanced 16C550 Universal Asynchrounous Receiver and  
Transmitter (UART). Each UART is independently controlled having its own set of device configuration  
registers. The configuration registers set is 16550 UART compatible for control, status and data transfer.  
Additionally, each UART channel has 64-bytes of transmit and receive FIFOs, automatic RTS/CTS hardware  
flow control, automatic Xon/Xoff and special character software flow control, infrared encoder and decoder  
(IrDA ver 1.0), programmable baud rate generator with a prescaler of divide by 1 or 4, and data rate up to 1.5  
Mbps. The ST16C654 can operate from 2.97 to 5.5 volts. The 654 is fabricated with an advanced CMOS  
process.  
Enhanced FIFO  
The 654 QUART provides a solution that supports 64 bytes of transmit and receive FIFO memory, instead of 16  
bytes in the ST16C554, or one byte in the ST16C454. The 654 is designed to work with high performance data  
communication systems, that require fast data processing time. Increased performance is realized in the 654  
by the larger transmit and receive FIFOs, FIFO trigger level control and automatic flow control mechanism. This  
allows the external processor to handle more networking tasks within a given time. For example, the  
ST16C554 with a 16 byte FIFO, unloads 16 bytes of receive data in 1.53 ms (This example uses a character  
length of 11 bits, including start/stop bits at 115.2Kbps). This means the external CPU will have to service the  
receive FIFO at 1.53 ms intervals. However with the 64 byte FIFO in the 654, the data buffer will not require  
unloading/loading for 6.1 ms. This increases the service interval giving the external CPU additional time for  
other applications and reducing the overall UART interrupt servicing time. In addition, the programmable FIFO  
level trigger interrupt and automatic hardware/software flow control is uniquely provided for maximum data  
throughput performance especially when operating in a multi-channel system. The combination of the above  
greatly reduces the CPU’s bandwidth requirement, increases performance, and reduces power consumption.  
Data Rate  
The 654 is capable of operation up to 1.5 Mbps at 5V with 16x internal sampling clock rate. The device can  
operate at 5V with a crystal oscillator of up to 24 MHz crystal on pins XTAL1 and XTAL2, or external clock  
source of 24 MHz on XTAL1 pin. With a typical crystal of 14.7456 MHz and through a software option, the user  
can set the prescaler bit for data rates of up to 921.6 kbps.  
Enhanced Features  
The rich feature set of the 654 is available through the internal registers. Automatic hardware/software flow  
control, selectable transmit and receive FIFO trigger levels, selectable baud rates, infrared encoder/decoder  
interface, modem interface controls, and a sleep mode are all standard features. MCR bit-5 provides a facility  
for turning off (Xon) software flow control with any incoming (RX) character. In the 16 mode INTSEL and MCR  
bit-3 can be configured to provide a software controlled or continuous interrupt capability. Due to pin limitations  
for the 64 pin 654 this feature is offered by two different TQFP packages. The ST16C654DCV operates in the  
continuous interrupt enable mode by internally bonding INTSEL to VCC. The ST16C654CV operates in  
conjunction with MCR bit-3 by internally bonding INTSEL to GND.  
The ST16C654 offers a clock prescaler select pin to allow system/board designers to preset the default baud  
rate table on power up. The CLKSEL pin selects the div-by-1 or div-by-4 prescaler for the baud rate generator.  
It can then be overridden following initialization by MCR bit-7.  
The 100 pin packages offer several other enhanced features. These features include a CHCCLK clock input,  
FSTAT register and separate IrDA TX outputs. The CHCCLK must be connected to the XTAL2 pin for normal  
operation or to external MIDI (Music Instrument Digital Interface) oscillator for MIDI applications. A separate  
register (FSTAT) is provided for monitoring the real time status of the FIFO signals TXRDY# and RXRDY# for  
each of the four UART channels (A-D). This reduces polling time involved in accessing individual channels.  
The 100 pin QFP package also offers four separate IrDA (Infrared Data Association Standard) TX outputs for  
Infrared applications. These outputs are provided in addition to the standard asynchronous modem data  
outputs.  
8
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
2.0 FUNCTIONAL DESCRIPTIONS  
2.1  
CPU Interface  
The CPU interface is 8 data bits wide with 3 address lines and control signals to execute data bus read and  
write transactions. The 654 data interface supports the Intel compatible types of CPUs and it is compatible to  
the industry standard 16C550 UART. No clock (oscillator nor external clock) is required to operate a data bus  
transaction. Each bus cycle is asynchronous using CS# A-D, IOR# and IOW# or CS#, R/W#, A4 and A3 inputs.  
All four UART channels share the same data bus for host operations. A typical data bus interconnection for  
Intel and Motorola mode is shown in Figure 4.  
FIGURE 4. ST16C654/654D TYPICAL INTEL/MOTOROLA DATA BUS INTERCONNECTIONS  
9
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
2.2  
Device Reset  
The RESET input resets the internal registers and the serial interface outputs in both channels to their default  
state (see Table 16). An active high pulse of longer than 40 ns duration will be required to activate the reset  
function in the device. Following a power-on reset or an external reset, the 654 is software compatible with  
previous generation of UARTs, 16C454 and 16C554.  
2.3  
Channel Selection  
TABLE 1: CHANNEL A-D SELECT IN 16 MODE  
CSA CSB CSC CSD  
FUNCTION  
#
1
0
1
1
1
0
#
1
1
0
1
1
0
#
1
1
1
0
1
0
#
1
1
1
1
0
0
UART de-selected  
Channel A selected  
Channel B selected  
Channel C selected  
Channel D selected  
Channels A-D selected  
During Motorola Bus Mode (16/68# pin is connected to GND), the package interface pins are configured for  
connection with Motorola, and other popular microprocessor bus types. In this mode the 654 decodes two  
additional addresses, A3 and A4, to select one of the four UART ports. The A3 and A4 address decode  
function is used only when in the Motorola Bus Mode. See Table 2.  
TABLE 2: CHANNEL A-D SELECT IN 68 MODE  
CS# A4  
A3  
FUNCTION  
1
0
0
0
0
N/A N/A  
UART de-selected  
Channel A selected  
Channel B selected  
Channel C selected  
Channel D selected  
0
0
1
1
0
1
0
1
10  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
2.4  
Channels A-D Internal Registers  
Each UART channel in the 654 has a set of enhanced registers for control, monitoring and data loading and  
unloading. The configuration register set is compatible to those already available in the standard single  
16C550. These registers function as data holding registers (THR/RHR), interrupt status and control registers  
(ISR/IER), a FIFO control register (FCR), receive line status and control registers (LSR/LCR), modem status  
and control registers (MSR/MCR), programmable data rate (clock) divisor registers (DLL/DLM), and a user  
accessible scratchpad register (SPR).  
Beyond the general 16C550 features and capabilities, the 654 offers enhanced feature registers (EFR, Xon/  
Xoff 1, Xon/Xoff 2, FSTAT) that provide automatic RTS and CTS hardware flow control and automatic Xon/Xoff  
software flow control. All the register functions are discussed in full detail later in “Section 3.0, UART  
INTERNAL REGISTERS” on pag e22.  
2.5  
INT Ouputs for Channels A-D  
The interrupt outputs change according to the operating mode and enhanced features setup. Table 3 and 4  
summarize the operating behavior for the transmitter and receiver. Also see Figure 20 through 25.  
TABLE 3: INT PINS OPERATION FOR TRANSMITTER FOR CHANNELS A-D  
FCR BIT-0 = 1 (FIFO ENABLED)  
FCR BIT-0 = 0  
FCR Bit-3 = 0  
FCR Bit-3 = 1  
(FIFO DISABLED)  
(DMA Mode Disabled)  
(DMA Mode Enabled)  
0 = FIFO above trigger level  
1 = FIFO below trigger level or FIFO 1 = FIFO below trigger level or FIFO  
empty empty  
0 = FIFO above trigger level  
INT Pin  
0 = a byte in THR  
1 = THR empty  
TABLE 4: INT PIN OPERATION FOR RECEIVER FOR CHANNELS A-D  
FCR BIT-0 = 0  
(FIFO DISABLED)  
FCR BIT-0 = 1 (FIFO ENABLED)  
FCR Bit-3 = 0  
FCR Bit-3 = 1  
(DMA Mode Disabled)  
(DMA Mode Enabled)  
0 = FIFO below trigger level  
1 = FIFO above trigger level  
0 = FIFO below trigger level  
1 = FIFO above trigger level  
INT Pin  
0 = no data  
1 = 1 byte  
2.6  
DMA Mode  
The device does not support direct memory access. The DMA Mode (a legacy term) in this document does not  
mean “direct memory access” but refers to data block transfer operation. The DMA mode affects the state of  
the RXRDY# A-D and TXRDY# A-D output pins. The transmit and receive FIFO trigger levels provide additional  
flexibility to the user for block mode operation. The LSR bits 5-6 provide an indication when the transmitter is  
empty or has an empty location(s) for more data. The user can optionally operate the transmit and receive  
FIFO in the DMA mode (FCR bit-3=1). When the transmit and receive FIFOs are enabled and the DMA mode  
is disabled (FCR bit-3 = 0), the 654 is placed in single-character mode for data transmit or receive operation.  
When DMA mode is enabled (FCR bit-3 = 1), the user takes advantage of block mode operation by loading or  
unloading the FIFO in a block sequence determined by the programmed trigger level. The following table show  
their behavior. Also see Figure 20 through 25.  
11  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
TABLE 5: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE FOR CHANNELS A-D  
FCR BIT-0=0  
PINS  
FCR BIT-0=1 (FIFO ENABLED)  
(FIFO DISABLED)  
FCR Bit-3 = 0  
FCR Bit-3 = 1  
(DMA Mode Disabled)  
(DMA Mode Enabled)  
0 = 1 byte  
RXRDY#  
TXRDY#  
0 = at least 1 byte in FIFO  
1 = FIFO empty  
1 to 0 transition when FIFO reaches the trigger  
level, or timeout occurs.  
1 = no data  
0 to 1 transition when FIFO empties.  
0 = THR empty  
1 = byte in THR  
0 = FIFO empty  
0 = FIFO has at least 1 empty location.  
1 = FIFO is full.  
1 = at least 1 byte in FIFO  
2.7  
Crystal Oscillator or External Clock Input  
The 654 includes an on-chip oscillator (XTAL1 and XTAL2) to produce a clock for both UART sections in the  
device. The CPU data bus does not require this clock for bus operation. The crystal oscillator provides a  
system clock to the Baud Rate Generators (BRG) section found in each of the UART.XTAL1 is the input to the  
oscillator or external clock buffer input with XTAL2 pin being the output. For programming details, see “Section  
