XR16C854CJ [EXAR]

2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO; 带有128字节FIFO 2.97V至5.5V UART QUAD
XR16C854CJ
型号: XR16C854CJ
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO
带有128字节FIFO 2.97V至5.5V UART QUAD

先进先出芯片
文件: 总54页 (文件大小:649K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
JANUARY 2004  
REV. 3.0  
FEATURES  
GENERAL DESCRIPTION  
Added feature in devices with top mark date code of  
"F2 YYWW" and newer:  
The XR16C854/854D1 (854) is an enhanced quad  
Universal Asynchronous Receiver and Transmitter  
(UART) each with 128 bytes of transmit and receive  
FIFOs, transmit and receive FIFO counters and  
trigger levels, automatic hardware and software flow  
control, and data rates of up to 2 Mbps. Each UART  
has a set of registers that provide the user with  
operating status and control, receiver error  
indications, and modem serial interface controls.  
System interrupts may be tailored to meet design  
requirements. An internal loopback capability allows  
onboard diagnostics. The 854 is available in 64-pin  
TQFP, 68-pin PLCC and 100-pin QFP packages.  
The 64-pin package only offers the 16 mode  
interface, but the 68 and 100 pin packages offer an  
additional 68 mode interface which allows easy  
5 volt tolerant inputs  
2.97 to 5.5 Volt Operation  
Pin-to-pin compatible with the industry standard  
ST16C554 and ST16C654 and TI’s TL16C554N  
and TL16C754BFN  
Intel or Motorola Data Bus Interface select  
Four independent UART channels  
Register Set Compatible to 16C550  
Data rates of up to 2 Mbps  
Transmit and Receive FIFOs of 128 bytes  
Programmable TX and RX FIFO Trigger Levels  
Transmit and Receive FIFO Level Counters  
Automatic Hardware (RTS/CTS) Flow Control  
Selectable Auto RTS Flow Control Hysteresis  
Automatic Software (Xon/Xoff) Flow Control  
Wireless Infrared (IrDA 1.0) Encoder/Decoder  
Sleep Mode (200 uA typical)  
integration with Motorola processors.  
The  
XR16C854CV (64 pin) offers three state interrupt  
outputs while the XR16C854DV provides continuous  
interrupt outputs. The 100 pin package provides  
additional FIFO status outputs (TXRDY# and  
RXRDY# A-D), separate infrared transmit data  
outputs (IRTX A-D) and channel C external clock  
input (CHCCLK). The XR16C854/854D is compatible  
with the industry standard ST16C554/554D and  
ST16C654/654D.  
Crystal oscillator or external clock input  
APPLICATIONS  
Portable Appliances  
NOTE: 1 Covered by U.S. Patent #5,649,122 and #5,949,787.  
Telecommunication Network Routers  
Ethernet Network Routers  
Cellular Data Devices  
Factory Automation and Process Controls  
FIGURE 1. XR16C854 BLOCK DIAGRAM  
2.97V to 5.5V VCC  
GND  
A2:A0  
D7:D0  
UART Channel A  
128 Byte TX FIFO  
IOR#  
IOW#  
UART  
TXA, RXA, IRTXA, DTRA#,  
DSRA#, RTSA#, CTSA#,  
CDA#, RIA#, OP2A#  
Regs  
IR  
ENDEC  
TX & RX  
CSA#  
CSB#  
CSC#  
CSD#  
BRG  
128 Byte RX FIFO  
TXB, RXB, IRTXB, DTRB#,  
DSRB#, RTSB#, CTSB#,  
CDB#, RIB#, OP2B#  
UART Channel B  
(same as Channel A)  
INTA  
INTB  
INTC  
Data Bus  
Interface  
TXC, RXC, IRTXC, DTRC#,  
DSRC#, RTSC#, CTSC#,  
CDC#, RIC#, OP2C#  
UART Channel C  
(same as Channel A)  
INTD  
CHCCLK  
TXRDY# A-D  
RXRDY# A-D  
TXD, RXD, IRTXD, DTRD#,  
DSRD#, RTSD#, CTSD#,  
CDD#, RID#, OP2D#  
UART Channel D  
(same as Channel A)  
Reset  
16/68#  
INTSEL  
XTAL1  
XTAL2  
Crystal Osc/Buffer  
854 BLK  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
FIGURE 2. PIN OUT ASSIGNMENT FOR 100-PIN QFP PACKAGES IN 16 AND 68 MODE  
TXRDYD#  
RXRDYD#  
CDD#  
RID#  
RXD  
VCC  
INTSEL  
D0  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
RXRDYC#  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
CDC#  
RIC#  
RXC  
GND  
TXRDY#  
RXRDY#  
RESET  
XR16C854  
100-pin QFP  
16 Mode  
CHCCLK  
XTAL2  
XTAL1  
A0  
D1  
D2  
Connect 16/68# pin to VCC  
D3  
D4  
D5  
A1  
D6  
A2  
D7  
16/68#  
GND  
RXA  
CLKSEL  
RXB  
RIA#  
CDA#  
RXRDYA#  
RIB#  
CDB#  
RXRDYB#  
TXRDYD#  
RXRDYD#  
CDD#  
RID#  
RXD  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
RXRDYC#  
CDC#  
RIC#  
RXC  
GND  
VCC  
TXRDY#  
RXRDY#  
RESET#  
CHCCLK  
GND  
D0  
XR16C854  
100-pin QFP  
68 Mode  
D1  
D2  
XTAL2  
XTAL1  
D3  
Connect 16/68# pin to GND  
D4  
A0  
A1  
A2  
D5  
D6  
D7  
16/68#  
GND  
RXA  
CLKSEL  
RXB  
RIA#  
CDA#  
RXRDYA#  
RIB#  
CDB#  
RXRDYB#  
2
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
FIGURE 3. PIN OUT ASSIGNMENT FOR PLCC PACKAGES IN 16 AND 68 MODE AND TQFP PACKAGES  
DSRA# 10  
CTSA# 11  
DTRA# 12  
VCC 13  
60 DSRD#  
59 CTSD#  
58 DTRD#  
57 GND  
DSRA# 10  
CTSA# 11  
DTRA# 12  
VCC 13  
60 DSRD#  
59 CTSD#  
58 DTRD#  
57 GND  
RTSA# 14  
56 RTSD#  
RTSA# 14  
INTA 15  
56 RTSD#  
55 INTD  
54 CSD#  
53 TXD  
15  
16  
55  
54  
IRQ#  
CS#  
N.C.  
N.C.  
CSA# 16  
TXA 17  
XR16C854  
68-pin PLCC  
68 Mode  
XR16C854  
68-pin PLCC  
16 Mode  
TXA 17  
R/W# 18  
TXB 19  
53 TXD  
52 N.C.  
51 TXC  
IOW# 18  
TXB 19  
52 IOR#  
51 TXC  
(16/68# pin connected to GND)  
(16/68# pin connected to VCC)  
20  
50  
A3  
A4  
CSB# 20  
INTB 21  
50 CSC#  
49 INTC  
48 RTSC#  
47 VCC  
N.C. 21  
RTSB# 22  
GND 23  
49 N.C.  
48 RTSC#  
47 VCC  
RTSB# 22  
GND 23  
24  
DTRB#  
46 DTRC#  
45 CTSC#  
44 DSRC#  
DTRB# 24  
CTSB# 25  
DSRB# 26  
46 DTRC#  
45 CTSC#  
44 DSRC#  
CTSB# 25  
DSRB# 26  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DSRD#  
CTSD#  
DTRD#  
GND  
DSRA#  
CTSA#  
DTRA#  
VCC  
3
4
RTSA#  
INTA  
5
RTSD#  
INTD  
6
XR16C854  
CSA#  
TXA  
7
CSD#  
TXD  
XR16C854D  
64-pin TQFP  
16 Mode Only  
8
IOR#  
IOW#  
TXB  
9
TX  
C
10  
11  
12  
13  
14  
15  
16  
CSC#  
CSB#  
INTB  
INTC  
RTSC#  
VCC  
RTSB#  
GND  
DTRB#  
CTSB#  
DTRC#  
CTSC#  
ORDERING INFORMATION  
PART NUMBER  
XR16C854CJ  
XR16C854IJ  
PACKAGE  
OPERATING TEMPERATURE RANGE  
0°C to +70°C  
DEVICE STATUS  
68-Lead PLCC  
68-Lead PLCC  
64-Lead TQFP  
64-Lead TQFP  
64-Lead TQFP  
64-Lead TQFP  
100-Lead QFP  
100-Lead QFP  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
-40°C to +85°C  
0°C to +70°C  
XR16C854CV  
XR16C854IV  
XR16C854DCV  
XR16C854DIV  
XR16C854CQ  
XR16C854IQ  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
3
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
PIN DESCRIPTIONS  
Pin Description  
64-TQFP  
PIN #  
100-QFP  
PIN #  
68-PLCC  
PIN#  
NAME  
TYPE  
DESCRIPTION  
DATA BUS INTERFACE  
A2  
A1  
A0  
22  
23  
24  
32  
33  
34  
37  
38  
39  
I
Address data lines [2:0]. These 3 address lines select one of the  
internal registers in UART channel A-D during a data bus transac-  
tion.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
60  
59  
58  
57  
56  
55  
54  
53  
5
4
95  
94  
93  
92  
91  
90  
89  
88  
I/O Data bus lines [7:0] (bidirectional).  
3
2
1
68  
67  
66  
IOR#  
40  
52  
66  
I
When 16/68# pin is at logic 1, the Intel bus interface is selected  
and this input becomes read strobe (active low). The falling edge  
instigates an internal read cycle and retrieves the data byte from  
an internal register pointed by the address lines [A2:A0], puts the  
data byte on the data bus to allow the host processor to read it on  
the rising edge.  
(N.C.)  
When 16/68# pin is at logic 0, the Motorola bus interface is  
selected and this input is not used.  
IOW#  
9
18  
15  
I
When 16/68# pin is at logic 1, it selects Intel bus interface and this  
input becomes write strobe (active low). The falling edge instigates  
the internal write cycle and the rising edge transfers the data byte  
on the data bus to an internal register pointed by the address lines.  
(R/W#)  
When 16/68# pin is at logic 0, the Motorola bus interface is  
selected and this input becomes read (logic 1) and write (logic 0)  
signal. Motorola bus interface is not available on the 64 pin pack-  
age.  
CSA#  
(CS#)  
7
16  
20  
50  
13  
17  
64  
I
I
I
When 16/68# pin is at logic 1, this input is chip select A (active low)  
to enable channel A in the device.  
When 16/68# pin is at logic 0, this input becomes the chip select  
(active low) for the Motorola bus interface.  
Motorola bus interface is not available on the 64 pin package.  
CSB#  
(A3)  
11  
38  
When 16/68# pin is at logic 1, this input is chip select B (active low)  
to enable channel B in the device.  
When 16/68# pin is at logic 0, this input becomes address line A3  
which is used for channel selection in the Motorola bus interface.  
Motorola bus interface is not available on the 64 pin package.  
CSC#  
(A4)  
When 16/68# pin is at logic 1, this input is chip select C (active low)  
to enable channel C in the device.  
When 16/68# pin is at logic 0, this input becomes address line A4  
which is used for channel selection in the Motorola bus interface.  
Motorola bus interface is not available on the 64 pin package.  
4
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
Pin Description  
64-TQFP  
100-QFP  
PIN #  
68-PLCC  
PIN#  
NAME  
TYPE  
DESCRIPTION  
PIN #  
CSD#  
(N.C.)  
42  
54  
68  
I
When 16/68# pin is at logic 1, this input is chip select D (active low)  
to enable channel D in the device.  
When 16/68# pin is at logic 0, this input is not used.  
Motorola bus interface is not available on the 64 pin package.  
INTA  
6
15  
12  
O
When 16/68# pin is at logic 1 for Intel bus interface, this ouput  
becomes channel A interrupt output.  
The output state is defined  
(IRQ#)  
(OD)  
by the user and through the software setting of MCR[3]. INTA is set  
to the active mode when MCR[3] is set to a logic 1. INTA is set to  
the three state mode when MCR[3] is set to a logic 0 (default). See  
MCR[3].  
When 16/68# pin is at logic 0 for Motorola bus interface, this output  
becomes device interrupt output (active low, open drain). An exter-  
nal pull-up resistor is required for proper operation.  
Motorola bus interface is not available on the 64 pin package.  
INTB  
INTC  
INTD  
(N.C.)  
12  
37  
43  
21  
49  
55  
18  
63  
69  
O
When 16/68# pin is at logic 1 for Intel bus interface, these ouputs  
become the interrupt outputs for channels B, C, and D.  
The output  
state is defined by the user through the software setting of MCR[3].  
The interrupt outputs are set to the active mode when MCR[3] is  
set to a logic 1 and are set to the three state mode when MCR[3] is  
set to a logic 0 (default). See MCR[3].  
When 16/68# pin is at logic 0 for Motorola bus interface, these out-  
puts are unused and will stay at logic zero level. Leave these out-  
puts unconnected.  
Motorola bus interface is not available on the 64 pin package.  
INTSEL  
-
65  
87  
I
Interrupt Select (active high, input with internal pull-down).  
When 16/68# pin is at logic 1 for Intel bus interface, this pin can be  
used in conjunction with MCR bit-3 to enable or disable the INT A-  
D pins or override MCR bit-3 and enable the interrupt outputs.  
Interrupt outputs are enabled continuously by making this pin a  
logic 1. Making this pin a logic 0 allows MCR bit-3 to enable and  
disable the interrupt output pins. In this mode, MCR bit-3 is set to a  
logic 1 to enable the continuous output. See MCR bit-3 description  
for full detail. This pin must be at logic 0 in the Motorola bus inter-  
face mode. Due to pin limitations on 64 pin packages, this pin is  
not available. To cover this limitation, two 64 pin TQFP packages  
versions are offered. The XR16C854D operates in the continuous  
interrupt enable mode by bonding this pin to VCC internally.  
UART channels A-D Transmitter Ready (active low). The outputs  
provide the TX FIFO/THR status for transmit channels A-D. See  
Table 5 on page 13. If these outputs are unused, leave them  
unconnected.  
TXRDYA#  
TXRDYB#  
TXRDYC#  
TXRDYD#  
-
-
-
-
-
-
-
-
5
O
O
O
25  
56  
81  
RXRDYA#  
RXRDYB#  
RXRDYC#  
RXRDYD#  
-
-
-
-
-
-
-
-
100  
31  
UART channels A-D Receiver Ready (active low). This output pro-  
vides the RX FIFO/RHR status for receive channels A-D. See  
Table 5 on page 13. If these outputs are unused, leave them  
unconnected.  
50  
82  
TXRDY#  
-
39  
45  
Transmitter Ready (active low). This output is a logically wire-  
ORed status of TXRDY# A-D. See Table 5 on page 13. If this out-  
put is unused, leave it unconnected.  
5
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
Pin Description  
64-TQFP  
PIN #  
100-QFP  
PIN #  
68-PLCC  
PIN#  
NAME  
TYPE  
DESCRIPTION  
RXRDY#  
-
38  
44  
O
Receiver Ready (active low). This output is a logically wire-ORed  
status of RXRDY# A-D. See Table 5 on page 13. If this output is  
unused, leave it unconnected.  
FSRS#  
-
-
76  
I
FIFO Status Register Select (active low input with internal pull-up).  
The content of the FSTAT register is placed on the data bus when  
this pin becomes active. However it should be noted, D0-D3 con-  
tain the inverted logic states of TXRDY# A-D pins, and D4-D7 the  
logic states (un-inverted) of RXRDY# A-D pins. Address line is not  
required when reading this status register.  
MODEM OR SERIAL I/O INTERFACE  
TXA  
TXB  
TXC  
TXD  
8
17  
19  
51  
53  
14  
16  
65  
67  
O
UART channels A-D Transmit Data and infrared transmit data.  
Standard transmit and receive interface is enabled when MCR[6] =  
0. In this mode, the TX signal will be a logic 1 during reset, or idle  
(no data). Infrared IrDA transmit and receive interface is enabled  
when MCR[6] = 1. In the Infrared mode, the inactive state (no  
data) for the Infrared encoder/decoder interface is a logic 0.  
10  
39  
41  
IRTXA  
IRTXB  
IRTXC  
IRTXD  
-
-
-
-
-
-
-
-
6
O
I
UART channel A-D Infrared Transmit Data. The inactive state (no  
data) for the Infrared encoder/decoder interface is a logic 0.  
Regardless of the logic state of MCR bit-6, this pin will be operating  
in the Infrared mode.  
24  
57  
75  
RXA  
RXB  
RXC  
RXD  
62  
20  
29  
51  
7
97  
34  
47  
85  
UART channel A-D Receive Data or infrared receive data. Normal  
receive data input must idle at logic 1 condition. The infrared  
receiver pulses typically idles at logic 0 but can be inverted by soft-  
ware control prior going in to the decoder, see FCTR[2].  
29  
41  
63  
RTSA#  
RTSB#  
RTSC#  
RTSD#  
5
14  
22  
48  
56  
11  
19  
62  
70  
O
UART channels A-D Request-to-Send (active low) or general pur-  
pose output. This output must be asserted prior to using auto RTS  
flow control, see EFR[6], MCR[1], FCTR[1:0], EMSR[5:4] and  
IER[6]. Also see Figure 11. If these outputs are not used, leave  
them unconnected.  
13  
36  
44  
CTSA#  
CTSB#  
CTSC#  
CTSD#  
2
11  
25  
45  
59  
8
I
O
I
UART channels A-D Clear-to-Send (active low) or general purpose  
input. It can be used for auto CTS flow control, see EFR[7], and  
IER[7]. Also see Figure 11. These inputs should be connected to  
VCC when not used.  
16  
33  
47  
22  
59  
73  
DTRA#  
DTRB#  
DTRC#  
DTRD#  
3
12  
24  
46  
58  
9
UART channels A-D Data-Terminal-Ready (active low) or general  
purpose output. If these outputs are not used, leave them uncon-  
nected.  
15  
34  
46  
21  
60  
72  
DSRA#  
DSRB#  
DSRC#  
DSRD#  
1
10  
26  
44  
60  
7
UART channels A-D Data-Set-Ready (active low) or general pur-  
pose input. This input should be connected to VCC when not used.  
17  
32  
48  
23  
58  
74  
6
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
Pin Description  
64-TQFP  
100-QFP  
PIN #  
68-PLCC  
PIN#  
NAME  
TYPE  
DESCRIPTION  
PIN #  
CDA#  
CDB#  
CDC#  
CDD#  
64  
18  
31  
49  
9
99  
32  
49  
83  
I
UART channels A-D Carrier-Detect (active low) or general purpose  
input.  
This input should be connected to VCC when not used.  
27  
43  
61  
RIA#  
RIB#  
RIC#  
RID#  
63  
19  
30  
50  
8
98  
33  
48  
84  
I
UART channels A-D Ring-Indicator (active low) or general purpose  
input.  
This input should be connected to VCC when not used.  
28  
42  
62  
ANCILLARY SIGNALS  
XTAL1  
XTAL2  
16/68#  
25  
26  
-
35  
36  
31  
40  
41  
36  
I
Crystal or external clock input. This input is not 5V tolerant.  
Crystal or buffered clock output.  
O
Intel or Motorola Bus Select (input with internal pull-up).  
When 16/68# pin is at logic 1, 16 or Intel Mode, the device will  
operate in the Intel bus type of interface.  
When 16/68# pin is at logic 0, 68 or Motorola mode, the device will  
operate in the Motorola bus type of interface.  
Motorola bus interface is not available on the 64 pin package.  
CLKSEL  
CHCCLK  
21  
30  
35  
42  
43  
I
I
I
Baud-Rate-Generator Input Clock Prescaler Select for channels A-  
D. This input is only sampled during power up or a reset. Connect  
to VCC for divide by 1 and GND for divide by 4. MCR[7] can over-  
ride the state of this pin following a reset or initialization. See MCR  
bit-7 and Figure 6 in the Baud Rate Generator section.  
-
-
This input provides the clock for UART channel C. An external 16X  
baud clock or the crystal oscillator’s output, XTAL2, must be con-  
nected to this pin for normal operation. This input may also be  
used with MIDI (Musical Instrument Digital Interface) applications  
when an external MIDI clock is provided.  
RESET  
27  
37  
When 16/68# pin is at logic 1 for Intel bus interface, this input  
becomes the  
Reset pin (active high). In this case, a 40 ns mini-  
(RESET#)  
mum logic 1 pulse on this pin will reset the internal registers and all  
outputs. The UART transmitter output will be held at logic 1, the  
receiver input will be ignored and outputs are reset during reset  
period (Table 18 on page 40). When 16/68# pin is at a logic 0 for  
