XR16C2550IP [EXAR]

2.97V TO 5.5V DUART WITH 16-BYTE FIFO; 具有16字节FIFO 2.97V至5.5V DUART
XR16C2550IP
型号: XR16C2550IP
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

2.97V TO 5.5V DUART WITH 16-BYTE FIFO
具有16字节FIFO 2.97V至5.5V DUART

先进先出芯片
文件: 总38页 (文件大小:880K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
JANUARY 2005  
REV. 1.0.1  
FEATURES  
GENERAL DESCRIPTION  
2.97 Volt to 5.5 Volt Operation  
5 Volt Tolerant Inputs  
Pin-to-pin compatible to Exar’s ST16C2450,  
XR16L2550 and XR16L2750  
The XR16C2550 (2550) is  
a
dual universal  
asynchronous receiver and transmitter (UART). The  
XR16C2550 is an improved version of the PC16550  
UART with higher operating speed and faster access  
times. The 2550 provides enhanced UART functions  
with 16 byte FIFO’s, a modem control interface, and  
data rates up to 4 Mbps. Onboard status registers  
provide the user with error indications and  
operational status. System interrupts and modem  
control features may be tailored by external software  
to meet specific user requirements. Independent  
programmable baud rate generators are provided to  
select transmit and receive clock rates from 50 bps to  
4 Mbps. The Baud Rate Generator can be configured  
for either crystal or external clock input. An internal  
loopback capability allows onboard diagnostics. The  
2550 is available in a 44-pin PLCC and 48-pin TQFP  
packages. The 2550 is fabricated in an advanced  
CMOS process capable of operating from 2.97 volt to  
5.5 volt power supply.  
Pin-to-pin compatible to TI’s TL16C752B on the 48-  
TQFP package  
Pin alike XR16C2850 48-TQFP package but  
without CLK8/16, CLKSEL and HDCNTL inputs  
2 independent UART channels  
Up to 4 Mbps with external clock of 64 MHz  
Up to 1.5 Mbps data rate with a 24 MHz crystal  
frequency  
16 byte Transmit FIFO to reduce the bandwidth  
requirement of the external CPU  
16 byte Receive FIFO with error tags to reduce  
the bandwidth requirement of the external CPU  
4 selectable Receive FIFO interrupt trigger  
levels  
APPLICATIONS  
Modem control signals (CTS#, RTS#, DSR#,  
DTR#, RI#, CD#)  
Portable Appliances  
Telecommunication Network Routers  
Ethernet Network Routers  
Programmable character lengths (5, 6, 7, 8)  
with even, odd, or no parity  
Crystal oscillator or external clock input  
48-TQFP and 44-PLCC packages  
Cellular Data Devices  
Factory Automation and Process Controls  
FIGURE 1. XR16C2550 BLOCK DIAGRAM  
2.97 V to5.5V  
*All inputs are 5V tolerant  
A2:A0  
D7:D0  
GND  
IOR#  
IOW#  
UART Channel A  
TXA , RXA, DTRA#,  
16 Byte TX FIFO  
CSA#  
CSB#  
UART  
Regs  
DSRA#, RTSA#,  
DTSA#, CDA#, RIA#,  
OP2A#  
TX & RX  
8- bit Data  
Bus  
Interface  
INTA  
INTB  
BRG  
16 Byte RX FIFO  
TXRDYA#  
TXRDYB#  
RXRDYA#  
RDRXYB#  
TXB, RXB, DTRB#,  
DSRB#, RTSB#,  
CTSB#, CDB#, RIB#,  
OP2B#  
UART Channel B  
( same as Channel A )  
Reset  
XTAL1  
XTAL2  
Crystal Osc / Buffer  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
FIGURE 2. PIN OUT ASSIGNMENT  
RESET  
DTRB#  
DTRA#  
RTSA#  
OP2A#  
RXRDYA#  
INTA  
D5  
D6  
1
2
3
4
5
6
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VCC  
D0  
D1  
1
2
3
4
5
6
7
8
9
40  
39  
38  
37  
D7  
RXB  
RIA#  
RXA  
CDA#  
DSRA#  
D2  
XR16C2550  
48-pin TQFP  
TXRDYB#  
TXA  
D3  
7
D4  
36 CTSA#  
35 RESET  
INTB  
TXB  
8
9
D5  
A0  
OP2B#  
CSA#  
DTRB#  
DTRA#  
RTSA#  
OP2A#  
INTA  
INTB  
A0  
D6  
34  
33  
32  
31  
30  
29  
28  
27  
26  
A1  
10  
A2  
CSB# 11  
NC 12  
D7  
NC  
RXB  
RXA 10  
TXA 11  
TXB 12  
13  
14  
OP2B#  
CSA#  
A1  
A2  
CSB# 15  
XTAL1 16  
25 CTSB#  
17  
18  
19  
20  
RTSB#  
RIB#  
7
39 RESET  
38 DTRB#  
37 DTRA#  
36 RTSA#  
35 OP2A#  
34 RXRDYA#  
33 INTA  
32 INTB  
31 A0  
XTAL2  
IOW#  
CDB#  
GND  
24  
23  
22  
D5  
D6  
8
D7  
9
DSRB#  
10  
RXB  
21 IOR#  
RXA 11  
12  
XR16C2550  
44-pin PLCC  
TXRDYB#  
TXA 13  
TXB 14  
OP2B# 15  
CSA# 16  
CSB# 17  
30 A1  
29 A2  
ORDERING INFORMATION  
OPERATING  
TEMPERATURE RANGE  
PART NUMBER  
PACKAGE  
DEVICE STATUS  
XR16C2550IP  
XR16C2550IJ  
XR16C2550IM  
40-Lead PDIP  
44-Lead PLCC  
48-Lead TQFP  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Active. See the XR16C2550IM for new designs.  
Active  
Active  
2
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
PIN DESCRIPTIONS  
Pin Description  
40-PDIP 44-PLCC 48-TQFP  
NAME  
TYPE  
DESCRIPTION  
PIN #  
PIN #  
PIN #  
DATA BUS INTERFACE  
A2  
A1  
A0  
26  
27  
28  
29  
30  
31  
26  
27  
28  
I
Address data lines [2:0]. These 3 address lines select one of the  
internal registers in UART channel A/B during a data bus transac-  
tion.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
8
7
6
5
4
3
2
1
9
8
7
6
5
4
3
2
3
IO Data bus lines [7:0] (bidirectional).  
2
1
48  
47  
46  
45  
44  
IOR#  
21  
24  
19  
I
I
Input/Output Read Strobe (active low). The falling edge instigates  
an internal read cycle and retrieves the data byte from an internal  
register pointed to by the address lines [A2:A0]. The data byte is  
placed on the data bus to allow the host processor to read it on the  
rising edge.  
IOW#  
18  
20  
15  
Input/Output Write Strobe (active low). The falling edge instigates an  
internal write cycle and the rising edge transfers the data byte on the  
data bus to an internal register pointed by the address lines.  
CSA#  
CSB#  
INTA  
14  
15  
30  
16  
17  
33  
10  
11  
30  
I
I
UART channel A select (active low) to enable UART channel A in  
the device for data bus operation.  
UART channel B select (active low) to enable UART channel B in  
the device for data bus operation.  
O
UART channel A Interrupt output. The output state is defined by the  
user and through the software setting of MCR[3]. INTA is set to the  
active mode and OP2A# output to a logic 0 when MCR[3] is set to a  
logic 1. INTA is set to the three state mode and OP2A# to a logic 1  
when MCR[3] is set to a logic 0 (default). See MCR[3].  
INTB  
29  
32  
29  
O
UART channel B Interrupt output. The output state is defined by the  
user and through the software setting of MCR[3]. INTB is set to the  
active mode and OP2B# output to a logic 0 when MCR[3] is set to a  
logic 1. INTB is set to the three state mode and OP2B# to a logic 1  
when MCR[3] is set to a logic 0 (default). See MCR[3].  
TXRDYA#  
RXRDYA#  
TXRDYB#  
-
-
-
1
43  
31  
6
O
O
O
UART channel A Transmitter Ready (active low). The output pro-  
vides the TX FIFO/THR status for transmit channel A. See Table 2.  
If it is not used, leave it unconnected.  
34  
12  
UART channel A Receiver Ready (active low). This output provides  
the RX FIFO/RHR status for receive channel A. See Table 2. If it is  
not used, leave it unconnected.  
UART channel B Transmitter Ready (active low). The output pro-  
vides the TX FIFO/THR status for transmit channel B. See Table 2.  
If it is not used, leave it unconnected.  
3
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
Pin Description  
40-PDIP 44-PLCC 48-TQFP  
NAME  
TYPE  
DESCRIPTION  
PIN #  
PIN #  
PIN #  
RXRDYB#  
-
23  
18  
O
UART channel B Receiver Ready (active low). This output provides  
the RX FIFO/RHR status for receive channel B. See Table 2. If it is  
not used, leave it unconnected.  
MODEM OR SERIAL I/O INTERFACE  
TXA  
11  
13  
7
5
O
I
UART channel A Transmit Data. If it is not used, leave it uncon-  
nected.  
RXA  
10  
11  
UART channel A Receive Data. Normal receive data input must idle  
at logic 1 condition. If it is not used, tie it to VCC or pull it high via a  
100k ohm resistor.  
RTSA#  
CTSA#  
32  
36  
36  
40  
33  
38  
O
I
UART channel A Request-to-Send (active low) or general purpose  
output. If it is not used, leave it unconnected.  
UART channel A Clear-to-Send (active low) or general purpose  
input. This input should be connected to VCC when not used. This  
input has no effect on the UART.  
DTRA#  
DSRA#  
33  
37  
37  
41  
34  
39  
O
I
UART channel A Data-Terminal-Ready (active low) or general pur-  
pose output. If it is not used, leave it unconnected.  
UART channel A Data-Set-Ready (active low) or general purpose  
input. This input should be connected to VCC when not used. This  
input has no effect on the UART.  
CDA#  
RIA#  
38  
39  
31  
42  
43  
35  
40  
41  
32  
I
I
UART channel A Carrier-Detect (active low) or general purpose  
input. This input should be connected to VCC when not used. This  
input has no effect on the UART.  
UART channel A Ring-Indicator (active low) or general purpose  
input. This input should be connected to VCC when not used. This  
input has no effect on the UART.  
OP2A#  
O
Output Port 2 Channel A - The output state is defined by the user  
and through the software setting of MCR[3]. INTA is set to the active  
mode and OP2A# output to a logic 0 when MCR[3] is set to a logic  
1. INTA is set to the three state mode and OP2A# to a logic 1 when  
MCR[3] is set to a logic 0. See MCR[3]. This output should not be  
used as a general output else it will disturb the INTA output function-  
ality. If it is not used at all, leave it unconnected.  
TXB  
RXB  
12  
9
14  
10  
8
4
O
I
UART channel B Transmit Data. If it is not used, leave it uncon-  
nected.  
UART channel B Receive Data. Normal receive data input must idle  
at logic 1 condition. If it is not used, tie it to VCC or pull it high via a  
100k ohm resistor.  
RTSB#  
CTSB#  
24  
25  
27  
28  
22  
23  
O
I
UART channel B Request-to-Send (active low) or general purpose  
output. If it is not used, leave it unconnected.  
UART channel B Clear-to-Send (active low) or general purpose  
input. This input should be connected to VCC when not used. This  
input has no effect on the UART.  
DTRB#  
34  
38  
35  
O
UART channel B Data-Terminal-Ready (active low) or general pur-  
pose output. If it is not used, leave it unconnected.  
4
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
Pin Description  
40-PDIP 44-PLCC 48-TQFP  
NAME  
TYPE  
DESCRIPTION  
PIN #  
PIN #  
PIN #  
DSRB#  
22  
25  
20  
I
UART channel B Data-Set-Ready (active low) or general purpose  
input. This input should be connected to VCC when not used. This  
input has no effect on the UART.  
CDB#  
RIB#  
19  
23  
13  
21  
26  
15  
16  
21  
9
I
I
UART channel B Carrier-Detect (active low) or general purpose  
input. This input should be connected to VCC when not used. This  
input has no effect on the UART.  
UART channel B Ring-Indicator (active low) or general purpose  
input. This input should be connected to VCC when not used. This  
