XR-2212N [EXAR]

暂无描述;
XR-2212N
型号: XR-2212N
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

暂无描述

文件: 总20页 (文件大小:184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XR-2212  
Precision  
Phase-Locked Loop  
...the analog plus companyTM  
October 2006  
FEATURES  
APPLICATIONS  
D Quadrature VCO Outputs  
D Frequency Synthesis  
D Data Synchronization  
D FM Detection  
D Wide Frequency Range (0.01Hz to 300kHz)  
D Wide Supply Voltage Range (4.5V to 20V)  
D TTL/HCMOS Compatible (V = 5VDC)  
D Tracking Filters  
CC  
D Wide Dynamic Range (2mV to 3Vrms)  
D Adjustable Tracking Range ("1% to "80%)  
D Excellent Temp. Stability 20ppm/°C, Typ.  
D FSK Demodulation  
GENERAL DESCRIPTION  
The XR-2212 is an ultra-stable monolithic phase-locked  
loop (PLL) system especially designed for data  
communications and control system applications. Its on  
board reference and uncommitted operational amplifier,  
together with a typical temperature stability of better than  
20ppm/°C, make it ideally suited for frequency synthesis,  
FM detection, and tracking filter applications. The wide  
input dynamic range, large operating voltage range, large  
frequency range, and HCMOS and TTL compatibility  
contribute to the usefulness and wide applicability of this  
device.  
ORDERING INFORMATION  
Operating  
Temperature Range  
Part No.  
Package  
16 Lead 300 Mil CDIP  
16 Lead 300 Mil PDIP  
XR-2212M  
-55°C to +125°C  
0°C to +70°C  
XR-2212CP  
BLOCK DIAGRAM  
V
GND  
4
CC  
1
Pre Amplifier  
2
INP  
Phase  
Detector  
0-DET O  
10  
16  
14  
0-DET I  
TIM C1  
15 VCOQO  
VCOOC  
VCOOV  
3
5
VCO  
Amp  
13  
TIM C2  
12  
9
V
REF  
11  
TIM R  
PINP  
V
REF  
8
6
Op Amp  
OUT  
7
NINP  
COMP  
Figure 1. XR-2212 Block Diagram  
Rev. 2.10  
E1979-2006  
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 z (510) 668-7000 z FAX (510) 668-7017  
1
XR-2212  
PIN CONFIGURATION  
VCC  
INP  
VCOOC  
0-DET I  
VCOQO  
TIM C1  
1
2
3
4
5
6
7
8
16  
15  
14  
GND  
13 TIM C2  
12 TIM R  
VREF  
10 0-DET O  
VCOOV  
COMP  
NINP  
11  
OUT  
9
PINP  
16 Lead PDIP, CDIP (0.300”)  
PIN DESCRIPTION  
Pin #  
1
Symbol  
VCC  
Type Description  
Positive Power Supply.  
Receive Analog Input.  
2
INP  
I
3
VCOOC  
GND  
O
VCO Current Output.  
4
Ground Pin.  
5
VCOOV  
COMP  
NINP  
O
I
VCO Voltage Source Output.  
6
Uncommitted Amplifier, Frequency Compensation Input.  
Inverted Input. Uncommitted amplifier.  
7
I
8
OUT  
O
I
Uncommitted Amplifier Output.  
9
PINP  
Positive Input. Uncommitted amplifier.  
10  
11  
12  
13  
14  
15  
16  
0-DET O  
VREF  
O
O
I
Phase Detector Output.  
Internal Voltage Reference. The value of VREF is VCC /2 -650mV.  
Timing Resistor Input. This pin connects to the timing resistor of the VCO.  
Timing Capacitor Input. The timing capacitor connects between this pin and pin 14.  
Timing Capacitor Input. The timing capacitor connects between this pin and pin 13.  
VCO Quadrature Output.  
TIM R  
TIM C2  
TIM C1  
VCOQO  
0-DET I  
I
I
O
I
Phase Detector Input.  
Rev. 2.10  
2
XR-2212  
ELECTRICAL CHARACTERISTICS  
Test Conditions: V = +12V, T = + 25°C, R = 30kW, C = 0.033mF, unless otherwise specified. See  
CC  
A
0
0
Figure 3 for component designation.  
XR-2212M  
XR-2212CP  
