XR-2207M [EXAR]

Voltage-Controlled Oscillator; 电压控制振荡器
XR-2207M
型号: XR-2207M
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Voltage-Controlled Oscillator
电压控制振荡器

振荡器
文件: 总24页 (文件大小:249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XR-2207  
Voltage-Controlled  
Oscillator  
...the analog plus companyTM  
June 1997–3  
FEATURES  
APPLICATIONS  
D Excellent Temperature Stability (20ppm/°C)  
D Linear Frequency Sweep  
D FSK Generation  
D Voltage and Current-to-Frequency Conversion  
D Stable Phase-Locked Loop  
D Adjustable Duty Cycle (0.1% to 99.9%)  
D Two or Four Level FSK Capability  
D Waveform Generation  
D Wide Sweep Range (1000:1 Minimum)  
D Logic Compatible Input and Output Levels  
D Wide Supply Voltage Range ($4V to $13V)  
D Low Supply Sensitivity (0.1% /V)  
– Triangle, Sawtooth, Pulse, Squarewave  
D FM and Sweep Generation  
D Wide Frequency Range (0.01Hz to 1MHz)  
D Simultaneous Triangle and Squarewave Outputs  
GENERAL DESCRIPTION  
The XR-2207 is a monolithic voltage-controlled oscillator  
(VCO) integrated circuit featuring excellent frequency  
stability and a wide tuning range. The circuit provides  
simultaneous triangle and squarewave outputs over a  
frequency range of 0.01Hz to 1MHz. It is ideally suited for  
FM, FSK, and sweep or tone generation, as well as for  
phase-locked loop applications.  
TheXR-2207hasatypicaldriftspecificationof20ppm/°C.  
The oscillator frequency can be linearly swept over a  
1000:1 range with an external control voltage; and the  
duty cycle of both the triangle and the squarewave  
outputs can be varied from 0.1% to 99.9% to generate  
stable pulse and sawtooth waveforms.  
ORDERING INFORMATION  
Operating  
Temperature Range  
Part No.  
XR-2207M  
XR-2207CP  
XR-2207D  
XR-2207ID  
Package  
14 Lead 300 Mil CDIP  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
14 Lead 300 Mil PDIP  
16 Lead 300 Mil JEDEC SOIC  
16 Lead 300 Mil JEDEC SOIC  
-40°C to +85°C  
V
CC  
1
GND BIAS  
BLOCK DIAGRAM  
10  
11  
14  
13  
A1  
A2  
TWO  
SWO  
Triangle Wave Out  
Square Wave Out  
2
3
C1  
C1  
Timing  
Capacitor  
VCO  
12  
V
EE  
4
5
6
7
R1  
R2  
R3  
R4  
Binary  
Keying  
Inputs  
9
8
BKI2  
BKI1  
Timing  
Resistors  
Current  
Switches  
Figure 1. Block Diagram  
Rev. 2.02  
E1975  
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 z (510) 668-7000 z FAX (510) 668-7017  
1
XR-2207  
PIN CONFIGURATION  
1
2
3
4
5
16  
15  
14  
13  
12  
V
NC  
CC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
C1  
TWO  
SWO  
CC  
C1  
C2  
R1  
R2  
R3  
NC  
TWO  
SWO  
V
EE  
BIAS  
GND  
BKI2  
C2  
R1  
R2  
R3  
R4  
V
EE  
BIAS  
GND  
BKI2  
BKI1  
6
7
11  
10  
9
R4  
BKI1  
8
8
14 Lead PDIP, CDIP (0.300”)  
16 Lead SOIC (Jedec, 0.300”)  
PIN DESCRIPTION  
Pin #  
Symbol  
VCC  
C1  
Type Description  
1
2
Positive Power Supply.  
I
I
I
I
I
I
I
I
Timing Capacitor Input.  
Timing Capacitor Input.  
Timing Resistor 1 Input.  
Timing Resistor 2 Input.  
Timing Resistor 3 Input.  
Timing Resistor 4 Input.  
3
C2  
4
R1  
5
R2  
6
R3  
7
R4  
8
BKI1  
BKI2  
GND  
BIAS  
VEE  
SWO  
TWO  
NC  
Binary Keying 1 Timing Resistor Select Input.  
Binary Keying 2 Timing Resistor Select Input.  
Ground Pin.  
9
10  
11  
12  
13  
14  
15, 16  
I
Bias Input for Single Supply Operation.  
Negative Power Supply.  
O
O
Square Wave Output Signal.  
Triangle Wave Output Signal.  
Only SOIC-16 Package.  
Rev. 2.02  
2
XR-2207  
ELECTRICAL CHARACTERISTICS  
Test Conditions: Test Circuit of Figure 3 and Figure 4, V = V = 6V, T = +25°C, C = 5000pF, R = R =  
CC  
EE  
A
1
2
R = R = 20k, RL = 4.7k, Binary Inputs Grounded, S and S Closed Unless Otherwise Specified  
3
4
1