input has no effect on the UART.  
OP2B#  
O
Output Port 2 Channel B - The output state is defined by the user  
and through the software setting of MCR[3]. INTB is set to the active  
mode and OP2B# output to a logic 0 when MCR[3] is set to a logic  
1. INTB is set to the three state mode and OP2B# to a logic 1 when  
MCR[3] is set to a logic 0. See MCR[3]. This output should not be  
used as a general output else it will disturb the INTB output function-  
ality. If it is not used, leave it unconnected.  
ANCILLARY SIGNALS  
XTAL1  
XTAL2  
RESET  
16  
17  
35  
18  
19  
39  
13  
14  
36  
I
O
I
Crystal or external clock input.  
Crystal or buffered clock output.  
Reset (active high) - A longer than 40 ns logic 1 pulse on this pin will  
reset the internal registers and all outputs. The UART transmitter  
output will be held at logic 1, the receiver input will be ignored and  
outputs are reset during reset period (see External Reset Condi-  
tions).  
VCC  
GND  
N.C.  
40  
20  
-
44  
22  
-
42  
17  
Pwr 2.97V to 5.5V power supply. All inputs are 5V tolerant.  
Pwr Power supply common, ground.  
No Connection.  
12, 24,  
25, 37  
NOTE: Pin type: I=Input, O=Output, IO= Input/output, OD=Output Open Drain.  
5
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
1.0 PRODUCT DESCRIPTION  
The XR16C2550 (2550) integrates the functions of two 16C550 Universal Asynchrounous Receiver and  
Transmitter (UART). Each UART is independently controlled having its own set of device configuration  
registers. The 2550 provides serial asynchronous receive data synchronization, parallel-to-serial and serial-to-  
parallel data conversions for both the transmitter and receiver sections. These functions are necessary for  
converting the serial data stream into parallel data that is required with digital data systems. Synchronization  
for the serial data stream is accomplished by adding start and stops bits to the transmit data to form a data  
character (character orientated protocol). Data integrity is ensured by attaching a parity bit to the data  
character. The parity bit is checked by the receiver for any transmission bit errors. The electronic circuitry to  
provide all these functions is fairly complex especially when manufactured on a single integrated silicon chip.  
The 2550 represents such an integration with greatly enhanced features. The 2550 is fabricated with an  
advanced CMOS process.  
The 2550 is an upward solution that provides a dual UART capability with 16 bytes of transmit and receive  
FIFO memory, instead of none in the 16C2450. The 2550 is designed to work with high speed modems and  
shared network environments, that require fast data processing time. Increased performance is realized in the  
2550 by the transmit and receive FIFO’s. This allows the external processor to handle more networking tasks  
within a given time. For example, the ST16C2450 without a receive FIFO, will require unloading of the RHR in  
93 microseconds (This example uses a character length of 11 bits, including start/stop bits at 115.2 Kbps). This  
means the external CPU will have to service the receive FIFO less than every 100 microseconds. However  
with the 16 byte FIFO in the 2550, the data buffer will not require unloading/loading for 1.53 ms. This increases  
the service interval giving the external CPU additional time for other applications and reducing the overall  
UART interrupt servicing time. In addition, the 4 selectable receive FIFO trigger interrupt levels is uniquely  
provided for maximum data throughput performance especially when operating in a multi-channel  
environment. The FIFO memory greatly reduces the bandwidth requirement of the external controlling CPU,  
increases performance, and reduces power consumption.  
The 2550 is capable of operation up to 4 Mbps with a 64 MHz external clock. With a crystal or external clock  
input of 14.7456 MHz the user can select data rates up to 921.6 Kbps.  
The rich feature set of the 2550 is available through internal registers. Selectable receive FIFO trigger levels,  
selectable TX and RX baud rates, and modem interface controls are all standard features. Following a power  
on reset or an external reset, the 2550 is software compatible with the previous generation, ST16C2450.  
6
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
2.0 FUNCTIONAL DESCRIPTIONS  
2.1  
CPU Interface  
The CPU interface is 8 data bits wide with 3 address lines and control signals to execute data bus read and  
write transactions. The 2550 data interface supports the Intel compatible types of CPUs and it is compatible to  
the industry standard 16C550 UART. No clock (oscillator nor external clock) is required to operate a data bus  
transaction. Each bus cycle is asynchronous using CS#, IOR# and IOW# signals. Both UART channels share  
the same data bus for host operations. The data bus interconnections are shown in Figure 3.  
FIGURE 3. XR16C2550 DATA BUS INTERCONNECTIONS  
VCC  
VCC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
TXA  
RXA  
DTRA#  
RTSA#  
UART  
Channel A  
Serial Interface of  
RS-232, RS-485  
D7  
CTSA#  
DSRA#  
A0  
A0  
A1  
A1  
A2  
CDA#  
RIA#  
A2  
OP2A#  
IOR#  
IOR#  
IOW#  
IOW#  
TXB  
RXB  
CSA#  
CSB#  
UART_CSA#  
UART_CSB#  
DTRB#  
RTSB#  
UART_INTA  
UART_INTB  
INTA  
INTB  
UART  
Channel B  
Serial Interface of RS-  
232, RS-485  
CTSB#  
DSRB#  
TXRDYA#  
RXRDYA#  
TXRDYB#  
RXRDYB#  
TXRDYA#  
RXRDYA#  
TXRDYB#  
RXRDYB#  
CDB#  
RIB#  
OP2B#  
UART_RESET  
RESET  
GND  
2750int  
.
2.2  
Device Reset  
The RESET input resets the internal registers and the serial interface outputs in both channels to their default  
state (see Table 11). An active high pulse of at least 40 ns duration will be required to activate the reset  
function in the device.  
2.3  
Channel A and B Selection  
The UART provides the user with the capability to bi-directionally transfer information between an external  
CPU and an external serial communication device. A logic 0 on chip select pins, CSA# or CSB#, allows the  
user to select UART channel A or B to configure, send transmit data and/or unload receive data to/from the  
UART. Selecting both UARTs can be useful during power up initialization to write to the same internal registers,  
but do not attempt to read from both uarts simultaneously. Individual channel select functions are shown in  
Table 1.  
TABLE 1: CHANNEL A AND B SELECT  
CSA#  
CSB#  
FUNCTION  
1
0
1
0
1
1
0
0
UART de-selected  
Channel A selected  
Channel B selected  
Channel A and B selected  
7
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
2.4  
Channel A and B Internal Registers  
Each UART channel in the 2550 has a standard register set for controlling, monitoring and data loading and  
unloading. The configuration register set is compatible to those already available in the standard single  
16C550. These registers function as data holding registers (THR/RHR), interrupt status and control registers  
(ISR/IER), a FIFO control register (FCR), receive line status and control registers (LSR/LCR), modem status  
and control registers (MSR/MCR), programmable data rate (clock) divisor registers (DLL/DLM), and a user  
accessible scratch pad register (SPR).  
2.5  
DMA Mode  
The device does not support direct memory access. The DMA Mode (a legacy term) in this document does not  
mean “direct memory access” but refers to data block transfer operation. The DMA mode affects the state of  
the RXRDY# A/B and TXRDY# A/B output pins. The transmit and receive FIFO trigger levels provide additional  
flexibility to the user for block mode operation. The LSR bits 5-6 provide an indication when the transmitter is  
empty or has an empty location(s) for more data. The user can optionally operate the transmit and receive  
FIFO in the DMA mode (FCR bit-3=1). When the transmit and receive FIFO are enabled and the DMA mode is  
disabled (FCR bit-3 = 0), the 2550 is placed in single-character mode for data transmit or receive operation.  
When DMA mode is enabled (FCR bit-3 = 1), the user takes advantage of block mode operation by loading or  
unloading the FIFO in a block sequence determined by the programmed trigger level. The following table show  
their behavior. Also see Figures 17 through 22.  
TABLE 2: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE  
FCR BIT-0=0  
PINS  
FCR BIT-0=1 (FIFO ENABLED)  
(FIFO DISABLED)  
FCR Bit-3 = 0  
FCR Bit-3 = 1  
(DMA Mode Disabled)  
(DMA Mode Enabled)  
RXRDY# A/B 0 = 1 byte.  
1 = no data.  
0 = at least 1 byte in FIFO  
1 = FIFO empty.  
1 to 0 transition when FIFO reaches the trigger  
level, or time-out occurs.  
0 to 1 transition when FIFO empties.  
TXRDY# A/B 0 = THR empty.  
1 = byte in THR.  
0 = FIFO empty.  
0 = FIFO has at least 1 empty location.  
1 = FIFO is full.  
1 = at least 1 byte in FIFO.  
2.6  
INTA and INTB Outputs  
The INTA and INTB interrupt output changes according to the operating mode and enhanced features setup.  
Tables 3and 4summarize the operating behavior for the transmitter and receiver. Also see Figures 17  
through 22.  
TABLE 3: INTA AND INTB PINS OPERATION FOR TRANSMITTER  
FCR BIT-0 = 0  
FCR BIT-0 = 1  
(FIFO DISABLED)  
(FIFO ENABLED)  
INTA/B Pin  
0 = a byte in THR  
1 = THR empty  
0 = at least 1 byte in FIFO  
1 = FIFO empty  
TABLE 4: INTA AND INTB PIN OPERATION FOR RECEIVER  
FCR BIT-0 = 0  
FCR BIT-0 = 1  
(FIFO DISABLED)  
(FIFO ENABLED)  
INTA/B Pin  
0 = no data  
1 = 1 byte  
0 = FIFO below trigger level  
1 = FIFO above trigger level  
8
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
2.7  
Crystal Oscillator or External Clock Input  
The 2550 includes an on-chip oscillator (XTAL1 and XTAL2) to produce a clock for both UART sections in the  
device. The CPU data bus does not require this clock for bus operation. The crystal oscillator provides a  
system clock to the Baud Rate Generators (BRG) section found in each of the UART. XTAL1 is the input to the  
oscillator or external clock buffer input with XTAL2 pin being the output. See “Programmable Baud Rate  
Generator” on page 9.  
FIGURE 4. TYPICAL OSCILLATOR CONNECTIONS  
XTAL1  
XTAL2  
R1  
0-120 Ω  
(Optional)  
R2  
500 ΚΩ − 1 ΜΩ  
1.8432 MHz  
to  
Y1  
24 MHz  
C1  
C2  
22-47 pF  
22-47 pF  
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,  
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100ppm frequency  
tolerance) connected externally between the XTAL1 and XTAL2 pins (see Figure 4), with an external 500kto  