Typ.  
Parameter  
Units  
Conditions  
Min.  
Typ.  
Max.  
Min.  
Max.  
General Characteristics  
Supply Voltage  
4.5  
15  
10  
4.5  
15  
12  
V
Supply Current  
6
6
mA  
R0 > 10kW., See Figure 5  
Oscillator Section  
Frequency Accuracy  
Frequency Stability  
Temperature  
+1  
+3  
+1  
%
Deviation from f0 = 1/R0C0  
R1 = R  
+20  
0.05  
0.2  
+50  
+20  
0.05  
0.2  
ppm/°C See Figure 9  
Power Supply  
0.5  
%/V  
%/V  
kHz  
Hz  
VCC = 12 + 1V, See Figure 8  
VCC = 5 + 0.5V, See Figure 8  
R0 = 8.2kW, C0 = 400pF  
R0 = 2MW, C0 = 50mF  
Upper Frequency Limit  
100  
300  
300  
0.01  
Lowest Practical Operating  
Frequency  
0.01  
Timing Resistor, R0  
Operating Range  
See Figure 5  
5
2000  
100  
5
2000  
100  
kW  
kW  
Recommended Range  
Oscillator Outputs  
Voltage Output  
15  
15  
See Figure 8 and Figure 9  
Measured at Pin 5  
Positive Swing, VOH  
Negative Swing, VOL  
Current Sink Capability  
Current Output  
11  
0.4  
1
11  
0.5  
1
V
V
0.8  
mA  
Measured at Pin 3  
Peak Current Swing  
Output Impedance  
Quadrature Output  
Output Swing  
100  
150  
1
150  
1
mA  
MW  
Measured at Pin 15  
Referenced to Pin 11  
Measured at Pin 10  
0.6  
0.3  
3
0.6  
0.3  
3
V
V
DC Level  
Output Impedance  
Loop Phase Detector Section  
Peak Output Current  
Output Offset Current  
Output Impedance  
Maximum Swing  
kW  
+150 +200 +300 +100 +200 +300  
mA  
mA  
MW  
V
+1  
1
+2  
1
+4  
+5  
+4  
+5  
Referenced to Pin 11  
Note  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
Rev. 2.10  
3
XR-2212  
ELECTRICAL CHARACTERISTICS (CONT’D)  
XR-2212M  
Parameter  
XR-2212CP  
Typ.  
Units  
Conditions  
Min.  
Typ.  
Max.  
Min.  
Max.  
Input Preamp Section  
Input Impedance  
Input Signal to Cause Limiting  
Op Amp Section  
Voltage Gain  
Measured at Pin 2  
20  
2
20  
2
kW  
10  
mV rms  
55  
70  
0.1  
+5  
2
55  
70  
0.1  
+5  
2
dB  
mA  
RL = 5.1kW, RF = R  
Input Bias Current  
Offset Voltage  
1
1
+20  
+20  
mV  
Slew Rate  
V/msec  
Internal Reference  
Voltage Level  
Measured at Pin 11  
AC Small Signal  
4.9  
5.3  
100  
80  
5.7  
4.75  
5.3  
100  
80  
5.85  
V
W
Output Impedance  
Maximum Source Current  
WA  
Note  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
Specifications are subject to change without notice  
ABSOLUTE MAXIMUM RATINGS  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18V  
Input Signal Level . . . . . . . . . . . . . . . . . . . . . . . . 3V rms  
Power Dissipation:  
Ceramic Package: . . . . . . . . . . . . . . . . . . . . . . . 750mW  
Derate Above T = + 25°C . . . . . . . . 6mW/°C  
A
Plastic Package: . . . . . . . . . . . . . . . . . . . . . . . . 625mW  
Derate Above T = + 25°C . . . . . . . . 5mW/°C  
A
SYSTEM DESCRIPTION  
The XR-2212 is a complete PLL system with buffered  
inputs and outputs, an internal reference, and an  
uncommitted op amp. Two VCO outputs are pinned out;  
one sources current, the other sources voltage. This  
enables operation as a frequency synthesizer using an  
external programmable divider. The op amp section can  
be used as an audio preamplifier for FM detection or as a  
high speed sense amplifier (comparator) for FSK  
demodulation. The center frequency, bandwidth, and  
