XR68M752IB49-F [EXAR]

暂无描述;
XR68M752IB49-F
型号: XR68M752IB49-F
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

暂无描述

微控制器和处理器 串行IO控制器 通信控制器 外围集成电路 先进先出芯片 数据传输 时钟
文件: 总54页 (文件大小:1301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
JUNE 2009  
REV. 1.1.1  
FEATURES  
GENERAL DESCRIPTION  
1.62 to 3.6 Volt Operation  
1
The XR16M752/XR68M752 (M752) is a high  
Pin-to-pin and software compatible to TI’s  
TL16C752B and Philips’ SC16C752B in the 48-  
TQFP package  
performance dual universal asynchronous receiver  
and transmitter (UART) with 64 byte TX and RX  
FIFOs. The M752 operates from 1.62 to 3.63 volts. It  
is pin-to-pin and software compatible to the  
TL16C752B and SC16C752B, but with additional  
features such as a programmable fractional baud rate  
generator, automatic RS-485 half-duplex direction  
control, infrared mode and 8X and 4X sampling rate.  
The standard features include 16 selectable TX and  
RX FIFO trigger levels, automatic hardware (RTS/  
CTS) and software (Xon/Xoff) flow control, and a  
complete modem interface. Onboard registers  
provide the user with operational status and data  
error flags. An internal loopback capability allows  
system diagnostics. Each channel is independently  
programmable for data rates up to 16 Mbps at 3.3V  
with a 4X sampling rate. The XR68M752 has an  
additional 16/68# pin to select between the Intel and  
Motorola bus interface. The M752 is available in the  
48-pin TQFP, 32-pin QFN and 49-pin STBGA  
packages.  
Two independent UART channels  
Data rate of up to 16 Mbps at 3.3 V  
Data rate of up to 12.5 Mbps at 2.5 V  
Data rate of up to 8 Mbps at 1.8 V  
Fractional Baud Rate Generator  
Data sampling rates of 16X, 8X and 4X  
Transmit and Receive FIFOs of 64 bytes  
Programmable TX and RX FIFO Trigger Levels  
Automatic Hardware (RTS/CTS) Flow Control  
Automatic Software (Xon/Xoff) Flow Control  
Halt and Resume Transmission Control  
Automatic RS-485 Half-duplex Direction  
Control Output via RTS#  
Wireless Infrared (IrDA 1.0) Encoder/Decoder  
Automatic sleep mode  
Full modem interface  
NOTE: 1 Covered by U.S. Patent #5,649,122  
Crystal oscillator (up to 24MHz) or external clock  
(up to 64MHz) input  
APPLICATIONS  
48-TQFP, 32-QFN and 49-STBGA packages  
Portable Appliances  
Telecommunication Network Routers  
Ethernet Network Routers  
Cellular Data Devices  
Factory Automation and Process Controls  
FIGURE 1. XR16M752 BLOCK DIAGRAM  
1.62 to 3.63 Volt VCC  
A2:A0  
D7:D0  
GND  
IOR# (NC)  
IOW# (R/W#)  
UART Channel A  
TXA, RXA, DTRA#,  
64 Byte TX FIFO  
CSA# (CS#)  
CSB# (A3)  
UART  
Regs  
DSRA#, RTSA#,  
DTSA#, CDA#, RIA#,  
OP2A#  
IR  
TX & RX  
ENDEC  
8-bit Data  
Bus  
Interface  
INTA (IRQ#)  
INTB (NC)  
BRG  
64 Byte RX FIFO  
TXRDYA#  
TXRDYB#  
RXRDYA#  
RXRDYB#  
TXB, RXB, DTRB#,  
DSRB#, RTSB#,  
CTSB#, CDB#, RIB#,  
OP2B#  
UART Channel B  
(same as Channel A)  
Reset/Reset#  
16/68#  