1 Mresistor across it. Alternatively, an external clock can be connected to the XTAL1 pin to clock the internal  
baud rate generator for standard or custom rates. Typical oscillator connections are shown in Figure 4. For  
further reading on oscillator circuit please see application note DAN108 on EXAR’s web site.  
2.8  
Programmable Baud Rate Generator  
A single baud rate generator is provided for the transmitter and receiver, allowing independent TX/RX channel  
control. The programmable Baud Rate Generator is capable of operating with a crystal frequency of up to 24  
MHz. However, with an external clock input on XTAL1 pin and a 2K ohms pull-up resistor on XTAL2 pin (as  
shown in Figure 5) it can extend its operation up to 64 MHz (4Mbps serial data rate) at room temperature and  
5.0V.  
9
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
FIGURE 5. EXTERNAL CLOCK CONNECTION FOR EXTENDED DATA RATE  
External Clock  
VCC  
vcc  
XTAL1  
XTAL2  
gnd  
R1  
2K  
To obtain maximum data rate, it is necessary to use full rail swing on the clock input. See external clock  
operating frequency over power supply voltage chart in Figure 6.  
FIGURE 6. OPERATING FREQUENCY VERSUS POWER SUPPLY CHART.  
Requires a 2K ohms pull-up resistor on XTAL2 pin to increase operating speed  
Operating frequency for XR16C2550  
with external clock and a 2K ohms  
pull-up resistor on XTAL2 pin.  
80  
-40oC  
25oC  
70  
60  
85oC  
50  
40  
30  
3.0 3.5 4.0 4.5 5.0 5.5  
Suppy Voltage  
10  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
The 2550 divides the basic external clock by 16. The basic 16X clock provides table rates to support standard  
and custom applications using the same system design. The Baud Rate Generator divides the input 16X clock  
16  
by any divisor from 1 to 2 -1. The rate table is configured via the DLL and DLM internal register functions.  
Customized Baud Rates can be achieved by selecting the proper divisor values for the MSB and LSB sections  
of baud rate generator.  
Table 5 shows the standard data rates available with a 14.7456 MHz crystal or external clock at 16X sampling  
rate. When using a non-standard frequency crystal or external clock, the divisor value can be calculated for  
DLL/DLM with the following equation.  
divisor (decimal) = (XTAL1 clock frequency) / (serial data rate x 16)  
TABLE 5: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK  
DATA RATE  
ERROR (%)  
OUTPUT Data Rate  
MCR Bit-7=0  
DIVISOR FOR 16x  
Clock (Decimal)  
DIVISOR FOR 16x  
Clock (HEX)  
DLM PROGRAM  
VALUE (HEX)  
DLL PROGRAM  
VALUE (HEX)  
400  
2304  
384  
192  
96  
48  
24  
12  
6
900  
180  
C0  
60  
09  
01  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
80  
C0  
60  
30  
18  
0C  
06  
04  
02  
01  
0
0
0
0
0
0
0
0
0
0
0
2400  
4800  
9600  
19.2k  
38.4k  
76.8k  
153.6k  
230.4k  
460.8k  
921.6k  
30  
18  
0C  
06  
4
04  
2
02  
1
01  
2.9  
Transmitter  
The transmitter section comprises of an 8-bit Transmit Shift Register (TSR) and 16 bytes of FIFO which  
includes a byte-wide Transmit Holding Register (THR). TSR shifts out every data bit with the 16X internal  
clock. A bit time is 16 clock periods. The transmitter sends the start-bit followed by the number of data bits,  
inserts the proper parity-bit if enabled, and adds the stop-bit(s). The status of the FIFO and TSR are reported in  
the Line Status Register (LSR bit-5 and bit-6).  
2.9.1  
Transmit Holding Register (THR) - Write Only  
The transmit holding register is an 8-bit register providing a data interface to the host processor. The host  
writes transmit data byte to the THR to be converted into a serial data stream including start-bit, data bits,  
parity-bit and stop-bit(s). The least-significant-bit (Bit-0) becomes first data bit to go out. The THR is the input  
register to the transmit FIFO of 16 bytes when FIFO operation is enabled by FCR bit-0. Every time a write  
operation is made to the THR, the FIFO data pointer is automatically bumped to the next sequential data  
location.  
2.9.2  
Transmitter Operation in non-FIFO Mode  
The host loads transmit data to THR one character at a time. The THR empty flag (LSR bit-5) is set when the  
data byte is transferred to TSR. THR flag can generate a transmit empty interrupt (ISR bit-1) when it is enabled  
by IER bit-1. The TSR flag (LSR bit-6) is set when TSR becomes completely empty.  
11  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE  
Transmit  
Holding  
Register  
(THR)  
Data  
Byte  
THR Interrupt (ISR bit-1)  
Enabled by IER bit-1  
16X Clock  
M
S
B
L
S
B
Transmit Shift Register (TSR)  
TXNOFIFO1  
2.9.3  
Transmitter Operation in FIFO Mode  
The host may fill the transmit FIFO with up to 16 bytes of transmit data. The THR empty flag (LSR bit-5) is set  
whenever the FIFO is empty. The THR empty flag can generate a transmit empty interrupt (ISR bit-1) when the  
FIFO becomes empty. The transmit empty interrupt is enabled by IER bit-1. The TSR flag (LSR bit-6) is set  
when TSR/FIFO becomes empty.  
FIGURE 8. TRANSMITTER OPERATION IN FIFO MODE  
Transmit FIFO  
THR  
Data Byte  
THR Interrupt (ISR bit-1) when TX  
FIFO becomes empty. FIFO is  
enabled by FCR bit-0=1.  
16X Clock  
Transmit Data Shift Register  
(TSR)  
TXFIFO1  
2.10 Receiver  
The receiver section contains an 8-bit Receive Shift Register (RSR) and 16 bytes of FIFO which includes a  
byte-wide Receive Holding Register (RHR). The RSR uses the 16X clock for timing. It verifies and validates  
every bit on the incoming character in the middle of each data bit. On the falling edge of a start or false start bit,  
an internal receiver counter starts counting at the 16X clock rate. After 8 clocks the start bit period should be at  
the center of the start bit. At this time the start bit is sampled and if it is still a logic 0 it is validated. Evaluating  
the start bit in this manner prevents the receiver from assembling a false character. The rest of the data bits  
and stop bits are sampled and validated in this same manner to prevent false framing. If there were any  
error(s), they are reported in the LSR register bits 2-4. Upon unloading the receive data byte from RHR, the  
receive FIFO pointer is bumped and the error tags are immediately updated to reflect the status of the data  
byte in RHR register. RHR can generate a receive data ready interrupt upon receiving a character or delay until  
it reaches the FIFO trigger level. Furthermore, data delivery to the host is guaranteed by a receive data ready  
time-out interrupt when data is not received for 4 word lengths as defined by LCR[1:0] plus 12 bits time. This is  
equivalent to 3.7-4.6 character times. The RHR interrupt is enabled by IER bit-0.  
12  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
2.10.1 Receive Holding Register (RHR) - Read-Only  
The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift  
Register. It provides the receive data interface to the host processor. The RHR register is part of the receive  
FIFO of 16 bytes by 11-bits wide, the 3 extra bits are for the 3 error tags to be reported in LSR register. When  
the FIFO is enabled by FCR bit-0, the RHR contains the first data character received by the FIFO. After the  
RHR is read, the next character byte is loaded into the RHR and the errors associated with the current data  
byte are immediately updated in the LSR bits 2-4.  
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Error  
Receive  
Data Byte  
and Errors  
Receive Data  
Holding Register  
(RHR)  
Tags in  
LSR bits  
4:2  
RHR Interrupt (ISR bit-2)  
RXFIFO1  
FIGURE 10. RECEIVER OPERATION IN FIFO MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
16 bytes by 11-bit  
wide FIFO  
RHR Interrupt (ISR bit-2) when FIFO fills  
up to trigger level.  
RX FIFO  
RHR  
FIFO is Enabled by FCR bit-0=1  
Receive Data  
Byte and Errors  
RXFIFO1  
13  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
2.11 Internal Loopback  
The 2550 UART provides an internal loopback capability for system diagnostic purposes. The internal  
loopback mode is enabled by setting MCR register bit-4 to logic 1. All regular UART functions operate normally.  
Figure 11 shows how the modem port signals are re-configured. Transmit data from the transmit shift register  
output is internally routed to the receive shift register input allowing the system to receive the same data that it  
was sending. The TX pin is held at logic 1 or mark condition while RTS# and DTR# are de-asserted, and  
CTS#, DSR# CD# and RI# inputs are ignored. Caution: the RX input must be held to a logic 1 during loopback  
test else upon exiting the loopback test the UART may detect and report a false “break” signal.  
FIGURE 11. INTERNAL LOOP BACK IN CHANNEL A AND B  
VCC  
TXA/TXB  
Transmit Shift Register  
(THR/FIFO)  
MCR bit-4=1  
Receive Shift Register  
RXA/RXB  
(RHR/FIFO)  
VCC  
RTSA#/RTSB#  
RTS#  
CTS#  
CTSA#/CTSB  
VCC  
DTRA#/DTRB#  
DTR#  
DSR#  
RI#  
DSRA#/DSRB#  
OP1#  
VCC  
RIA#/RIB#  
OP2A#/OP2B#  
OP2#  
CD#  
CDA#/CDB#  
14  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
3.0 UART INTERNAL REGISTERS  
Each of the UART channel in the 2550 has its own set of configuration registers selected by address lines A0,  
A1 and A2 with CSA# or CSB# selecting the channel. The registers are 16C550 compatible. The complete  
register set is shown on Table 6 and Table 7.  
TABLE 6: UART CHANNEL A AND B UART INTERNAL REGISTERS  
A2,A1,A0 ADDRESSES  
REGISTER  
READ/WRITE  
COMMENTS  
16C550 COMPATIBLE REGISTERS  
0
0 0  
RHR - Receive Holding Register  
Read-only  
Write-only  
LCR[7] = 0  
THR - Transmit Holding Register  
0
0 0  
0 1  
0 1  
1 0  
DLL - Div Latch Low Byte  
Read/Write  
Read/Write  
Read/Write  
LCR[7] = 1  
LCR[7] = 1  
LCR[7] = 0  
0
0
0
DLM - Div Latch High Byte  
IER - Interrupt Enable Register  
ISR - Interrupt Status Register  
FCR - FIFO Control Register  
Read-only  
Write-only  
0
1
1
1 1  
0 0  
0 1  
LCR - Line Control Register  
Read/Write  
Read/Write  
MCR - Modem Control Register  
LSR - Line Status Register  
Reserved  
Read-only  
Write-only  
1
1
1 0  
1 1  
MSR - Modem Status Register  
Reserved  
Read-only  
Write-only  
SPR - Scratch Pad Register  
Read/Write  
15  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
.
TABLE 7: INTERNAL REGISTERS DESCRIPTION  
ADDRESS  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
A2-A0  
NAME  
16C550 Compatible Registers  
0 0 0  
0 0 0  
0 0 1  
RHR  
THR  
RD  
Bit-7  
Bit-7  
0
Bit-6  
Bit-6  
0
Bit-5  
Bit-5  
0
Bit-4  
Bit-4  
0
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