2.8, Programmable Baud Rate Generator” on page 12  
FIGURE 5. TYPICAL OSCILLATOR CONNECTIONS  
R=300K to 400K  
14.7456  
M Hz  
XTAL2  
XTAL1  
C2  
C1  
22-47pF  
22-47pF  
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,  
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100ppm frequency  
tolerance) connected externally between the XTAL1 and XTAL2 pins. Typical oscillator connections are shown  
in Figure 5. Alternatively, an external clock can be connected to the XTAL1 pin to clock the internal baud rate  
generator for standard or custom rates. For further reading on oscillator circuit please see application note  
DAN108 on EXAR’s web site.  
2.8  
Programmable Baud Rate Generator  
Each UART has its own Baud Rate Generator (BRG) with a prescaler. The prescaler is controlled by a software  
bit in the MCR register. The MCR register bit-7 sets the prescaler to divide the input crystal or external clock by  
1 or 4. The clock output of the prescaler goes to the BRG. The BRG further divides this clock by a  
16  
programmable divisor between 1 and (2 -1) to obtain a 16X sampling rate clock of the serial data rate. The  
sampling rate clock is used by the transmitter for data bit shifting and receiver for data sampling.  
12  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 6. BAUD RATE GENERATOR AND PRESCALER  
DLL and DLM  
Registers  
M C R Bit-7=0  
(default)  
Prescaler  
Divide by 1  
16X  
Crystal  
Osc/  
Buffer  
XTAL1  
XTAL2  
Sam pling  
Rate C lock to  
Transm itter  
Baud Rate  
Generator  
Logic  
Prescaler  
Divide by 4  
M C R Bit-7=1  
Table 6 shows the standard data rates available with a 14.7456 MHz crystal or external clock at 16X sampling  
rate. When using a non-standard frequency crystal or external clock, the divisor value can be calculated for  
DLL/DLM with the following equation.  
divisor (decimal) = (XTAL1 clock frequency / prescaler) / (serial data rate x 16)  
TABLE 6: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK  
OUTPUT Data Rate OUTPUT Data Rate  
DLM  
PROGRAM  
VALUE (HEX) VALUE (HEX)  
DLL  
PROGRAM  
DATA RATE  
ERROR (%)  
DIVISOR FOR 16x DIVISOR FOR 16x  
Clock (Decimal) Clock (HEX)  
MCR Bit-7=1  
MCR Bit-7=0  
(DEFAULT)  
100  
600  
400  
2304  
384  
192  
96  
48  
24  
12  
6
900  
180  
C0  
60  
09  
01  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
80  
C0  
60  
30  
18  
0C  
06  
04  
02  
01  
0
0
0
0
0
0
0
0
0
0
0
2400  
1200  
2400  
4800  
9600  
19.2k  
38.4k  
57.6k  
115.2k  
230.4k  
4800  
9600  
19.2k  
38.4k  
76.8k  
153.6k  
230.4k  
460.8k  
921.6k  
30  
18  
0C  
06  
4
04  
2
02  
1
01  
2.9  
Transmitter  
The transmitter section comprises of an 8-bit Transmit Shift Register (TSR) and 64 bytes of FIFO which  
includes a byte-wide Transmit Holding Register (THR). TSR shifts out every data bit with the 16X internal clock.  
A bit time is 16 clock periods. The transmitter sends the start-bit followed by the number of data bits, inserts the  
proper parity-bit if enabled, and adds the stop-bit(s). The status of the FIFO and TSR are reported in the Line  
Status Register (LSR bit-5 and bit-6).  
2.9.1  
Transmit Holding Register (THR) - Write Only  
The transmit holding register is an 8-bit register providing a data interface to the host processor. The host  
writes transmit data byte to the THR to be converted into a serial data stream including start-bit, data bits,  
parity-bit and stop-bit(s). The least-significant-bit (Bit-0) becomes first data bit to go out. The THR is the input  
register to the transmit FIFO of 64 bytes when FIFO operation is enabled by FCR bit-0. Every time a write  
operation is made to the THR, the FIFO data pointer is automatically bumped to the next sequential data  
location.  
13  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
2.9.2  
Transmitter Operation in non-FIFO Mode  
The host loads transmit data to THR one character at a time. The THR empty flag (LSR bit-5) is set when the  
data byte is transferred to TSR. THR flag can generate a transmit empty interrupt (ISR bit-1) when it is enabled  
by IER bit-1. The TSR flag (LSR bit-6) is set when TSR becomes completely empty.  
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE  
Transmit  
Holding  
Register  
(THR)  
Data  
Byte  
THR Interrupt (ISR bit-1)  
Enabled by IER bit-1  
16X  
Clock  
Transmit Shift Register (TSR)  
TXNOFIFO1  
2.9.3  
Transmitter Operation in FIFO Mode  
The host may fill the transmit FIFO with up to 64 bytes of transmit data. The THR empty flag (LSR bit-5) is set  
whenever the FIFO is empty. The THR empty flag can generate a transmit empty interrupt (ISR bit-1) when the  
FIFO becomes empty. The transmit empty interrupt is enabled by IER bit-1. The TSR flag (LSR bit-6) is set  
when TSR/FIFO becomes empty.  
FIGURE 8. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE  
RX FIFO  
Data Byte  
THR Interrupt (ISR bit-1) falls  
below the programmed Trigger  
Level and then when becomes  
empty. FIFO is Enabled by FCR  
bit-0=1  
Auto CTS Flow Control (CTS# pin)  
Flow Control Characters  
(Xoff1/2 and Xon1/2 Reg.  
Auto Software Flow Control  
16X Clock  
Transmit Data Shift Register  
(TSR)  
14  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
2.10 Receiver  
The receiver section contains an 8-bit Receive Shift Register (RSR) and 64 bytes of FIFO which includes a  
byte-wide Receive Holding Register (RHR). The RSR uses the 16X clock for timing. It verifies and validates  
every bit on the incoming character in the middle of each data bit. On the falling edge of a start or false start bit,  
an internal receiver counter starts counting at the 16X clock rate. After 8 clocks the start bit period should be at  
the center of the start bit. At this time the start bit is sampled and if it is still a logic 0 it is validated. Evaluating  
the start bit in this manner prevents the receiver from assembling a false character. The rest of the data bits  
and stop bits are sampled and validated in this same manner to prevent false framing. If there were any  
error(s), they are reported in the LSR register bits 2-4. Upon unloading the receive data byte from RHR, the  
receive FIFO pointer is bumped and the error tags are immediately updated to reflect the status of the data  
byte in RHR register. RHR can generate a receive data ready interrupt upon receiving a character or delay until  
it reaches the FIFO trigger level. Furthermore, data delivery to the host is guaranteed by a receive data ready  
time-out interrupt when data is not received for 4 word lengths as defined by LCR[1:0] plus 12 bits time. This is  
equivalent to 3.7-4.6 character times. The RHR interrupt is enabled by IER bit-0.  
2.10.1 Receive Holding Register (RHR) - Read-Only  
The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift Register.  
It provides the receive data interface to the host processor. The RHR register is part of the receive FIFO of 64  
bytes by 11-bits wide, the 3 extra bits are for the 3 error tags to be reported in LSR register. When the FIFO is  
enabled by FCR bit-0, the RHR contains the first data character received by the FIFO. After the RHR is read,  
the next character byte is loaded into the RHR and the errors associated with the current data byte are  
immediately updated in the LSR bits 2-4.  
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Receive  
Data Byte  
and Errors  
Receive Data  
Holding Register  
(RHR)  
RHR Interrupt (ISR bit-2)  
15  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 10. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Example  
:
- RX FIFO trigger level selected at 16 bytes  
64 bytes by 11-bit  
wide  
Data falls to  
8
RTS# re-asserts when data falls below the flow  
control trigger level to restart remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
FIFO  
Receive  
Data FIFO  
FIFO  
Trigger=16  
RHR Interrupt (ISR bit-2) programmed for  
desired FIFO trigger level.  
FIFO is Enabled by FCR bit-0=1  
Data fills to  
56  
RTS# de-asserts when data fills above the flow  
control trigger level to suspend remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
Receive  
Data  
Receive Data  
Byte and Errors  
2.11 Auto RTS Hardware Flow Control  
Automatic RTS hardware flow control is used to prevent data overrun to the local receiver FIFO. The RTS#  
output is used to request remote unit to suspend/resume data transmission. The auto RTS flow control features  
is enabled to fit specific application requirement (see Figure 11):  
Enable auto RTS flow control using EFR bit-6.  
The auto RTS function must be started by asserting RTS# output pin (MCR bit-1 to logic 1 after it is enabled).  
If needed, the RTS interrupt can be enabled through IER bit-6 (after setting EFR bit-4). The UART issues an  
interrupt when the RTS# pin makes a transition from low to high: ISR bit-5 will be set to logic 1.  
2.12  
Auto CTS Flow Control  
Automatic CTS flow control is used to prevent data overrun to the remote receiver FIFO. The CTS# input is  
monitored to suspend/restart the local transmitter. The auto CTS flow control feature is selected to fit specific  
application requirement (see Figure 11):  
Enable auto CTS flow control using EFR bit-7.  
If needed, the CTS interrupt can be enabled through IER bit-7 (after setting EFR bit-4). The UART issues an  
interrupt when the CTS# pin is de-asserted (logic 1): ISR bit-5 will be set to 1, and UART will suspend  
transmission as soon as the stop bit of the character in process is shifted out. Transmission is resumed after  
the CTS# input is re-asserted (logic 0), indicating more data may be sent.  
16  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 11. AUTO RTS AND CTS FLOW CONTROL OPERATION  
Local UART  
UARTA  
Remote UART  
UARTB  
RXA  
TXB  
Receiver FIFO  
Trigger Reached  
Transmitter  
RTSA#  
TXA  
CTSB#  
RXB  
Auto RTS  
Auto CTS  
Monitor  
Trigger Level  
Receiver FIFO  
Trigger Reached  
Transmitter  
CTSA#  
RTSB#  
Auto CTS  
Monitor  
Auto RTS  
Trigger Level  
Assert RTS# to Begin  
Transmission  
1
10  
ON  
ON  
ON  
RTSA#  
OFF  
7
2
ON  
11  
OFF  
CTSB#  
TXB  
8
3
Restart  
Data Starts  
6
Suspend  
9
4
RXA FIFO  
Receive  
Data  
RX FIFO  
Trigger Level  
RTS High  
Threshold  
RTS Low  
Threshold  
5
RX FIFO  
Trigger Level  
12  
INTA  
(RXA FIFO  
Interrupt)  
TABLE 7: AUTO RTS/CTS FLOW CONTROL  
RTS# PIN  
RTS# PIN  
RE-ASSERTED  
(LOGIC 0)  
SELECTED TRIGGER  
LEVEL  
INT PIN ACTIVATION  
DE-ASSERTED  
(LOGIC 1)  
8
8
16  
56  
60  
60  
0
16  
56  
60  
16  
56  
60  
8
16  
56  
17  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
2.13 Auto Xon/Xoff (Software) Flow Control  