tracking range of the PLL are controlled independently by  
external components. The PLL output is directly  
compatible with CMOS, HCMOS and TTL logic families  
as well as microprocessor peripheral systems.  
The precision PLL system operates over a supply voltage  
range of 4.5V to 20V, a frequency range of 0.01Hz to  
300kHz, and accepts input signals in the range of 2mV to  
3V rms. Temperature stability of the VCO is typically  
better than 20 ppm/°C with the optimum timing resistor  
value.  
Rev. 2.10  
4
XR-2212  
Loop  
Filter  
Pre  
Amp  
+
Signal  
Input  
Phase  
Detector  
-
Op Amp  
0-DET  
Input  
AMP  
VCO  
Voltage  
Output  
VCO  
Phase  
Quadrature  
VCO  
Current  
Output  
Output  
Figure 2. Functional Block Diagram of XR-2212 Precision PLL System  
V
CC  
R
L
6
5.6K  
2
10  
9
7
C
O
Phase  
Detector  
8
Demod  
Output  
0.1mF  
C
1
Input  
Signal  
R
F
16  
R
C
11  
0.1mF  
R
3
Internal  
Reference  
0.1mF  
R
1
5
12  
%N  
VCO  
R
0
External  
Divider  
(Optional)  
14  
13  
C
O
Figure 3. Generalized Circuit Connection for FM Detection, Signal  
Tracking or Frequency Synthesis  
Rev. 2.10  
5
XR-2212  
Phase  
Detector  
Input  
1
Vcc  
Loop  
Phase  
Detector  
Output  
Reference  
Output  
Voltage  
16  
10  
11  
Signal  
Input  
2
30K  
30K  
Input Preamplifier  
2K  
Phase Detector  
Internal Voltage Reference  
2K  
VCO  
Out  
Non  
Inv  
Inp  
Amp  
Out  
8
A
A1  
Timing  
Capacitor  
5
9
3
C
Inv  
Inp  
0
13  
14  
VCO  
Quad  
Out  
5K  
5K  
5K  
5K  
VCO  
Current  
Output  
A
A1  
7
15  
6
Comp  
Op Amp  
4
GND  
Timing  
Resistor  
12  
R
O
Figure 4. Simplified Circuit Schematic of XR-2212  
Rev. 2.10  
6
XR-2212  
TYPICAL CHARACTERISTICS  
20  
15  
10  
R =5kW  
0
R =10kW  
0
R = 5K  
L
R = 10K  
L
R =20kW  
0
10  
5
0.1  
R > 100K  
L
R =40kW  
0
R =80kW  
0
R =160kW  
0
0
0.01  
4
6
8
10 12 14 16 18 20 22 24  
Supply Voltage V (V)  
100  
1000  
f (Hz)  
10,000  
CC  
0
Figure 5. Typical Supply Current vs.  
Figure 6. VCO Frequency vs.  
Timing Resistor  
V
CC  
(Logic Outputs Open Circuited)  
1000  
1.02  
C =0.001mF  
0
f = 1kHz  
0
5
1
5
R > 10R  
0
1.01  
1.00  
4
C =0.0033mF  
2
0
3
C =0.01mF  
0
4
3
100  
C =0.033mF  
0
CURVE  
R
0.99  
0.98  
0
1
2
3
5K  
10K  
30K  
2
C =0.1mF  
0
4
5
100K  
300K  
1
C =0.33mF  
0
0.97  
10  
4
6
8
10  
12 14  
(V)  
16  
18  
20  
22 24  
0
1000  
f (Hz)  
10,000  
V
CC  
0
Figure 7. VCO Frequency vs.  
Timing Capacitor  
Figure 8. Typical f vs. Power  
0
Supply Characteristics  
Rev. 2.10  
7
XR-2212  
+1.0  
+0.5  
1MΩ  
R =10K  
0
500K  
R =50K  
0
0
-0.5  
-1.0  
50K  
10K  
R =500K  
0
V
=12V  
CC  
1
R =1MΩ  
0
R =12R  
f =1kHz  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (C)  
Figure 9. Typical Center Frequency Drift vs. Temperature  
DESCRIPTION OF CIRCUIT CONTROLS  
Signal Input(Pin 2): Signal is AC coupled to this terminal.  
The internal impedance at Pin 2 is 20kW. Recommended  
input signal level is in the range of 10mV to 5V  
peak-to-peak.  
Op Amp Output (Pin 8): The op amp output is an open-  
collector type gain stage and requires a pull-up resistor,  
R , toV forproperoperation. Formostapplications, the  
L
CC  
recommended value of R is in 5kW to 10kW range.  
L
Phase Detector Output (Pin 10): This terminal provides  