WR  
LCR[7] = 0  
IER RD/WR  
Modem RXLine  
Stat.  
Int.  
TX  
Empty  
Int  
RX  
Data  
Int.  
Stat.  
Int.  
Enable Enable Enable Enable  
0 1 0  
0 1 0  
0 1 1  
ISR  
RD  
FIFOs  
Enabled Enabled  
FIFOs  
0
0
0
0
INT INT INT INT  
Source Source Source Source  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
FCR  
WR RXFIFO RXFIFO  
Trigger Trigger  
DMA  
TX  
RX  
FIFOs  
Mode  
FIFO  
FIFO Enable  
Enable Reset Reset  
LCR RD/WR Divisor Set TX Set Par-  
Even  
Parity Enable  
Parity  
Stop  
Bits  
Word  
Length Length  
Bit-1 Bit-0  
Word  
Enable  
Break  
ity  
1 0 0  
1 0 1  
MCR RD/WR  
0
0
0
Internal OP2#/ Rsrvd RTS# DTR#  
Loop-  
back  
INT  
Output  
Output Output  
Control Control  
(OP1#)  
Enable Enable  
LSR  
RD  
RD  
RX FIFO THR &  
Global  
Error  
THR  
Empty  
RX  
RX  
RX  
RX  
RX  
TSR  
Empty  
Break  
Fram- Parity Over-  
Data  
ing  
Error  
run  
Ready  
Error  
Error  
1 1 0  
1 1 1  
MSR  
CD#  
Input  
RI#  
Input  
DSR#  
Input  
CTS#  
Input  
Delta  
CD#  
Delta  
RI#  
Delta  
DSR# CTS#  
Delta  
SPR RD/WR  
Bit-7  
Bit-6  
Bit-5  
Bit-4  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
Baud Rate Generator Divisor  
0 0 0  
0 0 1  
DLL RD/WR  
DLM RD/WR  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
LCR[7] = 1  
4.0 INTERNAL REGISTER DESCRIPTIONS  
4.1 Receive Holding Register (RHR) - Read- Only  
See “Receiver” on page 12.  
4.2  
Transmit Holding Register (THR) - Write-Only  
See “Transmitter” on page 11.  
4.3  
Interrupt Enable Register (IER) - Read/Write  
The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status  
and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR).  
16  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
4.3.1  
IER versus Receive FIFO Interrupt Mode Operation  
When the receive FIFO (FCR BIT-0 = 1) and receive interrupts (IER BIT-0 = 1) are enabled, the RHR interrupts  
(see ISR bits 2 and 3) status will reflect the following:  
A. The receive data available interrupts are issued to the host when the FIFO has reached the programmed  
trigger level. It will be cleared when the FIFO drops below the programmed trigger level.  
B. FIFO level will be reflected in the ISR register when the FIFO trigger level is reached. Both the ISR register  
status bit and the interrupt will be cleared when the FIFO drops below the trigger level.  
C. The receive data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to  
the receive FIFO. It is reset when the FIFO is empty.  
4.3.2  
IER versus Receive/Transmit FIFO Polled Mode Operation  
When FCR BIT-0 equals a logic 1 for FIFO enable; resetting IER bits 0-3 enables the XR16C2550 in the FIFO  
polled mode of operation. Since the receiver and transmitter have separate bits in the LSR either or both can  
be used in the polled mode by selecting respective transmit or receive control bit(s).  
A. LSR BIT-0 indicates there is data in RHR or RX FIFO.  
B. LSR BIT-1 indicates an overrun error has occurred and that data in the FIFO may not be valid.  
C. LSR BIT 2-4 provides the type of receive data errors encountered for the data byte in RHR, if any.  
D. LSR BIT-5 indicates Transmit FIFO is empty.  
E. LSR BIT-6 indicates when both the transmit FIFO and TSR are empty.  
F. LSR BIT-7 indicates a data error in at least one character in the RX FIFO.  
IER[0]: RHR Interrupt Enable  
The receive data ready interrupt will be issued when RHR has a data character in the non-FIFO mode or when  
the receive FIFO has reached the programmed trigger level in the FIFO mode.  
Logic 0 = Disable the receive data ready interrupt (default).  
Logic 1 = Enable the receiver data ready interrupt.  
IER[1]: THR Interrupt Enable  
This bit enables the Transmit Ready interrupt which is issued whenever the Transmit FIFO becomes empty. If  
the Transmit FIFO is empty when this bit is enabled, an interrupt will be generated.  
Logic 0 = Disable Transmit Ready interrupt (default).  
Logic 1 = Enable Transmit Ready interrupt.  
IER[2]: Receive Line Status Interrupt Enable  
If any of the LSR register bits 1, 2, 3 or 4 is a logic 1, it will generate an interrupt to inform the host controller  
about the error status of the current data byte in FIFO. LSR bit-1 generates an interrupt immediately when the  
character has been received. LSR bits 2-4 generate an interrupt when the character with errors is read out of  
the FIFO.  
Logic 0 = Disable the receiver line status interrupt (default).  
Logic 1 = Enable the receiver line status interrupt.  
IER[3]: Modem Status Interrupt Enable  
Logic 0 = Disable the modem status register interrupt (default).  
Logic 1 = Enable the modem status register interrupt.  
IER[7:4]: Reserved  
17  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
4.4  
Interrupt Status Register (ISR) - Read-Only  
The UART provides multiple levels of prioritized interrupts to minimize external software interaction. The  
Interrupt Status Register (ISR) provides the user with four interrupt status bits. Performing a read cycle on the  
ISR will give the user the current highest pending interrupt level to be serviced, others are queued up to be  
serviced next. No other interrupts are acknowledged until the pending interrupt is serviced. The Interrupt  
Source Table, Table 8, shows the data values (bits 0-3) for the interrupt priority levels and the interrupt sources  
associated with each of these interrupt levels.  
4.4.1  
Interrupt Generation:  
LSR is by any of the LSR bits 1, 2, 3 and 4.  
RXRDY is by RX trigger level.  
RXRDY Time-out is by a 4-char plus 12 bits delay timer.  
TXRDY is by TX FIFO empty.  
MSR is by any of the MSR bits 0, 1, 2 and 3.  
4.4.2  
Interrupt Clearing:  
LSR interrupt is cleared by a read to the LSR register.  
RXRDY interrupt is cleared by reading data until FIFO falls below the trigger level.  
RXRDY Time-out interrupt is cleared by reading RHR.  
TXRDY interrupt is cleared by a read to the ISR register or writing to THR.  
MSR interrupt is cleared by a read to the MSR register.  
]
TABLE 8: INTERRUPT SOURCE AND PRIORITY LEVEL  
ISR REGISTER STATUS BITS  
PRIORITY LEVEL  
SOURCE OF INTERRUPT  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
1
2
3
4
5
-
0
1
0
0
0
0
1
1
1
0
0
0
1
0
0
1
0
0
0
0
0
0
0
1
LSR (Receiver Line Status Register)  
RXRDY (Receive Data Time-out)  
RXRDY (Received Data Ready)  
TXRDY (Transmit Ready)  
MSR (Modem Status Register)  
None (default)  
ISR[0]: Interrupt Status  
Logic 0 = An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt  
service routine.  
Logic 1 = No interrupt pending (default).  
ISR[3:1]: Interrupt Status  
These bits indicate the source for a pending interrupt at interrupt priority levels (See Table 8).  
ISR[5:4]: Reserved  
ISR[7:6]: FIFO Enable Status  
These bits are set to a logic 0 when the FIFOs are disabled. They are set to a logic 1 when the FIFOs are  
enabled.  
18  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
4.5  
FIFO Control Register (FCR) - Write-Only  
This register is used to enable the FIFOs, clear the FIFOs, set the transmit/receive FIFO trigger levels, and  
select the DMA mode. The DMA, and FIFO modes are defined as follows:  
FCR[0]: TX and RX FIFO Enable  
Logic 0 = Disable the transmit and receive FIFO (default).  
Logic 1 = Enable the transmit and receive FIFOs. This bit must be set to logic 1 when other FCR bits are  
written or they will not be programmed.  
FCR[1]: RX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No receive FIFO reset (default)  
Logic 1 = Reset the receive FIFO pointers (the receive shift register is not cleared or altered). This bit will  
return to a logic 0 after resetting the FIFO.  
FCR[2]: TX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No transmit FIFO reset (default).  
Logic 1 = Reset the transmit FIFO pointers (the transmit shift register is not cleared or altered). This bit will  
return to a logic 0 after resetting the FIFO.  
FCR[3]: DMA Mode Select  
Controls the behavior of the TXRDY# and RXRDY# pins. See DMA operation section for details.  
Logic 0 = Normal Operation (default).  
Logic 1 = DMA Mode.  
FCR[5:4]: Reserved  
FCR[7:6]: Receive FIFO Trigger Select  
(logic 0 = default, RX trigger level =1)  
These 2 bits are used to set the trigger level for the receive FIFO. The UART will issue a receive interrupt when  
the number of the characters in the FIFO crosses the trigger level. Table 9 shows the complete selections.  
TABLE 9: RECEIVE FIFO TRIGGER LEVEL SELECTION  
RECEIVE  
TRIGGER  
LEVEL  
FCR  
BIT-7  
FCR  
BIT-6  
COMPATIBILITY  
0
0
1
1
0
1
0
1
1 (default)  
16C550, 16C2552,  
16C554, 16C580 com-  
patible.  
4
8
14  
4.6  
Line Control Register (LCR) - Read/Write  
The Line Control Register is used to specify the asynchronous data communication format. The word or  
character length, the number of stop bits, and the parity are selected by writing the appropriate bits in this  
register.  
19  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
LCR[1:0]: TX and RX Word Length Select  
These two bits specify the word length to be transmitted or received.  
BIT-1  
BIT-0  
WORD LENGTH  
0
0
1
1
0
1
0
1
5 (default)  
6
7
8
LCR[2]: TX and RX Stop-bit Length Select  
The length of stop bit is specified by this bit in conjunction with the programmed word length.  
STOP BIT LENGTH  
(BIT TIME(S))  
WORD  
LENGTH  
BIT-2  
0
1
1
5,6,7,8  
5
1 (default)  
1-1/2  
2
6,7,8  
LCR[3]: TX and RX Parity Select  
Parity or no parity can be selected via this bit. The parity bit is a simple way used in communications for data  
integrity check. See Table 10 for parity selection summary below.  
Logic 0 = No parity.  
Logic 1 = A parity bit is generated during the transmission while the receiver checks for parity error of the  
data character received.  
LCR[4]: TX and RX Parity Select  
If the parity bit is enabled with LCR bit-3 set to a logic 1, LCR bit-4 selects the even or odd parity format.  
Logic 0 = ODD Parity is generated by forcing an odd number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format (default).  
Logic 1 = EVEN Parity is generated by forcing an even number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format.  
20  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
LCR[5]: TX and RX Parity Select  
If the parity bit is enabled, LCR bit-5 selects the forced parity format.  
LCR[5] = logic 0, parity is not forced (default).  
LCR[5] = logic 1 and LCR[4] = logic 0, parity bit is forced to a logical 1 for the transmit and receive data.  