2
XR-2207ID/XR-2207M  
XR-2207CP/D  
Parameters  
Units  
Conditions  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
General Characteristics  
Supply Voltage  
Single Supply  
Split Supplies  
8
26  
8
26  
V
V
See Figure 3  
See Figure 4  
See Figure 3  
$4  
$13  
$4  
$13  
Supply Current  
Single Supply  
5
7
5
8
mA  
Measure at Pin 1, S1, S2  
Open  
Split Supply  
Positive  
See Figure 4  
5
4
7
6
5
4
8
7
mA  
mA  
Measure at Pin 1, S1, S2  
Open  
Negative  
Measured at Pin 12, S1, S2  
Open  
Oscillator Section - Frequency Characteristics  
Upper Frequency Limit  
Lowest Practical Frequency  
Frequency Accuracy  
0.5  
1.0  
0.01  
$1  
0.5  
0.5  
1.0  
0.01  
$1  
0.5  
MHz  
Hz  
C =500pF, R3 = 2k  
C =50µF, R3 = 2MΩ  
$3  
$5  
% of fO  
% of fO  
Frequency Matching  
Frequency Stability  
Temperature  
20  
50  
30  
ppm/°C 0°C < TA< 70°C  
Power Supply  
0.15  
0.15  
%V  
Sweep Range  
1000:1 3000:1  
1000:1  
fH/fL  
R3 = 1.5kfor fH1  
R3 = 2Mfor fL  
Sweep Linearity  
10:1 Sweep  
%
C =5000pF  
1
5
2
1.5  
5
fH=10kHz, fL= 1kHz  
fH=100kHz, fL= 100Hz  
$10% FM Deviation  
1000:1 Sweep  
FM Distortion  
0.1  
0.1  
%
Recommended Range of  
Timing Resistors  
1.5  
75  
10  
2000  
1.5  
2000  
kΩ  
See Characteristic Curves  
Impedance at Timing Pins  
DC Level at Timing Terminals  
Binary Keying Inputs  
Switching Threshold  
75  
10  
Measured at Pins 4, 5, 6, or 7  
mV  
1.4  
2.2  
5
2.8  
1.4  
2.2  
5
2.8  
V
Measured at Pins 8 and 9,  
Referenced to Pin 10  
Input Impedance  
kΩ  
Notes  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
Rev. 2.02  
3
XR-2207  
ELECTRICAL CHARACTERISTICS (CONT’D)  
XR-2207ID/XR-2207M  
Parameters  
XR-2207CP/D  
Units  
Conditions  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Output Characteristics  
Triangle Output  
Amplitude  
Impedance  
DC Level  
Measured at Pin 13  
4
6
10  
4
6
10  
VPP  
+100  
0.1  
+100  
0.1  
mV  
%
Referenced to Pin 10  
Linearity  
From 10% to 90% to Swing  
Squarewave Output  
Measured at Pin 13, S2  
Closed  
Amplitude  
11  
12  
0.2  
200  
20  
11  
12  
0.2  
200  
20  
Vpp  
V
Saturation Voltage  
Rise Time  
0.4  
0.4  
Referenced to Pin 12  
CL 10pF  
nsec  
nsec  
Fall Time  
CL 10pF  
Notes  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
Specifications are subject to change without notice  
ABSOLUTE MAXIMUM RATINGS  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26V  
Storage Temperature Range . . . . . -65°C to +150°C  
Power Dissipation (package limitation)  
Ceramic package . . . . . . . . . . . . . . . . . . . . . . . 750mW  
Derate above +25°C . . . . . . . . . . . . . . . . . . 6mW/°C  
Plastic package . . . . . . . . . . . . . . . . . . . . . . . . . 625mW  
Derate above +25°C . . . . . . . . . . . . . . . . . . 5mW/°C  
SOIC package . . . . . . . . . . . . . . . . . . . . . . . . . 500mW  
Derate above +25°C . . . . . . . . . . . . . . . . . 4mW/°C  
Rev. 2.02  
4
XR-2207  
V
CC  
1
Q1 Q2  
Q3 Q4  
Q14  
Q15  
2R  
Q13  
R
+
Triangle Wave  
Output  
R
Q5  
14  
R
R
Q19  
2R  
Q12  
Timing  
Capacitor  
R1  
R3  
R4  
2
3
Q10 Q11  
4R  
Q6  
Q7  
Q8  
Q9  
R2  
7
6
5
4
Timing Resistors  
Q16  
Square Wave  
Output  
Q18  
R5  
Q20  
R6  
Q21  
R7  
13  
9
8
Q17  
Binary  
Keying  
Inputs  
Q27  
B
A
B
A
10  
Q22  
Q25 Q26  
Q24  
Ground  
BIAS  
11  
Q23  
V
EE  
12  
Figure 2. Equivalent Schematic Diagram  
Rev. 2.02  
5
XR-2207  
PRECAUTIONS  
SYSTEM DESCRIPTION  
The XR-2207 functional blocks are shown in the block  
diagram given in Figure 1. They are a voltage controlled  
oscillator (VCO), four current switches which are  
controlled by binary keying inputs, and two buffer  