Motorola bus interface, this input becomes Reset# pin (active low).  
This pin functions similarly, but instead of a logic 1 pulse, a 40 ns  
minimum logic 0 pulse will reset the internal registers and outputs.  
Motorola bus interface is not available on the 64 pin package.  
VCC  
GND  
4, 35, 52  
13, 47,  
64  
10, 61,  
86  
Pwr 2.97V to 5.5V power supply. All input pins, except XTAL1, are 5V  
tolerant.  
14, 28, 6, 23, 40,  
45, 61 57  
20, 46,  
71, 96  
Pwr Power supply common, ground.  
7
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
Pin Description  
64-TQFP  
PIN #  
100-QFP  
PIN #  
68-PLCC  
PIN#  
NAME  
TYPE  
DESCRIPTION  
N.C.  
-
-
1, 2, 3, 4,  
26, 27,  
28, 29,  
30, 51,  
52, 53,  
54, 55,  
77, 78,  
79, 80  
No Connection. These pins are not used in either the Intel or  
Motorola bus modes.  
Pin type: I=Input, O=Output, I/O= Input/output, OD=Output Open Drain.  
Factory Test Mode  
If the IOR#, IOW# and CS# pins are all asserted (at a logic 0), the 854 will enter a Factory Test Mode.  
8
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
1.0 PRODUCT DESCRIPTION  
integrates the functions of 4 enhanced 16C550 Universal Asynchronous Receiver and  
The XR16C854 (854)  
Transmitter (UART). Each UART is independently controlled having its own set of device configuration  
registers. The configuration registers set is 16550 UART compatible for control, status and data transfer.  
Additionally, each UART channel has 128-bytes of transmit and receive FIFOs, automatic RTS/CTS hardware  
flow control with hysteresis control, automatic Xon/Xoff and special character software flow control,  
programmable transmit and receive FIFO trigger levels, FIFO level counters, infrared encoder and decoder  
(IrDA ver 1.0), programmable baud rate generator with a prescaler of divide by 1 or 4, and data rate up to 2  
Mbps. The XR16C854 can operate at 3.3 or 5 volts. The 854 is fabricated with an advanced CMOS process.  
Enhanced FIFO  
The 854 QUART provides a solution that supports 128 bytes of transmit and receive FIFO memory, instead of  
64 bytes provided in the ST16C654 and 16 bytes in the ST16C554, or one byte in the ST16C454. The 854 is  
designed to work with high performance data communication systems, that require fast data processing time.  
Increased performance is realized in the 854 by the larger transmit and receive FIFOs, FIFO trigger level  
control, FIFO level counters and automatic flow control mechanism. This allows the external processor to  
handle more networking tasks within a given time. For example, the ST16C554 with a 16 byte FIFO, unloads  
16 bytes of receive data in 1.53 ms (This example uses a character length of 11 bits, including start/stop bits at  
115.2Kbps). This means the external CPU will have to service the receive FIFO at 1.53 ms intervals. However  
with the 128 byte FIFO in the 854, the data buffer will not require unloading/loading for 12.2 ms. This increases  
the service interval giving the external CPU additional time for other applications and reducing the overall  
UART interrupt servicing time. In addition, the programmable FIFO level trigger interrupt and automatic  
hardware/software flow control is uniquely provided for maximum data throughput performance especially  
when operating in a multi-channel system. The combination of the above greatly reduces the CPU’s bandwidth  
requirement, increases performance, and reduces power consumption.  
Data Rate  
The 854 is capable of operation up to 2 Mbps at 5V with 16x internal sampling clock rate. The device can  
operate with a crystal oscillator of up to 24 MHz crystal on pins XTAL1 and XTAL2, or external clock source of  
32 MHz on XTAL1 pin. With a typical crystal of 14.74128 MHz and through a software option, the user can set  
the prescaler bit for data rates of up to 921.6 kbps.  
Enhanced Features  
The rich feature set of the 854 is available through the internal registers. Automatic hardware/software flow  
control, selectable transmit and receive FIFO trigger levels, selectable baud rates, infrared encoder/decoder  
interface, modem interface controls, and a sleep mode are all standard features. MCR bit-5 provides a facility  
for turning off software flow control with any incoming (RX) character. In the 16 mode INTSEL and MCR bit-3  
can be configured to provide a software controlled or continuous interrupt capability. Due to pin limitations for  
the 64 pin package of the 854, this feature is offered in two different TQFP packages. The XR16C854DCV  
operates in the continuous interrupt enable mode by internally bonding INTSEL to VCC. The XR16C854CV  
operates in conjunction with MCR bit-3 by internally bonding INTSEL to GND.  
The 68 and 100 pin XR16C854 packages offer a clock prescaler select pin to allow system/board designers to  
preset the default baud rate table on power up. The CLKSEL pin selects the div-by-1 or div-by-4 prescaler for  
the baud rate generator. It can then be overridden following initializatioin by MCR bit-7.  
The 100 pin package offer several other enhanced features. These features include a CHCCLK clock input,  
FSTAT register and separate IrDA TX outputs. The CHCCLK must be connected to the XTAL2 pin for normal  
operation or to external MIDI (Music Instrument Digital Interface) oscillator for MIDI applications. A separate  
register (FSTAT) is provided for monitoring the real time status of the FIFO signals TXRDY# and RXRDY# for  
each of the four UART channels (A-D). This reduces polling time involved in accessing individual channels.  
The 100 pin QFP package also offers four separate IrDA (Infrared Data Association Standard) TX outputs for  
Infrared applications. These outputs are provided in addition to the standard asynchronous modem data  
outputs.  
9
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
2.0 FUNCTIONAL DESCRIPTIONS  
2.1  
CPU Interface  
The CPU interface is 8 data bits wide with 3 address lines and control signals to execute data bus read and  
write transactions. The 854 data interface supports the Intel compatible types of CPUs and it is compatible to  
the industry standard 16C550 UART. No clock (oscillator nor external clock) is required to operate a data bus  
transaction. Each bus cycle is asynchronous using CS# A-D, IOR# and IOW# or CS#, R/W#, A4 and A3 inputs.  
All four UART channels share the same data bus for host operations. A typical data bus interconnection for Intel  
and Motorola mode is shown in Figure 4.  
FIGURE 4. XR16C854/854D TYPICAL INTEL/MOTOROLA DATA BUS INTERCONNECTIONS  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VCC  
VCC  
TXA  
RXA  
DTRA#  
RTSA#  
CTSA#  
DSRA#  
CDA#  
RIA#  
UART  
Channel A  
Serial Interface of  
RS-232  
A0  
A1  
A2  
A0  
A1  
A2  
IOR#  
IOR#  
IOW#  
UART  
IOW#  
Channel B  
Similar  
CSA#  
CSB#  
CSC#  
CSD#  
UART_CSA#  
UART_CSB#  
UART_CSC#  
UART_CSD#  
to Ch A  
UART  
Channel C  
Serial Interface of  
RS-232  
Similar  
to Ch A  
UART_INTA  
UART_INTB  
UART_INTC  
UART_INTD  
INTA  
INTB  
INTC  
INTD  
UART  
Channel D  
Similar  
to Ch A  
UART_RESET  
VCC  
RESET  
16/68#  
GND  
Intel Data Bus (16 Mode) Interconnections  
VCC  
VCC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
TXA  
RXA  
DTRA#  
RTSA#  
CTSA#  
DSRA#  
CDA#  
UART  
Channel A  
Serial Interface of  
RS-232  
A0  
A1  
A0  
A1  
A2  
A2  
RIA#  
A3  
A4  
CSB#  
CSC#  
CSD#  
UART  
Channel B  
VCC  
VCC  
Similar  
to Ch A  
IOR#  
IOW#  
R/W#  
UART  
Channel C  
CSA#  
INTA  
UART_CS#  
UART_IRQ#  
Similar  
to Ch A  
Serial Interface of  
RS-232  
INTB  
INTC  
INTD  
(no connect)  
(no connect)  
(no connect)  
UART  
Channel D  
Similar  
to Ch A  
UART_RESET#  
RESET#  
16/68#  
GND  
Motorola Data Bus (68 Mode) Interconnections  
10  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
2.2  
5-Volt Tolerant Inputs  
For devices that have top mark date code "F2 YYWW" and newer, the 854 can accept a voltage of up to 5.5V  
on any of its inputs (except XTAL1) when operating from 2.97V to 5.5V. XTAL1 is not 5 volt tolerant. Devices  
that have top mark date code "DC YYWW" and older do not have 5V tolerant inputs.  
2.3  
Device Reset  
The RESET input resets the internal registers and the serial interface outputs in all four channels to their  
default state (see Table 18 on page 40). An active high pulse of longer than 40 ns duration will be required to  
activate the reset function in the device. Following a power-on reset or an external reset, the 854 is software  
compatible with previous generation of UARTs, 16C454 and 16C554 and 16C654.  
2.4  
Device Identification and Revision  
The XR16C854 provides a Device Identification code and a Device Revision code to distinguish the part from  
other devices and revisions. To read the identification code from the part, it is required to set the baud rate  
generator registers DLL and DLM both to 0x00. Now reading the content of the DLM will provide 0x14 for the  
XR16C854 and reading the content of DLL will provide the revision of the part; for example, a reading of 0x01  
means revision A.  
2.5  
Channel Selection  
The UART provides the user with the capability to bi-directionally transfer information between an external  
CPU and an external serial communication device. During Intel Bus Mode (16/68# pin is connected to VCC), a  
logic 0 on chip select pins, CSA#, CSB#, CSC# or CSD# allows the user to select UART channel A, B, C or D  
to configure, send transmit data and/or unload receive data to/from the UART. Selecting all four UARTs can be  
useful during power up initialization to write to the same internal registers, but do not attempt to read from all  
four uarts simultaneously. Individual channel select functions are shown in Table 1 below.  
TABLE 1: CHANNEL A-D SELECT IN 16 MODE  
CSA# CSB# CSC# CSD#  
FUNCTION  
1
0
1
1
1
0
1
1
0
1
1
0
1
1
1
0
1
0
1
1
1
1
0
0
UART de-selected  
Channel A selected  
Channel B selected  
Channel C selected  
Channel D selected  
Channels A-D selected  
During Motorola Bus Mode (16/68# pin is connected to GND), the package interface pins are configured for  
connection with Motorola, and other popular microprocessor bus types. In this mode the 854 decodes two  
additional addresses, A3 and A4, to select one of the four UART ports. The A3 and A4 address decode  
function is used only when in the Motorola Bus Mode. See Table 2 below.  
TABLE 2: CHANNEL A-D SELECT IN 68 MODE  
CS#  
A4  
N/A  
0
A3  
N/A  
0
FUNCTION  
1
0
0
0
0
UART de-selected  
Channel A selected  
Channel B selected  
Channel C selected  
Channel D selected  
0
1
1
0
1
1
11  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
2.6  
Channels A-D Internal Registers  
Each UART channel in the 854 has a set of enhanced registers for control, monitoring and data loading and  
unloading. The configuration register set is compatible to those already available in the standard single  
16C550. These registers function as data holding registers (THR/RHR), interrupt status and control registers  
(ISR/IER), a FIFO control register (FCR), receive line status and control registers (LSR/LCR), modem status  
and control registers (MSR/MCR), programmable data rate (clock) divisor registers (DLL/DLM), and a user  
accessible scratchpad register (SPR).  
Beyond the general 16C550 features and capabilities, the 854 offers enhanced feature registers (EMSR, FLVL,  
EFR, Xon/Xoff 1, Xon/Xoff 2, FCTR, TRG, FC) that provide automatic RTS and CTS hardware flow control,  
Xon/Xoff software flow control, automatic RS-485 half-duplex direction output enable/disable, FIFO trigger level  
control, and FIFO level counters. All the register functions are discussed in full detail later in “Section 3.0,  
UART INTERNAL REGISTERS” on page 23.  
2.7  
INT Ouputs for Channels A-D  
The interrupt outputs change according to the operating mode and enhanced features setup. Table 3 and 4  
summarize the operating behavior for the transmitter and receiver. Also see Figure 20 through 24.  
TABLE 3: INT PINS OPERATION FOR TRANSMITTER FOR CHANNELS A-D  
FCTR  
Bit-3  
FCR BIT-0 = 0  
FCR BIT-0 = 1 (FIFO ENABLED)  
(FIFO DISABLED)  
FCR Bit-3 = 0  
FCR Bit-3 = 1  
(DMA Mode Disabled)  
(DMA Mode Enabled)  
0 = FIFO above trigger level  
1 = FIFO below trigger level or FIFO 1 = FIFO below trigger level or FIFO  
empty  
0 = FIFO above trigger level  
INT Pin  
INT Pin  
0
1
0 = a byte in THR  
1 = THR empty  
empty  
0 = FIFO above trigger level  
0 = FIFO above trigger level  
0 = a byte in THR  
1 = FIFO below trigger level or 1 = FIFO below trigger level or  
transmitter empty transmitter empty  
1 = transmitter empty  
TABLE 4: INT PIN OPERATION FOR RECEIVER FOR CHANNELS A-D  
FCR BIT-0 = 0  
(FIFO DISABLED)  
FCR BIT-0 = 1 (FIFO ENABLED)  
FCR Bit-3 = 0  
FCR Bit-3 = 1  
(DMA Mode Disabled)  
(DMA Mode Enabled)  
0 = FIFO below trigger level  
1 = FIFO above trigger level  
0 = FIFO below trigger level  
1 = FIFO above trigger level  
INT Pin  
0 = no data  
1 = 1 byte  
2.8  
DMA Mode  
The device does not support direct memory access. The DMA Mode (a legacy term) in this document doesn’t  
mean “direct memory access” but refers to data block transfer operation. The DMA mode affects the state of  
the RXRDY# A-D and TXRDY# A-D output pins. The transmit and receive FIFO trigger levels provide additional  
flexibility to the user for block mode operation. The LSR bits 5-6 provide an indication when the transmitter is  
empty or has an empty location(s) for more data. The user can optionally operate the transmit and receive  
FIFO in the DMA mode (FCR bit-3=1). When the transmit and receive FIFO are enabled and the DMA mode is  
disabled (FCR bit-3 = 0), the 854 is placed in single-character mode for data transmit or receive operation.  
When DMA mode is enabled (FCR bit-3 = 1), the user takes advantage of block mode operation by loading or  
unloading the FIFO in a block sequence determined by the programmed trigger level. The following table show  
their behavior. Also see Figure 20 through 24.  
12  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
TABLE 5: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE FOR CHANNELS A-D  
FCR BIT-0=0  
PINS  
FCR BIT-0=1 (FIFO ENABLED)  
(FIFO DISABLED)  
FCR Bit-3 = 0  
FCR Bit-3 = 1  
(DMA Mode Disabled)  
(DMA Mode Enabled)  
0 = 1 byte  
RXRDY#  
TXRDY#  
0 = at least 1 byte in FIFO  
1 = FIFO empty  
1 to 0 transition when FIFO reaches the trigger  
level, or timeout occurs.  
1 = no data  
0 to 1 transition when FIFO empties.  
0 = THR empty  
1 = byte in THR  
0 = FIFO empty  
0 = FIFO has at least 1 empty location.  
1 = FIFO is full.  
1 = at least 1 byte in FIFO  
2.9  
Crystal Oscillator or External Clock Input  
The 854 includes an on-chip oscillator (XTAL1 and XTAL2) to produce a clock for all four UART sections in the  
device. The CPU data bus does not require this clock for bus operation. The crystal oscillator provides a  
system clock to the Baud Rate Generators (BRG) section found in each of the UART. XTAL1 is the input to the  
oscillator or external clock buffer input with XTAL2 pin being the output. For programming details, see  
“Programmable Baud Rate Generator.”  
FIGURE 5. TYPICAL OSCILATOR CONNECTIONSL  
R=300K to 400K  
14.7456  
M Hz  
XTAL2  
XTAL1  
C1  
C2  
22-47pF  
22-47pF  
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,  
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100ppm frequency  
tolerance) connected externally between the XTAL1 and XTAL2 pins (see Figure 5). Typical standard crystal  
frequencies are: 1.8432, 3.6864, 7.3728, 14.7456, 18.432, and 22.1184 MHz. Alternatively, an external clock  
can be connected to the XTAL1 pin to clock the internal baud rate generator for standard or custom rates.  
Typical oscillator connections are shown in Figure 5. For further reading on oscillator circuit please see  
application note DAN108 on EXAR’s web site.  
2.10 Programmable Baud Rate Generator  
Each UART has its own Baud Rate Generator (BRG) with a prescaler. The prescaler is controlled by a software  
bit in the MCR register. The MCR register bit-7 sets the prescaler to divide the input crystal or external clock by  
1 or 4. The clock output of the prescaler goes to the BRG. The BRG further divides this clock by a  
programmable divisor between 1 and (216 -1) to obtain a 16X sampling rate clock of the serial data rate. The  
sampling rate clock is used by the transmitter for data bit shifting and receiver for data sampling.  
Table 6 shows the standard data rates available with a 14.7456 MHz crystal or external clock at 16X sampling  
rate. When using a non-standard frequency crystal or external clock, the divisor value can be calculated for  
DLL/DLM with the following equation.  
divisor (decimal) = (XTAL1 clock frequency / prescaler) / (serial data rate x 16)  
13  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
FIGURE 6. BAUD RATE GENERATOR AND PRESCALER  
DLL and DLM  
Registers  
M CR Bit-7=0  
(default)  
Prescaler  
Divide by 1  
16X  
Crystal  
O sc/  
Buffer  
XTAL1  
XTAL2  
Sam pling  
Rate Clock to  
Transm itter  
Baud Rate  
G enerator  
Logic  
Prescaler  
Divide by 4  
M CR Bit-7=1  
TABLE 6: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK  
OUTPUT Data Rate OUTPUT Data Rate  
DLM  
PROGRAM  
VALUE (HEX) VALUE (HEX)  
DLL  
PROGRAM  
DATA RATE  
ERROR (%)  
DIVISOR FOR 16x DIVISOR FOR 16x  
Clock (Decimal) Clock (HEX)  
MCR Bit-7=1  
MCR Bit-7=0  
(DEFAULT)  
100  
600  
400  
2304  
384  
192  
96  
48  
24  
12  
6
900  
180  
C0  
60  