When software flow control is enabled (See Table 15), the 654 compares one or two sequential receive data  
characters with the programmed Xon or Xoff-1,2 character value(s). If receive character(s) (RX) match the  
programmed values, the 654 will halt transmission (TX) as soon as the current character has completed  
transmission. When a match occurs, the Xoff (if enabled via IER bit-5) flag will be set and the interrupt output  
pin will be activated. Following a suspension due to a match of the Xoff character, the 654 will monitor the  
receive data stream for a match to the Xon-1,2 character. If a match is found, the 654 will resume operation  
and clear the flags (ISR bit-4).  
Reset initially sets the contents of the Xon/Xoff 8-bit flow control registers to a logic 0. Following reset the user  
can write any Xon/Xoff value desired for software flow control. Different conditions can be set to detect Xon/  
Xoff characters (See Table 15) and suspend/resume transmissions. When double 8-bit Xon/Xoff characters are  
selected, the 654 compares two consecutive receive characters with two software flow control 8-bit values  
(Xon1, Xon2, Xoff1, Xoff2) and controls TX transmissions accordingly. Under the above described flow control  
mechanisms, flow control characters are not placed (stacked) in the user accessible RX data buffer or FIFO.  
In the event that the receive buffer is overfilling and flow control needs to be executed, the 654 automatically  
sends an Xoff message (when enabled) via the serial TX output to the remote modem. The 654 sends the Xoff-  
1,2 characters two-character-times (= time taken to send two characters at the programmed baud rate) after  
the receive FIFO crosses the programmed trigger level. To clear this condition, the 654 will transmit the  
programmed Xon-1,2 characters as soon as receive FIFO is less than one trigger level below the programmed  
trigger level. Ta ble 8 below explains this.  
TABLE 8: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL  
XOFF CHARACTER(S) SENT  
(CHARACTERS IN RX FIFO)  
XON CHARACTER(S) SENT  
(CHARACTERS IN RX FIFO)  
RX TRIGGER LEVEL  
INT PIN ACTIVATION  
2.14  
Special Character Detect  
A special character detect feature is provided to detect an 8-bit character when bit-5 is set in the Enhanced  
Feature Register (EFR). When this character (Xoff2) is detected, it will be placed in the FIFO along with normal  
incoming RX data.  
The 654 compares each incoming receive character with Xoff-2 data. If a match exists, the received data will  
be transferred to the RX FIFO and ISR bit-4 will be set to indicate detection of special character. Although the  
Internal Register Table shows Xon, Xoff Registers with eight bits of character information, the actual number of  
bits is dependent on the programmed word length. Line Control Register (LCR) bits 0-1 defines the number of  
character bits, i.e., either 5 bits, 6 bits, 7 bits, or 8 bits. The word length selected by LCR bits 0-1 also  
determines the number of bits that will be used for the special character comparison. Bit-0 in the Xon, Xoff  
Registers corresponds with the LSB bit for the receive character.  
18  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
2.15 Infrared Mode  
The 654 UART includes the infrared encoder and decoder compatible to the IrDA (Infrared Data Association)  
version 1.0. The IrDA 1.0 standard that stipulates the infrared encoder sends out a 3/16 of a bit wide HIGH-  
pulse for each “0” bit in the transmit data stream. This signal encoding reduces the on-time of the infraredLED,  
hence reduces the power consumption. See Figure 12 below.  
The infrared encoder and decoder are enabled by setting MCR register bit-6 to a ‘1’. When the infrared feature  
is enabled, the transmit data output, TX, idles at logic zero level. Likewise, the RX input assumes an idle level  
of logic zero from a reset and power up, see Figure 12.  
Typically, the wireless infrared decoder receives the input pulse from the infrared sensing diode on the RX pin.  
Each time it senses a light pulse, it returns a logic 1 to the data bit stream.  
FIGURE 12. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING  
C haracter  
D ata Bits  
1
1
1
1
1
0
0
0
0
0
TX D ata  
Transm it  
IR Pulse  
(TX Pin)  
1/2 Bit Tim e  
Bit Tim e  
Bit Time  
3/16 Bit Tim e  
IrEncoder-1  
Receive  
IR Pulse  
(RX pin)  
1/16 Clock Delay  
1
1
1
1
1
0
0
0
0
0
RX Data  
Data Bits  
Character  
IRdecoder-1  
19  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
2.16  
Sleep Mode with Auto Wake-Up  
The 654 supports low voltage system designs, hence, a sleep mode is included to reduce its power  
consumption when the chip is not actively used.  
All of these conditions must be satisfied for the 654 to enter sleep mode:  
no interrupts pending for all four channels of the 654 (ISR bit-0 = 1)  
sleep mode of both channels are enabled (IER bit-4 = 1)  
modem inputs are not toggling (MSR bits 0-3 = 0)  
RX input pins are idling at a logic 1  
The 654 stops its crystal oscillator to conserve power in the sleep mode. User can check the XTAL2 pin for no  
clock output as an indication that the device has entered the sleep mode.  
The 654 resumes normal operation by any of the following:  
a receive data start bit transition (logic 1 to 0)  
a data byte is loaded to the transmitter, THR or FIFO  
a change of logic state on any of the modem or general purpose serial inputs: CTS#, DSR#, CD#, RI#  
If the 654 is awakened by any one of the above conditions, it will return to the sleep mode automatically after all  
interrupting conditions have been serviced and cleared. If the 2750 is awakened by the modem inputs, a read  
to the MSR is required to reset the modem inputs. In any case, the sleep mode will not be entered while an  
interrupt is pending from any channel. The 654 will stay in the sleep mode of operation until it is disabled by  
setting IER bit-4 to a logic 0.  
If the address lines, data bus lines, IOW#, IOR#, CSA#, CSB#, CSC#, CSD# and modem input lines remain  
steady when the 654 is in sleep mode, the maximum current will be in the microamp range as specified in the  
DC Electrical Characteristics on page 37. If the input lines are floating or are toggling while the 654 is in sleep  
mode, the current can be up to 100 times more. If any of those signals are toggling or floating, then an external  
buffer would be required to keep the address, data and control lines steady to achieve the low current.  
A word of caution: owing to the starting up delay of the crystal oscillator after waking up from sleep mode, the  
first few receive characters may be lost. Also, make sure the RX A-D pins are idling at logic 1 or “marking”  
condition during sleep mode. This may not occur when the external interface transceivers (RS-232, RS-485 or  
another type) are also put to sleep mode and cannot maintain the “marking” condition. To avoid this, the  
system design engineer can use a 47k ohm pull-up resistor on each of the RX A-D inputs.  
2.17  
Internal Loopback  
The 654 UART provides an internal loopback capability for system diagnostic purposes. The internal loopback  
mode is enabled by setting MCR register bit-4 to logic 1. All regular UART functions operate normally.  
Figure 13 shows how the modem port signals are re-configured. Transmit data from the transmit shift register  
output is internally routed to the receive shift register input allowing the system to receive the same data that it  
was sending. The TX pin is held at logic 1 or mark condition while RTS# and DTR# are de-asserted, and  
CTS#, DSR# CD# and RI# inputs are ignored. Caution: the RX input must be held to a logic 1 during loopback  
test else upon exiting the loopback test the UART may detect and report a false “break” signal.  
20  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 13. INTERNAL LOOP BACK IN CHANNEL A AND B  
VCC  
TX A-D  
Transmit Shift Register  
(THR/FIFO)  
MCR bit-4=1  
Receive Shift Register  
(RHR/FIFO)  
RX A-D  
VCC  
RTS# A-D  
RTS#  
CTS#  
VCC  
CTS# A-D  
DTR# A-D  
DTR#  
DSR#  
DSR# A-D  
OP1#  
RI#  
RI# A-D  
OP2#  
CD#  
CD# A-D  
21  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
3.0 UART INTERNAL REGISTERS  
Each UART channel in the 654 has its own set of configuration registers selected by address lines A0, A1 and  
A2 with a specific channel selected (See Table 1 and Table 2). The complete register set is shown on Ta ble 9  
and Ta ble 10.  
TABLE 9: UART CHANNEL A AND B UART INTERNAL REGISTERS  
A2,A1,A0 ADDRESSES  
REGISTER  
READ/WRITE  
COMMENTS  
16C550 COMPATIBLE REGISTERS  
0
0
0
RHR - Receive Holding Register  
Read-only  
Write-only  
LCR[7] = 0  
THR - Transmit Holding Register  
0
0 0  
0 1  
0 1  
1 0  
DLL - Div Latch Low Byte  
Read/Write  
Read/Write  
Read/Write  
LCR[7] = 1, LCR 0xBF  
LCR[7] = 1, LCR 0xBF  
LCR[7] = 0  
0
0
0
DLM - Div Latch High Byte  
IER - Interrupt Enable Register  
ISR - Interrupt Status Register  
FCR - FIFO Control Register  
Read-only  
Write-only  
LCR[7] = 0  
0
1
1
1 1  
0 0  
0 1  
LCR - Line Control Register  
Read/Write  
Read/Write  
MCR - Modem Control Register  
LCR[7] = 0  
LCR[7] = 0  
LSR - Line Status Register  
Reserved  
Read-only  
Write-only  
1
1
1 0  
1 1  
MSR - Modem Status Register  
Reserved  
Read-only  
Write-only  
LCR[7] = 0  
LCR[7] = 0  
SPR - Scratch Pad Register  
Read/Write  
ENHANCED REGISTERS  
0
1
1
1
1
1 0  
0 0  
0 1  
1 0  
1 1  
EFR - Enhanced Function Reg  
Xon-1 - Xon Character 1  
Xon-2 - Xon Character 2  
Xoff-1 - Xoff Character 1  
Xoff-2 - Xoff Character 2  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
LCR = 0xBF  
LCR = 0xBF  
LCR = 0xBF  
LCR = 0xBF  
LCR = 0xBF  
X
X X  
FSTAT - FIFO Status Register  
Read-only  
FSRS# pin is logic 0  
22  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
TABLE 10: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1  
ADDRESS  
A2-A0  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
NAME  
16C550 Compatible Registers  
0 0 0  
0 0 0  
0 0 1  
RHR  
THR  
IER  
RD  
WR  
Bit-7  
Bit-7  
0/  
Bit-6  
Bit-6  
0/  
Bit-5  
Bit-5  
0/  
Bit-4  
Bit-4  
0/  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
RD/WR  
Modem RXLine  
Stat. Int.  
Enable  
TX  
Empty  
Int  
RX  
Data  
Int.  
Stat.  
Int.  
CTS#  
Int.  
Enable Enable  
RTS#  
Int.  
Xoff Int.  
Enable  
Sleep  
Mode  
Enable  
Enable Enable Enable  
0 1 0  
ISR  
RD  
FIFOs  
Enabled Enabled  
FIFOs  
0/  
0/  
INT  
INT  
INT  
INT  
LCR[7] = 0  
Source Source Source Source  
Bit-3  
INT  
INT  
Bit-2  
Bit-1  
Bit-0  
Source Source  
Bit-5  
Bit-4  
0 1 0  
FCR  
WR RXFIFO RXFIFO  
Tr i gger Trigger  
0/  
0/  
DMA  
Mode  
Enable  
TX  
FIFO  
Reset Reset  
RX  
FIFOs  
FIFO Enable  