LCR[5] = logic 1 and LCR[4] = logic 1, parity bit is forced to a logical 0 for the transmit and receive data.  
TABLE 10: PARITY SELECTION  
LCR BIT-5 LCR BIT-4 LCR BIT-3  
PARITY SELECTION  
No parity  
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
Odd parity  
Even parity  
Force parity to mark, “1”  
Forced parity to space, “0”  
LCR[6]: Transmit Break Enable  
When enabled, the Break control bit causes a break condition to be transmitted (the TX output is forced to a  
“space’, logic 0, state). This condition remains, until disabled by setting LCR bit-6 to a logic 0.  
Logic 0 = No TX break condition (default).  
Logic 1 = Forces the transmitter output (TX) to a “space”, logic 0, for alerting the remote receiver of a line  
break condition.  
LCR[7]: Baud Rate Divisors (DLL/DLM) Enable  
Logic 0 = Data registers are selected (default).  
Logic 1 = Divisor latch registers are selected.  
4.7  
Modem Control Register (MCR) or General Purpose Outputs Control - Read/Write  
The MCR register is used for controlling the serial/modem interface signals or general purpose inputs/outputs.  
MCR[0]: DTR# Output  
The DTR# pin is a modem control output. If the modem interface is not used, this output may be used as a  
general purpose output.  
Logic 0 = Force DTR# output to a logic 1 (default).  
Logic 1 = Force DTR# output to a logic 0.  
MCR[1]: RTS# Output  
The RTS# pin is a modem control output. If the modem interface is not used, this output may be used as a  
general purpose output.  
Logic 0 = Force RTS# output to a logic 1 (default).  
Logic 1 = Force RTS# output to a logic 0.  
MCR[2]: Reserved  
OP1# is not available as an output pin on the 2550. But it is available for use during Internal Loopback Mode.  
In the Loopback Mode, this bit is used to write the state of the modem RI# interface signal.  
21  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
MCR[3]: OP2# Output / INT Output Enable  
This bit enables and disables the operation of INT, interrupt output. If INT output is not used, OP2# can be  
used as a general purpose output.  
Logic 0 = INT (A-B) outputs disabled (three state mode) and OP2# output set to a logic 1 (default).  
Logic 1 = INT (A-B) outputs enabled (active mode) and OP2# output set to a logic 0.  
MCR[4]: Internal Loopback Enable  
Logic 0 = Disable loopback mode (default).  
Logic 1 = Enable local loopback mode, see loopback section and Figure 11.  
MCR[7:5]: Reserved  
4.8  
Line Status Register (LSR) - Read Only  
This register provides the status of data transfers between the UART and the host.  
LSR[0]: Receive Data Ready Indicator  
Logic 0 = No data in receive holding register or FIFO (default).  
Logic 1 = Data has been received and is saved in the receive holding register or FIFO.  
LSR[1]: Receiver Overrun Flag  
Logic 0 = No overrun error (default).  
Logic 1 = Overrun error. A data overrun error condition occurred in the receive shift register. This happens  
when additional data arrives while the FIFO is full. In this case the previous data in the receive shift register  
is overwritten. Note that under this condition the data byte in the receive shift register is not transferred into  
the FIFO, therefore the data in the FIFO is not corrupted by the error. An interrupt will be generated  
immediately if LSR interrupt is enabled (IER bit-2).  
LSR[2]: Receive Data Parity Error Flag  
Logic 0 = No parity error (default).  
Logic 1 = Parity error. The receive character in RHR does not have correct parity information and is suspect.  
This error is associated with the character available for reading in RHR. If the LSR interrupt is enabled (IER  
bit-2), an interrupt will be generated when the character is in the RHR.  
LSR[3]: Receive Data Framing Error Flag  
Logic 0 = No framing error (default).  
Logic 1 = Framing error. The receive character did not have a valid stop bit(s). This error is associated with  
the character available for reading in RHR. If the LSR interrupt is enabled (IER bit-2), an interrupt will be  
generated when the character is in the RHR.  
LSR[4]: Receive Break Flag  
Logic 0 = No break condition (default).  
Logic 1 = The receiver received a break signal (RX was a logic 0 for at least one character frame time). In the  
FIFO mode, only one break character is loaded into the FIFO. The break indication remains until the RX  
input returns to the idle condition, “mark” or logic 1. If the LSR interrupt is enabled (IER bit-2), an interrupt will  
be generated when the character is in the RHR.  
LSR[5]: Transmit Holding Register Empty Flag  
This bit is the Transmit Holding Register Empty indicator. This bit indicates that the transmitter is ready to  
accept a new character for transmission. In addition, this bit causes the UART to issue an interrupt to the host  
when the THR interrupt enable is set. The THR bit is set to a logic 1 when the last data byte is transferred from  
the transmit holding register to the transmit shift register. The bit is reset to logic 0 concurrently with the data  
loading to the transmit holding register by the host. In the FIFO mode this bit is set when the transmit FIFO is  
empty, it is cleared when the transmit FIFO contains at least 1 byte.  
22  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
LSR[6]: THR and TSR Empty Flag  
This bit is set to a logic 1 whenever the transmitter goes idle. It is set to logic 0 whenever either the THR or  
TSR contains a data character. In the FIFO mode this bit is set to a logic 1 whenever the transmit FIFO and  
transmit shift register are both empty.  
LSR[7]: Receive FIFO Data Error Flag  
Logic 0 = No FIFO error (default).  
Logic 1 = A global indicator for the sum of all error bits in the RX FIFO. At least one parity error, framing error  
or break indication is in the FIFO data. This bit clears when there is no more error(s) in the FIFO.  
4.9  
Modem Status Register (MSR) - Read Only  
This register provides the current state of the modem interface signals, or other peripheral device that the  
UART is connected. Lower four bits of this register are used to indicate the changed information. These bits  
are set to a logic 1 whenever a signal from the modem changes state. These bits may be used as general  
purpose inputs/outputs when they are not used with modem signals.  
MSR[0]: Delta CTS# Input Flag  
Logic 0 = No change on CTS# input (default).  
Logic 1 = The CTS# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[1]: Delta DSR# Input Flag  
Logic 0 = No change on DSR# input (default).  
Logic 1 = The DSR# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[2]: Delta RI# Input Flag  
Logic 0 = No change on RI# input (default).  
Logic 1 = The RI# input has changed from a logic 0 to a logic 1, ending of the ringing signal. A modem status  
interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[3]: Delta CD# Input Flag  
Logic 0 = No change on CD# input (default).  
Logic 1 = Indicates that the CD# input has changed state since the last time it was monitored. A modem  
status interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[4]: CTS Input Status  
Normally MSR bit-4 bit is the compliment of the CTS# input. However in the loopback mode, this bit is  
equivalent to the RTS# bit in the MCR register. The CTS# input may be used as a general purpose input when  
the modem interface is not used.  
MSR[5]: DSR Input Status  
Normally this bit is the compliment of the DSR# input. In the loopback mode, this bit is equivalent to the DTR#  
bit in the MCR register. The DSR# input may be used as a general purpose input when the modem interface is  
not used.  
MSR[6]: RI Input Status  
Normally this bit is the compliment of the RI# input. In the loopback mode this bit is equivalent to bit-2 in the  
MCR register. The RI# input may be used as a general purpose input when the modem interface is not used.  
23  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
MSR[7]: CD Input Status  
Normally this bit is the compliment of the CD# input. In the loopback mode this bit is equivalent to bit-3 in the  
MCR register. The CD# input may be used as a general purpose input when the modem interface is not used.  
4.10 Scratch Pad Register (SPR) - Read/Write  
This is a 8-bit general purpose register for the user to store temporary data. The content of this register is  
preserved during sleep mode but becomes 0xFF (default) after a reset or a power off-on cycle.  
4.11 Baud Rate Generator Registers (DLL and DLM) - Read/Write  
The Baud Rate Generator (BRG) is a 16-bit counter that generates the data rate for the transmitter. The rate is  
programmed through registers DLL and DLM which are only accessible when LCR bit-7 is set to ‘1’. See  
“Programmable Baud Rate Generator” on page 9.  
TABLE 11: UART RESET CONDITIONS FOR CHANNEL A AND B  
REGISTERS  
DLM  
DLL  
RESET STATE  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x01  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x60  
Bits 3-0 = Logic 0  
RHR  
THR  
IER  
FCR  
ISR  
LCR  
MCR  
LSR  
MSR  
Bits 7-4 = Logic levels of the inputs inverted  
SPR  
I/O SIGNALS  
TX  
Bits 7-0 = 0xFF  
RESET STATE  
Logic 1  
OP2#  
Logic 1  
RTS#  
Logic 1  
DTR#  
Logic 1  
RXRDY#  
TXRDY#  
INT  
Logic 1  
Logic 0  
Three-State Condition  
24  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
ABSOLUTE MAXIMUM RATINGS  
Power Supply Range  
Voltage at Any Pin  
7 Volts  
GND-0.3 V to VCC+0.3 V  
-40o to +85oC  
Operating Temperature  
-65o to +150oC  
500 mW  
Storage Temperature  
Package Dissipation  
PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%)  
theta-ja =59oC/W, theta-jc = 16oC/W  
Thermal Resistance (48-TQFP)  
theta-ja = 50oC/W, theta-jc = 21oC/W  
theta-ja = 50oC/W, theta-jc = 22oC/W  
Thermal Resistance (44-PLCC)  
Thermal Resistance (40-PDIP)  
ELECTRICAL CHARACTERISTICS  
DC ELECTRICAL CHARACTERISTICS  
UNLESS OTHERWISE NOTED: TA=-40O TO +85OC, VCC = 2.97V TO 5.5V  
3.3V  
5.0V  
SYMBOL  
PARAMETER  
LIMITS  
LIMITS  
MAX  
UNITS  
CONDITIONS  
MIN  
MAX  
MIN  
VILCK  
VIHCK  
VIL  
Clock Input Low Level  
Clock Input High Level  
Input Low Voltage  
-0.3  
0.6  
5.5  
0.8  
5.5  
-0.5  
0.6  
5.5  
0.8  
5.5  
0.4  
V
V
V
V
2.4  
-0.3  
2.0  
3.0  
-0.5  
2.2  
VIH  
Input High Voltage  
Output Low Voltage  
VOL  
V
V
IOL = 6 mA  
0.4  
VOH  
Output High Voltage  
2.4  
V
V
IOL = 4 mA  
2.0  
IIL  
IIH  
Input Low Leakage Current  
Input High Leakage Current  
Input Pin Capacitance  
±10  
±10  
5
±10  
±10  
5
uA  
uA  
pF  
IOH = -6 mA  
IOH = -1 mA  
CIN  
ICC  
Power Supply Current  
1.3  
3
mA  