09  
01  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
80  
C0  
60  
30  
18  
0C  
06  
04  
02  
01  
0
0
0
0
0
0
0
0
0
0
0
2400  
1200  
2400  
4800  
9600  
19.2k  
38.4k  
57.6k  
115.2k  
230.4k  
4800  
9600  
19.2k  
38.4k  
76.8k  
153.6k  
230.4k  
460.8k  
921.6k  
30  
18  
0C  
06  
4
04  
2
02  
1
01  
2.11 Transmitter  
The transmitter section comprises of an 8-bit Transmit Shift Register (TSR) and 128 bytes of FIFO which  
includes a byte-wide Transmit Holding Register (THR). TSR shifts out every data bit with the 16X internal clock.  
A bit time is 16 clock periods. The transmitter sends the start-bit followed by the number of data bits, inserts the  
proper parity-bit if enabled, and adds the stop-bit(s). The status of the TX FIFO and TSR are reported in the  
Line Status Register (LSR bit-5 and bit-6).  
2.11.1 Transmit Holding Register (THR) - Write Only  
The transmit holding register is an 8-bit register providing a data interface to the host processor. The host  
writes transmit data byte to the THR to be converted into a serial data stream including start-bit, data bits,  
parity-bit and stop-bit(s). The least-significant-bit (Bit-0) becomes first data bit to go out. The THR is the input  
register to the transmit FIFO of 128 bytes when FIFO operation is enabled by FCR bit-0. Every time a write  
operation is made to the THR, the FIFO data pointer is automatically bumped to the next sequential data  
location.  
2.11.2 Transmitter Operation in non-FIFO Mode  
The host loads transmit data to THR one character at a time. The THR empty flag (LSR bit-5) is set when the  
data byte is transferred to TSR. THR flag can generate a transmit empty interrupt (ISR bit-1) when it is enabled  
by IER bit-1. The TSR flag (LSR bit-6) is set when TSR becomes completely empty.  
14  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE  
Transmit  
Holding  
Register  
(THR)  
Data  
Byte  
THR Interrupt (ISR bit-1)  
Enabled by IER bit-1  
16X  
Clock  
M
S
B
L
S
B
Transmit Shift Register (TSR)  
TXNOFIFO1  
2.11.3 Transmitter Operation in FIFO Mode  
The host may fill the transmit FIFO with up to 128 bytes of transmit data. The THR empty flag (LSR bit-5) is set  
whenever the TX FIFO is empty. The THR empty flag can generate a transmit empty interrupt (ISR bit-1) when  
the FIFO becomes empty. The transmit empty interrupt is enabled by IER bit-1. The TSR flag (LSR bit-6) is set  
when TSR/TX FIFO becomes empty.  
FIGURE 8. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE  
RX FIFO  
THR  
Data Byte  
THR Interrupt (ISR bit-1) falls  
below the programmed Trigger  
Level and then when becomes  
empty. FIFO is Enabled by FCR  
bit-0=1  
Auto CTS Flow Control (CTS# pin)  
Flow Control Characters  
(Xoff1/2 and Xon1/2 Reg.  
Auto Software Flow Control  
16X Clock  
Transmit Data Shift Register  
(TSR)  
TXFIFO1  
2.12 Receiver  
The receiver section contains an 8-bit Receive Shift Register (RSR) and 128 bytes of FIFO which includes a  
byte-wide Receive Holding Register (RHR). The RSR uses the 16X clock for timing. It verifies and validates  
every bit on the incoming character in the middle of each data bit. On the falling edge of a start or false start bit,  
an internal receiver counter starts counting at the 16X clock rate. After 8 clocks the start bit period should be at  
the center of the start bit. At this time the start bit is sampled and if it is still a logic 0 it is validated. Evaluating  
the start bit in this manner prevents the receiver from assembling a false character. The rest of the data bits  
and stop bits are sampled and validated in this same manner to prevent false framing. If there were any  
error(s), they are reported in the LSR register bits 2-4. Upon unloading the receive data byte from RHR, the  
receive FIFO pointer is bumped and the error tags are immediately updated to reflect the status of the data  
byte in RHR register. RHR can generate a receive data ready interrupt upon receiving a character or delay until  
it reaches the FIFO trigger level. Furthermore, data delivery to the host is guaranteed by a receive data ready  
time-out interrupt when data is not received for 4 word lengths as defined by LCR[1:0] plus 12 bits time. This is  
equivalent to 3.7-4.6 character times. The RHR interrupt is enabled by IER bit-0.  
15  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
2.12.1 Receive Holding Register (RHR) - Read-Only  
The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift Register.  
It provides the receive data interface to the host processor. The RHR register is part of the receive FIFO of 128  
bytes by 11-bits wide, the 3 extra bits are for the 3 error tags to be reported in LSR register. When the FIFO is  
enabled by FCR bit-0, the RHR contains the first data character received by the FIFO. After the RHR is read,  
the next character byte is loaded into the RHR and the errors associated with the current data byte are  
immediately updated in the LSR bits 2-4.  
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Error  
Receive  
Data Byte  
and Errors  
Receive Data  
Holding Register  
(RHR)  
Tags in  
LSR bits  
4:2  
RHR Interrupt (ISR bit-2)  
RXFIFO1  
FIGURE 10. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Example  
- RX FIFO trigger level selected at 16  
:
bytes  
(See Note Below)  
RTS# re-asserts when data falls below the flow  
control trigger level to restart remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
128 bytes by 11-bit  
wide FIFO  
Data falls to  
8
Receive  
Data FIFO  
FIFO  
Trigger=16  
RHR Interrupt (ISR bit-2) programmed for  
desired FIFO trigger level.  
FIFO is Enabled by FCR bit-0=1  
Data fills to  
24  
RTS# de-asserts when data fills above the flow  
control trigger level to suspend remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
Receive  
Data  
Receive Data  
Byte and Errors  
RXFIFO1  
NOTE: Table-B selected as Trigger Table for Figure 10 (Table 11 on page 29).  
16  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
2.13 Auto RTS Hardware Flow Control  
Automatic RTS hardware flow control is used to prevent data overrun to the local receiver FIFO. The RTS#  
output is used to request remote unit to suspend/resume data transmission. The auto RTS flow control features  
is enabled to fit specific application requirement (see Figure 11):  
Enable auto RTS flow control using EFR bit-6.  
The auto RTS function must be started by asserting RTS# output pin (MCR bit-1 to logic 1 after it is enabled).  
If using the Auto RTS interrupt:  
Enable RTS interrupt through IER bit-6 (after setting EFR bit-4). The UART issues an interrupt when the  
RTS# pin makes a transition from low to high: ISR bit-5 will be set to logic 1.  
2.14  
Auto RTS Hysteresis  
The 854 has a new feature that provides flow control trigger hysteresis while maintaining compatibility with the  
XR16C850, ST16C650A and ST16C550 family of UARTs. With the Auto RTS function enabled, an interrupt is  
generated when the receive FIFO reaches the programmed RX trigger level. The RTS# pin will not be forced  
to a logic 1 (RTS off), until the receive FIFO reaches the upper limit of the hysteresis level. The RTS# pin will  
return to a logic 0 after the RX FIFO is unloaded to the lower limit of the hysteresis level. Under the above  
described conditions, the 854 will continue to accept data until the receive FIFO gets full. The Auto RTS  
function is initiated when the RTS# output pin is asserted to a logic 0 (RTS On). Table 15 shows the complete  
details for the Auto RTS# Hysteresis levels. Please note that this table is for programmable trigger levels only  
(Table D). The hysteresis values for Tables A-C are the next higher and next lower trigger levels in Tables A-C  
(See Table 11).  
2.15  
Auto CTS Flow Control  
Automatic CTS flow control is used to prevent data overrun to the remote receiver FIFO. The CTS# input is  
monitored to suspend/restart the local transmitter. The auto CTS flow control feature is selected to fit specific  
application requirement (see Figure 11):  
Enable auto CTS flow control using EFR bit-7.  
If using the Auto CTS interrupt:  
Enable CTS interrupt through IER bit-7 (after setting EFR bit-4). The UART issues an interrupt when the  
CTS# pin is de-asserted (logic 1): ISR bit-5 will be set to 1, and UART will suspend transmission as soon as  
the stop bit of the character in process is shifted out. Transmission is resumed after the CTS# input is re-  
asserted (logic 0), indicating more data may be sent.  
17  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
FIGURE 11. AUTO RTS AND CTS FLOW CONTROL OPERATION  
Local UART  
UARTA  
Remote UART  
UARTB  
RXA  
TXB  
Receiver FIFO  
Trigger Reached  
Transmitter  
RTSA#  
TXA  
CTSB#  
RXB  
Auto RTS  
Auto CTS  
Monitor  
Trigger Level  
Receiver FIFO  
Trigger Reached  
Transmitter  
CTSA#  
RTSB#  
Auto CTS  
Monitor  
Auto RTS  
Trigger Level  
Assert RTS# to Begin  
Transmission  
1
10  
ON  
ON  
ON  
RTSA#  
OFF  
7
2
ON  
11  
OFF  
CTSB#  
TXB  
8
3
Restart  
Data Starts  
6
Suspend  
9
4
RXA FIFO  
Receive  
Data  
RX FIFO  
Trigger Level  
RTS High  
Threshold  
RTS Low  
Threshold  
5
RX FIFO  
Trigger Level  
12  
INTA  
(RXA FIFO  
Interrupt)  
RTSCTS1  
The local UART (UARTA) starts data transfer by asserting RTSA# (1). RTSA# is normally connected to CTSB# (2) of  
remote UART (UARTB). CTSB# allows its transmitter to send data (3). TXB data arrives and fills UARTA receive FIFO  
(4). When RXA data fills up to its receive FIFO trigger level, UARTA activates its RXA data ready interrupt (5) and con-  
tinues to receive and put data into its FIFO. If interrupt service latency is long and data is not being unloaded, UARTA  
monitors its receive data fill level to match the upper threshold of RTS delay and de-assert RTSA# (6). CTSB# follows  
(7) and request UARTB transmitter to suspend data transfer. UARTB stops or finishes sending the data bits in its trans-  
mit shift register (8). When receive FIFO data in UARTA is unloaded to match the lower threshold of RTS delay (9),  
UARTA re-asserts RTSA# (10), CTSB# recognizes the change (11) and restarts its transmitter and data flow again until  
next receive FIFO trigger (12). This same event applies to the reverse direction when UARTA sends data to UARTB  
with RTSB# and CTSA# controlling the data flow.  
18  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
2.16 Auto Xon/Xoff (Software) Flow Control  
When software flow control is enabled (See Table 17), the 854 compares one or two sequential receive data  
characters with the programmed Xon or Xoff-1,2 character value(s). If receive character(s) match the  
programmed values, the 854 will halt transmission as soon as the current character has completed  
transmission. When a match occurs, the Xoff (if enabled via IER bit-5) flag will be set and the interrupt output  
pin will be activated. Following a suspension due to a match of the Xoff character, the 854 will monitor the  
receive data stream for a match to the Xon-1,2 character. If a match is found, the 854 will resume operation and  
clear the flags (ISR bit-4).  
Reset initially sets the contents of the Xon/Xoff 8-bit flow control registers to a logic 0. Following reset the user  
can write any Xon/Xoff value desired for software flow control. Different conditions can be set to detect Xon/  
Xoff characters (See Table 17) and suspend/resume transmissions. When double 8-bit Xon/Xoff characters are  
selected, the 854 compares two consecutive receive characters with two software flow control 8-bit values  
(Xon1, Xon2, Xoff1, Xoff2) and controls TX transmissions accordingly. Under the above described flow control  
mechanisms, flow control characters are not placed (stacked) in the user accessible RX data buffer or FIFO.  
In the event that the receive buffer is overfilling and flow control needs to be executed, the 854 automatically  
sends an Xoff message (when enabled) via the serial TX output to the remote modem. The 854 sends the Xoff-  
1,2 characters two-character-times (= time taken to send two characters at the programmed baud rate) after  
the receive FIFO crosses the programmed trigger level (for all trigger tables A-D). To clear this condition, the  
854 will transmit the programmed Xon-1,2 characters as soon as receive FIFO is less than one trigger level  
below the programmed trigger level (for Trigger Tables A, B, and C) or when receive FIFO is less than the  
trigger level minus the hysteresis value (for Trigger Table D). This hysteresis value is the same as the Auto RTS  
Hysteresis value in Table 15. Table 7 below explains this when Trigger Table-B (See Table 11) is selected.  
TABLE 7: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL  
XOFF CHARACTER(S) SENT  
(CHARACTERS IN RX FIFO)  
XON CHARACTER(S) SENT  
(CHARACTERS IN RX FIFO)  
RX TRIGGER LEVEL  
INT PIN ACTIVATION  
8
8
8*  
0
8
16  
24  
28  
16  
24  
28  
16*  
24*  
28*  
16  
24  
* After the trigger level is reached, an xoff character is sent after a short span of time (= time required to send 2  
characters); for example, after 2.083ms has elapsed for 9600 baud and 10-bit word length setting.  
2.17  
Special Character Detect  
A special character detect feature is provided to detect an 8-bit character when bit-5 is set in the Enhanced  
Feature Register (EFR). When this character (Xoff2) is detected, it will be placed in the FIFO along with normal  
incoming RX data.  
The 854 compares each incoming receive character with Xoff-2 data. If a match exists, the received data will  
be transferred to FIFO and ISR bit-4 will be set to indicate detection of special character. Although the Internal  
Register Table shows Xon, Xoff Registers with eight bits of character information, the actual number of bits is  
dependent on the programmed word length. Line Control Register (LCR) bits 0-1 defines the number of  
character bits, i.e., either 5 bits, 6 bits, 7 bits, or 8 bits. The word length selected by LCR bits 0-1 also  
determines the number of bits that will be used for the special character comparison. Bit-0 in the Xon, Xoff  
Registers corresponds with the LSB bit for the receive character.  
2.18 Infrared Mode  
The 854 UART includes the infrared encoder and decoder compatible to the IrDA (Infrared Data Association)  
version 1.0. The IrDA 1.0 standard that stipulates the infrared encoder sends out a 3/16 of a bit wide HIGH-  
pulse for each “0” bit in the transmit data stream. This signal encoding reduces the on-time of the infrared LED,  
hence reduces the power consumption. See Figure 12 below.  
19  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
The infrared encoder and decoder are enabled by setting MCR register bit-6 to a ‘1’. When the infrared feature  
is enabled, the transmit data output, TX, idles at logic zero level. Likewise, the RX input assumes an idle level  
of logic zero from a reset and power up, see Figure 12.  
Typically, the wireless infrared decoder receives the input pulse from the infrared sensing diode on the RX pin.  
Each time it senses a light pulse, it returns a logic 1 to the data bit stream. However, this is not true with some  
infrared modules on the market which indicate a logic 0 by a light pulse. So the 854 has a provision to invert the  
input polarity to accomodate this. In this case user can enable FCTR bit-2 to invert the input signal.  
FIGURE 12. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING  
Character  
Data Bits  
1
1
1
1
1
0
0
0
0
0
TX Data  
Transm it  
IR Pulse  
(TX Pin)  
1/2 Bit Tim e  
Bit Tim e  
3/16 Bit Tim e  
IrEncoder-1  
Receive  
IR Pulse  
(RX pin)  
Bit Time  
1/16 Clock Delay  
1
1
1
1
1
0
0
0
0
0
RX Data  
Data Bits  
Character  
IRdecoder-1  
2.19  
Sleep Mode with Auto Wake-Up  
The 854 supports low voltage system designs, hence, a sleep mode is included to reduce its power  
consumption when the chip is not actively used.  
All of these conditions must be satisfied for the 854 to enter sleep mode:  
no interrupts pending for all four channels of the 854 (ISR bit-0 = 1)  
sleep mode of all four channels are enabled (IER bit-4 = 1)  
modem inputs are not toggling (MSR bits 0-3 = 0)  
RX input pins are idling at a logic 1  
The 854 stops its crystal oscillator to conserve power in the sleep mode. User can check the XTAL2 pin for no  
clock output as an indication that the device has entered the sleep mode.  
20  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
The 854 resumes normal operation by any of the following:  
a receive data start bit transition (logic 1 to 0)  
a data byte is loaded to the transmitter, THR or FIFO  
a change of logic state on any of the modem or general purpose serial inputs: CTS#, DSR#, CD#, RI#  
If the 854 is awakened by any one of the above conditions, it will return to the sleep mode automatically after all  
interrupting conditions have been serviced and cleared. If the 854 is awakened by the modem inputs, a read to  
the MSR is required to reset the modem inputs. In any case, the sleep mode will not be entered while an  
interrupt is pending in any channel. The 854 will stay in the sleep mode of operation until it is disabled by  
setting IER bit-4 to a logic 0.  
If the address lines, data bus lines, IOW#, IOR#, CSA#, CSB#, CSC#, CSD# and modem input lines remain  
steady when the 854 is in sleep mode, the maximum current will be in the microamp range as specified in the  
DC Electrical Characteristics on page 41. If the input lines are floating or are toggling while the 854 is in sleep  