XTAL1  
XTAL2  
Crystal Osc/Buffer  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
FIGURE 2. PIN OUT ASSIGNMENT - TQFP AND QFN PACKAGES  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RESET  
DTRB#  
DTRA#  
RTSA#  
OP2A#  
RXRDYA#  
INTA  
D5  
D6  
1
2
3
4
5
6
D7  
1
2
3
4
5
6
7
8
24 RESET  
23 RTSA#  
D6  
D7  
RXB  
RXA  
INTA  
INTB  
A0  
22  
21  
20  
19  
18  
RXB  
RXA  
TXA  
TXB  
XR16M752  
48-pin TQFP  
Intel Mode Only  
TXRDYB#  
TXA  
XR16M752  
32-pin QFN  
Intel Mode Only  
7
A1  
TXB  
8
9
INTB  
A2  
CSA#  
CSB#  
A0  
OP2B#  
17 NC  
A1  
CSA# 10  
CSB# 11  
NC 12  
A2  
NC  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
RESET  
DTRB#  
DTRA#  
RTSA#  
OP2A#  
RXRDYA#  
INTA  
D5  
D6  
D7  
1
2
3
4
5
6
7
8
24 RESET  
23 RTSA#  
D6  
D7  
RXB  
RXA  
INTA  
INTB  
A0  
22  
21  
20  
19  
18  
RXB  
RXA  
TXA  
TXB  
XR68M752  
48- pin TQFP  
Intel Mode  
XR68M752  
32-pin QFN  
Intel Mode  
TXRDYB#  
TXA  
7
A1  
INTB  
TXB  
8
9
A2  
CSA#  
CSB#  
VCC  
A0  
OP2B#  
17 16/68#  
A1  
CSA# 10  
CSB# 11  
NC 12  
A2  
N C  
VCC  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RESET#  
DTRB#  
DTRA#  
RTSA#  
OP2A#  
RXRDYA#  
IRQ#  
D5  
D6  
1
2
3
4
5
6
D7  
1
2
3
4
5
6
7
8
24 RESET#  
23 RTSA#  
D6  
D7  
RXB  
RXA  
IRQ#  
NC  
A0  
22  
21  
20  
19  
18  
RXB  
RXA  
TXA  
TXB  
XR68M752  
32-pin QFN  
Motorola Mode  
XR68M752  
48- pin TQFP  
Motorola Mode  
TXRDYB#  
A1  
TXA  
TXB  
7
A2  
CS#  
A3  
NC  
8
9
17 16/68#  
A0  
OP2B#  
GND  
A1  
CS# 10  
A3 11  
NC 12  
A2  
NC  
GND  
2
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
FIGURE 3. PIN OUT ASSIGNMENT - STBGA PACKAGE  
A1 Corner  
1
2
3
4
5 6 7  
A
B
C
D
E
F
G
Transparent Top View  
NC  
D5  
D3  
D4  
D0  
D1  
RIA#  
D2  
CTSA#  
VCC  
RS485#  
DSRA#  
OP2A#  
INTA  
DTRA#  
RESET  
DTRB#  
INTB  
D6  
D7  
RXB  
TXA  
TXRDYA#  
TXRDYB#  
RIB#  
CDA#  
TXB  
RXA  
RTSA#  
RXRDYA#  
DSRB#  
RTSB#  
CSB#  
PWRSAVE  
XTAL1  
CSA#  
IOW#  
OP2B#  
CDB#  
GND  
A0  
A1  
RXRDYB#  
IOR#  
CTSB#  
16/68#  
ENIR#  
A2  
XTAL2  
ORDERING INFORMATION  
PART NUMBER  
PACKAGE  
OPERATING TEMPERATURE RANGE  
DEVICE STATUS  
XR16M752IL32  
XR16M752IM48  
XR68M752IL32  
XR68M752IM48  
XR68M752IB49  
32-pin QFN  
48-Lead TQFP  
32-pin QFN  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Active  
Active  
Active  
Active  
Active  
48-Lead TQFP  
49-pin STBGA  
3
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
PIN DESCRIPTIONS  
Pin Description  
32-QFN  
PIN #  
48-TQFP 49-STBGA  
NAME  
TYPE  
DESCRIPTION  
PIN #  
PIN #  
DATA BUS INTERFACE  
A2  
A1  
A0  
18  
19  
20  
26  
27  
28  
G7  
E7  
E6  
I
Address data lines [2:0]. These 3 address lines select  
one of the internal registers in UART channel A/B during  
a data bus transaction.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
2
3
C2  
C1  
B1  
B2  
A2  
B4  
B3  
A3  
I/O  
Data bus lines [7:0] (bidirectional).  