a high-impedance output for the loop phase-detector. The  
VCO Current Output (Pin 3): This is a high impedance  
(MW) current output terminal which can provide +100mA  
PLL loop filter is formed by R and C connected to Pin 10  
1
1
drive capability with a voltage swing equal to V . This  
CC  
(see Figure 3). With no input signal, or with no  
phase-error within the PLL, the DC level at Pin 10 is very  
output can directly interface with CMOS or NMOS logic  
families.  
nearly equal to V . The peak voltage swing available at  
REF  
the phase detector output is equal to $V  
.
VCO Voltage Output (Pin 5): This terminal provides a  
low- impedance (50W) buffered output for the VCO. It  
can directly interface with low-power Schottley TTL. For  
interfacing with standard TTL circuits, a 750W pull-down  
resistor from Pin 5 to ground is required. For operation of  
the PLL without an external divider, Pin 5 can be DC  
coupled to Pin 16.  
REF  
Reference Voltage, V  
(Pin 11): This pin is internally  
REF  
biased at the reference voltage level. V  
:V  
= V /2  
REF REF CC  
- 650mV. The DC voltage level at this pin forms an internal  
reference for the voltage levels at Pins 10, 12 and 16. Pin  
1 must be bypassed to ground with a 0.1mF capacitor, for  
proper operation of the circuit.  
VCO Control Input (Pin 12): VCO free-running  
frequencies determined by external timing resistor, R ,  
connected from this terminal to ground. For optimum  
Op Amp Compensation (Pin 6): The op amp section is  
frequency compensated by connecting an external  
capacitor from Pin 6 to the amplifier output (Pin 8). For  
0
temperature stability, R must be in the range of 10KW to  
0
100kW (see Figure 9).  
unity-gain compensation  
recommended.  
a
20pF capacitor is  
VCO Frequency Adjustment: VCO can be fine-tuned  
by connecting a potentiometer, R , in series with R at Pin  
X
0
Op Amp Inputs (Pins 7 and 9): These are the inverting  
and the non-inverting inputs for the op amp section. The  
common-mode range of the op amp inputs is from +1V to  
12 (see Figure 11).  
This terminal is a low-impedance point, and is internally  
biased at a DC level equal to V . The maximum timing  
(V - 1.5) volts.  
CC  
REF  
Rev. 2.10  
8
XR-2212  
current drawn from Pin 12 must be limited to <3 mA for  
proper operation of the circuit.  
is connected to this pin. The DC level of the sensing  
threshold for the phase detector is referenced to V . If  
REF  
the signal is capacitively coupled to Pin 16, then this pin  
must be biased from Pin 11, through an external resistor,  
VCOTimingCapacitor(Pins13and14):VCOfrequency  
is inversely proportional to the external timing capacitor,  
R (R [ 10kW). The peak voltage swing applied to Pin  
B
B
C , connected across these terminals (see Figure 6). C  
0
0
16 must not exceed (V - 1.5) volts.  
CC  
must be nonpolar, and in the range of 200pF to 10mF.  
VCO Quadrature Output (Pin 15): The low-level ([  
0.6Vpp) output at this pin is at quadrature phase (i.e. 90°  
phase-offset) with the other VCO outputs at Pins 3 and 5.  
The DC level at Pin 15 is approximately 300mV above  
PHASE-LOCKED LOOP PARAMETERS  
Transfer Characteristics  
V
. The quadrature output can be used with an external  