mode, the current can be up to 100 times more. If any of those signals are toggling or floating, then an external  
buffer would be required to keep the address, data and control lines steady to achieve the low current.  
A word of caution: owing to the starting up delay of the crystal oscillator after waking up from sleep mode, the  
first few receive characters may be lost. Also, make sure the RX input is idling at logic 1 or “marking” condition  
during sleep mode. This may not occur when the external interface transceivers (RS-232, RS-485 or another  
type) are also put to sleep mode and cannot maintain the “marking” condition. To avoid this, the system design  
engineer can use a 47k ohm pull-up resistor on the RX A-D inputs.  
2.20  
Internal Loopback  
The 854 UART provides an internal loopback capability for system diagnostic purposes. The internal loopback  
mode is enabled by setting MCR register bit-4 to logic 1. All regular UART functions operate normally.  
Figure 13 shows how the modem port signals are re-configured. Transmit data from the transmit shift register  
output is internally routed to the receive shift register input allowing the system to receive the same data that it  
was sending. The TX pin is held at logic 1 or mark condition while RTS# and DTR# are de-asserted, and  
CTS#, DSR# CD# and RI# inputs are ignored. Caution: the RX input must be held to a logic 1 during loopback  
test else upon exiting the loopback test the UART may detect and report a false “break” signal.  
21  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
FIGURE 13. INTERNAL LOOP BACK IN CHANNELS A-D  
VCC  
TX A-D  
Transmit Shift Register  
(THR/FIFO)  
MCR bit-4=1  
Receive Shift Register  
(RHR/FIFO)  
RX A-D  
VCC  
RTS# A-D  
RTS#  
CTS#  
VCC  
CTS# A-D  
DTR# A-D  
DTR#  
DSR#  
DSR# A-D  
OP1#  
RI#  
RI# A-D  
OP2#  
CD#  
CD# A-D  
22  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
3.0 UART INTERNAL REGISTERS  
Each UART channel in the 854 has its own set of configuration registers selected by address lines A0, A1 and  
A2 with a specific channel selected (See Table 1 and Table 2). The complete register set is shown on Table 8  
and Table 9.  
TABLE 8: UART CHANNEL A AND B UART INTERNAL REGISTERS  
A2,A1,A0 ADDRESSES  
REGISTER  
READ/WRITE  
COMMENTS  
16C550 COMPATIBLE REGISTERS  
0
0 0  
RHR - Receive Holding Register  
Read-only  
Write-only  
LCR[7] = 0  
THR - Transmit Holding Register  
0
0
0
0 0  
0 1  
0 0  
DLL - Div Latch Low Byte  
Read/Write  
Read/Write  
Read-only  
LCR[7] = 1, LCR 0xBF  
LCR[7] = 1, LCR 0xBF  
DLM - Div Latch High Byte  
DREV - Device Revision Code  
DLL, DLM = 0x00,  
LCR[7] = 1, LCR 0xBF  
0
0 1  
DVID - Device Identification Code  
IER - Interrupt Enable Register  
Read-only  
DLL, DLM = 0x00,  
LCR[7] = 1, LCR 0xBF  
0
0
0 1  
1 0  
Read/Write  
LCR[7] = 0  
LCR[7] = 0  
ISR - Interrupt Status Register  
FCR - FIFO Control Register  
Read-only  
Write-only  
0
1
1
1 1  
0 0  
0 1  
LCR - Line Control Register  
Read/Write  
Read/Write  
MCR - Modem Control Register  
LCR[7] = 0  
LCR[7] = 0  
LSR - Line Status Register  
Reserved  
Read-only  
Write-only  
1
1 0  
MSR - Modem Status Register  
Reserved  
Read-only  
Write-only  
LCR[7] = 0  
1
1
1
1 1  
1 1  
1 1  
SPR - Scratch Pad Register  
Read/Write  
Read-only  
Write-only  
LCR[7] = 0, FCTR[6] = 0  
LCR[7] = 0, FCTR[6] = 1  
LCR[7] = 0, FCTR[6] = 1  
FLVL - TX/RX FIFO Level Counter Register  
EMSR - Enhanced Mode Select Register  
ENHANCED REGISTERS  
0
0 0  
TRG - TX/RX FIFO Trigger Level Reg  
FC - TX/RX FIFO Level Counter Register  
Write-only  
Read-only  
LCR = 0xBF  
0
0
1
1
1
1
0 1  
1 0  
0 0  
0 1  
1 0  
1 1  
FCTR - Feature Control Reg  
EFR - Enhanced Function Reg  
Xon-1 - Xon Character 1  
Xon-2 - Xon Character 2  
Xoff-1 - Xoff Character 1  
Xoff-2 - Xoff Character 2  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
LCR = 0xBF  
LCR = 0xBF  
LCR = 0xBF  
LCR = 0xBF  
LCR = 0xBF  
LCR = 0xBF  
X
X X  
FSTAT - FIFO Status Register  
Read-only  
FSRS# pin is logic 0  
23  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
.
TABLE 9: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1  
ADDRESS  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
A2-A0  
NAME  
16C550 Compatible Registers  
0 0 0  
0 0 0  
0 0 1  
RHR  
THR  
RD  
Bit-7  
Bit-7  
0/  
Bit-6  
Bit-6  
0/  
Bit-5  
Bit-5  
0/  
Bit-4  
Bit-4  
0/  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
WR  
IER RD/WR  
Modem RXLine  
Stat. Int.  
Enable  
TX  
Empty  
Int  
RX  
Data  
Int.  
Stat.  
Int.  
CTS#  
Int.  
Enable Enable  
RTS#  
Int.  
Xoff Int. Sleep  
Enable  
Mode  
Enable  
Enable Enable Enable  
0 1 0  
ISR  
RD  
FIFOs  
Enabled Enabled  
FIFOs  
0/  
0/  
INT  
INT  
INT  
INT  
LCR[7] = 0  
Source Source Source Source  
Bit-3  
INT  
INT  
Bit-2  
Bit-1  
Bit-0  
Source Source  
Bit-5  
Bit-4  
0 1 0  
FCR  
WR RXFIFO RXFIFO  
Trigger Trigger  
0/  
0/  
DMA  
Mode  
Enable  
TX  
FIFO  
Reset Reset  
RX  
FIFOs  
FIFO Enable  
TXFIFO TXFIFO  
Trigger Trigger  
0 1 1  
1 0 0  
LCR RD/WR Divisor Set TX Set Par-  
Even  
Parity  
Parity  
Enable  
Stop  
Bits  
Word  
Length Length  
Bit-1 Bit-0  
Word  
Enable  
Break  
ity  
MCR RD/WR  
0/  
0/  
0/  
Internal INT Out- Rsvd  
Lopback  
Enable  
RTS# DTR#  
Output Output  
Control Control  
put  
Enable  
(OP1#)  
BRG  
Pres-  
caler  
IR Mode XonAny  
ENable  
(OP2#)  
LCR[7] = 0  
1 0 1  
LSR  
RD  
RD  
RXFIFO THR &  
THR  
Empty  
RX  
Break  
RX Fram-  
ing Error Parity  
Error  
RX  
RX  
Over-  
run  
RX  
Data  
Ready  
Global  
Error  
TSR  
Empty  
Error  
1 1 0  
1 1 1  
MSR  
CD#  
RI#  
DSR#  
Input  
CTS#  
Input  
Delta  
CD#  
Delta  
RI#  
Delta  
DSR# CTS#  
Delta  
Input  
Input  
SPR RD/WR  
Bit-7  
Bit-6  
Bit-5  
Bit-4  
Bit-3  
Bit-2  
Bit-1 Bit-0  
LCR[7] = 0  
FCTR[6]=0  
1 1 1  
EMSR  
WR  
Rsvd  
Rsvd  
Auto  
Auto  
Rsvd  
Rsvd  
Rx/Tx Rx/Tx  
FIFO FIFO  
Count Count  
RTS  
Hyst.  
RTS  
Hyst.  
LCR[7] = 0  
FCTR[6]=1  
bit-3  
bit-2  
1 1 1  
FLVL  
RD  
Bit-7  
Bit-6  
Bit-5  
Bit-4  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
24  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
TABLE 9: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1  
ADDRESS  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
A2-A0  
NAME  
Baud Rate Generator Divisor  
0 0 0  
0 0 1  
0 0 0  
0 0 1  
DLL RD/WR  
DLM RD/WR  
Bit-7  
Bit-7  
Bit-7  
0
Bit-6  
Bit-6  
Bit-6  
0
Bit-5  
Bit-5  
Bit-5  
0
Bit-4  
Bit-4  
Bit-4  
1
Bit-3  
Bit-3  
Bit-3  
0
Bit-2  
Bit-2  
Bit-2  
1
Bit-1  
Bit-1  
Bit-1  
0
Bit-0  
Bit-0  
Bit-0  
0
LCR[7] = 1  
LCR 0xBF  
DREV  
DVID  
RD  
RD  
LCR[7] = 1  
LCR0xBF  
DLL=0x00  
DLM=0x00  
Enhanced Registers  
0 0 0  
0 0 0  
0 0 1  
TRG  
FC  
WR  
RD  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Auto  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
FCTR RD/WR RX/TX SCPAD  
Trig  
Table  
Bit-1  
Trig  
Table  
Bit-0  
RX IR  
Input  
Inv.  
Auto  
RTS  
Hyst  
Bit-1  
Auto  
RTS  
Hyst  
Bit-0  
Mode  
Swap  
RS485  
Direction  
Control  
Enable  
0 1 0  
EFR RD/WR  
Auto  
CTS#  
Enable Enable  
Auto  
RTS#  
Special  
Char  
Select  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
IER [7:4],  
ISR [5:4],  
FCR[5:4],  
LCR=0XBF  
MCR[7:5]  
Bit-2  
Bit-1  
Bit-0  
Bit-3  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
XON1 RD/WR  
XON2 RD/WR  
XOFF1 RD/WR  
XOFF2 RD/WR  
Bit-7  
Bit-7  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
Bit-0  
Bit-0  
FSRS# pin is  
a logic 0. No  
address lines  
required.  
X X X  
FSTAT  
RD  
RX-  
RX-  
RX-  
RX-  
TX-  
TX-  
TX-  
TX-  
RDYD# RDYC# RDYB# RDYA#  
RDYC# RDYB# RDYA#  
RDYD#  
25  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
4.0 INTERNAL REGISTER DESCRIPTIONS  
4.1  
Receive Holding Register (RHR) - Read- Only  
See “Receiver” on page 15.  
4.2  
Transmit Holding Register (THR) - Write-Only  
See “Transmitter” on page 14.  
4.3  
Interrupt Enable Register (IER) - Read/Write  
The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status  
and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR).  
4.3.1  
IER versus Receive FIFO Interrupt Mode Operation  
When the receive FIFO (FCR BIT-0 = 1) and receive interrupts (IER BIT-0 = 1) are enabled, the RHR interrupts  
(see ISR bits 2 and 3) status will reflect the following:  
A. The receive data available interrupts are issued to the host when the FIFO has reached the programmed  
trigger level. It will be cleared when the FIFO drops below the programmed trigger level.  
B. FIFO level will be reflected in the ISR register when the FIFO trigger level is reached. Both the ISR register  
status bit and the interrupt will be cleared when the FIFO drops below the trigger level.  
C. The receive data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to  
the receive FIFO. It is reset when the FIFO is empty.  
4.3.2  
IER versus Receive/Transmit FIFO Polled Mode Operation  
When FCR BIT-0 equals a logic 1 for FIFO enable; resetting IER bits 0-3 enables the XR16C854 in the FIFO  
polled mode of operation. Since the receiver and transmitter have separate bits in the LSR either or both can  
be used in the polled mode by selecting respective transmit or receive control bit(s).  
A. LSR BIT-0 indicates there is data in RHR or RX FIFO.  
B. LSR BIT-1 indicates an overrun error has occurred and that data in the FIFO may not be valid.  
C. LSR BIT 2-4 provides the type of receive data errors encountered for the data byte in RHR, if any.  
D. LSR BIT-5 indicates THR is empty.  
E. LSR BIT-6 indicates when both the transmit FIFO and TSR are empty.  
F. LSR BIT-7 indicates a data error in at least one character in the RX FIFO.  
IER[0]: RHR Interrupt Enable  
The receive data ready interrupt will be issued when RHR has a data character in the non-FIFO mode or when  
the receive FIFO has reached the programmed trigger level in the FIFO mode.  
Logic 0 = Disable the receive data ready interrupt (default).  
Logic 1 = Enable the receiver data ready interrupt.  
IER[1]: THR Interrupt Enable  
This bit enables the Transmit Ready interrupt which is issued whenever the THR becomes empty in the non-  
FIFO mode or when data in the FIFO falls below the programmed trigger level in the FIFO mode. If the THR is  
empty when this bit is enabled, an interrupt will be generated.  
Logic 0 = Disable Transmit Ready interrupt (default).  
Logic 1 = Enable Transmit Ready interrupt.  
IER[2]: Receive Line Status Interrupt Enable  
If any of the LSR register bits 1, 2, 3 or 4 is a logic 1, it will generate an interrupt to inform the host controller  
about the error status of the current data byte in FIFO. These LSR bits generate an interrupt immediately when  
the character has been received.  
Logic 0 = Disable the receiver line status interrupt (default).  
Logic 1 = Enable the receiver line status interrupt.  
26  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
IER[3]: Modem Status Interrupt Enable  
Logic 0 = Disable the modem status register interrupt (default).  
Logic 1 = Enable the modem status register interrupt.  
IER[4]: Sleep Mode Enable (requires EFR[4] = 1)  
Logic 0 = Disable Sleep Mode (default).  
Logic 1 = Enable Sleep Mode. See “Sleep Mode with Auto Wake-Up” on page 20.  
IER[5]: Xoff Interrupt Enable (requires EFR[4]=1)0  
Logic 0 = Disable the software flow control, receive Xoff interrupt (default).  
Logic 1 = Enable the software flow control, receive Xoff interrupt. See Software Flow Control section for  
details.  
IER[6]: RTS# Output Interrupt Enable (requires EFR[4]=1)  
Logic 0 = Disable the RTS# interrupt (default).  
Logic 1 = Enable the RTS# interrupt. The UART issues an interrupt when the RTS# pin makes a transition  
from low to high.  
IER[7]: CTS# Input Interrupt Enable (requires EFR[4]=1)  
Logic 0 = Disable the CTS# interrupt (default).  
Logic 1 = Enable the CTS# interrupt. The UART issues an interrupt when CTS# pin makes a transition from  
low to high.  
4.4  
Interrupt Status Register (ISR) - Read-Only  
The UART provides multiple levels of prioritized interrupts to minimize external software interaction. The  
Interrupt Status Register (ISR) provides the user with six interrupt status bits. Performing a read cycle on the  
ISR will give the user the current highest pending interrupt level to be serviced, others are queued up to be  
serviced next. No other interrupts are acknowledged until the pending interrupt is serviced. The Interrupt  
Source Table, Table 10, shows the data values (bit 0-5) for the interrupt priority levels and the interrupt sources  
associated with each of these interrupt levels.  
4.4.1  
Interrupt Generation:  
LSR is by any of the LSR bits 1, 2, 3 and 4.  
RXRDY is by RX trigger level.  
RXRDY Time-out is by a 4-char plus 12 bits delay timer.  
TXRDY is by TX trigger level or TX FIFO empty (or transmitter empty in auto RS-485 control).  
MSR is by any of the MSR bits 0, 1, 2 and 3.  
Receive Xoff/Special character is by detection of a Xoff or Special character.  
CTS# is when its transmitter toggles the input pin (from low to high) during auto CTS flow control.  
RTS# is when its receiver toggles the output pin (from low to high) during auto RTS flow control.  
4.4.2  
Interrupt Clearing:  
LSR interrupt is cleared by a read to the LSR register.  
RXRDY interrupt is cleared by reading data until FIFO falls below the trigger level.  
RXRDY Time-out interrupt is cleared by reading RHR.  
TXRDY interrupt is cleared by a read to the ISR register or writing to THR.  
MSR interrupt is cleared by a read to the MSR register.  
Xoff interrupt is cleared by a read to ISR or when Xon character(s) is received.  
Special character interrupt is cleared by a read to ISR or after the next character is received.  
RTS# and CTS# flow control interrupts are cleared by a read to the MSR register.  
27  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
]
TABLE 10: INTERRUPT SOURCE AND PRIORITY LEVEL  
ISR REGISTER STATUS BITS  
BIT-4 BIT-3 BIT-2 BIT-1  
PRIORITY  
SOURCE OF INTERRUPT  
LEVEL  
BIT-5  
BIT-0  
1
2
3
4
5
6
7
-
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
1
LSR (Receiver Line Status Register)  
RXRDY (Receive Data Time-out)  
RXRDY (Received Data Ready)  
TXRDY (Transmit Ready)  
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
MSR (Modem Status Register)  
RXRDY (Received Xoff or Special character)  
CTS#, RTS# change of state  
None (default)  
ISR[0]: Interrupt Status  
Logic 0 = An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt  
service routine.  
Logic 1 = No interrupt pending (default condition).  
ISR[3:1]: Interrupt Status  
These bits indicate the source for a pending interrupt at interrupt priority levels (See Interrupt Source Table 10).  
ISR[5:4]: Interrupt Status  
These bits are enabled when EFR bit-4 is set to a logic 1. ISR bit-4 indicates that the receiver detected a data  
match of the Xoff character(s). Note that once set to a logic 1, the ISR bit-4 will stay a logic 1 until a Xon  
character is received. ISR bit-5 indicates that CTS# or RTS# has changed state.  
ISR[7:6]: FIFO Enable Status  
These bits are set to a logic 0 when the FIFOs are disabled. They are set to a logic 1 when the FIFOs are  
enabled.  
4.5  
FIFO Control Register (FCR) - Write-Only  
This register is used to enable the FIFOs, clear the FIFOs, set the transmit/receive FIFO trigger levels, and  
select the DMA mode. The DMA and FIFO modes are defined as follows:  
FCR[0]: TX and RX FIFO Enable  
Logic 0 = Disable the transmit and receive FIFO (default).  
Logic 1 = Enable the transmit and receive FIFOs. This bit must be set to logic 1 when other FCR bits are  
written or they will not be programmed.  
FCR[1]: RX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No receive FIFO reset (default)  
Logic 1 = Reset the receive FIFO pointers and FIFO level counter logic (the receive shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
28  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
FCR[2]: TX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No transmit FIFO reset (default).  
Logic 1 = Reset the transmit FIFO pointers and FIFO level counter logic (the transmit shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
FCR[3]: DMA Mode Select  
Controls the behavior of the TXRDY# and RXRDY# pins. See DMA operation section for details.  
Logic 0 = Normal Operation (default).  
Logic 1 = DMA Mode.  
FCR[5:4]: Transmit FIFO Trigger Select  
(logic 0 = default, TX trigger level = one)  
These 2 bits set the trigger level for the transmit FIFO. The UART will issue a transmit interrupt when the  
number of characters in the FIFO falls below the selected trigger level, or when it gets empty in case that the  
FIFO did not get filled over the trigger level on last re-load. Table 11 below shows the selections. EFR bit-4  
must be set to ‘1’ before these bits can be accessed. Note that the receiver and the transmitter cannot use  
different trigger tables. Whichever selection is made last applies to both the RX and TX side.  
FCR[7:6]: Receive FIFO Trigger Select  
(logic 0 = default, RX trigger level =1)  
The FCTR Bits 5-4 are associated with these 2 bits. These 2 bits are used to set the trigger level for the receive  
FIFO. The UART will issue a receive interrupt when the number of the characters in the FIFO crosses the  
trigger level. Table 11 shows the complete selections. Note that the receiver and the transmitter cannot use  