1
2
32  
31  
30  
29  
28  
27  
1
48  
47  
46  
45  
44  
14  
19  
G4  
I
IOR#  
(NC)  
When 16/68# pin is HIGH, the Intel bus interface is  
selected and this input becomes read strobe (active low).  
The falling edge instigates an internal read cycle and  
retrieves the data byte from an internal register pointed  
by the address lines [A2:A0], puts the data byte on the  
data bus to allow the host processor to read it on the ris-  
ing edge.  
When 16/68# pin is LOW, the Motorola bus interface is  
selected and this input is not used.  
12  
15  
F2  
I
IOW#  
When 16/68# pin is HIGH, it selects Intel bus interface  
and this input becomes write strobe (active low). The fall-  
ing edge instigates the internal write cycle and the rising  
edge transfers the data byte on the data bus to an inter-  
nal register pointed by the address lines.  
(R/W#)  
When 16/68# pin is LOW, the Motorola bus interface is  
selected and this input becomes read (HIGH) and write  
(LOW) signal.  
7
8
10  
11  
E2  
E1  
I
I
CSA#  
(CS#)  
When 16/68# pin is HIGH, this input is chip select A  
(active low) to enable channel A in the device.  
When 16/68# pin is LOW, this input becomes the chip  
select (active low) for the Motorola bus interface.  
CSB#  
(A3)  
When 16/68# pin is HIGH, this input is chip select B  
(active low) to enable channel B in the device.  
When 16/68# pin is LOW, this input becomes address  
line A3 which is used for channel selection in the Motor-  
ola bus interface. Input logic 0 selects channel A and  
logic 1 selects channel B.  
4
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
Pin Description  
32-QFN  
48-TQFP 49-STBGA  
NAME  
TYPE  
DESCRIPTION  
PIN #  
PIN #  
PIN #  
22  
30  
D6  
O
INTA  
When 16/68# pin is HIGH for Intel bus interface, this out-  
put becomes channel A interrupt output. The output state  
is defined by the user through the software setting of  
MCR[3]. INTA is set to the active mode and OP2A# out-  
put LOW when MCR[3] is set to a logic 1. INTA is set to  
the three state mode and OP2A# to HIGH when MCR[3]  
is set to a logic 0. See MCR[3].  
(IRQ#)  
When 16/68# pin is LOW for Motorola bus interface, this  
output becomes device interrupt output (active low, open  
drain). An external pull-up resistor is required for proper  
operation.  
INTB  
(NC)  
21  
29  
D7  
O
When 16/68# pin is HIGH for Intel bus interface, this out-  
put becomes channel B interrupt output. The output state  
is defined by the user through the software setting of  
MCR[3]. INTB is set to the active mode and OP2A# out-  
put to LOW when MCR[3] is set to a logic 1. INTA is set to  
the three state mode and OP2A# to HIGH when MCR[3]  
is set to a logic 0. See MCR[3].  
When 16/68# pin is LOW for Motorola bus interface, this  
output is not used.  
TXRDYA#  
-
43  
C4  
O
UART channel A Transmitter Ready (active low). The  
output provides the TX FIFO/THR status for transmit  
channel A. See Table 3. If it is not used, leave it uncon-  
nected.  
RXRDYA#  
TXRDYB#  
-
-
31  
6
E5  
D4  
O
O
UART channel A Receiver Ready (active low). This out-  
put provides the RX FIFO/RHR status for receive channel  
A. See Table 3. If it is not used, leave it unconnected.  
UART channel B Transmitter Ready (active low). The  
output provides the TX FIFO/THR status for transmit  
channel B. See Table 4. If it is not used, leave it uncon-  
nected.  