amplifiers for triangle and squarewave outputs. Figure 2  
isasimplifiedXR-2207schematicdiagramthatshowsthe  
circuit in greater detail.  
The following precautions should be observed when  
operating the XR-2207 family of integrated circuits:  
1. Pulling excessive current from the timing terminals  
will adversely affect the temperature stability of the  
circuit. To minimize this disturbance, it is  
recommended that the total current drawn from pins  
4, 5, 6, and 7 be limited to 6mA. In addition,  
permanent damage to the device may occur if the  
total timing current exceeds 10mA.  
The VCO is a modified emitter-coupled current controlled  
multivibrator. Its oscillation is inversely proportional to the  
value of the timing capacitor connected to pins 2 and 3,  
2. Terminals 2, 3, 4, 5, 6 , and 7 have very low internal  
impedance and should, therefore, be protected from  
accidental shorting to ground or the supply voltage.  
and directly proportional to the total timing current I . This  
T
current is determined by the resistors that are connected  
from the four timing terminals (pins 4, 5, 6 and 7) to  
ground, and by the logic levels that are applied to the two  
binarykeyinginputterminals(pins8and9). Fourdifferent  
3. The keying logic pulse amplitude should not exceed  
the supply voltage.  
oscillation frequencies are possible since I can have four  
T
different values.  
The triangle output buffer has a low impedance output  
(10TYP) while the squarewave is an open-collector  
type. An external bias input allows the XR-2207 to be  
used in either single or split supply applications.  
V
CC  
V
CC  
S2  
I+  
C
0.1µF  
RL  
1
2
3
Square Wave  
Output  
13  
14  
11  
V+ C1  
C2  
SWO  
TWO  
BIAS  
8
9
Binary  
Keying Inputs  
A
B
Triangle Wave  
Output  
XR-2207  
V
CC  
0.1µF  
10  
5.1K  
GND  
R1 R2 R3 R4 V-  
4
5
6
7
12  
3.9K  
R1 R2 R3 R4  
S1  
Figure 3. Test Circuit for Single Supply Operation  
Rev. 2.02  
6
XR-2207  
V
CC  
V
CC  
S2  
C
I+  
0.1µF  
RL  
Square Wave  
Output  
1
2
C1  
3
C2  
13  
14  
11  
V+  
SWO  
TWO  
BIAS  
8
A
B
Triangle Wave  
Output  
Binary  
Keying Inputs  
9
XR-2207  
10  
GND  
R1 R2 R3 R4 V-  
I-  
4
5
6
7
12  
V
EE  
R1 R2 R3 R4  
0.1µF  
S1  
Figure 4. Test Circuit for Split Supply Operation  
OPERATING CONSIDERATIONS  
Bypass Capacitors  
The recommended value for bypass capacitors is 1µF  
although larger values are required for very low frequency  
operation.  
Supply Voltage (Pins 1 and 12)  
The XR-2207 is designed to operate over a power supply  
range of $4V to $13V for split supplies, or 8V to 26V for  
single supplies. Figure 5 shows the permissible supply  
voltage for operation with unequal split supply voltages.  
Figure 6 and Figure 7 show supply current versus supply  
voltage Performance is optimum for $6V split supply, or  
12V single supply operation. At higher supply voltages,  
the frequency sweep range is reduced.  
Timing Resistors (Pins 4, 5, 6, and 7)  
The timing resistors determine the total timing current, I ,  
T
available to charge the timing capacitor. Values for timing  
resistors can range from 2kto 2M; however, for  
optimum temperature and power supply stability,  
recommended values are 4kto 200k(see Figure 8,  
Figure 9, Figure 10andFigure 11). Toavoidparasiticpick  
up, timing resistor leads should be kept as short as  
possible. For noisy environments, unused or deactivated  
timing terminals should be bypassed to ground through  
0.1µF capacitors.  
Ground (Pin 10)  
For split supply operation, this pin serves as circuit  
ground. For single supply operation, pin 10 should be AC  
grounded through a 1µF bypass capacitor. During split  