25  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
AC ELECTRICAL CHARACTERISTICS  
TA=-40O TO +85OC, VCC = 2.97V TO 5.5V, 70 PF LOAD WHERE APPLICABLE  
3.3  
5.0  
SYMBOL  
PARAMETER  
LIMITS  
MAX  
LIMITS  
UNIT  
COMMENTS  
MIN  
MIN  
MAX  
-
Crystal Frequency  
20  
24  
ns  
ns  
CLK  
OSC  
TAS  
Clock Pulse Duration  
External Clock Frequency  
Address Setup Time  
17  
8
30  
64  
MHz  
ns  
5
0
TAH  
TCS  
TRD  
TDY  
Address Hold Time  
Chip Select Width  
10  
5
ns  
ns  
ns  
ns  
70*  
70*  
70*  
40  
40  
40  
* 55ns if VCC =  
3.3V +10%/-5%  
and  
TA = 0 to 70oC  
IOR# Strobe Width  
Read or Write Cycle Delay  
(See Figure 12)  
TRDV  
TDD  
Data Access Time  
Data Disable Time  
IOW# Strobe Width  
Data Setup Time  
35  
25  
25  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
40  
20  
5
0
25  
15  
5
TWR  
TDS  
TDH  
Data Hold Time  
TWDO  
TMOD  
Delay From IOW# To Output  
50  
40  
40  
35  
Delay To Set Interrupt From MODEM  
Input  
TRSI  
TSSI  
TRRI  
TSI  
Delay To Reset Interrupt From IOR#  
Delay From Stop To Set Interrupt  
Delay From IOR# To Reset Interrupt  
Delay From Start To Interrupt  
40  
1
35  
1
ns  
Bclk  
ns  
45  
45  
24  
40  
40  
24  
ns  
TINT  
Delay From Initial INT Reset To Transmit  
Start  
8
8
Bclk  
TWRI  
TSSR  
TRR  
Delay From IOW# To Reset Interrupt  
Delay From Stop To Set RXRDY#  
Delay From IOR# To Reset RXRDY#  
Delay From IOW# To Set TXRDY#  
45  
1
40  
1
ns  
Bclk  
ns  
45  
45  
8
40  
40  
8
TWT  
ns  
TSRT  
Delay From Center of Start To Reset  
TXRDY#  
Bclk  
TRST  
N
Reset Pulse Width  
Baud Rate Divisor  
Baud Clock  
40  
1
40  
1
ns  
-
216-1  
216-1  
Bclk  
16X of data rate  
Hz  
26  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
a
FIGURE 12. AC TIMING VALUES  
80  
70  
70  
TCS, TRD, TDY: 3.3V ± 10%  
63  
60  
55  
TCS, TRD, TDY: 3.3V +10%/- 5%  
53  
48  
50  
40  
40  
25  
34  
22  
TWR: 3.3V ± 10%  
TCS, TRD, TDY: 5V ± 10%  
TWR: 5V ± 10%  
30  
20  
10  
0
27  
26  
16  
-40  
25  
70  
85  
Temperature (deg C)  
FIGURE 13. CLOCK TIMING  
CLK  
CLK  
EXTERNAL  
CLOCK  
OSC  
27  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
FIGURE 14. MODEM INPUT/OUTPUT TIMING FOR CHANNELS A & B  
IOW #  
Active  
TW DO  
RTS#  
DTR#  
Change of state  
Change of state  
CD#  
CTS#  
DSR#  
Change of state  
Change of state  
TMOD  
TMOD  
INT  
Active  
Active  
Active  
Active  
Active  
TRSI  
IOR#  
Active  
TMOD  
Change of state  
RI#  
FIGURE 15. DATA BUS READ TIMING  
A0-A2  
Valid Address  
Valid Address  
TCS  
TAS  
TAS  
TAH  
TAH  
TCS  
CSA#/  
CSB#  
TDY  
TRD  
TRD  
IOR#  
TDD  
TDD  
TRDV  
TRDV  
D0-D7  
Valid Data  
Valid Data  
RDTm  
28  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
FIGURE 16. DATA BUS WRITE TIMING  
A0-A2  
Valid Address  
Valid Address  
TAS  
TAS  
TAH  
TCS  
TAH  
TCS  
CSA#/  
CSB#  
TDY  
TWR  
TWR  
IOW#  
TDH  
TDH  
TDS  
Valid Data  
TDS  
Valid Data  
D0-D7  
16Write  
FIGURE 17. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A & B  
RX  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
TSSR  
TSSR  
TSSR  
1 Byte  
1 Byte  
1 Byte  
in RHR  
in RHR  
in RHR  
INT  
TSSR  
TSSR  
TSSR  
Active  
Data  
Active  
Data  
Active  
Data  
RXRDY#  
Ready  
Ready  
Ready  
TRR  
TRR  
TRR  
IOR#  
(Reading data  
out of RHR)  
RXNFM  
29  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
FIGURE 18. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A & B  
TX  
(Unloading)  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
IER[1]  
enabled  
ISR is read  
ISR is read  
ISR is read  
INT*  
TWRI  
TWRI  
TWRI  
TSRT  
TSRT  
TSRT  
TXRDY#  
TWT  
TWT  
TWT  
IOW#  
(Loading data  
into THR)  
*INT is cleared when the ISR is read or when data is loaded into the THR.  
TXNonFIFO  
FIGURE 19. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED] FOR CHANNELS A & B  
Start  
Bit  
RX  
S
S
S
S
T
D0:D7  
D0:D7  
D0:D7  
T
D0:D7  
TSSI  
D0:D7  
S
T
S
D0:D7  
T
D0:D7  
T
Stop  
Bit  
RX FIFO drops  
below RX  
Trigger Level  
INT  
TSSR  
FIFO  
Empties  
RX FIFO fills up to RX  
Trigger Level or RX Data  
Timeout  
RXRDY#  
First Byte is  
Received in  
RX FIFO  
TRRI  
TRR  
IOR#  
(Reading data out  
of RX FIFO)  
RXINTDMA#  
30  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
FIGURE 20. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED] FOR CHANNELS A & B  
Start  
Bit  
Stop  
Bit  
RX  
S
S
S
S
T
D0:D7  
D0:D7  
D0:D7  
T
D0:D7  
TSSI  
D0:D7  
S
T
S
D0:D7  
T
D0:D7  
T
RX FIFO drops  
below RX  
Trigger Level  
INT  
RX FIFO fills up to RX  
Trigger Level or RX Data  
Timeout  
TSSR  
FIFO  
Empties  
RXRDY#  
TRRI  
TRR  
IOR#  
(Reading data out  
of RX FIFO)  
RXFIFODMA  
FIGURE 21. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED] FOR CHANNELS A & B  
Stop  
Bit  
Start  
Bit  
Last Data Byte  
Transmitted  
TX FIFO  
Empty  
TX  
(Unloading)  
T
S
S
S
T
D0:D7  
S
T
S
D0:D7  
D0:D7  
T
S D0:D7  
T
D0:D7  
T
D0:D7  
T
TSRT  
IER[1]  
enabled  
ISR is read  
TX FIFO no  
longer empty  
INT*  
TSI  
TWRI  
TX FIFO  
Empty  
Data in  
TX FIFO  
TXRDY#  
TWT  
IOW#  
(Loading data  
into FIFO)  
*INT is cleared when the ISR is read or when there is at least one character in the FIFO.  
TXDMA#  
31  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
FIGURE 22. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE ENABLED] FOR CHANNELS A & B  
Stop  
Bit  
Start  
Bit  
Last Data Byte  
Transmitted  
TX FIFO  
Empty  
TX  
(Unloading)  
T
S
S
S
T
D0:D7  
S
T
S
D0:D7  
D0:D7  
T
S D0:D7  
T
D0:D7  
T
D0:D7  
T
IER[1]  
enabled  
ISR is read  
TSRT  
TX FIFO no  
longer empty  
TSI  
INT*  
TWRI  
TX FIFO  
Empty  
At least 1  
empty location  
in FIFO  
TX FIFO  
Full  
TXRDY#  
TWT  
IOW#  
(Loading data  
into FIFO)  
*INT is cleared when the ISR is read or when there is at least one character in the FIFO.  
TXDMA  
32  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1 mm)  
D
D
1
36  
25  
37  
24  
D
1
D
48  
13  
1
1
2
B
e
A
2
C
A
Seating  
Plane  
α
A
1
L
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
MAX  
1.20  
0.15  
1.05  
0.27  
0.20  
9.20  
7.10  
A
A1  
A2  
B
0.039  
0.002  
0.037  
0.007  
0.004  
0.346  
0.272  
0.047  
0.006  
0.041  
0.011  
0.008  
0.362  
0.280  
1.00  
0.05  
0.95  
0.17  
0.09  
8.80  
6.90  
C
D
D1  
e
0.020 BSC  
0.50 BSC  
L
0.018  
0.030  
0.45  
0.75  
α
0°  
7°  
0°  
7°  
33  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
PACKAGE DIMENSIONS (44 PIN PLCC)  
44 LEAD PLASTIC LEADED CHIP CARRIER  
(PLCC)  
Rev. 1.00  
C
D
Seating Plane  
D1  
45° x H  
1
45° x H  
2
A
2
2
1
44  
B
1
B
D
D
1
D
D
3
2
e
R
D
3
A
1
A
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
MAX  
4.57  
3.05  
---  
A
A1  
A2  
B
0.165  
0.090  
0.020  
0.013  
0.026  
0.180  
0.120  
---  
4.19  
2.29  
0.51  
0.33  
0.66  
0.021  
0.032  
0.53  
0.81  
B
1
C
0.008  
0.685  
0.650  
0.590  
0.013  
0.695  
0.656  
0.630  
0.19  
17.40  
16.51  
14.99  
0.32  
17.65  
16.66  
16.00  
D
D1  
D
2
3
D
0.500 typ.  
0.050 BSC  
12.70 typ.  
e
1.27 BSC  
1.07  
H
H
0.042  
0.056  
0.048  
0.045  
1.42  
1.22  
1.14  
1
0.042  
0.025  
1.07  
0.64  
2
R
34  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.1  
PACKAGE DIMENSIONS (40 PIN PDIP)  
40  
1
21  
E
1
20  
E
D
A2  
A
L
Seating  
Plane  
A1  
C
α
B
B1  
e
eA  
eB  
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
4.06  
0.38  
3.18  
0.36  
0.76  
0.20  
50.29  
15.24  
12.32  
MAX  
6.35  
A
A1  
A2  
B
0.160  
0.015  
0.125  
0.014  
0.030  
0.008  
1.98  
0.250  
0.070  
0.195  
0.024  
0.070  
0.014  
2.095  
0.625  
0.580  
1.78  
4.95  
0.56  
B1  
C
1.78  
0.38  
D
53.21  
15.88  
14.73  
E
0.600  
0.485  
E1  
e
0.100 BSC  
0.600 BSC  
2.54 BSC  
15.24 BSC  
eA  
eB  
L
0.600  
0.700  
0.200  
15°  
15.24  
17.78  
5.08  
15°  
0.115  
2.92  
α
0°  
0°  
35  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
xr  
REV. 1.0.1  
REVISION HISTORY  
Description  
Date  
Revision  
1.0.0  
December 2004  
Initial Datasheet. This datasheet applies to devices with top mark date code of "B2  
YYWW" and newer.  
January 2005  
1.0.1  
Clarified AC Electrical Characteristics.  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to  
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that  
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication  
has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the  
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless  
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has  
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately  
protected under the circumstances.  
Copyright 2005 EXAR Corporation  
Datasheet January 2005.  
Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
36  
xr  
XR16C2550  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
REV. 1.0.0  
5.0 TABLE OF CONTENTS  
GENERAL DESCRIPTION................................................................................................. 1  
APPLICATIONS ............................................................................................................................................... 1  
FEATURES..................................................................................................................................................... 1  
FIGURE 1. XR16C2550 BLOCK DIAGRAM......................................................................................................................................... 1  
FIGURE 2. PIN OUT ASSIGNMENT ..................................................................................................................................................... 2  
ORDERING INFORMATION ................................................................................................................................ 2  
PIN DESCRIPTIONS ......................................................................................................... 3  
1.0 PRODUCT DESCRIPTION .................................................................................................................... 6  
2.0 FUNCTIONAL DESCRIPTIONS ............................................................................................................ 7  
2.1 CPU INTERFACE ............................................................................................................................................. 7  
FIGURE 3. XR16C2550 DATA BUS INTERCONNECTIONS ................................................................................................................. 7  