TXFIFO TXFIFO  
Trigger Trigger  
0 1 1  
1 0 0  
LCR RD/WR Divisor Set TX Set Par-  
Even  
Parity  
Parity  
Enable  
Stop  
Bits  
Word  
Length Length  
Bit-1 Bit-0  
Word  
Enable  
Break  
ity  
MCR RD/WR  
0/  
0/  
0/  
Internal INT Out- Rsvd  
Lopback  
Enable  
RTS# DTR#  
Output Output  
Control Control  
put  
Enable  
(OP1#)  
BRG  
Pres-  
caler  
IR Mode XonAny  
ENable  
(OP2#)  
1 0 1  
LSR  
RD  
RD  
RX FIFO THR &  
THR  
Empty  
RX  
Break  
RX Fram-  
ing Error Parity  
Error  
RX  
RX  
Over-  
run  
RX  
Data  
Ready  
LCR[7] = 0  
Global  
Error  
TSR  
Empty  
Error  
1 1 0  
1 1 1  
MSR  
CD#  
RI#  
DSR#  
Input  
CTS#  
Input  
Delta  
CD#  
Delta  
RI#  
Delta  
DSR# CTS#  
Delta  
Input  
Input  
SPR RD/WR  
Bit-7  
Bit-6  
Bit-5  
Bit-4  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
LCR[7] = 0  
Baud Rate Generator Divisor  
0 0 0  
0 0 1  
DLL RD/WR  
DLM RD/WR  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
LCR[7] = 1  
LCR 0xBF  
23  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
TABLE 10: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1  
ADDRESS  
A2-A0  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
NAME  
Enhanced Registers  
Enable  
0 1 0  
EFR RD/WR  
Auto  
CTS#  
Enable Enable  
Auto  
RTS#  
Special  
Char  
Select  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
IER [7:4],  
ISR [5:4],  
FCR[5:4],  
MCR[7:5]  
Bit-2  
Bit-1  
Bit-0  
Bit-3  
LCR=0XBF  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
XON1 RD/WR  
XON2 RD/WR  
XOFF1 RD/WR  
XOFF2 RD/WR  
Bit-7  
Bit-7  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
Bit-0  
Bit-0  
FSRS# pin is  
a logic 0. No  
address lines  
required.  
X X X  
FSTAT  
RD  
RX-  
RX-  
RX-  
RX-  
TX-  
TX-  
TX-  
TX-  
RDYD# RDYC# RDYB# RDYA#  
RDYC# RDYB# RDYA#  
RDYD#  
4.0 INTERNAL REGISTER DESCRIPTIONS  
4.1 Receive Holding Register (RHR) - Read- Only  
See “Receiver” on page15.  
4.2  
Transmit Holding Register (THR) - Write-Only  
See “Transmitter” on page13.  
4.3  
Interrupt Enable Register (IER) - Read/Write  
The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status  
and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR).  
4.3.1  
IER versus Receive FIFO Interrupt Mode Operation  
When the receive FIFO (FCR BIT-0 = 1) and receive interrupts (IER BIT-0 = 1) are enabled, the RHR interrupts  
(see ISR bits 2 and 3) status will reflect the following:  
A.  
B.  
C.  
24  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
4.3.2  
IER versus Receive/Transmit FIFO Polled Mode Operation  
When FCR BIT-0 equals a logic 1 for FIFO enable; resetting IER bits 0-3 enables the ST16C654 in the FIFO  
polled mode of operation. Since the receiver and transmitter have separate bits in the LSR either or both can  
be used in the polled mode by selecting respective transmit or receive control bit(s).  
A.  
B.  
C.  
D.  
E.  
F.  
IER[0]: RHR Interrupt Enable  
The receive data ready interrupt will be issued when RHR has a data character in the non-FIFO mode or when  
the receive FIFO has reached the programmed trigger level in the FIFO mode.  
Logic 0 = Disable the receive data ready interrupt (default).  
Logic 1 = Enable the receiver data ready interrupt.  
IER[1]: THR Interrupt Enable  
This bit enables the Transmit Ready interrupt which is issued whenever the THR becomes empty in the non-  
FIFO mode or when data in the FIFO falls below the programmed trigger level in the FIFO mode. If the THR is  
empty when this bit is enabled, an interrupt will be generated.  
Logic 0 = Disable Transmit Ready interrupt (default).  
Logic 1 = Enable Transmit Ready interrupt.  
IER[2]: Receive Line Status Interrupt Enable  
If any of the LSR register bits 1, 2, 3 or 4 is a logic 1, it will generate an interrupt to inform the host controller  
about the error status of the current data byte in FIFO. LSR bit-1 generates an interrupt immediately when an  
overrun occurs. LSR bits 2-4 generate an interrupt when the character in the RHR has an error.  
Logic 0 = Disable the receiver line status interrupt (default).  
Logic 1 = Enable the receiver line status interrupt.  
IER[3]: Modem Status Interrupt Enable  
Logic 0 = Disable the modem status register interrupt (default).  
Logic 1 = Enable the modem status register interrupt.  
IER[4]: Sleep Mode Enable (requires EFR[4] = 1)  
Logic 0 = Disable Sleep Mode (default).  
Logic 1 = Enable Sleep Mode. See Sleep Mode section for further details.  
IER[5]: Xoff Interrupt Enable (requires EFR[4]=1)  
Logic 0 = Disable the software flow control, receive Xoff interrupt. (default)  
Logic 1 = Enable the software flow control, receive Xoff interrupt. See Software Flow Control section for  
details.  
IER[6]: RTS# Output Interrupt Enable (requires EFR[4]=1)  
Logic 0 = Disable the RTS# interrupt (default).  
Logic 1 = Enable the RTS# interrupt. The UART issues an interrupt when the RTS# pin makes a transition  
from low to high (if enabled by EFR bit-6).  
25  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
IER[7]: CTS# Input Interrupt Enable (requires EFR[4]=1)  
Logic 0 = Disable the CTS# interrupt (default).  
Logic 1 = Enable the CTS# interrupt. The UART issues an interrupt when CTS# pin makes a transition from  
low to high (if enabled by EFR bit-7).  
4.4  
Interrupt Status Register (ISR) - Read-Only  
The UART provides multiple levels of prioritized interrupts to minimize external software interaction. The  
Interrupt Status Register (ISR) provides the user with six interrupt status bits. Performing a read cycle on the  
ISR will give the user the current highest pending interrupt level to be serviced, others are queued up to be  
serviced next. No other interrupts are acknowledged until the pending interrupt is serviced. The Interrupt  
Source Table, Table 11, shows the data values (bit 0-5) for the interrupt priority levels and the interrupt sources  
associated with each of these interrupt levels.  
4.4.1  
Interrupt Generation:  
LSR is by any of the LSR bits 1, 2, 3 and 4.  
RXRDY is by RX trigger level.  
RXRDY Time-out is by a 4-char plus 12 bits delay timer.  
TXRDY is by TX trigger level or TX FIFO empty.  
MSR is by any of the MSR bits 0, 1, 2 and 3.  
Receive Xoff/Special character is by detection of a Xoff or Special character.  
CTS# is when the remote transmitter toggles the input pin (from low to high) during auto CTS flow control.  
RTS# is when its receiver toggles the output pin (from low to high) during auto RTS flow control.  
4.4.2  
Interrupt Clearing:  
LSR interrupt is cleared by a read to the LSR register (LSR bits 1-4 will clear but LSR bit-7 will not clear until  
character(s) that generated the interrupt(s) has been emptied or cleared from FIFO).  
RXRDY interrupt is cleared by reading data until FIFO falls below the trigger level.  
RXRDY Time-out interrupt is cleared by reading RHR.  
TXRDY interrupt is cleared by a read to the ISR register or writing to THR.  
MSR interrupt is cleared by a read to the MSR register.  
Xoff interrupt is cleared by a read to ISR.  
Special character interrupt is cleared by a read to ISR register or after next character is received.  
RTS# and CTS# flow control interrupts are cleared by a read to the MSR register.  
26  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
]
TABLE 11: INTERRUPT SOURCE AND PRIORITY LEVEL  
PRIORITY  
ISR REGISTER STATUS BITS  
BIT-4 BIT-3 BIT-2 BIT-1  
SOURCE OF INTERRUPT  
LEVEL  
BIT-5  
BIT-0  
1
2
3
4
5
6
7
-
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
1
LSR (Receiver Line Status Register)  
RXRDY (Receive Data Time-out)  
RXRDY (Received Data Ready)  
TXRDY (Transmit Ready)  
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
MSR (Modem Status Register)  
RXRDY (Received Xoff or Special character)  
CTS#, RTS# change of state  
None (default)  
ISR[0]: Interrupt Status  
Logic 0 = An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt  
service routine.  
Logic 1 = No interrupt pending (default condition).  
ISR[3:1]: Interrupt Status  
These bits indicate the source for a pending interrupt at interrupt priority levels (See Interrupt SourceTable 11).  
ISR[4]: Interrupt Status  
This bit is enabled when EFR bit-4 is set to a logic 1. ISR bit-4 indicates that the receiver detected a data match  
of the Xoff character(s) or a special character.  
ISR[5]: Interrupt Status  
This bit is enabled when EFR bit-4 is set to a logic 1. ISR bit-5 indicates that CTS# or RTS# has changed state  
from a logic low to logic high.  
ISR[7:6]: FIFO Enable Status  
These bits are set to a logic 0 when the FIFOs are disabled. They are set to a logic 1 when the FIFOs are  
enabled.  
4.5  
FIFO Control Register (FCR) - Write-Only  
This register is used to enable the FIFOs, clear the FIFOs, set the transmit/receive FIFO trigger levels, and  
select the DMA mode. The DMA, and FIFO modes are defined as follows:  
FCR[0]: TX and RX FIFO Enable  
Logic 0 = Disable the transmit and receive FIFO (default).  
Logic 1 = Enable the transmit and receive FIFOs. This bit must be set to logic 1 when other FCR bits are  
written or they will not be programmed.  
27  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FCR[1]: RX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No receive FIFO reset (default)  
Logic 1 = Reset the receive FIFO pointers and FIFO level counter logic (the receive shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
FCR[2]: TX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No transmit FIFO reset (default).  
Logic 1 = Reset the transmit FIFO pointers and FIFO level counter logic (the transmit shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
FCR[3]: DMA Mode Select  
Controls the behavior of the -TXRDY and -RXRDY pins. See DMA operation section for details.  
Logic 0 = Normal Operation (default).  
Logic 1 = DMA Mode.  
FCR[5:4]: Transmit FIFO Trigger Select  
(logic 0 = default, TX trigger level = one)  
These 2 bits set the trigger level for the transmit FIFO. The UART will issue a transmit interrupt when the  
number of characters in the FIFO falls below the selected trigger level, or when it gets empty in case that the  
FIFO did not get filled over the trigger level on last re-load. Table 12 below shows the selections. EFR bit-4  
must be set to ‘1’ before these bits can be accessed. Note that the receiver and the transmitter cannot use  
different trigger tables. Whichever selection is made last applies to both the RX and TX side.  
FCR[7:6]: Receive FIFO Trigger Select  
(logic 0 = default, RX trigger level =1)  
These 2 bits are used to set the trigger level for the receive FIFO. The UART will issue a receive interrupt when  