supply operation, a ground current of 2I flows out of this  
T
Timing Capacitor (Pins 2 and 3)  
terminal, where I is the total timing current.  
T
The oscillator frequency is inversely proportional to the  
timing capacitor, C. The minimum capacitance value is  
limited by stray capacitances and the maximum value by  
physical size and leakage current considerations.  
Recommended values range from 100pF to 100µF. The  
capacitor should be non-polarized.  
Bias for Single Supply (Pin 11)  
For single supply operation, pin 11 should be externally  
biased to a potential between V /3 and V /2V (see  
Figure 3). The bias current at pin 11 is nominally 5% of the  
+
+
total oscillation timing current, I .  
T
Rev. 2.02  
7
XR-2207  
25  
20  
35  
30  
25  
20  
R =Parallel Combination  
T
of Activated Timing  
Resistors  
T =25°C  
A
15  
R =5kΩ  
Typical  
T
R =2kΩ  
T
R =3kΩ  
T
Operating  
Range  
15  
10  
R =200kΩ  
T
10  
5
R =20kΩ  
T
R =2MkΩ  
T
5
0
0
$4  
$6  
$8  
$10 $12  
$14  
-5  
-10  
-15  
-20  
Negative Supply (V)  
8
10 12 14 16 18 20 22 24 26 28  
Single Supply Voltage (V)  
+
Figure 5. Operating Range for Unequal Split  
Supply Voltages  
Figure 6. Positive Supply Current, 1 (Measured  
at Pin 1) vs. Supply Voltage  
15  
T =25°C  
A
T =25°C  
A
1MΩ  
10  
5
100kΩ  
Timing  
Resistor  
Range  
10kΩ  
1kΩ  
0
0
$4V  
$8V  
$12V  
0
0
$6  
$8  
$10  
$12 $14  
Split Supply Voltage (V)  
8
16  
24  
Single Supply Voltage (V)  
-
Figure 7. Negative Supply Current, I  
Figure 8. Recommended Timing Resistor  
Value vs. Power Supply Voltage  
(Measured at Pin 12) vs. Supply Voltage  
Rev. 2.02  
8
XR-2207  
7
6
5
1.04  
1.02  
V =$6V  
S
R =2MΩ  
T
C=5000pF  
R =20kΩ  
T
4
3
2
1
0
1.00  
.98  
R =200kΩ  
T
-1  
-2  
-3  
-4  
-5  
.96  
T =25°C  
A
R =2kΩ  
T
R =Total  
T
.94  
.92  
Timing  
Resistance  
C=5000pF  
-6  
-7  
$2  
$4  
$6  
$8  
$10  
$12 $14  
1K  
10K  
100K  
1M  
10M  
Split Supply Voltage (V)  
Timing Resistance ()  
4
8
12  
16  
20  
24  
28  
Single Supply Voltage (V)  
Figure 9. Frequency Accuracy vs.  
Timing Resistance  
Figure 10. Frequency Drift vs. Supply Voltage  
+2%  
+1%  
V =$6V  
S
C=5000pF  
2M  
200kΩ  
2kΩ  
4kΩ  
0
20kΩ  
4kΩ  
20kΩ  
-1%  
-2%  
-3%  
200kΩ  
R=2kΩ  
2MΩ  
-50  
-25  
0
+25 +50 +75 +100 +125  
Temperature (°C)  
Figure 11. Normalized Frequency Drift with  
Temperature  
Rev. 2.02  
9
XR-2207  
Binary Keying Inputs (Pins 8 and 9)  
Timing Capacitor  
C
V
CC  
1
The logic levels applied to the two binary keying inputs  
allow the selection of four different oscillator frequencies.  
The internal impedance at these pins is approximately  
5k. Keying voltages, which are referenced to pin 10, are  
< 1.4 V for “zero” and > 3V for “one” logic levels. Table 1  
relates binary keying input logic levels, and selected  
timing pins to oscillator output frequency for each of the  
four possible cases.  
2
IT/2  
3
IT/2  
Ib  
T4  
T3  
T2  
T1  
10  
Figure 12 shows the oscillator control mechanism in  
greater detail. Timing pins 4, 5, 6 and 7 correspond to the  
emitters of switching transistor pairs T1, T2, T3, and T4  
respectively, which are internal to the integrated circuit.  
The current switches, and corresponding timing  
terminals, are activated by external logic signals applied  
to pins 8 and 9.  
A
B
Binary  
Keying  
Controls  
8
9
V
4
5
6
7
I1 I2 I3 I4  
R1 R2 R3 R4  
12  
V
EE  
Logic Level  
Selected  
Timing Pins  
Frequency  
Figure 12. Simplified Schematic of Frequency  
Control Mechanism  
Pin 8  
Pin 9  
0
0
1
1
0
1
0
1
6
f1  
6 and 7  
5
f1 + Df1  
f2  
Squarewave Output (Pin 13)  
The squarewave output at pin 13 is an “open-collector”  