REF  
Figure 10 shows the basic frequency to voltage  
characteristics of XR-2212. With no input signal present,  
filtered phase detector output voltage is approximately  
multiplier as a “lock detect” circuit. In order not to degrade  
oscillator performance, the output at Pin 15 must be  
buffered with an external high impedance low  
capacitance amplifier. When not in use, Pin 15 should be  
left open-circuited.  
equal to the internal reference voltage, V  
at Pin 11.  
REF  
The PLL can track an input signal over its tracking  
bandwidth, shown in the figure. The frequencies f and  
TL  
Phase Detector Input (Pin 16): Voltage output of the  
f
TH  
represent the lower and the upper edge of the tracking  
VCO (Pin 5) or the output of an external frequency divider  
range, f represents the VCO center frequency.  
0
Tracking  
Bandwidth  
2V  
R
Df  
Df  
V
R
0
f
TL  
f
O
f
TH  
Frequency  
Input Signal Frequency  
Figure 10. Phase Detector Output Voltage (Pin 10) as a Function of Input Signal Frequency  
Note  
Output Voltage is Referenced to Internal Reference Voltage VREF at Pin 11  
Rev. 2.10  
9
XR-2212  
Design Equations  
8. Total Loop Gain, K  
T
(See Figure 3 and Figure 10 for definition of  
components.)  
K = 2pK K = 4/C R rad/sec/volt  
O
T
0
0 1  
9. Peak Phase-Detector Current, I ; available at Pin 10.  
A
1. VCO Center Frequency, f : f = 1/R C Hz  
I = V  
A
(volts)/25mA  
REF  
0
0
0 0  
2. Internal Reference Voltage, V  
Pin 11)  
(measured at  
REF  
APPLICATION INFORMATION  
FM Demodulation  
V
REF  
= V /2 - 650mV  
CC  
3. Loop Low-Pass Filter Time Constant, t : t = R C  
1
1
4. Loop Damping, j:  
XR-2212can be used as a linear FM demodulator for both  
narrow-band and wide-band FM signals. The generalized  
circuit connection for this application is shown in  
Figure 11, where the VCO output (Pin 5) is directly  
connected to the phase detector input (Pin 16). The  
demodulated signal is obtained at phase detector output  
(Pin 10). In the circuit connection of Figure 10, the op amp  
section of XR-2212 is used as a buffer amplifier to provide  
both additional voltage amplification as well as current  
drive capability. Thus, the demodulated output signal  
availableat the op amp output (Pin 8) is fully buffered from  
the rest of the circuit.  
NC0  
C1  
Ǹ
j + 0.25  
where N is the external frequency divider modular  
(See 2). If no divider is used, N = 1.  
5. Loop Tracking Bandwidth, $Df/f : Df/f = R /R  
1
0
0
0
6. Phase Detector Conversion Gain, K : (K is the  
O
O
differentialDCvoltageacrossPins10and11, perunit  
of phase error at phase-detector input)  
K = -2V  
/p volts/radian  
O
REF  
7. VCO Conversion Gain, K : (K is the amount of  
0
0
change in VCO frequency, per unit of DC voltage  
change at Pin 10. It is the reciprocal of the slope of  
conversion characteristics shown in Figure 10).  
In the circuit of Figure 11, R C set the VCO center  
0 0  
frequency, R sets the tracking bandwidth, C sets the  
1
1
low-pass filter time constant. Op amp feedback resistors  
R and R set the voltage gain of the amplifier section.  
K = -1/V  
C R Hz/V  
REF 0 1  
0
F
C
Rev. 2.10  
10  
XR-2212  
V
CC  
0.1mF  
1
V
CC  
6
8
R
5K  
L
30pF  
2
10  
9