the number of the characters in the FIFO crosses the trigger level. Table 12 shows the complete selections.  
TABLE 12: TRANSMIT AND RECEIVE FIFO TRIGGER LEVEL SELECTION  
RECEIVE  
TRIGGER  
LEVEL  
TRANSMIT  
TRIGGER  
LEVEL  
FCR  
BIT-7  
FCR  
BIT-6  
FCR  
BIT-5  
FCR  
BIT-4  
0
0
1
1
0
1
0
1
8
16  
32  
56  
0
0
1
1
0
1
0
1
8
16  
56  
60  
28  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
4.6  
Line Control Register (LCR) - Read/Write  
The Line Control Register is used to specify the asynchronous data communication format. The word or  
character length, the number of stop bits, and the parity are selected by writing the appropriate bits in this  
register.  
LCR[1:0]: TX and RX Word Length Select  
These two bits specify the word length to be transmitted or received.  
BIT-1  
BIT-0  
WORD LENGTH  
0
0
1
1
0
1
0
1
5 (default)  
6
7
8
LCR[2]: TX and RX Stop-bit Length Select  
The length of stop bit is specified by this bit in conjunction with the programmed word length.  
STOP BIT LENGTH  
(BIT TIME(S))  
WORD  
LENGTH  
BIT-2  
0
1
1
5,6,7,8  
5
1 (default)  
1-1/2  
2
6,7,8  
LCR[3]: TX and RX Parity Select  
Parity or no parity can be selected via this bit. The parity bit is a simple way used in communications for data  
integrity check. See Table 13 for parity selection summary below.  
Logic 0 = No parity.  
Logic 1 = A parity bit is generated during the transmission while the receiver checks for parity error of the  
data character received.  
LCR[4]: TX and RX Parity Select  
If the parity bit is enabled with LCR bit-3 set to a logic 1, LCR BIT-4 selects the even or odd parity format.  
Logic 0 = ODD Parity is generated by forcing an odd number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format (default).  
Logic 1 = EVEN Parity is generated by forcing an even number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format.  
29  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
LCR[5]: TX and RX Parity Select  
If the parity bit is enabled, LCR BIT-5 selects the forced parity format.  
LCR BIT-5 = logic 0, parity is not forced (default).  
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 0, parity bit is forced to a logical 1 for the transmit and receive  
data.  
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 1, parity bit is forced to a logical 0 for the transmit and receive  
data.  
TABLE 13: PARITY SELECTION  
LCR BIT-5 LCR BIT-4 LCR BIT-3  
PARITY SELECTION  
No parity  
X
0
0
1
X
0
1
0
0
1
1
1
Odd parity  
Even parity  
Force parity to mark,  
“1”  
1
1
1
Forced parity to  
space, “0”  
LCR[6]: Transmit Break Enable  
When enabled, the Break control bit causes a break condition to be transmitted (the TX output is forced to a  
“space’, logic 0, state). This condition remains, until disabled by setting LCR bit-6 to a logic 0.  
Logic 0 = No TX break condition. (default)  
Logic 1 = Forces the transmitter output (TX) to a “space”, logic 0, for alerting the remote receiver of a line  
break condition.  
LCR[7]: Baud Rate Divisors Enable  
Baud rate generator divisor (DLL/DLM) enable.  
Logic 0 = Data registers are selected. (default)  
Logic 1 = Divisor latch registers are selected.  
4.7  
Modem Control Register (MCR) or General Purpose Outputs Control - Read/Write  
The MCR register is used for controlling the serial/modem interface signals or general purpose inputs/outputs.  
MCR[0]: DTR# Output  
The DTR# pin is a modem control output. If the modem interface is not used, this output may be used as a  
general purpose output.  
Logic 0 = Force DTR# output to a logic 1 (default).  
Logic 1 = Force DTR# output to a logic 0.  
MCR[1]: RTS# Output  
The RTS# pin is a modem control output and may be used for automatic hardware flow control by enabled by  
EFR bit-6. If the modem interface is not used, this output may be used as a general purpose output.  
Logic 0 = Force RTS# output to a logic 1 (default).  
Logic 1 = Force RTS# output to a logic 0.  
MCR[2]: Reserved  
OP1# is not available as an output pin on the 654. But it is available for use during Internal Loopback Mode. In  
the Loopback Mode, this bit is used to write the state of the modem RI# interface signal.  
30  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
MCR[3]: INT Output Enable  
Enable or disable INT outputs to become active or in three-state. This function is associated with the INTSEL  
input, see below table for details. This bit is also used to control the OP2# signal during internal loopback  
mode. INTSEL pin must be set to a logic zero during 68 mode.  
Logic 0 = INT (A-D) outputs disabled (three state) in the 16 mode (default). During loopback mode, it sets  
OP2# internally to a logic 1.  
Logic 1 = INT (A-D) outputs enabled (active) in the 16 mode. During loopback mode, it sets OP2# internally  
to a logic 0.  
TABLE 14: INT OUTPUT MODES  
INTSEL MCR  
INT A-D OUTPUTS IN 16 MODE  
PIN  
BIT-3  
0
0
1
X
Three-State  
Active  
0
1
Active  
MCR[4]: Internal Loopback Enable  
Logic 0 = Disable loopback mode (default).  
Logic 1 = Enable local loopback mode, see loopback section and Figure 13.  
MCR[5]: Xon-Any Enable  
Logic 0 = Disable Xon-Any function (for 16C550 compatibility, default).  
Logic 1 = Enable Xon-Any function. In this mode, any RX character received will resume transmit operation.  
The RX character will be loaded into the RX FIFO , unless the RX character is an Xon or Xoff character and  
the 654 is programmed to use the Xon/Xoff flow control.  
MCR[6]: Infrared Encoder/Decoder Enable  
Logic 0 = Enable the standard modem receive and transmit input/output interface. (Default)  
Logic 1 = Enable infrared IrDA receive and transmit inputs/outputs. The TX/RX output/input are routed to the  
infrared encoder/decoder. The data input and output levels conform to the IrDA infrared interface  
requirement. The RX FIFO may need to be flushed upon enable. While in this mode, the infrared TX output  
will be a logic 0 during idle data conditions.  
MCR[7]: Clock Prescaler Select  
Logic 0 = Divide by one. The input clock from the crystal or external clock is fed directly to the Programmable  
Baud Rate Generator without further modification, i.e., divide by one (default).  
Logic 1 = Divide by four. The prescaler divides the input clock from the crystal or external clock by four and  
feeds it to the Programmable Baud Rate Generator, hence, data rates become one forth.  
4.8  
Line Status Register (LSR) - Read Only  
This register provides the status of data transfers between the UART and the host. If IER bit-2 is enabled, LSR  
bit 1 will generate an interrupt immediately and LSR bits 2-4 will generate an interrupt when a character with an  
error is in the RHR.  
LSR[0]: Receive Data Ready Indicator  
Logic 0 = No data in receive holding register or FIFO (default).  
Logic 1 = Data has been received and is saved in the receive holding register or FIFO.  
31  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
LSR[1]: Receiver Overrun Flag  
Logic 0 = No overrun error (default).  
Logic 1 = Overrun error. A data overrun error condition occurred in the receive shift register. This happens  
when additional data arrives while the FIFO is full. In this case the previous data in the receive shift register  
is overwritten. Note that under this condition the data byte in the receive shift register is not transferred into  
the FIFO, therefore the data in the FIFO is not corrupted by the error.  
LSR[2]: Receive Data Parity Error Tag  
Logic 0 = No parity error (default).  
Logic 1 = Parity error. The receive character in RHR does not have correct parity information and is suspect.  
This error is associated with the character available for reading in RHR.  
LSR[3]: Receive Data Framing Error Tag  
Logic 0 = No framing error (default).  
Logic 1 = Framing error. The receive character did not have a valid stop bit(s). This error is associated with  
the character available for reading in RHR.  
LSR[4]: Receive Break Tag  
Logic 0 = No break condition (default).  
Logic 1 = The receiver received a break signal (RX was a logic 0 for at least one character frame time). In the  
FIFO mode, only one break character is loaded into the FIFO. The break indication remains until the RX  
input returns to the idle condition, “mark” or logic 1.  
LSR[5]: Transmit Holding Register Empty Flag  
This bit is the Transmit Holding Register Empty indicator. The THR bit is set to a logic 1 when the last data byte  
is transferred from the transmit holding register to the transmit shift register. The bit is reset to logic 0  
concurrently with the data loading to the transmit holding register by the host. In the FIFO mode this bit is set  
when the transmit FIFO is empty, it is cleared when the transmit FIFO contains at least 1 byte.  
LSR[6]: THR and TSR Empty Flag  
This bit is set to a logic 1 whenever the transmitter goes idle. It is set to logic 0 whenever either the THR or TSR  
contains a data character. In the FIFO mode this bit is set to a logic 1 whenever the transmit FIFO and transmit  
shift register are both empty.  
LSR[7]: Receive FIFO Data Error Flag  
Logic 0 = No FIFO error (default).  
Logic 1 = A global indicator for the sum of all error bits in the RX FIFO. At least one parity error, framing error  
or break indication is in the FIFO data. This bit clears when there is no more error(s) in any of the bytes in the  
RX FIFO.  
4.9  
Modem Status Register (MSR) - Read Only  
This register provides the current state of the modem interface input signals. Lower four bits of this register are  
used to indicate the changed information. These bits are set to a logic 1 whenever a signal from the modem  
changes state. These bits may be used for general purpose inputs when they are not used with modem  
signals.  
MSR[0]: Delta CTS# Input Flag  
Logic 0 = No change on CTS# input (default).  
Logic 1 = The CTS# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
32  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
MSR[1]: Delta DSR# Input Flag  
Logic 0 = No change on DSR# input (default).  
Logic 1 = The DSR# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[2]: Delta RI# Input Flag  
Logic 0 = No change on RI# input (default).  
Logic 1 = The RI# input has changed from a logic 0 to a logic 1, ending of the ringing signal. A modem status  
interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[3]: Delta CD# Input Flag  
Logic 0 = No change on CD# input (default).  
Logic 1 = Indicates that the CD# input has changed state since the last time it was monitored. A modem  
status interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[4]: CTS Input Status  
CTS# pin may function as automatic hardware flow control signal input if it is enabled and selected by Auto  