stage capable of sinking up to 20mA of load current. R  
4 and 5  
f2 + Df2  
L
serves as a pull-up load resistor for this output.  
Recommended values for R range from 1kto 100k.  
L
Table 1. Logic Table for Binary Keying Controls  
Triangle Output (Pin 14)  
Theoutputatpin14isatrianglewavewithapeakswingof  
approximately one-half of the total supply voltage. Pin 14  
has a 10output impedance and is internally protected  
against short circuits.  
Definitions:  
1
R3C  
1
R4C  
1
R2C  
1
R1C  
MODES OF OPERATION  
Split Supply Operation  
f1 +  
Df1 +  
Df2 +  
Df2 +  
Figure 13 is the recommended configuration for split  
supply operation. The circuit operates with supply  
voltages ranging from $4V to $13V. Minimum drift  
occurs with $6V supplies. For operation with unequal  
supply voltages, see Figure 5.  
Logic Levels: 0 = Ground, 1 3V  
Note  
For single supply operation, logic levels are referenced to  
voltage at pin 10  
With the generalized circuit of Figure 13A, the frequency  
of operation is determined by the timing capacitor, C, and  
the activated timing resistors (R through R ). The timing  
1
4
resistors are activated by the logic signals at the binary  
Rev. 2.02  
10  
XR-2207  
keying inputs (pins 8 and 9), as shown in the logic table  
(Table 1). If a single timing resistor is activated, the  
frequency is 1/RC. Otherwise, the frequency is either  
peak-to-peak voltage swing equal to the supply voltages.  
This output is an “open-collector” type and requires an  
external pull-up load resistor (nominally 5k) to the  
positive supply. The triangle waveform obtained at pin 14  
is centered about ground and has a peak amplitude of  
1/(R ||R )C or 1/(R ||R )C.  
1
2
3
4
Figure 13B shows a fixed frequency application using a  
single timing resistor that is selected by grounding the  
+
V /2.  
Note  
binary keying inputs. The oscillator frequency is 1/R C.  
3
For Single-Supply Operation, Logic Levels are referenced to  
voltage at Pin 10.  
The squarewave output is obtained at pin 13 and has a  
V
CC  
C
V
CC  
CB  
RL  
1
2
3
Square Wave  
Output  
V+ C1  
C2  
13  
14  
8
SWO  
TWO  
BIAS  
A
Triangle Wave  
Output  
Keying Inputs  
9
XR-2207  
B
11  
10  
GND  
V-  
12  
R1 R2 R 3 R4  
4
5
6
7
R1 R2 R3 R4  
V
EE  
CB  
CB = Bypass Cap  
V
EE  
A. General Case  
V
CC  
C
V
CC  
CB  
RL  
1
2
3
Square Wave  
Output  
C
C
2
V+  
1
13  
8
SWO  
A
B
14  
11  
Triangle Wave  
Output  
9
TWO  
BIAS  
XR-2207  
10  
GND  
f=1/R3<C  
R1 R2 R 3 R4 V-  
4
5
6
7
12  
V
EE  
R3  
CB  
CB = Bypass Cap  
V
EE  
B. Fixed Frequency Case  
Figure 13. Split-Supply Operation  
Rev. 2.02  
11  
XR-2207  
Single Supply Operation  
For single supply operation, the DC voltage at pin 10 and  
the timing terminals (pins 4 through 7) are equal and  
The circuit should be interconnected as shown in  
Figure 14A or Figure 14B for single supply operation. Pin  
12 should be grounded, and pin 11 biased from V  
approximately 0.6V above V , the bias voltage at pin 11.  
B
The logic levels at the binary keying terminals are  
referenced to the voltage at pin 10.  
CC  
through a resistive divider to a value of bias voltage  
+
+
between V /3 and V /2. Pin 10 is bypassed to ground  
through a 1µF capacitor.  
V
CC  
C
V
CC  
CB  
RL  
1
2
3
Square Wave  
Output  
V+  
C1  
C2  
13  
14  
8
SWO  
TWO  
BIAS  
A
B
Keying Inputs  
CB  
Triangle Wave  
Output  
9
XR-2207  
11  
10  
V
CC  
GND  
5.1K  
R1 R2 R 3 R4 V-  
4
5
6
7
12  
3.9K  
CB = Bypass Cap  
R1  
R3 R4  
R2  
A. General Case  
V
CC  
C
CB  
V
CC  
RL  
1
2
3
Square Wave  
Output  
V+  
C1  
C2  
13  
8
9
SWO  
TWO  
A
B
14  
11  
Triangle Wave  
Output  
XR-2207  
10  
BIAS  
V
CC  
GND  