different trigger tables. Whichever selection is made last applies to both the RX and TX side.  
TABLE 11: TRANSMIT AND RECEIVE FIFO TRIGGER LEVEL SELECTION  
TRANSMIT  
FCTR FCTR  
FCR  
FCR  
FCR  
FCR  
BIT-4  
RECEIVE  
TRIGGER  
LEVEL  
COMPATIBILITY  
BIT-5  
BIT-4  
BIT-7  
BIT-6  
BIT-5  
TRIGGER LEVEL  
0
0
0
0
1 (default)  
Table-A. 16C550, 16C2550,  
16C2552, 16C554, 16C580  
compatible.  
0
0
1
1
0
1
0
1
1 (default)  
4
8
14  
0
1
0
0
1
1
0
1
0
1
16  
8
Table-B. 16C650A compatible.  
24  
30  
0
0
1
1
0
1
0
1
8
16  
24  
28  
29  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
TABLE 11: TRANSMIT AND RECEIVE FIFO TRIGGER LEVEL SELECTION  
TRANSMIT  
TRIGGER  
LEVEL  
FCTR FCTR  
FCR  
BIT-7  
FCR  
BIT-6  
FCR  
BIT-5  
FCR  
BIT-4  
RECEIVE  
TRIGGER LEVEL  
COMPATIBILITY  
BIT-5  
BIT-4  
1
0
0
0
1
1
0
1
0
1
8
Table-C. 16C654 compatible.  
16  
32  
56  
0
0
1
1
0
1
0
1
8
16  
56  
60  
1
1
X
X
X
X
Programmable Programmable Table-D. 16L2750, 16C2850,  
16C2852, 16C850, 16C864  
compatible.  
via TRG  
register.  
via TRG  
register.  
FCTR[7] = 0.  
FCTR[7] = 1.  
4.6  
Line Control Register (LCR) - Read/Write  
The Line Control Register is used to specify the asynchronous data communication format. The word or  
character length, the number of stop bits, and the parity are selected by writing the appropriate bits in this  
register.  
LCR[1:0]: TX and RX Word Length Select  
These two bits specify the word length to be transmitted or received.  
BIT-1  
BIT-0  
WORD LENGTH  
0
0
1
1
0
1
0
1
5 (default)  
6
7
8
LCR[2]: TX and RX Stop-bit Length Select  
The length of stop bit is specified by this bit in conjunction with the programmed word length.  
STOP BIT LENGTH  
(BIT TIME(S))  
WORD  
LENGTH  
BIT-2  
0
1
1
5,6,7,8  
5
1 (default)  
1-1/2  
2
6,7,8  
30  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
LCR[3]: TX and RX Parity Select  
Parity or no parity can be selected via this bit. The parity bit is a simple way used in communications for data  
integrity check. See Table 12 for parity selection summary below.  
Logic 0 = No parity.  
Logic 1 = A parity bit is generated during the transmission while the receiver checks for parity error of the  
data character received.  
LCR[4]: TX and RX Parity Select  
If the parity bit is enabled with LCR bit-3 set to a logic 1, LCR BIT-4 selects the even or odd parity format.  
Logic 0 = ODD Parity is generated by forcing an odd number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format (default).  
Logic 1 = EVEN Parity is generated by forcing an even number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format.  
LCR[5]: TX and RX Parity Select  
If the parity bit is enabled, LCR BIT-5 selects the forced parity format.  
LCR BIT-5 = logic 0, parity is not forced (default).  
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 0, parity bit is forced to a logical 1 for the transmit and receive  
data.  
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 1, parity bit is forced to a logical 0 for the transmit and receive  
data.  
TABLE 12: PARITY SELECTION  
LCR BIT-5  
LCR BIT-4  
LCR BIT-3  
PARITY SELECTION  
No parity  
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
Odd parity  
Even parity  
Force parity to mark, “1”  
Forced parity to space, “0”  
LCR[6]: Transmit Break Enable  
When enabled, the Break control bit causes a break condition to be transmitted (the TX output is forced to a  
“space’, logic 0, state). This condition remains, until disabled by setting LCR bit-6 to a logic 0.  
Logic 0 = No TX break condition (default).  
Logic 1 = Forces the transmitter output (TX) to a “space”, logic 0, for alerting the remote receiver of a line  
break condition.  
LCR[7]: Baud Rate Divisors Enable  
Logic 0 = Data registers are selected (default).  
Logic 1 = Divisor latch registers are selected.  
31  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
4.7  
Modem Control Register (MCR) or General Purpose Outputs Control - Read/Write  
The MCR register is used for controlling the serial/modem interface signals or general purpose inputs/outputs.  
MCR[0]: DTR# Output  
The DTR# pin is a modem control output. If the modem interface is not used, this output may be used as a  
general purpose output.  
Logic 0 = Force DTR# output to a logic 1 (default).  
Logic 1 = Force DTR# output to a logic 0.  
MCR[1]: RTS# Output  
The RTS# pin is a modem control output and may be used for automatic hardware flow control by enabled by  
EFR bit-6. If the modem interface is not used, this output may be used as a general purpose output.  
Logic 0 = Force RTS# output to a logic 1 (default).  
Logic 1 = Force RTS# output to a logic 0.  
MCR[2]: Reserved  
OP1# is not available as an output pin on the 854. But it is available for use during Internal Loopback Mode. In  
the Loopback Mode, this bit is used to write the state of the modem RI# interface signal. If OP1# output is  
required for RS485 operation, use the XR16C864.  
MCR[3]: INT Output Enable  
Enable or disable INT outputs to become active or in three-state. This function is associated with the INTSEL  
input, see below table for details. This bit is also used to control the OP2# signal during internal loopback  
mode. INTSEL pin must be set to a logic zero during 68 mode.  
Logic 0 = INT (A-D) outputs disabled (three state) in the 16 mode (default). During loopback mode, it sets  
OP2# internally to a logic 1.  
Logic 1 = INT (A-D) outputs enabled (active) in the 16 mode. During loopback mode, it sets OP2# internally  
to a logic 0.  
TABLE 13: INT OUTPUT MODES  
INTSEL MCR  
INT A-D OUTPUTS IN 16 MODE  
PIN  
BIT-3  
0
0
1
Three-State  
Active  
0
1
X
Active  
MCR[4]: Internal Loopback Enable  
Logic 0 = Disable loopback mode (default).  
Logic 1 = Enable local loopback mode, see loopback section and Figure 13.  
MCR[5]: Xon-Any Enable  
Logic 0 = Disable Xon-Any function (for 16C550 compatibility, default).  
Logic 1 = Enable Xon-Any function. In this mode, any RX character received will resume transmit operation.  
The RX character will be loaded into the RX FIFO , unless the RX character is an Xon or Xoff character and  
the 854 is programmed to use the Xon/Xoff flow control.  
32  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
MCR[6]: Infrared Encoder/Decoder Enable  
Logic 0 = Enable the standard modem receive and transmit input/output interface (default).  
Logic 1 = Enable infrared IrDA receive and transmit inputs/outputs. The TX/RX output/input are routed to the  
infrared encoder/decoder. The data input and output levels conform to the IrDA infrared interface  
requirement. The RX FIFO may need to be flushed upon enable. While in this mode, the infrared TX output  
will be a logic 0 during idle data conditions.  
MCR[7]: Clock Prescaler Select  
The CLKSEL pin selects this function upon power up or reset. After the power up or reset, this register bit will  
have control and can alter the logic state.  
Logic 0 = Divide by one. The input clock from the crystal or external clock is fed directly to the Programmable  
Baud Rate Generator without further modification, i.e., divide by one (default).  
Logic 1 = Divide by four. The prescaler divides the input clock from the crystal or external clock by four and  
feeds it to the Programmable Baud Rate Generator, hence, data rates become one forth.  
4.8  
Line Status Register (LSR) - Read Only  
This register provides the status of data transfers between the UART and the host. If LSR bits 1-4 are  
asserted, an interrupt will be generated immediately if IER bit-2 is enabled.  
LSR[0]: Receive Data Ready Indicator  
Logic 0 = No data in receive holding register or FIFO (default).  
Logic 1 = Data has been received and is saved in the receive holding register or FIFO.  
LSR[1]: Receiver Overrun Flag  
Logic 0 = No overrun error (default).  
Logic 1 = Overrun error. A data overrun error condition occurred in the receive shift register. This happens  
when additional data arrives while the FIFO is full. In this case the previous data in the receive shift register is  
overwritten. Note that under this condition the data byte in the receive shift register is not transferred into the  
FIFO, therefore the data in the FIFO is not corrupted by the error.  
LSR[2]: Receive Data Parity Error Tag  
Logic 0 = No parity error (default).  
Logic 1 = Parity error. The receive character in RHR does not have correct parity information and is suspect.  
This error is associated with the character available for reading in RHR.  
LSR[3]: Receive Data Framing Error Tag  
Logic 0 = No framing error (default).  
Logic 1 = Framing error. The receive character did not have a valid stop bit(s). This error is associated with  
the character available for reading in RHR.  
LSR[4]: Receive Break Tag  
Logic 0 = No break condition (default).  
Logic 1 = The receiver received a break signal (RX was a logic 0 for at least one character frame time). In the  
FIFO mode, only one break character is loaded into the FIFO. The break indication remains until the RX input  
returns to the idle condition, “mark” or logic 1.  
LSR[5]: Transmit Holding Register Empty Flag  
This bit is the Transmit Holding Register Empty indicator. The THR bit is set to a logic 1 when the last data byte  
is transferred from the transmit holding register to the transmit shift register. The bit is reset to logic 0  
concurrently with the data loading to the transmit holding register by the host. In the FIFO mode this bit is set  
when the transmit FIFO is empty, it is cleared when the transmit FIFO contains at least 1 byte.  
33  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
LSR[6]: THR and TSR Empty Flag  
This bit is set to a logic 1 whenever the transmitter goes idle. It is set to logic 0 whenever either the THR or TSR  
contains a data character. In the FIFO mode this bit is set to a logic 1 whenever the transmit FIFO and transmit  
shift register are both empty.  
LSR[7]: Receive FIFO Data Error Flag  
Logic 0 = No FIFO error (default).  
Logic 1 = A global indicator for the sum of all error bits in the RX FIFO. At least one parity error, framing error  
or break indication is in the FIFO data. This bit clears when there is no more error(s) in any of the bytes in the  
RX FIFO.  
4.9  
Modem Status Register (MSR) - Read Only  
This register provides the current state of the modem interface input signals. Lower four bits of this register are  
used to indicate the changed information. These bits are set to a logic 1 whenever a signal from the modem  
changes state. These bits may be used for general purpose inputs when they are not used with modem  
signals.  
MSR[0]: Delta CTS# Input Flag  
Logic 0 = No change on CTS# input (default).  
Logic 1 = The CTS# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[1]: Delta DSR# Input Flag  
Logic 0 = No change on DSR# input (default).  
Logic 1 = The DSR# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[2]: Delta RI# Input Flag  
Logic 0 = No change on RI# input (default).  
Logic 1 = The RI# input has changed from a logic 0 to a logic 1, ending of the ringing signal. A modem status  
interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[3]: Delta CD# Input Flag  
Logic 0 = No change on CD# input (default).  
Logic 1 = Indicates that the CD# input has changed state since the last time it was monitored. A modem  
status interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[4]: CTS Input Status  
CTS# pin may function as automatic hardware flow control signal input if it is enabled and selected by Auto  
CTS (EFR bit-7). Auto CTS flow control allows starting and stopping of local data transmissions based on the  
modem CTS# signal. A logic 1 on the CTS# pin will stop UART transmitter as soon as the current character  
has finished transmission, and a logic 0 will resume data transmission. Normally MSR bit-4 bit is the  
compliment of the CTS# input. However in the loopback mode, this bit is equivalent to the RTS# bit in the MCR  
register. The CTS# input may be used as a general purpose input when the modem interface is not used.  
MSR[5]: DSR Input Status  
DSR# (active high, logical 1). Normally this bit is the compliment of the DSR# input. In the loopback mode, this  
bit is equivalent to the DTR# bit in the MCR register. The DSR# input may be used as a general purpose input  
when the modem interface is not used.  
MSR[6]: RI Input Status  
RI# (active high, logical 1). Normally this bit is the compliment of the RI# input. In the loopback mode this bit is  
equivalent to bit-2 in the MCR register. The RI# input may be used as a general purpose input when the  
modem interface is not used.  
34  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
MSR[7]: CD Input Status  
CD# (active high, logical 1). Normally this bit is the compliment of the CD# input. In the loopback mode this bit  
is equivalent to bit-3 in the MCR register. The CD# input may be used as a general purpose input when the  
modem interface is not used.  
4.10 Scratch Pad Register (SPR) - Read/Write  
This is a 8-bit general purpose register for the user to store temporary data. The content of this register is  
preserved during sleep mode but becomes 0xFF (default) after a reset or a power off-on cycle.  
4.11 Enhanced Mode Select Register (EMSR)  
This register replaces SPR (during a Write) and is accessible only when FCTR[6] = 1.  
EMSR[1:0]: Receive/Transmit FIFO Count (Write-Only)  
When Scratchpad Swap (FCTR[6]) is asserted, EMSR bits 1-0 controls what mode the FIFO Level Counter is  
operating in.  
TABLE 14: SCRATCHPAD SWAP SELECTION  
FCTR[6]  
EMSR[1]  
EMSR[0]  
Scratchpad is  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Scratchpad  
RX FIFO Counter Mode  
TX FIFO Counter Mode  
RX FIFO Counter Mode  
Alternate RX/TX FIFO Counter Mode  
During Alternate RX/TX FIFO Counter Mode, the first value read after EMSR bits 1-0 have been asserted will  
always be the RX FIFO Counter. The second value read will correspond with the TX FIFO Counter. The next  
value will be the RX FIFO Counter again, then the TX FIFO Counter and so on and so forth.  
EMSR[3:2]: Reserved  
35  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
EMSR[5:4]: Extended RTS Hysteresis  
TABLE 15: AUTO RTS HYSTERESIS  
RTS#  
HYSTERESIS  
(CHARACTERS)  
EMSR  
BIT-5  
EMSR  
BIT-4  
FCTR  
BIT-1  
FCTR  
BIT-0  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
±4  
±6  
±8  
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
±8  
±16  
±24  
±32  
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
±40  
±44  
±48  
±52  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
±12  
±20  
±28  
±36  
EMSR[7:6]: Reserved  
4.12 FIFO Level Register (FLVL) - Read-Only  
The FIFO Level Register replaces the Scratchpad Register (during a Read) when FCTR[6] = 1. Note that this  
is not identical to the FIFO Data Count Register which can be accessed when LCR = 0xBF.  
FLVL[7:0]: FIFO Level Register  
This register provides the FIFO counter level for the RX FIFO or the TX FIFO or both depending on EMSR[1:0].  
See Table 14 for details.  
4.13 Baud Rate Generator Registers (DLL and DLM) - Read/Write  
The concatenation of the contents of DLM and DLL gives the 16-bit divisor value which is used to calculate the  
baud rate:  
Baud Rate = (Clock Frequency / 16) / Divisor  
See MCR bit-7 and the baud rate table also.  
4.14 Device Identification Register (DVID) - Read Only  
This register contains the device ID (0x14 for XR16C854). Prior to reading this register, DLL and DLM should  
be set to 0x00.  
4.15 Device Revision Register (DREV) - Read Only  
This register contains the device revision information. For example, 0x01 means revision A. Prior to reading  
this register, DLL and DLM should be set to 0x00.  
4.16 Trigger Level (TRG) - Write-Only  
User Programmable Transmit/Receive Trigger Level Register.  
TRG[7:0]: Trigger Level Register  
These bits are used to program desired trigger levels when trigger Table-D is selected. FCTR bit-7 selects  
between programming the RX Trigger Level (a logic 0) and the TX Trigger Level (a logic 1).  
36  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
4.17 FIFO Data Count Register (FC) - Read-Only  
This register is accessible when LCR = 0xBF. Note that this register is not identical to the FIFO Level Count  
Register which is located in the general register set when FCTR bit-6 = 1 (Scratchpad Register Swap). It is  
suggested to read the FIFO Level Count Register at the Scratchpad Register location when FCTR bit-6 = 1.  
See Table 14.  
FC[7:0]: FIFO Data Count Register  
Transmit/Receive FIFO Count. Number of characters in Transmit (FCTR[7] = 1) or Receive FIFO (FCTR[7] = 0)  
can be read via this register.  
4.18  
Feature Control Register (FCTR) - Read/Write  
This register controls the XR16C854 new functions that are not available in ST16C554 or ST16C654.  
FCTR[1:0]: RTS Hysteresis  
User selectable RTS# hysteresis levels for hardware flow control application. After reset, these bits are set to  
“0” to select the next trigger level for hardware flow control. See Table 15 on page 36 for more details.  
FCTR[2]: IrDA RX Inversion  
Logic 0 = Select RX input as encoded IrDA data (Idle state will be logic 0).  
Logic 1 = Select RX input as inverted encoded IrDA data (Idle state will be logic 1).  
FCTR[3]: Auto RS-485 Direction Control  
The Auto RS-485 Direction Control is not available in the XR16C854. See XR16C864. However, this bit  
changes the TX Ready Interrupt behavior. See Table 3.  