7
Phase  
Demod  
Output  
Detector  
0.1mF  
C
1
R
FM  
F
Input  
16  
4
R
C
11  
Internal  
Reference  
0.1mF  
R
1
5
12  
VCO  
R
0
14  
13  
C
O
Rx Fine Tune  
Figure 11. Circuit Connection for FM Demodulation  
Design Instructions  
d) Choose R to determine the tracking bandwidth, Df  
1
(see design equation 5). The tracking bandwidth, Df,  
should be set significantly wider than the maximum  
The circuit of Figure 11 can be tailored to any FM  
demodulation application by a choice of the external  
input FM signal deviation, Df . Assuming the  
SM  
components R , R , R , R , C and C . For a given FM  
0
1
C
F
0
1
tracking bandwidth to be “N” times larger than  
center frequency and frequency deviation, the choice of  
these components can be calculated as follows, using the  
design equations and definitions given on page 10.  
Df , one can re-unite design equation 5 as:  
SM  
DfSM  
f0  
R0  
R1  
a) Choose VCO center frequency f to be the same as  
Df  
f0  
0
+
+ N  
FM carrier frequency.  
b) Choose value of timing resistor R , to be in the range  
0
of 10kW to 100kW. This choice is arbitrary. The  
Table 2. lists recommended values of N, for various  
values of the maximum deviation of the input FM  
signal.  
recommended value is R +20kW. The final value  
0
of R is normally fine-tuned with the series  
0
potentiometer, R .  
X
c) CalculatevalueofC fromdesignequation(1)orfrom  
0
e) Calculate C to set loop damping (see design  
1
Figure 7:  
equation 4). Normally, ς = 1/2 is recommended.  
C = 1/R f  
Then, C = C /4 for ς = 1/2.  
1 0  
0
0 0  
Rev. 2.10  
11  
XR-2212  
R /R = (3)(0.0746) = 0.224  
or:  
R = 89.3kW.  
1
% Deviation of FM  
Signal (DfSM/f0)  
Recommended Value of  
Bandwidth Ratio, N  
0
1
(N = Df/DfSM  
)
1% or less  
1% to 3%  
10  
5
Step e): Calculate C1 = (C /4) = 186pF.  
0
Step f): Calculate R and R to get $4V peak  
C
F
1% to 5%  
4
output swing: Let R = 100kW. Then,  
F
5% to 10%  
10% to 30%  
30% to 50%  
3
R = 80.6kW.  
C
2
Note: All values except R0 can be rounded-off to nearest  
1.5  
standard value.  
FREQUENCY SYNTHESIS  
Table 2.  
Figure 12 shows the generalized circuit connection for  
frequency synthesis. In this application an external  
frequency divider is connected between the VCO output  
(Pin 5) and the phase-detector input (Pin 16). When the  
circuit is in lock, the two signals going into the  
Recommended values of bandwidth ratio, N, for various  
values of FM signal frequency deviation. (Note: N is the  
ratio of tracking bandwidth Df to max. signal frequency  
deviation, Df ).  
SM  
phase-detector are at the same frequency, or f = f /N  
S
1
f) Calculate R and R to set peak output signal  
C
F
where N is the modulus of the external frequency divider.  
Conversely, the VCO output frequency, f is equal to N .  
amplitude. Output signal amplitude, V , is given  
OUT  
as:  
1
fS  
In the circuit configuration of Figure 12, the external  
timing components, R and C , set the VCO free running  
DfSM  
f0  
R1  
R0  
ǒRC ) RF  
RC  
Ǔ
ǒ Ǔ ǒ Ǔ  
)
VREF  
(
VOUT +  
0
0
frequency; R sets the tracking bandwidth and C setsthe  
1
1
loop damping, i.e., the low-pass filter time constant (see  
design equations).  
In most applications, R = 100kW is recommended;  