CTS (EFR bit-7). Auto CTS flow control allows starting and stopping of local data transmissions based on the  
modem CTS# signal. A logic 1 on the CTS# pin will stop UART transmitter as soon as the current character  
has finished transmission, and a logic 0 will resume data transmission. Normally MSR bit-4 bit is the  
compliment of the CTS# input. However in the loopback mode, this bit is equivalent to the RTS# bit in the MCR  
register. The CTS# input may be used as a general purpose input when the modem interface is not used.  
MSR[5]: DSR Input Status  
DSR# (active high, logical 1). Normally this bit is the compliment of the DSR# input. In the loopback mode, this  
bit is equivalent to the DTR# bit in the MCR register. The DSR# input may be used as a general purpose input  
when the modem interface is not used.  
MSR[6]: RI Input Status  
RI# (active high, logical 1). Normally this bit is the compliment of the RI# input. In the loopback mode this bit is  
equivalent to bit-2 in the MCR register. The RI# input may be used as a general purpose input when the  
modem interface is not used.  
MSR[7]: CD Input Status  
CD# (active high, logical 1). Normally this bit is the compliment of the CD# input. In the loopback mode this bit  
is equivalent to bit-3 in the MCR register. The CD# input may be used as a general purpose input when the  
modem interface is not used.  
4.10 Scratch Pad Register (SPR) - Read/Write  
This is a 8-bit general purpose register for the user to store temporary data. The content of this register is  
preserved during sleep mode but becomes 0xFF (default) after a reset or a power off-on cycle.  
4.11 Baud Rate Generator Registers (DLL and DLM) - Read/Write  
The concatenation of the contents of DLM and DLL gives the 16-bit divisor value which is used to calculate the  
baud rate:  
Baud Rate = (Clock Frequency / 16) / Divisor  
See MCR bit-7 and the baud rate table also.  
4.12 Enhanced Feature Register (EFR) - Read/Write  
Enhanced features are enabled or disabled using this register. Bit 0-3 provide single or dual consecutive  
character software flow control selection (see Table 15). When the Xon1 and Xon2 and Xoff1 and Xoff2 modes  
are selected, the double 8-bit words are concatenated into two sequential characters. Caution: note that  
whenever changing the TX or RX flow control bits, always reset all bits back to logic 0 (disable) before  
programming a new setting.  
33  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
EFR[3:0]: Software Flow Control Select  
Single character and dual sequential characters software flow control is supported. Combinations of software  
flow control can be selected by programming these bits.  
TABLE 15: SOFTWARE FLOW CONTROL FUNCTIONS  
EFR BIT-3  
CONT-3  
EFR BIT-2  
CONT-2  
EFR BIT-1  
CONT-1  
EFR BIT-0  
CONT-0  
TRANSMIT AND RECEIVE SOFTWARE FLOW CONTROL  
0
0
1
0
1
X
X
X
1
0
0
0
1
1
X
X
X
0
0
X
X
X
X
0
1
0
1
0
X
X
X
X
0
0
1
1
No TX and RX flow control (default and reset)  
No transmit flow control  
Transmit Xon1, Xoff1  
Transmit Xon2, Xoff2  
Transmit Xon1 and Xon2, Xoff1 and Xoff2  
No receive flow control  
Receiver compares Xon1, Xoff1  
Receiver compares Xon2, Xoff2  
Transmit Xon1, Xoff1  
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2  
0
1
0
1
1
0
1
1
1
1
1
1
Transmit Xon2, Xoff2  
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2  
Transmit Xon1 and Xon2, Xoff1 and Xoff2,  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
No transmit flow control,  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
EFR[4]: Enhanced Function Bits Enable  
Enhanced function control bit. This bit enables IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and MCR bits 5-7 to be  
modified. After modifying any enhanced bits, EFR bit-4 can be set to a logic 0 to latch the new values. This  
feature prevents legacy software from altering or overwriting the enhanced functions once set. Normally, it is  
recommended to leave it enabled, logic 1.  
Logic 0 = modification disable/latch enhanced features. IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and MCR  
bits 5-7 are saved to retain the user settings. After a reset, the IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and  
MCR bits 5-7are set to a logic 0 to be compatible with ST16C550 mode (default).  
Logic 1 = Enables the above-mentioned register bits to be modified by the user.  
EFR[5]: Special Character Detect Enable  
Logic 0 = Special Character Detect Disabled (default).  
Logic 1 = Special Character Detect Enabled. The UART compares each incoming receive character with  
data in Xoff-2 register. If a match exists, the receive data will be transferred to FIFO and ISR bit-4 will be set  
to indicate detection of the special character. Bit-0 corresponds with the LSB bit of the receive character. If  
flow control is set for comparing Xon1, Xoff1 (EFR [1:0]= ‘10’) then flow control and special character work  
normally. However, if flow control is set for comparing Xon2, Xoff2 (EFR[1:0]= ‘01’) then flow control works  
normally, but Xoff2 will not go to the FIFO, and will generate an Xoff interrupt and a special character  
interrupt, if enabled via IER bit-5.  
34  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
EFR[6]: Auto RTS Flow Control Enable  
RTS# output may be used for hardware flow control by setting EFR bit-6 to logic 1. When Auto RTS is selected,  
an interrupt will be generated when the receive FIFO is filled to the programmed trigger level and RTS de-  
asserts to a logic 1 at the next upper trigger level/hysteresis level. RTS# will return to a logic 0 when FIFO data  
falls below the next lower trigger level/hysteresis level. The RTS# output must be asserted (logic 0) before the  
auto RTS can take effect. RTS# pin will function as a general purpose output when hardware flow control is  
disabled.  
Logic 0 = Automatic RTS flow control is disabled (default).  
Logic 1 = Enable Automatic RTS flow control.  
EFR[7]: Auto CTS Flow Control Enable  
Automatic CTS Flow Control.  
Logic 0 = Automatic CTS flow control is disabled (default).  
Logic 1 = Enable Automatic CTS flow control. Data transmission stops when CTS# input de-asserts to logic  
1. Data transmission resumes when CTS# returns to a logic 0.  
4.13 Software Flow Control Registers (XOFF1, XOFF2, XON1, XON2) - Read/Write  
These registers are used as the programmable software flow control characters xoff1, xoff2, xon1, and xon2.  
For more details, see Table 8.  
4.14 FIFO Status Register (FSTAT) - Read/Write  
This register is applicable only to the 100 pin QFP ST16C654. The FIFO Status Register provides a status  
indication for each of the transmit and receive FIFO. These status bits contain the inverted logic states of the  
TXRDY# A-D outputs and the (un-inverted) logic states of the RXRDY# A-D outputs. The contents of the  
FSTAT register are placed on the data bus when the FSRS# pin (pin 76) is a logic 0. Also see FSRS# pin  
description.  
FSTAT[3:0]: TXRDY# A-D Status Bits  
Please see Table 5 for the interpretation of the TXRDY# signals.  
FSTAT[7:4]: RXRDY# A-D Status Bits  
Please see Table 5 for the interpretation of the RXRDY# signals.  
35  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
TABLE 16: UART RESET CONDITIONS FOR CHANNELS A-D  
REGISTERS  
DLL  
RESET STATE  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x01  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x60  
Bits 3-0 = Logic 0  
DLM  
RHR  
THR  
IER  
FCR  
ISR  
LCR  
MCR  
LSR  
MSR  
Bits 7-4 = Logic levels of the inputs inverted  
Bits 7-0 = 0xFF  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0xFF  
RESET STATE  
Logic 1  
SPR  
EFR  
XON1  
XON2  
XOFF1  
XOFF2  
FSTAT  
I/O SIGNALS  
TX  
IRTX  
Logic 0  
RTS#  
Logic 1  
DTR#  
Logic 1  
RXRDY#  
TXRDY#  
INT  
Logic 1  
Logic 0  
ST16C654 = Three-State Condition  
ST16C654D = Logic 0  
IRQ#  
Three-State Condition (68 mode, INTSEL = 0)  
36  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
ABSOLUTE MAXIMUM RATINGS  
Power Supply Range  
Voltage at Any Pin  
7 Volts  
GND-0.3 V to 7 V  
o
o
Operating Temperature  
-40 to +85 C  
o
o
Storage Temperature  
Package Dissipation  
-65 to +150 C  
500 mW  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%)  
o
o
Thermal Resistance (64-TQFP)  
Thermal Resistance (68-PLCC)  
Thermal Resistance (100-QFP)  
theta-ja = 49 C/W, theta-jc = 10 C/W  
o
o
theta-ja = 39 C/W, theta-jc = 17 C/W  
o
o
theta-ja = 45 C/W, theta-jc = 12 C/W  
ELECTRICAL CHARACTERISTICS  
DC ELECTRICAL CHARACTERISTICS  
UNLESS OTHERWISE NOTED: TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.97 TO  
5.5V  
LIMITS  
3.3V  
LIMITS  
5.0V  
SYMBOL  
PARAMETER  
UNITS  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
V
Clock Input Low Level  
Clock Input High Level  
Input Low Voltage  
-0.3  
0.6  
VCC  
0.8  
-0.5  
0.6  
VCC  
0.8  
V
V
ILCK  
V
2.4  
-0.3  
2.0  
3.0  
-0.5  
2.2  
IHCK  
V
V
IL  
V
Input High Voltage  
VCC  
VCC  
0.4  
V
IH  
V
V
Output Low Voltage  
Output Low Voltage  
Output High Voltage  
Output High Voltage  
Input Low Leakage Current  
Input High Leakage Current  
Input Pin Capacitance  
Power Supply Current  
Sleep Current  
V
I
I
I
I
= 6 mA  
= 4 mA  
= -6 mA  
= -1 mA  
OL  
OL  
OH  
OH  
OL  
OL  
OH  
OH  
0.4  
V
V
V
2.4  
V
2.0  
V
I
±10  
±10  
5
±10  
±10  
5
uA  
uA  
pF  
mA  
uA  
IL  
I
IH  
C
IN  
I
3
6
CC  
I
100  
200  
See Test 1  
SLEEP  
37  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
AC ELECTRICAL CHARACTERISTICS  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.97 TO 5.5V  
LIMITS  
3.3  
LIMITS  
5.0  
SYMBOL  
PARAMETER  
UNIT  
CONDITIONS  
MIN  
MAX MIN  
MAX  
CLK  
Clock Pulse Duration  
20  
20  
ns  
MHz  
ns  
OSC  
Crystal/External Clock Frequency  
Address Setup Time (16 Mode)  
8
24  
10  
5
5
5
AS  
AH  
CS  
Address Hold Time (16 Mode)  
Chip Select Width (16 Mode)  
IOR# Strobe Width (16 Mode)  
Read Cycle Delay (16 Mode)  
Data Access Time (16 Mode)  
Data Disable Time (16 Mode)  
IOW# Strobe Width (16 Mode)  
Write Cycle Delay (16 Mode)  
Data Setup Time (16 Mode)  
Data Hold Time (16 Mode)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
66  
50  
50  
50  
30  
50  
T
RD  
T
DY  
T
45  
30  
35  
20  
RDV  
T
0
0
DD  
T
40  
50  
20  
15  
10  
15  
10  
30  
50  
15  
10  
10  
15  
10  
WR  
T
DY  
DS  
DH  
T
T
Address Setup (68 Mode)  
Address Hold (68 Mode)  
R/W# Setup to CS# (68 Mode)  
Data Access Time (68 mode)  
Data Disable Time (68 mode)  
Write Data Setup (68 mode)  
Write Data Hold (68 Mode)  
20  
10  
10  
15  
10  
10  
CS# De-asserted to R/W# De-asserted (68 Mode)  
CS# Strobe Width (68 Mode)  
CS# Cycle Delay (68 Mode)  
Delay From IOW# To Output  