FCTR[5:4]: Transmit/Receive Trigger Table Select  
See Table 11 on page 29 for more details.  
TABLE 16: TRIGGER TABLE SELECT  
FCTR  
BIT-5  
FCTR  
BIT-4  
TABLE  
0
0
1
1
0
1
0
1
Table-A (TX/RX)  
Table-B (TX/RX)  
Table-C (TX/RX)  
Table-D (TX/RX)  
FCTR[6]: Scratchpad Swap  
Logic 0 = Scratch Pad register is selected as general read and write register. ST16C550 compatible mode.  
Logic 1 = FIFO Count register (Read-Only), Enhanced Mode Select Register (Write-Only). Number of  
characters in transmit or receive holding register can be read via scratch pad register when this bit is set.  
Enhanced Mode Select Register is selected when it is written into.  
FCTR[7]: Programmable Trigger Register Select  
Logic 0 = Registers TRG and FC selected for RX.  
Logic 1 = Registers TRG and FC selected for TX.  
4.19 Enhanced Feature Register (EFR) - Read/Write  
Enhanced features are enabled or disabled using this register. Bit 0-3 provide single or dual consecutive  
character software flow control selection (see Table 17). When the Xon1 and Xon2 and Xoff1 and Xoff2 modes  
are selected, the double 8-bit words are concatenated into two sequential characters. Caution: note that  
whenever changing the TX or RX flow control bits, always reset all bits back to logic 0 (disable) before  
programming a new setting.  
37  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
EFR[3:0]: Software Flow Control Select  
Single character and dual sequential characters software flow control is supported. Combinations of software  
flow control can be selected by programming these bits.  
TABLE 17: SOFTWARE FLOW CONTROL FUNCTIONS  
EFR BIT-3  
CONT-3  
EFR BIT-2  
CONT-2  
EFR BIT-1  
CONT-1  
EFR BIT-0  
CONT-0  
TRANSMIT AND RECEIVE SOFTWARE FLOW CONTROL  
0
0
1
0
1
X
X
X
1
0
0
0
1
1
X
X
X
0
0
X
X
X
X
0
0
X
X
X
X
0
0
1
1
No TX and RX flow control (default and reset)  
No transmit flow control  
Transmit Xon1, Xoff1  
Transmit Xon2, Xoff2  
Transmit Xon1 and Xon2, Xoff1 and Xoff2  
No receive flow control  
1
Receiver compares Xon1, Xoff1  
Receiver compares Xon2, Xoff2  
0
1
Transmit Xon1, Xoff1  
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2  
0
1
0
1
1
0
1
1
1
1
1
1
Transmit Xon2, Xoff2  
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2  
Transmit Xon1 and Xon2, Xoff1 and Xoff2,  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
No transmit flow control,  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
EFR[4]: Enhanced Function Bits Enable  
Enhanced function control bit. This bit enables IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and MCR bits 5-7 to be  
modified. After modifying any enhanced bits, EFR bit-4 can be set to a logic 0 to latch the new values. This  
feature prevents legacy software from altering or overwriting the enhanced functions once set. Normally, it is  
recommended to leave it enabled, logic 1.  
Logic 0 = modification disable/latch enhanced features. IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and MCR  
bits 5-7 are saved to retain the user settings. After a reset, the IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and  
MCR bits 5-7are set to a logic 0 to be compatible with ST16C550 mode (default).  
Logic 1 = Enables the above-mentioned register bits to be modified by the user.  
EFR[5]: Special Character Detect Enable  
Logic 0 = Special Character Detect Disabled (default).  
Logic 1 = Special Character Detect Enabled. The UART compares each incoming receive character with  
data in Xoff-2 register. If a match exists, the receive data will be transferred to FIFO and ISR bit-4 will be set  
to indicate detection of the special character. Bit-0 corresponds with the LSB bit of the receive character. If  
flow control is set for comparing Xon1, Xoff1 (EFR [1:0]= ‘10’) then flow control and special character work  
normally. However, if flow control is set for comparing Xon2, Xoff2 (EFR[1:0]= ‘01’) then flow control works  
normally, but Xoff2 will not go to the FIFO, and will generate an Xoff interrupt and a special character  
interrupt, if enabled via IER bit-5.  
38  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
EFR[6]: Auto RTS Flow Control Enable  
RTS# output may be used for hardware flow control by setting EFR bit-6 to logic 1. When Auto RTS is selected,  
an interrupt will be generated when the receive FIFO is filled to the programmed trigger level and RTS de-  
asserts to a logic 1 at the next upper trigger level/hysteresis level. RTS# will return to a logic 0 when FIFO data  
falls below the next lower trigger level/hysteresis level. The RTS# output must be asserted (logic 0) before the  
auto RTS can take effect. RTS# pin will function as a general purpose output when hardware flow control is  
disabled.  
Logic 0 = Automatic RTS flow control is disabled (default).  
Logic 1 = Enable Automatic RTS flow control.  
EFR[7]: Auto CTS Flow Control Enable  
Automatic CTS Flow Control.  
Logic 0 = Automatic CTS flow control is disabled (default).  
Logic 1 = Enable Automatic CTS flow control. Data transmission stops when CTS# input de-asserts to logic  
1. Data transmission resumes when CTS# returns to a logic 0.  
4.20 Software Flow Control Registers (XOFF1, XOFF2, XON1, XON2) - Read/Write  
These registers are used as the programmable software flow control characters xoff1, xoff2, xon1, and xon2.  
For more details, see Table 7 on page 19.  
4.21 FIFO Status Register (FSTAT) - Read/Write  
This register is applicable only to the 100 pin QFP XR16C854. The FIFO Status Register provides a status  
indication for each of the transmit and receive FIFO. These status bits contain the inverted logic states of the  
TXRDY# A-D outputs and the (un-inverted) logic states of the RXRDY# A-D outputs. The contents of the FSTAT  
register are placed on the data bus when the FSRS# pin (pin 76) is a logic 0. Also see FSRS# pin description.  
FSTAT[3:0]: TXRDY# A-D Status Bits  
Please see Table 5 on page 13 for the interpretation of the TXRDY# signals.  
FSTAT[7:4]: RXRDY# A-D Status Bits  
Please see Table 5 on page 13 for the interpretation of the RXRDY# signals.  
39  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
TABLE 18: UART RESET CONDITIONS FOR CHANNELS A-D  
REGISTERS  
DLL  
RESET STATE  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x01  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x60  
Bits 3-0 = Logic 0  
DLM  
RHR  
THR  
IER  
FCR  
ISR  
LCR  
MCR  
LSR  
MSR  
Bits 7-4 = Logic levels of the inputs inverted  
Bits 7-0 = 0xFF  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0xFF  
RESET STATE  
Logic 1  
SPR  
EMSR  
FLVL  
TRG  
FC  
FCTR  
EFR  
XON1  
XON2  
XOFF1  
XOFF2  
FSTAT  
I/O SIGNALS  
TX  
IRTX  
Logic 0  
RTS#  
Logic 1  
DTR#  
RXRDY#  
TXRDY#  
INT  
Logic 1  
Logic 1  
Logic 0  
XR16C854 = Three-State Condition  
XR16C854D = Logic 0  
IRQ#  
Logic 1 (68 mode, INTSEL = 0)  
40  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
ELECTRICAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS  
Power Supply Range  
Voltage at Any Pin  
7 Volts  
GND-0.3 V to 7 V  
-40o to +85oC  
Operating Temperature  
-65o to +150oC  
500 mW  
Storage Temperature  
Package Dissipation  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: = 15%)  
theta-ja = 49oC/W, theta-jc = 10oC/W  
Thermal Resistance (64-TQFP)  
theta-ja = 39oC/W, theta-jc = 17oC/W  
theta-ja = 45oC/W, theta-jc = 12oC/W  
Thermal Resistance (68-PLCC)  
Thermal Resistance (100-QFP)  
DC ELECTRICAL CHARACTERISTICS  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.97 TO 5.5V  
LIMITS  
3.3V  
LIMITS  
5.0V  
SYMBOL  
PARAMETER  
UNITS  
CONDITIONS  
MIN  
MAX MIN  
MAX  
VILCK  
VIHCK  
VIL  
Clock Input Low Level  
-0.3  
0.6  
VCC  
0.8  
-0.5  
3.0  
0.6  
VCC  
0.8  
V
V
V
V
Clock Input High Level  
Input Low Voltage  
2.4  
-0.3  
2.0  
-0.5  
2.2  
VIH  
Input High Voltage  
VCC  
VCC  
(For devices with top mark date code of "DC YYWW" and older)  
VIH  
Input High Voltage  
(For devices with top mark date code of "F2 YYWW" and newer)  
2.0  
5.5  
0.4  
2.2  
5.5  
0.4  
V
V
VOL  
Output Low Voltage  
Output High Voltage  
IOL = 6 mA  
IOL = 4 mA  
VOH  
2.4  
V
IOH = -6 mA  
IOH = -1 mA  
2.0  
IIL  
IIH  
Input Low Leakage Current  
Input High Leakage Current  
Input Pin Capacitance  
Power Supply Current  
Sleep Current  
±10  
±10  
5
±10  
±10  
5
uA  
uA  
pF  
CIN  
ICC  
3
6
mA  
uA  
ISLEEP  
100  
200  
See Test 1  
Test 1: The following inputs remain steady at VCC or GND state to minimize Sleep current: A0-A2, D0-D7, IOR#, IOW#,  
CSA#, CSB#, CSC#, and CSD#. Also, RXA, RXB, RXC, and RXD inputs idle at logic 1 state while asleep.  
41  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
AC ELECTRICAL CHARACTERISTICS  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.97 TO 5.5V  
LIMITS  
3.3  
LIMITS  
5.0  
SYMBOL  
PARAMETER  
UNIT  
CONDITIONS  
MIN  
MAX MIN  
MAX  
CLK  
OSC  
OSC  
Clock Pulse Duration  
20  
15  
ns  
MHz  
MHz  
ns  
Oscillator Frequency  
8
24  
32  
External Clock Frequency  
Address Setup Time (16 Mode)  
Address Hold Time (16 Mode)  
Chip Select Width (16 Mode)  
IOR# Strobe Width (16 Mode)  
Read Cycle Delay (16 Mode)  
Data Access Time (16 Mode)  
Data Disable Time (16 Mode)  
IOW# Strobe Width (16 Mode)  
Write Cycle Delay (16 Mode)  
Data Setup Time (16 Mode)  
Data Hold Time (16 Mode)  
Address Setup (68 Mode)  
24  
AS  
T
10  
10  
66  
35  
40  
5
AH  
T
5
ns  
CS  
T
50  
25  
30  
ns  
TRD  
TDY  
ns  
ns  
TRDV  
TDD  
TWR  
TDY  
35  
25  
25  
15  
ns  
0
0
25  
30  
5
ns  
35  
40  
10  
10  
10  
ns  
ns  
TDS  
TDH  
TADS  
ns  
5
ns  
10  
ns  
Address Hold (68 Mode)  
15  
10  
15  
15  
5
ns  
TADH  
R/W# Setup to CS# (68 Mode)  
Read Data Access (68 mode)  
ns  
ns  
TRWS  
TRDA  
15  
Read Data Hold (68 mode)  
Write Data Setup (68 mode)  
ns  
ns  
TRDH  
TWDS  
15  
20  
15  
15  
Write Data Hold (68 Mode)  
10  
10  
ns  
TWDH  
CS# De-asserted to R/W# De-asserted (68 Mode)  
CS# Strobe Width (68 Mode)  
10  
40  
70  
10  
40  
70  
ns  
ns  
ns  
TRWH  
TCSL  
TCSD  
CS# Cycle Delay (68 Mode)  
TWDO Delay From IOW# To Output  
50  
40  
40  
1
40  
35  
35  
1
ns 100 pF load  
ns 100 pF load  
ns 100 pF load  
Bclk  
TMOD Delay To Set Interrupt From MODEM Input  
TRSI  
TSSI  
TRRI  
Delay To Reset Interrupt From IOR#  
Delay From Stop To Set Interrupt  
Delay From IOR# To Reset Interrupt  
40  
40  
ns 100 pF load  
42  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
AC ELECTRICAL CHARACTERISTICS  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.97 TO 5.5V  
LIMITS  
3.3  
LIMITS  
5.0  
SYMBOL  
PARAMETER  
UNIT  
CONDITIONS  
MIN  
MAX MIN  
MAX  
40  
24  
40  
1
TSI  
TINT  
TWRI  
TSSR  
TRR  
TWT  
TSRT  
TRST  
N
Delay From Stop To Interrupt  
45  
ns  
Bclk  
ns  
Delay From Initial INT Reset To Transmit Start  
Delay From IOW# To Reset Interrupt  
Delay From Stop To Set RXRDY#  
Delay From IOR# To Reset RXRDY#  
Delay From IOW# To Set TXRDY#  
Delay From Center of Start To Reset TXRDY#  
Reset Pulse Width  
8
24  
45  
1
8
Bclk  
ns  
45  
45  
8
40  
40  
8
ns  
Bclk  
ns  
40  
1
40  
1
Baud Rate Divisor  
-
2
16-1  
216-1  
Bclk  
Baud Clock  
16X of data rate  
bps  
FIGURE 14. CLOCK TIMING  
CLK  
CLK  
EXTERNAL  
CLOCK  
OSC  
FIGURE 15. MODEM INPUT/OUTPUT TIMING FOR CHANNELS A-D  
IO W #  
IO W  
A c tiv e  
T W  
D O  
R T S #  
D T R #  
C h a n g e o f s ta te  
C h a n g e o f s ta te  
C D #  
C T S #  
C h a n g e o f s ta te  
C h a n g e o f s ta te  
D S R #  
T M O D  
T M O D  
IN T  
A c tiv e  
A c tiv e  
A c tiv e  
A c tiv e  
T R S I  
IO R #  
A c tiv e  
A c tiv e  
T M O D  
C h a n g e o f s ta te  
R I#  
43  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
FIGURE 16. 16 MODE (INTEL) DATA BUS READ TIMING FOR CHANNELS A-D  
A0-A7  
CS#  
Valid Address  
TCS  
Valid Address  
TCS  
TAS  
TAS  
TAH  
TAH  
TDY  
TRD  
TRD  
IOR#  
D0-D7  
TDD  
TDD  
TRDV  
TRDV  
Valid Data  
Valid Data  
RDTm  
FIGURE 17. 16 MODE (INTEL) DATA BUS WRITE TIMING FOR CHANNELS A-D  
A0-A7  
CS#  
Valid Address  
TCS  
Valid Address  
TCS  
TAS  
TAS  
TAH  
TAH  
TDY  
TWR  
TWR  
IOW#  
D0-D7  
TDH  
TDH  
TDS  
Valid Data  
TDS  
Valid Data  
16Write  
44  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
FIGURE 18. 68 MODE (MOTOROLA) DATA BUS READ TIMING FOR CHANNELS A-D  
A0-A7  
CS#  
Valid Address  
TCSL  
Valid Address  
TADS  
TADH  
TCSD  
TRWS  
TRWH  
R/W#  
D0-D7  
TRDH  
TRDA  
Valid Data  
Valid Data  
68Read  
FIGURE 19. 68 MODE (MOTOROLA) DATA BUS WRITE TIMING FOR CHANNELS A-D  
A0-A7  
CS#  
Valid Address  
TCSL  
Valid Address  
TADS  
TADH  
TCSD  
TRWS  
TRWH  
R/W#  
D0-D7  
T
WDH  
TWDS  
Valid Data  
Valid Data  
68Write  
45  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
FIGURE 20. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A-D  
RX  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
TSSR  
TSSR  
TSSR  
1 Byte  
1 Byte  
1 Byte  
in RHR  
in RHR  
in RHR  
INT  
TSSR  
TSSR  
TSSR  
Active  
Data  
Active  
Data  
Active  
Data  
RXRDY#  
Ready  
Ready  
Ready  
TRR  
TRR  
TRR  
IOR#  
(Reading data  
out of RHR)  
RXNFM  
FIGURE 21. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A-D  
TX  
(Unloading)  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
IER[1]  
enabled  
ISR is read  
ISR is read  
ISR is read  
INT*  
TWRI  
TWRI  
TWRI  
TSRT  
TSRT  
TSRT  
TXRDY#  
TWT  
TWT  
TWT  
IOW#  
(Loading data  
into THR)  
*INT is cleared when the ISR is read or when data is loaded into the THR.  
TXNonFIFO  
46  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
FIGURE 22. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED] FOR CHANNELS A-D  
Start  
Bit  
RX  
S
S
S
S
S
T
S
D0:D7  
D0:D7  
D0:D7  
T
D0:D7  
TSSI  
D0:D7  
T
T
T
D0:D7  
D0:D7  
Stop  
Bit  
RX FIFO drops  
below RX  
Trigger Level  
INT  
TSSR  
FIFO  
Empties  
RX FIFO fills up to RX  
Trigger Level or RX Data  
Timeout  
RXRDY#  
First Byte is  
Received in  
RX FIFO  
TRRI  
TRR  
IOR#  
(Reading data out  
of RX FIFO)  
RXINTDMA#  
FIGURE 23. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED] FOR CHANNELS A-D  
Start  
Bit  
Stop  
Bit  
RX  
S
S
S
S
T
D0:D7  
D0:D7  
D0:D7  
T
D0:D7  
TSSI  
D0:D7  
T
S
T
S
D0:D7  
T
D0:D7  
RX FIFO drops  
below RX  
Trigger Level  
INT  
RX FIFO fills up to RX  
Trigger Level or RX Data  
Timeout  
TSSR  
FIFO  
Empties  
RXRDY#  
TRRI  
TRR  
IOR#  
(Reading data out  
of RX FIFO)  
RXFIFODMA  
47  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
FIGURE 24. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED] FOR CHANNELS A-D  
Stop  
Bit  
Start  
Bit  
Last Data Byte  
Transmitted  
TX FIFO  
Empty  
TX  
(Unloading)  
T
S
S
S
S
T
D0:D7  
T
S
D0:D7  
T
D0:D7  
T
D0:D7  
T
D0:D7  
S
D0:D7  
T
ISR is read  
TSI  
IER[1]  
enabled  
ISR is read  
TSRT  
INT*  
TX FIFO  
Empty  
TX FIFO fills up  
to trigger level  
TX FIFO drops  
below trigger level  
TWRI  
Data in  
TX FIFO  
TXRDY#  
TWT  
IOW#  
(Loading data  
into FIFO)  
*INT is cleared when the ISR is read or when TX FIFO fills up to the trigger level.  
TXDMA#  
48  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
PACKAGE DIMENSIONS  
64 LEAD THIN QUAD FLAT PACK (10 x 10 x 1.4 mm TQFP)  
D
D1  
48  
33  
49  
32  
D1  
D
64  
17  
1
16  
B
A2  
e
C
A
α
Seating Plane  
A1  
L
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
MAX  
1.60  
0.15  
1.45  
0.27  
0.20  
12.20  
10.10  
A
A1  
A2  
B
0.055  
0.002  
0.053  
0.007  
0.004  
0.465  
0.390  
0.063  
0.006  
0.057  
0.011  
0.008  
0.480  
0.398  
1.40  
0.05  
1.35  
0.17  
0.09  
11.80  
9.90  
C
D
D1  
e
0.020 BSC  
0.50 BSC  
L
0.018  
0.030  
0.45  
0.75  
α
0°  
7°  
0°  
7°  
49  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
68 LEAD PLASTIC LEADED CHIP CARRIER (PLCC)  
D
C
Seating Plane  
A2  
D1  
45° x H1  
45° x H2  
2
1
68  
B1  
B
D3  
D2  
D
D1  
e
R
D3  
A1  
A
Note: The control dimension is the inch column  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
0.200  
0.130  
---.  
MIN  
MAX  
5.08  
3.30  
---  
A
A1  
A2  
B
0.165  
0.090  
0.020  
0.013  
0.026  
0.008  
0.985  
0.950  
0.890  
4.19  
2.29  
0.51  
0.021  
0.032  
0.013  
0.995  
0.958  
0.930  
0.33  
0.53  
0.81  
0.32  
25.27  
24.33  
23.62  
B1  
C
0.66  
0.19  
D
25.02  
24.13  
22.61  
D1  
D2  
D3  
e
0.800 typ.  
0.050 BSC  
0.042  
20.32 typ.  
1.27 BSC  
H1  
H2  
R
0.056  
0.048  
0.045  
1.07  
1.07  
0.64  
1.42  
1.22  
1.14  
0.042  
0.025  
50  
áç  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
REV. 3.0  
100 LEAD PLASTIC QUAD FLAT PACK (14 mm x 20 mm QFP, 1.95 mm Form)  
D
D1  
80  
51  
81  
50  
E1  
E
100  
31  
p
1
30  
B
A2  
e
C
A
α
Seating Plane  
A1  
L
Note: The control dimension is the millimeter column  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
0.134  
0.014  
0.120  
0.015  
0.009  
0.951  
0.791  
0.715  
0.555  
MIN  
MAX  
3.40  
0.35  
3.05  
0.38  
0.23  
A
A1  
A2  
B
0.102  
0.002  
0.100  
0.009  
0.004  
0.931  
0.783  
0.695  
0.547  
2.60  
0.05  
2.55  
0.22  
C
0.11  
D
23.65  
19.90  
17.65  
13.90  
24.15  
20.10  
18.15  
14.10  
D1  
E
E1  
e
0.0256 BSC  
0.65 BSC  
L
0.029  
0°  
0.040  
0.73  
1.03  
α
7°  
0°  
7°  
51  
XR16C854/854D  
2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 3.0  
REVISION HISTORY  
Date  
Revision  
Description  
Removed Preliminary designation.  
November 1999 Rev 1.0  
February 2002  
Rev 2.0  
Changed to standard style format. Text descriptions were clarified and sim-  