2.2 DEVICE RESET ................................................................................................................................................ 7  
2.3 CHANNEL A AND B SELECTION ................................................................................................................... 7  
TABLE 1: CHANNEL A AND B SELECT ............................................................................................................................................... 7  
2.4 CHANNEL A AND B INTERNAL REGISTERS ................................................................................................ 8  
2.5 DMA MODE ...................................................................................................................................................... 8  
TABLE 2: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE............................................................................................. 8  
2.6 INTA AND INTB OUTPUTS .............................................................................................................................. 8  
TABLE 3: INTA AND INTB PINS OPERATION FOR TRANSMITTER ........................................................................................................ 8  
TABLE 4: INTA AND INTB PIN OPERATION FOR RECEIVER ............................................................................................................... 8  
2.7 CRYSTAL OSCILLATOR OR EXTERNAL CLOCK INPUT ............................................................................. 9  
FIGURE 4. TYPICAL OSCILLATOR CONNECTIONS................................................................................................................................. 9  
2.8 PROGRAMMABLE BAUD RATE GENERATOR ............................................................................................. 9  
FIGURE 5. EXTERNAL CLOCK CONNECTION FOR EXTENDED DATA RATE.......................................................................................... 10  
FIGURE 6. OPERATING FREQUENCY VERSUS POWER SUPPLY CHART.............................................................................................. 10  
TABLE 5: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK ...................................................................... 11  
2.9 TRANSMITTER ............................................................................................................................................... 11  
2.9.1 TRANSMIT HOLDING REGISTER (THR) - WRITE ONLY......................................................................................... 11  
2.9.2 TRANSMITTER OPERATION IN NON-FIFO MODE.................................................................................................. 11  
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE .............................................................................................................. 12  
2.9.3 TRANSMITTER OPERATION IN FIFO MODE ........................................................................................................... 12  
FIGURE 8. TRANSMITTER OPERATION IN FIFO MODE...................................................................................................................... 12  
2.10 RECEIVER .................................................................................................................................................... 12  
2.10.1 RECEIVE HOLDING REGISTER (RHR) - READ-ONLY .......................................................................................... 13  
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE.................................................................................................................... 13  
FIGURE 10. RECEIVER OPERATION IN FIFO MODE ......................................................................................................................... 13  
2.11 INTERNAL LOOPBACK ............................................................................................................................... 14  
FIGURE 11. INTERNAL LOOP BACK IN CHANNEL A AND B ................................................................................................................ 14  
3.0 UART INTERNAL REGISTERS ........................................................................................................... 15  
TABLE 6: UART CHANNEL A AND B UART INTERNAL REGISTERS ..................................................................................... 15  
TABLE 7: INTERNAL REGISTERS DESCRIPTION................................................................................................................... 16  
4.0 INTERNAL REGISTER DESCRIPTIONS ............................................................................................ 16  
4.1 RECEIVE HOLDING REGISTER (RHR) - READ- ONLY ............................................................................... 16  
4.2 TRANSMIT HOLDING REGISTER (THR) - WRITE-ONLY ............................................................................ 16  
4.3 INTERRUPT ENABLE REGISTER (IER) - READ/WRITE ............................................................................. 16  
4.3.1 IER VERSUS RECEIVE FIFO INTERRUPT MODE OPERATION ............................................................................. 17  
4.3.2 IER VERSUS RECEIVE/TRANSMIT FIFO POLLED MODE OPERATION................................................................ 17  
4.4 INTERRUPT STATUS REGISTER (ISR) - READ-ONLY ............................................................................... 18  
4.4.1 INTERRUPT GENERATION: ...................................................................................................................................... 18  
4.4.2 INTERRUPT CLEARING: ........................................................................................................................................... 18  
TABLE 8: INTERRUPT SOURCE AND PRIORITY LEVEL ....................................................................................................................... 18  
4.5 FIFO CONTROL REGISTER (FCR) - WRITE-ONLY ..................................................................................... 19  
TABLE 9: RECEIVE FIFO TRIGGER LEVEL SELECTION ..................................................................................................................... 19  
4.6 LINE CONTROL REGISTER (LCR) - READ/WRITE ..................................................................................... 19  
TABLE 10: PARITY SELECTION ........................................................................................................................................................ 21  
4.7 MODEM CONTROL REGISTER (MCR) OR GENERAL PURPOSE OUTPUTS CONTROL - READ/WRITE 21  
4.8 LINE STATUS REGISTER (LSR) - READ ONLY ........................................................................................... 22  
4.9 MODEM STATUS REGISTER (MSR) - READ ONLY .................................................................................... 23  
4.10 SCRATCH PAD REGISTER (SPR) - READ/WRITE .................................................................................... 24  
4.11 BAUD RATE GENERATOR REGISTERS (DLL AND DLM) - READ/WRITE .............................................. 24  
I
XR16C2550  
REV. 1.0.0  
xr  
2.97V TO 5.5V DUART WITH 16-BYTE FIFO  
TABLE 11: UART RESET CONDITIONS FOR CHANNEL A AND B............................................................................................ 24  
ABSOLUTE MAXIMUM RATINGS...................................................................................25  
PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%) ................25  
ELECTRICAL CHARACTERISTICS ................................................................................25  
DC ELECTRICAL CHARACTERISTICS ..............................................................................................................25  
AC ELECTRICAL CHARACTERISTICS ..............................................................................................................26  
TA=-40o to +85oC, Vcc = 2.97V to 5.5V, 70 pF load where applicable ....................................................................26  
FIGURE 12. AC TIMING VALUES ..................................................................................................................................................... 27  
FIGURE 13. CLOCK TIMING............................................................................................................................................................. 27  
FIGURE 14. MODEM INPUT/OUTPUT TIMING FOR CHANNELS A & B ................................................................................................. 28  
FIGURE 15. DATA BUS READ TIMING.............................................................................................................................................. 28  
FIGURE 16. DATA BUS WRITE TIMING............................................................................................................................................. 29  
FIGURE 17. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A & B ......................................................... 29  
FIGURE 18. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A & B ....................................................... 30  
FIGURE 19. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED] FOR CHANNELS A & B........................................ 30  
FIGURE 20. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED] FOR CHANNELS A & B......................................... 31  
FIGURE 21. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED] FOR CHANNELS A & B............................ 31  
FIGURE 22. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE ENABLED] FOR CHANNELS A & B ............................ 32  
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1 mm)................................................33  
PACKAGE DIMENSIONS (44 PIN PLCC) .......................................................................34  
PACKAGE DIMENSIONS (40 PIN PDIP).........................................................................35  
REVISION HISTORY............................................................................................................................. 36  
5.0 TABLE OF CONTENTS ..........................................................................................................................I  
II  