5.1K  
3.9K  
R1 R2 R 3 R4 V-  
4
5
6
7
1 2  
CB  
R3  
f=1/R3<C  
CB = Bypass Cap  
B. Single Frequency  
Figure 14. Single Supply Operation  
Rev. 2.02  
12  
XR-2207  
Frequency Control (Sweep and FM)  
The circuit of Figure 15canoperatebothwithpositiveand  
negative values of control voltage. However, for positive  
The frequency of operation is controlled by varying the  
values of V with small (R /R ) ratio, the direction of the  
C
C
3
total timing current, I , drawn from the activated timing  
T
timing current I is reversed and the oscillations will stop.  
T
pins 4, 5, 6, or 7. The timing current can be modulated by  
Figure 16 shows an alternate circuit for frequency control  
where two timing pins, 6 and 7, are activated. The  
frequency and the conversion gain expressions are the  
same as before, except that the circuit will operate only  
applying a control voltage, V , to the activated timing pin  
C
through a series resistor R . As the control voltage  
C
becomes more negative, both the total timing current, I ,  
T
and the oscillation frequency increase.  
with negative values of V . For V > 0, pin 7 becomes  
C
C
The circuits given in Figure 15 and Figure 16 show two  
different frequency sweep methods for split supply  
operation.  
deactivated and the frequency is fixed at:  
1
R3  
f +  
Both binary keying inputs are grounded for the circuit in  
Figure 15. Therefore, only timing pin 6 is activated.  
The circuit given in Figure 17 shows the frequency sweep  
method for single supply operation. Here, the oscillation  
frequency is given as:  
1
R3C  
f +  
The frequency of operation, normally  
is now  
proportional to the control voltage, V , and determined  
C
as:  
R3  
RC  
VC  
VT  
1
R3C  
ǒ1 *  
Ǔ
ƪ1 )  
ƫ
f +  
VCR3  
RCV-  
1
R3C  
ƪ1 * ƫ Hz  
f +  
where VT = Vbias + 0.7V.  
If R = 2M, R = 2k, C = 5000pF, then a 1000:1  
frequency sweep would result for a negative sweep  
This equation is valid from VC = 0V (RC is in parallel with  
R3) to  
3
C
voltage V V-.  
C
RC  
R3  
The voltage to frequency conversion gain, K, is controlled  
by the series resistance RC and can be expressed as:  
ǒ1 ) Ǔ  
VC + VT  
Df  
1
Caution  
K +  
+
HzńV  
TotaltimingcurrentIT mustbelessthan6mAoverthe frequency  
control range.  
DVC  
RCCV-  
Rev. 2.02  
13  
XR-2207  
V
CC  
V
CC  
C
CB  
4.7K  
1
2
3
Square Wave  
13  
14  
11  
Output  
V+ C1  
C2  
SWO  
TWO  
BIAS  
8
A
Triangle Wave  
Output  
9
XR-2207  
B
VCR3  
RCV-  
1
CR3  
ƪ1 *  
ƫ
f +  
10  
GND  
R1 R2 R3 R4 V-  
4
5
6
7
12  
IT  
V
EE  
IO  
IC  
CB  
CB = Bypass Cap  
R3  
R
C
V
EE  
V
C
V
C
Sweep or FM input  
Figure 15. Frequency Sweep Operation, Split Supply  
V
CC  
V
CC  
C
CB  
4.7K  
1
2
3
13  
14  
11  
V+ C1  
C2  
Square Wave  
Output  
SWO  
TWO  
BIAS  
8
9
A
Triangle Wave  
Output  
V
CC  
B
XR-2207  
VCR3  
RCV-  
1
CR3  
ƪ1 *  
ƫ
f +  
10  
GND  
R1 R2 R3 R4 V-  
4
5
6
7
12  
V
EE  
IO  
IC  
CB  
CB = Bypass Cap  
R3  
R
C
V
EE  
V
C
V
C
Sweep or FM input  
Figure 16. Alternate Frequency Sweep Operation, Split Supply  
Rev. 2.02  
14  
XR-2207  
V
CC  
V
CC  
1µF  
C
Square Wave  
4.7K  
Output  
1
2
3
Triangle Wave  
Output  
13  
14  
11  
V+ C1  
C2  
SWO  
8
A
TWO  
BIAS  
R3  
RC  
VC  
VT  
1
CR3  
9
ǒ1 *  
Ǔ
ƫ
ƪ1 )  
f +  
XR-2207  
B
Vbias  
V
CC  
10  
GND  
5.1K  
R1 R2 R3 R4 V-  
1µF  
3.9K  
4
5
6
7
12  
1µF  
V
EE  
V
T
1µF  
R3  
RC  
VC-  
VC+  
VC  
Sweep or FM input  
Figure 17. Frequency Sweep Operation, Single Supply  
Duty Cycle Control  
R2  
R2 ) R3  
Duty Cycle +  
The duty cycle of the output waveforms can be controlled  
by frequency shift keying at the end of every half cycle of  