plified (eg. DMA operation, FIFO mode vs. Non-FIFO mode operations etc).  
Corrected RTS Hysteresis character values in Table 15. Clarified timing dia-  
grams. Renamed Rclk (Receive Clock) to Bclk (Baud Clock) and timing  
symbols. Added TCS, TRWS and TRST  
.
May 2003  
Rev 2.1  
Rev 2.2  
Rev 3.0  
Added patent number and updated Block Diagram.  
June 2003  
January 2004  
Added and updated device status in Ordering Information.  
Changed to standard style format. Clarified sleep mode conditions. Devices  
with top mark date code of "F2 YYWW" and newer have 5V tolerant inputs  
(except for XTAL1). Devices with top mark date code of "DC YYWW" and  
older do not have 5V tolerant inputs.  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to  
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that  
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication  
has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the  
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to  
significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless  
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has  
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately  
protected under the circumstances.  
Copyright 2004 EXAR Corporation  
Datasheet January 2004.  
Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
52  
áç  
XR16C854/XR16C854D  
3.3V AND 5V QUAD UART WITH 128-BYTE FIFO  
REV.2.0  
TABLE OF CONTENTS  
GENERAL DESCRIPTION................................................................................................. 1  
FEATURES .................................................................................................................................................. 1  
APPLICATIONS............................................................................................................................................. 1  
FIGURE 1. XR16C854 BLOCK DIAGRAM .................................................................................................................................................. 1  
FIGURE 2. PIN OUT ASSIGNMENT FOR 100-PIN QFP PACKAGES IN 16 AND 68 MODE............................................................................... 2  
FIGURE 3. PIN OUT ASSIGNMENT FOR PLCC PACKAGES IN 16 AND 68 MODE AND TQFP PACKAGES....................................................... 3  
ORDERING INFORMATION ............................................................................................................................. 3  
PIN DESCRIPTIONS ......................................................................................................... 4  
1.0 Product DESCRIPTION ........................................................................................................... 9  
2.0 FUNCTIONAL DESCRIPTIONS ............................................................................................. 10  
2.1 CPU INTERFACE ............................................................................................................................... 10  
FIGURE 4. XR16C854/854D TYPICAL INTEL/MOTOROLA DATA BUS INTERCONNECTIONS ........................................................................ 10  
2.2 5-VOLT TOLERANT INPUTS ................................................................................................................ 11  
2.3 DEVICE RESET .................................................................................................................................. 11  
2.4 DEVICE IDENTIFICATION AND REVISION .............................................................................................. 11  
2.5 CHANNEL SELECTION ........................................................................................................................ 11  
TABLE 1: CHANNEL A-D SELECT IN 16 MODE ........................................................................................................................................ 11  
TABLE 2: CHANNEL A-D SELECT IN 68 MODE ........................................................................................................................................ 11  
2.6 CHANNELS A-D INTERNAL REGISTERS ............................................................................................... 12  
2.7 INT OUPUTS FOR CHANNELS A-D ..................................................................................................... 12  
2.8 DMA MODE ...................................................................................................................................... 12  
TABLE 3: INT PINS OPERATION FOR TRANSMITTER FOR CHANNELS A-D................................................................................................. 12  
TABLE 4: INT PIN OPERATION FOR RECEIVER FOR CHANNELS A-D ........................................................................................................ 12  
2.9 CRYSTAL OSCILLATOR OR EXTERNAL CLOCK INPUT ........................................................................... 13  
FIGURE 5. TYPICAL OSCILATOR CONNECTIONSL ...................................................................................................................................... 13  
2.10 PROGRAMMABLE BAUD RATE GENERATOR ....................................................................................... 13  
TABLE 5: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE FOR CHANNELS A-D................................................................... 13  
2.11 TRANSMITTER ................................................................................................................................. 14  
2.11.1 Transmit Holding Register (THR) - Write Only....................................................................................... 14  
2.11.2 Transmitter Operation in non-FIFO Mode .............................................................................................. 14  
FIGURE 6. BAUD RATE GENERATOR AND PRESCALER ............................................................................................................................ 14  
TABLE 6: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK.............................................................................. 14  
2.11.3 Transmitter Operation in FIFO Mode ..................................................................................................... 15  
2.12 RECEIVER ....................................................................................................................................... 15  
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE...................................................................................................................... 15  
FIGURE 8. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE............................................................................................. 15  
2.12.1 Receive Holding Register (RHR) - Read-Only ....................................................................................... 16  
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE ........................................................................................................................... 16  
FIGURE 10. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE............................................................................... 16  
2.13 AUTO RTS HARDWARE FLOW CONTROL .......................................................................................... 17  
2.14 AUTO RTS HYSTERESIS ................................................................................................................. 17  
2.15 AUTO CTS FLOW CONTROL ........................................................................................................... 17  
FIGURE 11. AUTO RTS AND CTS FLOW CONTROL OPERATION .............................................................................................................. 18  
2.16 AUTO XON/XOFF (SOFTWARE) FLOW CONTROL ............................................................................... 19  
2.17 SPECIAL CHARACTER DETECT ........................................................................................................ 19  
2.18 INFRARED MODE ............................................................................................................................. 19  
TABLE 7: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL....................................................................................................................... 19  
2.19 SLEEP MODE WITH AUTO WAKE-UP ............................................................................................... 20  
FIGURE 12. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING ................................................................................. 20  
2.20 INTERNAL LOOPBACK ..................................................................................................................... 21  
FIGURE 13. INTERNAL LOOP BACK IN CHANNELS A-D............................................................................................................................. 22  
3.0 UART INTERNAL REGISTERS ............................................................................................. 23  
TABLE 8: UART CHANNEL A AND B UART INTERNAL REGISTERS............................................................................................. 23  
TABLE 9: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1 ................................................ 24  
4.0 INTERNAL Register descriptions ........................................................................................ 26  
4.1 RECEIVE HOLDING REGISTER (RHR) - READ- ONLY ........................................................................... 26  
I
XR16C854/XR16C854D  
3.3V AND 5V QUAD UART WITH 128-BYTE FIFO  
áç  
REV. 2.0  
4.2 TRANSMIT HOLDING REGISTER (THR) - WRITE-ONLY ......................................................................... 26  
4.3 INTERRUPT ENABLE REGISTER (IER) - READ/WRITE ........................................................................... 26  
4.3.1 IER versus Receive FIFO Interrupt Mode Operation................................................................................ 26  
4.3.2 IER versus Receive/Transmit FIFO Polled Mode Operation.................................................................... 26  
4.4 INTERRUPT STATUS REGISTER (ISR) - READ-ONLY ............................................................................ 27  
4.4.1 Interrupt Generation: ................................................................................................................................ 27  
4.4.2 Interrupt Clearing:..................................................................................................................................... 27  
4.5 FIFO CONTROL REGISTER (FCR) - WRITE-ONLY ............................................................................... 28  
TABLE 10: INTERRUPT SOURCE AND PRIORITY LEVEL............................................................................................................................. 28  
TABLE 11: TRANSMIT AND RECEIVE FIFO TRIGGER LEVEL SELECTION.................................................................................................... 29  
4.6 LINE CONTROL REGISTER (LCR) - READ/WRITE ................................................................................. 30  
TABLE 12: PARITY SELECTION................................................................................................................................................................ 31  
4.7 MODEM CONTROL REGISTER (MCR) OR GENERAL PURPOSE OUTPUTS CONTROL - READ/WRITE ........ 32  
TABLE 13: INT OUTPUT MODES ............................................................................................................................................................ 32  
4.8 LINE STATUS REGISTER (LSR) - READ ONLY ..................................................................................... 33  
4.9 MODEM STATUS REGISTER (MSR) - READ ONLY ............................................................................... 34  
4.10 SCRATCH PAD REGISTER (SPR) - READ/WRITE ............................................................................... 35  
4.11 ENHANCED MODE SELECT REGISTER (EMSR) ................................................................................. 35  
TABLE 14: SCRATCHPAD SWAP SELECTION............................................................................................................................................ 35  
TABLE 15: AUTO RTS HYSTERESIS ...................................................................................................................................................... 36  
4.12 FIFO LEVEL REGISTER (FLVL) - READ-ONLY ................................................................................... 36  
4.13 BAUD RATE GENERATOR REGISTERS (DLL AND DLM) - READ/WRITE ............................................... 36  
4.14 DEVICE IDENTIFICATION REGISTER (DVID) - READ ONLY .................................................................. 36  
4.15 DEVICE REVISION REGISTER (DREV) - READ ONLY ......................................................................... 36  
4.16 TRIGGER LEVEL (TRG) - WRITE-ONLY ............................................................................................. 36  
4.17 FIFO DATA COUNT REGISTER (FC) - READ-ONLY ............................................................................ 37  
4.18 FEATURE CONTROL REGISTER (FCTR) - READ/WRITE .................................................................... 37  
4.19 ENHANCED FEATURE REGISTER (EFR) - READ/WRITE ...................................................................... 37  
TABLE 16: TRIGGER TABLE SELECT ....................................................................................................................................................... 37  
TABLE 17: SOFTWARE FLOW CONTROL FUNCTIONS ............................................................................................................................... 38  
4.20 SOFTWARE FLOW CONTROL REGISTERS (XOFF1, XOFF2, XON1, XON2) - READ/WRITE ............... 39  
4.21 FIFO STATUS REGISTER (FSTAT) - READ/WRITE ............................................................................ 39  
TABLE 18: UART RESET CONDITIONS FOR CHANNELS A-D......................................................................................................... 40  
ELECTRICAL CHARACTERISTICS ................................................................................41  
ABSOLUTE MAXIMUM RATINGS ...................................................................................................................41  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: = 15%)............................................41  
DC ELECTRICAL CHARACTERISTICS ...........................................................................................................41  
TA=0o to 70oC (-40o to +85oC for industrial grade package), Vcc is 2.97 to 5.5V...........................................41  
AC ELECTRICAL CHARACTERISTICS............................................................................................................42  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.97 TO 5.5V......................42  
FIGURE 14. CLOCK TIMING .................................................................................................................................................................... 43  
FIGURE 15. MODEM INPUT/OUTPUT TIMING FOR CHANNELS A-D............................................................................................................ 43  
FIGURE 16. 16 MODE (INTEL) DATA BUS READ TIMING FOR CHANNELS A-D........................................................................................... 44  
FIGURE 17. 16 MODE (INTEL) DATA BUS WRITE TIMING FOR CHANNELS A-D.......................................................................................... 44  
FIGURE 18. 68 MODE (MOTOROLA) DATA BUS READ TIMING FOR CHANNELS A-D .................................................................................. 45  
FIGURE 19. 68 MODE (MOTOROLA) DATA BUS WRITE TIMING FOR CHANNELS A-D................................................................................. 45  
FIGURE 20. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A-D.................................................................... 46  
FIGURE 21. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A-D.................................................................. 46  
FIGURE 22. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED] FOR CHANNELS A-D .................................................. 47  
FIGURE 23. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED] FOR CHANNELS A-D ................................................... 47  
FIGURE 24. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED] FOR CHANNELS A-D...................................... 48  
PACKAGE DIMENSIONS ..............................................................................................................................49  
REVISION HISTORY ....................................................................................................................................52  
TABLE OF CONTENTS ................................................................................................................................. I  
II  