相关型号:

XR16C2550_07

2.97V TO 5.5V DUART WITH 16-BYTE FIFO
EXAR

XR16C2552

2.97V TO 5.5V DUAL UART WITH 16-BYTE FIFO
EXAR

XR16C2552IJ

2.97V TO 5.5V DUAL UART WITH 16-BYTE FIFO
EXAR

XR16C2850

3.3V AND 5V DUART WITH 128-BYTE FIFO
EXAR

XR16C2850CJ

DUAL UART WITH 128-byte FIFO’s AND RS-485 HALF DUPLEX CONTROL
EXAR

XR16C2850CJ-F

Serial I/O Controller, 2 Channel(s), 0.78125MBps, CMOS, PQCC44, GREEN, PLASTIC, LCC-44
EXAR

XR16C2850CJ44

3.3V AND 5V DUART WITH 128-BYTE FIFO
EXAR

XR16C2850CM

DUAL UART WITH 128-byte FIFO’s AND RS-485 HALF DUPLEX CONTROL
EXAR

XR16C2850CM-F

2.97V TO 5.5V DUAL UART WITH 128-BYTE FIFOS
EXAR

XR16C2850CM48

3.3V AND 5V DUART WITH 128-BYTE FIFO
EXAR

XR16C2850CP

DUAL UART WITH 128-byte FIFO’s AND RS-485 HALF DUPLEX CONTROL
EXAR

XR16C2850CP40

3.3V AND 5V DUART WITH 128-BYTE FIFO
EXAR