F
then R , can be calculated from the above equation  
C
The total tracking range of the PLL (see Figure 10),  
should be chosen to accommodate the lowest and the  
togivedesiredoutputswing. Theoutputamplifiercan  
alsobeusedasaunity-gainvoltagefollower, byopen  
circuiting R (i.e., R = ).  
highest frequency, f  
and f , to be synthesized. A  
min  
max  
C
C
recommended choice for most applications is to choose a  
tracking half-bandwidth Df, such that:  
Note: All calculated component values except R0 can be  
rounded-offtothenearest standard value, andR canbe  
0
Df f  
- f  
varied to fine-tune center frequency, through a series  
potentiometer, RX, (See Figure 11).  
max min  
If a variable input frequency and a variable counter  
modulus N is used, then the maximum and the minimum  
values of output frequency will be:  
Design Example  
f
= N  
(f )  
and f  
= N (f )  
min S min  
max  
max S max  
min  
Demodulator for FM signal with 67kHz carrier frequency  
with $5kHz frequency deviation. Supply voltage is +12V  
and required peak output swing is $4V.  
If a fixed output frequency is desired, i.e. N and f are  
S
fixed, then a $10% tracking bandwidth is recommended.  
Excessively large tracking bandwidth may cause the PLL  
tolockontheharmonicsoftheinputsignals;andthesmall  
tracking range increases the “lock-up” or acquisition time.  
Step a) f is chosen as 67kHz.  
0
Step b) Choose R = 20kW (18kW fixed resistor in  
0
series with 5kW potentiometer).  
Design Instructions  
Step c) Calculate C ; from design equation (1).  
0
C = 746pF  
For a given performance requirement, the circuit of  
Figure 12 can be optimized as follows:  
0
Step d) Calculate R . For given FM deviation,  
1
Df /f = 0.0746, and N = 3 from Table 2.  
SM 0  
a) Choose centerfrequency, f , tobeequaltotheoutput  
0
Then:  
frequency to be synthesized. If a range of output  
Rev. 2.10  
12  
XR-2212  
frequencies is desired, set f to be at mid-point of the  
If a single fixed output frequency is desired, set R to  
0
1
desired range.  
get:  
b) Choose timing resistor R to be in the range of 15kW  
0
Df = 0.1 f  
0
to 100kW. This choice is arbitrary. R can be fine  
0
e) Calculate C to obtain desired loop damping. (See  
tuned with a series potentiometer, R .  
1
X
design equation 4). For most applications, ς = 1/2 is  
recommended, thus:  
c) Choose timing capacitor, C from Figure 7 or  
0
Equation 1.  
C = NC /4  
0
0
d) Calculate R to set tracking bandwidth (see  
1
Figure 10 and design equation 5). If a range of output  
Note  
frequencies are desired, set R to get:  
1
All component values except R0 can be rounded off to the  
nearest standard value.  
Df = f  
- f  
max min  
V
CC  
0.1mF  
1
6
8
V
CC  
2
10  
9
7
Phase  
Detector  
0.1mF  
C
Input  
1
Signal  
16  
4
74LS90  
11  
Internal  
Reference  
or  
%N  
Similar  
0.1mF  
F = F1/N  
O
Output  
R
R
1
0
5
12  
VCO  
F1 = Nfs  
14  
13  
1K  
C
O
Figure 12. Circuit Connection for Frequency Synthesizer  
Rev. 2.10  
13  
XR-2212  
INPUT SENSITIVITY  
The input to the XR-2212 may sometimes be too sensitive  
to noise conditions on the input line. Figure 13 illustrates  
a method of de-sensitizing the XR-2212 from such noisy  