相关型号:

XR16C854CJ68

Serial I/O Controller, 4 Channel(s), 0.1875MBps, CMOS, PQCC68, PLASTIC, LCC-68
EXAR

XR16C854CJTR-F

Serial I/O Controller, CMOS
EXAR

XR16C854CQ

2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO
EXAR

XR16C854CQ-F

Serial I/O Controller, 4 Channel(s), 0.25MBps, CMOS, PQFP100, 14 X 20 MM, GREEN, PLASTIC, QFP-100
EXAR

XR16C854CQ64

Serial I/O Controller, 4 Channel(s), 0.1875MBps, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, TQFP-64
EXAR

XR16C854CQTR-F

Serial I/O Controller, 4 Channel(s), 0.25MBps, CMOS, PQFP100, 14 X 20 MM, GREEN, MS-022, MQFP-100
EXAR

XR16C854CV

2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO
EXAR

XR16C854CV-F

Serial I/O Controller, 4 Channel(s), 0.25MBps, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, GREEN, TQFP-64
EXAR

XR16C854D

2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO
EXAR

XR16C854DCV

QUAD UART WITH RX/TX FIFO COUNTERS,128-BYTE FIFO
EXAR

XR16C854DCV-F

Serial I/O Controller, 4 Channel(s), 0.25MBps, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, GREEN, TQFP-64
EXAR

XR16C854DCVTR-F

Serial I/O Controller, CMOS,
EXAR