Delay To Set Interrupt From MODEM Input  
Delay To Reset Interrupt From IOR#  
Delay From Stop To Set Interrupt  
T
T
50  
50  
50  
1
50  
35  
35  
1
ns 100 pF load  
ns 100 pF load  
ns 100 pF load  
Bclk  
WDO  
MOD  
T
RSI  
SSI  
T
38  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
AC ELECTRICAL CHARACTERISTICS  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.97 TO 5.5V  
LIMITS  
3.3  
LIMITS  
5.0  
SYMBOL  
PARAMETER  
UNIT  
CONDITIONS  
MIN  
MAX MIN  
MAX  
T
Delay From IOR# To Reset Interrupt  
Delay From Start To Interrupt  
Delay From Initial INT Reset To Transmit Start  
Delay From IOW# To Reset Interrupt  
Delay From Stop To Set RXRDY#  
Delay From IOR# To Reset RXRDY#  
Delay From IOW# To Set TXRDY#  
Delay From Center of Start To Reset TXRDY#  
Reset Pulse Width  
200  
100  
24  
200  
ns 100 pF load  
RRI  
T
100  
24  
ns  
Bclk  
ns  
SI  
T
8
8
INT  
T
175  
1
175  
1
WRI  
SSR  
T
Bclk  
ns  
T
175  
175  
8
175  
175  
8
RR  
T
ns  
WT  
T
T
Bclk  
ns  
SRT  
40  
1
40  
1
RST  
16  
16  
N
Baud Rate Divisor  
-
2
-1  
2 -1  
Bclk  
Baud Clock  
16X of data rate  
Hz  
FIGURE 14. CLOCK TIMING  
39  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 15. MODEM INPUT/OUTPUT TIMING FOR CHANNELS A-D  
FIGURE 16. 16 MODE (INTEL) DATA BUS READ TIMING FOR CHANNELS A-D  
40  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 17. 16 MODE (INTEL) DATA BUS WRITE TIMING FOR CHANNELS A-D  
FIGURE 18. 68 MODE (MOTOROLA) DATA BUS READ TIMING FOR CHANNELS A-D  
41  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 19. 68 MODE (MOTOROLA) DATA BUS WRITE TIMING FOR CHANNELS A-D  
FIGURE 20. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A-D  
42  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 21. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A-D  
FIGURE 22. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED] FOR CHANNELS A-D  
43  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 23. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED] FOR CHANNELS A-D  
44  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
FIGURE 24. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED] FOR CHANNELS A-D  
FIGURE 25. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE ENABLED] FOR CHANNELS A-D  
45  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
PACKAGE DIMENSIONS  
64 LEAD THIN QUAD FLAT PACK (10 x 10 x 1.4 mm TQFP)  
D
D1  
48  
33  
49  
32  
D1  
D
64  
17  
1
16  
B
A2  
e
C
A
α
Seating Plane  
A1  
L
Note: The control dimension is the millimeter column  
INCHES MILLIMETERS  
MAX  
SYMBOL  
MIN  
MIN  
MAX  
1.60  
0.15  
1.45  
0.27  
0.20  
12.20  
10.10  
A
A1  
A2  
B
0.055  
0.002  
0.053  
0.007  
0.004  
0.465  
0.390  
0.063  
0.006  
0.057  
0.011  
0.008  
0.480  
0.398  
1.40  
0.05  
1.35  
0.17  
0.09  
11.80  
9.90  
C
D
D1  
e
0.020 BSC  
0.50 BSC  
L
0.018  
0.030  
0.45  
0.75  
α
0°  
7°  
0°  
7°  
46  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
68 LEAD PLASTIC LEADED CHIP CARRIER (PLCC)  
D
C
Seating Plane  
A2  
D1  
45° x H1  
45° x H2  
2
1
68  
B1  
B
D3  
D2  
D
D1  
e
R
D3  
A1  
A
Note: The control dimension is the inch column  
INCHES MILLIMETERS  
SYMBOL  
MIN  
MAX  
0.200  
0.130  
MIN  
MAX  
5.08  
3.30  
A
0.165  
0.090  
4.19  
2.29  
A1  
A2  
0.020  
0.013  
0.026  
0.008  
0.985  
0.950  
---.  
0.51  
0.33  
---  
B
0.021  
0.032  
0.013  
0.995  
0.958  
0.53  
0.81  
0.32  
25.27  
24.33  
B1  
0.66  
C
D
0.19  
25.02  
24.13  
D1  
D2  
D3  
0.890  
0.930  
22.61  
23.62  
0.800 typ.  
0.050 BSC  
0.042  
20.32 typ.  
1.27 BSC  
e
H1  
0.056  
0.048  
0.045  
1.07  
1.07  
0.64  
1.42  
1.22  
1.14  
H2  
R
0.042  
0.025  
47  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
100 LEAD PLASTIC QUAD FLAT PACK (14 mm x 20 mm QFP, 1.95 mm Form)  
D
D1  
80  
51  
81  
50  
E1  
E
100  
31  
p
1
30  
B
A2  
e
C
A
Seating Plane  
α
A1  
L
Note: The control dimension is the millimeter column  
INCHES MILLIMETERS  
SYMBOL  
MIN  
0.102  
0.002  
MAX  
0.134  
0.014  
MIN  
MAX  
3.40  
0.35  
A
2.60  
0.05  
A1  
A2  
0.100  
0.009  
0.004  
0.931  
0.783  
0.695  
0.547  
0.120  
0.015  
0.009  
0.951  
0.791  
0.715  
0.555  
2.55  
0.22  
3.05  
0.38  
0.23  
B
C
0.11  
D
23.65  
19.90  
17.65  
13.90  
24.15  
20.10  
18.15  
14.10  
D1  
E
E1  
e
L
α
0.0256 BSC  
0.65 BSC  
0.029  
0°  
0.040  
0.73  
1.03  
7°  
0°  
7°  
48  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
REVISION HISTORY  
DATE  
REVISION  
DESCRIPTION  
October 2003  
Rev 5.00  
Changed to standard style single-column format. Text descriptions were  
clarified and simplified (eg. DMA operation, FIFO mode vs. Non-FIFO  
mode operations etc). Clarified timing diagrams. Renamed Rclk  
(Receive Clock) to Bclk (Baud Clock) and timing symbols. Added T  
,
CS  
T
and T  
.Renamed FIFORdy register to FSTAT register.  
RST  
RWS  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order  
to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of  
any circuits described herein, conveys no license under any patent or other right, and makes no  
representation that the circuits are free of patent infringement. Charts and schedules contained here in are  
only for illustration purposes and may vary depending upon a user’s specific application. While the  
information in this publication has been carefully checked; no responsibility, however, is assumed for  
inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where  
the failure or malfunction of the product can reasonably be expected to cause failure of the life support  
system or to significantly affect its safety or effectiveness. Products are not authorized for use in such  
applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of  
injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR  
Corporation is adequately protected under the circumstances.  
Copyright 2003 EXAR Corporation  
Datasheet October 2003.  
Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
49  
ST16C654/654D  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
REV. 5.0.0  
TABLE OF CONTENTS  
GENERAL DESCRIPTION................................................................................................. 1  
FEATURES..................................................................................................................................................... 1  
APPLICATIONS ............................................................................................................................................... 1  
FIGURE 1. ST16C654 BLOCK DIAGRAM ........................................................................................................................................... 1  
FIGURE 2. PIN OUT ASSIGNMENT FOR 100-PIN QFP PACKAGES IN 16 AND 68 MODE ....................................................................... 2  
FIGURE 3. PIN OUT ASSIGNMENT FOR PLCC PACKAGES IN 16 AND 68 MODE AND TQFP PACKAGES ............................................... 3  
ORDERING INFORMATION ................................................................................................................................3  
PIN DESCRIPTIONS ......................................................................................................... 4  
1.0 PRODUCT DESCRIPTION ....................................................................................................................8  
2.0 FUNCTIONAL DESCRIPTIONS ............................................................................................................ 9  
2.1 CPU INTERFACE ............................................................................................................................................. 9  
FIGURE 4. ST16C654/654D TYPICAL INTEL/MOTOROLA DATA BUS INTERCONNECTIONS ................................................................... 9  
2.2 DEVICE RESET .............................................................................................................................................. 10  
2.3 CHANNEL SELECTION ................................................................................................................................. 10  
TABLE 1: CHANNEL A-D SELECT IN 16 MODE ................................................................................................................................. 10  
TABLE 2: CHANNEL A-D SELECT IN 68 MODE ................................................................................................................................. 10  
2.4 CHANNELS A-D INTERNAL REGISTERS .................................................................................................... 11  
2.5 INT OUPUTS FOR CHANNELS A-D .............................................................................................................. 11  
2.6 DMA MODE .................................................................................................................................................... 11  
TABLE 3: INT PINS OPERATION FOR TRANSMITTER FOR CHANNELS A-D ......................................................................................... 11  
TABLE 4: INT PIN OPERATION FOR RECEIVER FOR CHANNELS A-D................................................................................................. 11  
2.7 CRYSTAL OSCILLATOR OR EXTERNAL CLOCK INPUT ........................................................................... 12  
FIGURE 5. TYPICAL OSCILLATOR CONNECTIONS............................................................................................................................... 12  
2.8 PROGRAMMABLE BAUD RATE GENERATOR ........................................................................................... 12  
TABLE 5: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE FOR CHANNELS A-D ........................................................... 12  
2.9 TRANSMITTER ............................................................................................................................................... 13  
2.9.1 TRANSMIT HOLDING REGISTER (THR) - WRITE ONLY......................................................................................... 13  
FIGURE 6. BAUD RATE GENERATOR AND PRESCALER ..................................................................................................................... 13  
TABLE 6: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK ...................................................................... 13  
2.9.2 TRANSMITTER OPERATION IN NON-FIFO MODE.................................................................................................. 14  
2.9.3 TRANSMITTER OPERATION IN FIFO MODE ........................................................................................................... 14  