lineconditionsbytheuseofaresistor, Rx, connectedfrom  
pin 2 to ground. The value of Rx is chosen by the equation  
and the desired minimum signal threshold level.  
VIN minimum (peak) + Va–Vb +  
20, 000  
(20, 000 ) RX)  
DV " 2.8V offset + VREF +  
or  
ǒVREF  
DV  
Ǔ
* 1  
RX + 20, 000  
V
IN  
minimum (peak) input voltage must exceed this value  
to be detected (equivalent to adjusting V threshold).  
Vcc  
To Phase  
Detector  
Va  
Vb  
Input  
2
20K  
20K  
Rx  
11  
V
REF  
Figure 13. Desensitizing Input Stage  
Rev. 2.10  
14  
XR-2212  
16 LEAD CERAMIC DUAL-IN-LINE  
(300 MIL CDIP)  
Rev. 1.00  
16  
9
8
1
E
E
1
D
A
1
Base  
Plane  
A
Seating  
Plane  
L
e
c
B
B
1
α
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.100  
0.015  
0.014  
0.045  
0.008  
0.740  
0.250  
0.200  
0.060  
0.026  
0.065  
0.018  
0.840  
0.310  
2.54  
0.38  
0.36  
1.14  
0.20  
18.80  
6.35  
5.08  
1.52  
0.66  
1.65  
0.46  
21.34  
7.87  
A
B
B
c
1
1
D
E
E
e
L
1
0.300 BSC  
0.100 BSC  
7.62 BSC  
2.54 BSC  
0.125  
0.200  
3.18  
5.08  
α
0°  
15°  
0°  
15°  
Note: The control dimension is the inch column  
Rev. 2.10  
15  
XR-2212  
16 LEAD PLASTIC DUAL-IN-LINE  
(300 MIL PDIP)  
Rev. 1.00  
9
8
16  
1
E
1
E
D
A
2
A
L
Seating  
Plane  
C
α
A
1
B
e
B
e
A
B
1
e
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.145  
0.015  
0.115  
0.014  
0.030  
0.008  
0.745  
0.300  
0.240  
0.210  
0.070  
0.195  
0.024  
0.070  
0.014  
0.840  
0.325  
0.280  
3.68  
0.38  
2.92  
0.36  
0.76  
0.20  
5.33  
1.78  
4.95  
0.56  
1.78  
0.38  
21.34  
8.26  
7.11  
A
A
B
B
1
2
1
C
D
E
18.92  
7.62  
6.10  
E
e
1
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
e
A
e
B
L
α
0.310  
0.430  
0.160  
15°  
7.87  
10.92  
4.06  
15°  
0.115  
2.92  
0°  
0°  
Note: The control dimension is the inch column  
Rev. 2.10  
16  
XR-2212  
Notes  
Rev. 2.10  
17  
XR-2212  
Notes  
Rev. 2.10  
18  
XR-2212  
Notes  
Rev. 2.10  
19  
XR-2212  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to im-  
prove design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits de-  
scribed herein, conveys no license under any patent or other right, and makes no representation that the circuits are  
free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary  
depending upon a user’s specific application. While the information in this publication has been carefully checked;  
no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or  
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly  
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the  
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circum-  
stances.  
Copyright 1979-2006 EXAR Corporation  
Datasheet October 2006  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
Rev. 2.10  
20  

相关型号:

XR-2212P

Precision Phase-Locked Loop
EXAR

XR-2212_06

Precision Phase-Locked Loop
EXAR

XR-2213CN

Analog Phase-Locked Loop
ETC

XR-2213CP

Analog Phase-Locked Loop
ETC

XR-2213M

Analog Phase-Locked Loop
ETC

XR-2213N

Analog Phase-Locked Loop
ETC

XR-2213P

Analog Phase-Locked Loop
ETC

XR-2216CN

Compander
ETC

XR-2216CP

Compander
ETC

XR-2228

Monolithic Multiplier/Detector
EXAR

XR-2228CN

Monolithic Multiplier/Detector
EXAR

XR-2228CP

Monolithic Multiplier/Detector
EXAR