oscillator output. This is accomplished by connecting one  
or both of the binary keying inputs (pins 8 or 9) to the  
squarewave output at pin 13. The output waveforms can  
then be converted to positive or negative pulses and  
sawtooth waveforms.  
and can be varied from 0.1% to 99.9% by proper choice of  
timing resistors. The frequency of oscillation, f, is given  
as:  
2
1
ƪ
ƫ
f +  
C R2 ) R3  
Figure 18 is the recommended circuit connection for duty  
cycle control. Pin 8 is shorted to pin 13 so that the circuit  
switches between the “0,0” and the “1,0” logic states  
given in Table 1. Timing pin 5 is activated when the output  
is “high,” and the timing pin is activated when the  
squarewave output goes to a low state.  
The frequency can be modulated or swept without  
changing the duty cycle by connecting R and R to a  
2
3
common control voltage V , instead of V  
(see  
EE  
C
Figure 15).  
The sawtooth and the pulse output  
The duty cycle of the output waveforms is given as:  
waveforms are shown in Figure 19.  
Rev. 2.02  
15  
XR-2207  
4.7K  
V
CC  
V
CC  
C
CB  
1
2
3
V+  
C1  
C2  
13  
14  
11  
Pulse  
Output  
8
SWO  
A
B
9
TWO  
BIAS  
XR-2207  
Sawtooth  
Output  
10  
GND  
R1  
R 2 R3 R4  
V-  
4
5
6
7
12  
V
EE  
R2  
R3  
CB  
CB = Bypass Cap  
V
EE  
Figure 18. Duty Cycle Control  
Rev. 2.02  
16  
XR-2207  
On-Off Keying  
TheXR-2207canbekeyedonandoffbysimplyactivating  
an open circuited timing pin. Under certain conditions, the  
circuit may exhibit very low frequency (<1Hz) residual  
oscillationsintheoffstateduetointernalbiascurrents. If  
this effect is undesirable, it can be eliminated by  
connecting a 10Mresistor from pin 3 to V  
.
CC  
A. Squarewave and Triangle Outputs  
Two-Channel FSK Generator (Modem Transmitter)  
The multi-level frequency shift-keying capability of  
XR-2207 makes it ideally suited for two-channel FSK  
generation. A recommended circuit connection for this  
application is shown in Figure 20.  
For two-channel FSK generation, the “mark” and “space”  
frequencies of the respective channels are determined by  
the timing resistor pairs (R , R ) and (R , R ). Pin 8 is the  
1
2
3
4
“channel-select” control in accord with Figure 11. For a  
“high” logic level at pin 8, the timing resistors R and R  
1
2
are activated. Similarly, for a “low” logic level, timing  
resistors R and R are enabled.  
B. Pulse and Sawtooth Outputs  
3
4
The “high” and “low” logic levels at pin 9 determine the  
respective high and low frequencies within the selected  
FSK channel. When only a single FSK channel is used,  
the remaining channel can be deactivated by connecting  
pin 8 to either V  
or ground. In this case, the unused  
CC  
timing resistors can also be omitted from the circuit.  
The low and high frequencies, f and f , for a given FSK  
1
2
channel can be fine tuned using potentiometers  
connected in series with respective timing resistors. In  
fine tuning the frequencies, f should be set first with the  
1
C. Frequency Shift Keyed Outputs  
Figure 19. Output Waveforms  
logic level at pin 9 in a “low” level.  
Typical frequency drift of the circuit for 0°C to 75°C  
operation is $0.2%. Since the frequency stability is  
directly related to the external timing components, care  
must be taken to use timing components with low  
temperature coefficients.  
Rev. 2.02  
17  
XR-2207  
V
CC  
V
CC  
C
1µF  
RL  
1
2
3
C1  
C2  
V+  
13  
14  
11  
FSK  
Output  
8
9
SWO  
Channel  
Select  
A
B
3V  
f2  
f1  
TWO  
BIAS  
XR-2207  
Keying  
Input  
OV  
f1  
f2  
10  
GND  
R1 R2 R3 R4 V-  
4
5
6
7
12  
R1  
R2 R3 R4  
1µF  
10K  
10K  
10K  
10K  
V
EE  
Figure 20. Multi-Channel FSK Generation  
Rev. 2.02  