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE .............................................................................................................. 14  
FIGURE 8. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE ..................................................................................... 14  
2.10 RECEIVER .................................................................................................................................................... 15  
2.10.1 RECEIVE HOLDING REGISTER (RHR) - READ-ONLY .......................................................................................... 15  
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE.................................................................................................................... 15  
2.11 AUTO RTS HARDWARE FLOW CONTROL ............................................................................................... 16  
2.12 AUTO CTS FLOW CONTROL ..................................................................................................................... 16  
FIGURE 10. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE ....................................................................... 16  
FIGURE 11. AUTO RTS AND CTS FLOW CONTROL OPERATION....................................................................................................... 17  
TABLE 7: AUTO RTS/CTS FLOW CONTROL .................................................................................................................................... 17  
2.13 AUTO XON/XOFF (SOFTWARE) FLOW CONTROL ................................................................................... 18  
2.14 SPECIAL CHARACTER DETECT ............................................................................................................... 18  
TABLE 8: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL ............................................................................................................... 18  
2.15 INFRARED MODE ........................................................................................................................................ 19  
FIGURE 12. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING.......................................................................... 19  
2.16 SLEEP MODE WITH AUTO WAKE-UP ...................................................................................................... 20  
2.17 INTERNAL LOOPBACK .............................................................................................................................. 20  
FIGURE 13. INTERNAL LOOP BACK IN CHANNEL A AND B ................................................................................................................ 21  
3.0 UART INTERNAL REGISTERS ...........................................................................................................22  
TABLE 9: UART CHANNEL A AND B UART INTERNAL REGISTERS..................................................................................... 22  
TABLE 10: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1....................................... 23  
4.0 INTERNAL REGISTER DESCRIPTIONS ............................................................................................ 24  
4.1 RECEIVE HOLDING REGISTER (RHR) - READ- ONLY ............................................................................... 24  
4.2 TRANSMIT HOLDING REGISTER (THR) - WRITE-ONLY ............................................................................ 24  
4.3 INTERRUPT ENABLE REGISTER (IER) - READ/WRITE ............................................................................. 24  
4.3.1 IER VERSUS RECEIVE FIFO INTERRUPT MODE OPERATION ............................................................................. 24  
4.3.2 IER VERSUS RECEIVE/TRANSMIT FIFO POLLED MODE OPERATION................................................................ 25  
4.4 INTERRUPT STATUS REGISTER (ISR) - READ-ONLY ............................................................................... 26  
I
ST16C654/654D  
REV. 5.0.0  
2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO  
4.4.1 INTERRUPT GENERATION: ...................................................................................................................................... 26  
4.4.2 INTERRUPT CLEARING: ........................................................................................................................................... 26  
4.5 FIFO CONTROL REGISTER (FCR) - WRITE-ONLY ...................................................................................... 27  
TABLE 11: INTERRUPT SOURCE AND PRIORITY LEVEL ..................................................................................................................... 27  
TABLE 12: TRANSMIT AND RECEIVE FIFO TRIGGER LEVEL SELECTION ............................................................................................ 28  
4.6 LINE CONTROL REGISTER (LCR) - READ/WRITE ...................................................................................... 29  
4.7 MODEM CONTROL REGISTER (MCR) OR GENERAL PURPOSE OUTPUTS CONTROL - READ/WRITE 30  
TABLE 13: PARITY SELECTION ........................................................................................................................................................ 30  
4.8 LINE STATUS REGISTER (LSR) - READ ONLY ........................................................................................... 31  
TABLE 14: INT OUTPUT MODES ..................................................................................................................................................... 31  
4.9 MODEM STATUS REGISTER (MSR) - READ ONLY .................................................................................... 32  
4.10 SCRATCH PAD REGISTER (SPR) - READ/WRITE .................................................................................... 33  
4.11 BAUD RATE GENERATOR REGISTERS (DLL AND DLM) - READ/WRITE .............................................. 33  
4.12 ENHANCED FEATURE REGISTER (EFR) - READ/WRITE ........................................................................ 33  
TABLE 15: SOFTWARE FLOW CONTROL FUNCTIONS ........................................................................................................................ 34  
4.13 SOFTWARE FLOW CONTROL REGISTERS (XOFF1, XOFF2, XON1, XON2) - READ/WRITE ................ 35  
4.14 FIFO STATUS REGISTER (FSTAT) - READ/WRITE ................................................................................... 35  
TABLE 16: UART RESET CONDITIONS FOR CHANNELS A-D.................................................................................................. 36  
ABSOLUTE MAXIMUM RATINGS...................................................................................37  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%)37  
ELECTRICAL CHARACTERISTICS ................................................................................37  
DC ELECTRICAL CHARACTERISTICS ..............................................................................................................37  
AC ELECTRICAL CHARACTERISTICS ..............................................................................................................38  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.97 TO 5.5V.........................38  
FIGURE 14. CLOCK TIMING............................................................................................................................................................. 39  
FIGURE 15. MODEM INPUT/OUTPUT TIMING FOR CHANNELS A-D .................................................................................................... 40  
FIGURE 16. 16 MODE (INTEL) DATA BUS READ TIMING FOR CHANNELS A-D.................................................................................... 40  
FIGURE 17. 16 MODE (INTEL) DATA BUS WRITE TIMING FOR CHANNELS A-D .................................................................................. 41  
FIGURE 18. 68 MODE (MOTOROLA) DATA BUS READ TIMING FOR CHANNELS A-D........................................................................... 41  
FIGURE 19. 68 MODE (MOTOROLA) DATA BUS WRITE TIMING FOR CHANNELS A-D ......................................................................... 42  
FIGURE 20. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A-D ............................................................ 42  
FIGURE 21. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A-D .......................................................... 43  
FIGURE 22. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED] FOR CHANNELS A-D........................................... 43  
FIGURE 23. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED] FOR CHANNELS A-D............................................ 44  
FIGURE 24. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED] FOR CHANNELS A-D............................... 45  
FIGURE 25. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE ENABLED] FOR CHANNELS A-D ............................... 45  
PACKAGE DIMENSIONS .................................................................................................................................46  
REVISION HISTORY.......................................................................................................................................49  
TABLE OF CONTENTS ............................................................................................................I  
II  

相关型号:

ST16C654CJ68-F

Serial I/O Controller, 4 Channel(s), 0.1875MBps, CMOS, PQCC68, GREEN, PLASTIC, LCC-68
EXAR

ST16C654CQ100

2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO
EXAR

ST16C654CQ100-F

Serial I/O Controller, 4 Channel(s), 0.1875MBps, CMOS, PQFP100, 14 X 20 MM, GREEN, PLASTIC, QFP-100
EXAR

ST16C654CQ64

2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO
EXAR

ST16C654CQ64TR

Serial I/O Controller, CMOS, PQFP64
EXAR

ST16C654CQ64TR-F

Serial I/O Controller, CMOS, PQFP64
EXAR

ST16C654D

2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO
EXAR

ST16C654DCQ64

2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO
EXAR

ST16C654DCQ64-F

Serial I/O Controller, 4 Channel(s), 0.1875MBps, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, GREEN, LQFP-64
EXAR

ST16C654DIQ64

2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO
EXAR

ST16C654DIQ64-F

Serial I/O Controller, 4 Channel(s), 0.1875MBps, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, GREEN, LQFP-64
EXAR

ST16C654IJ68

2.97V TO 5.5V QUAD UART WITH 64-BYTE FIFO
EXAR