18  
XR-2207  
14 LEAD CERAMIC DUAL-IN-LINE  
(300 MIL CDIP)  
Rev. 1.00  
14  
1
8
7
E
E
1
D
A
1
Base  
A
Plane  
Seating  
Plane  
L
e
c
B
α
B1  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.100  
0.015  
0.014  
0.045  
0.008  
0.685  
0.250  
0.200  
0.060  
0.026  
0.065  
0.018  
0.785  
0.310  
2.54  
0.38  
0.36  
1.14  
0.20  
5.08  
1.52  
0.66  
1.65  
0.46  
19.94  
7.87  
A
1
B
B1  
c
D
E1  
E
17.40  
6.35  
0.300 BSC  
0.100 BSC  
7.62 BSC  
2.54 BSC  
e
L
0.125  
0.200  
3.18  
5.08  
α
0°  
15°  
0°  
15°  
Note: The control dimension is the inch column  
Rev. 2.02  
19  
XR-2207  
14 LEAD PLASTIC DUAL-IN-LINE  
(300 MIL PDIP)  
Rev. 1.00  
8
7
14  
1
E
1
E
D
A
2
A
L
Seating  
Plane  
C
A
α
1
B
e
A
e
B
B
e
1
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.145  
0.015  
0.115  
0.014  
0.030  
0.008  
0.725  
0.300  
0.240  
0.210  
0.070  
0.195  
0.024  
0.070  
0.014  
0.795  
0.325  
0.280  
3.68  
0.38  
2.92  
0.36  
0.76  
0.20  
5.33  
1.78  
4.95  
0.56  
1.78  
0.38  
20.19  
8.26  
7.11  
A
A
B
B
1
2
1
C
D
E
18.42  
7.62  
6.10  
E
e
1
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
e
A
e
B
L
0.310  
0.430  
0.160  
7.87  
10.92  
4.06  
0.115  
2.92  
α
0°  
15°  
0°  
15°  
Note: The control dimension is the inch column  
Rev. 2.02  
20  
XR-2207  
16 LEAD SMALL OUTLINE  
(300 MIL JEDEC SOIC)  
Rev. 1.00  
D
16  
1
9
E
H
8
C
A
Seating  
Plane  
α
e
B
A
1
L
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.093  
0.004  
0.013  
0.009  
0.398  
0.291  
0.104  
0.012  
0.020  
0.013  
0.413  
0.299  
2.35  
0.10  
0.33  
0.23  
2.65  
0.30  
0.51  
0.32  
10.50  
7.60  
A
B
1
C
D
E
e
10.10  
7.40  
0.050 BSC  
1.27 BSC  
H
L
0.394  
0.419  
0.050  
10.00  
0.40  
10.65  
1.27  
0.016  
α
0°  
8°  
0°  
8°  
Note: The control dimension is the millimeter column  
Rev. 2.02  
21  
XR-2207  
Notes  
Rev. 2.02  
22  
XR-2207  
Notes  
Rev. 2.02  
23  
XR-2207  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to im-  
prove design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits de-  
scribed herein, conveys no license under any patent or other right, and makes no representation that the circuits are  
free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary  
depending upon a user’s specific application. While the information in this publication has been carefully checked;  
no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or  
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly  
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the  
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circum-  
stances.  
Copyright 1975 EXAR Corporation  
Datasheet June 1997  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
Rev. 2.02  
24  

相关型号:

XR-2208

OPERATIONAL MULTIPLIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
EXAR

XR-2208CN

Analog Multiplier

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
EXAR

XR-2208CP

Analog Multiplier

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
EXAR

XR-2208M

Analog Multiplier

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
EXAR

XR-2208N

Analog Multiplier

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
EXAR

XR-2208P

Analog Multiplier

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
EXAR

XR-2209

Voltage-Controlled Oscillator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
EXAR

XR-2209CN

Voltage-Controlled Oscillator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
EXAR

XR-2209CP

Voltage-Controlled Oscillator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
EXAR

XR-2209M

Voltage-Controlled Oscillator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
EXAR