RXRDYB#  
-
18  
F4  
O
O
UART channel B Receiver Ready (active low). This out-  
put provides the RX FIFO/RHR status for receive channel  
B. See Table 3. If it is not used, leave it unconnected.  
MODEM OR SERIAL I/O INTERFACE  
TXA  
5
7
D3  
UART channel A Transmit Data or infrared encoder data.  
Standard transmit and receive interface is enabled when  
MCR[6] = 0. In this mode, the TX signal will be HIGH dur-  
ing reset or idle (no data). Infrared IrDA transmit and  
receive interface is enabled when MCR[6] = 1. In the  
Infrared mode, the inactive state (no data) for the Infrared  
encoder/decoder interface is LOW. If it is not used, leave  
it unconnected.  
5
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
Pin Description  
REV. 1.1.1  
32-QFN  
PIN #  
48-TQFP 49-STBGA  
NAME  
TYPE  
DESCRIPTION  
PIN #  
PIN #  
RXA  
4
5
D2  
I
UART channel A Receive Data or infrared receive data.  
Normal receive data input must idle HIGH. The infrared  
receiver pulses typically idles at LOW but can be inverted  
by software control prior going in to the decoder, see  
MCR[6]. If this pin is not used, tie it to VCC or pull it high  
via a 100k ohm resistor.  
RTSA#  
CTSA#  
23  
25  
33  
38  
D5  
A5  
O
I
UART channel A Request-to-Send (active low) or general  
purpose output. This output must be asserted prior to  
using auto RTS flow control, see EFR[6] and IER[6]. For  
auto RS485 half-duplex direction control, see DLD[6].  
UART channel A Clear-to-Send (active low) or general  
purpose input. It can be used for auto CTS flow control,  
see EFR[7] and IER[7]. This input should be connected to  
VCC or GND when not used.  
DTRA#  
DSRA#  
CDA#  
-
-
-
-
-
34  
39  
40  
41  
32  
A7  
B6  
C5  
A4  
C6  
O
I
UART channel A Data-Terminal-Ready (active low) or  
general purpose output. If it is not used, leave it uncon-  
nected.  
UART channel A Data-Set-Ready (active low) or general  
purpose input. This input should be connected to VCC or  
GND when not used.  
I
UART channel A Carrier-Detect (active low) or general  
purpose input. This input should be connected to VCC or  
GND when not used.  
RIA#  
I
UART channel A Ring-Indicator (active low) or general  
purpose input. This input should be connected to VCC or  
GND when not used.  
OP2A#  
O
Output Port 2 Channel A - The output state is defined by  
the user and through the software setting of MCR[3].  
INTA is set to the active mode and OP2A# output LOW  
when MCR[3] is set to a logic 1. INTA is set to the three  
state mode and OP2A# output HIGH when MCR[3] is set  
to a logic 0. See MCR[3]. If INTA is used, this output  
should not be used as a general output else it will disturb  
the INTA output functionality.  
TXB  
6
8
D1  
O
UART channel B Transmit Data or infrared encoder data.  
Standard transmit and receive interface is enabled when  
MCR[6] = 0. In this mode, the TX signal will be HIGH dur-  
ing reset or idle (no data). Infrared IrDA transmit and  
receive interface is enabled when MCR[6] = 1. In the  
Infrared mode, the inactive state (no data) for the Infrared  
encoder/decoder interface is LOW. If it is not used, leave  
it unconnected.  
RXB  
3
4
C3  
I
UART channel B Receive Data or infrared receive data.  
Normal receive data input must idle HIGH. The infrared  
receiver pulses typically idles at logic 0 but can be  
inverted by software control prior going in to the decoder,  
see MCR[6]. If this pin is not used, tie it to VCC or pull it  
high via a 100k ohm resistor.  
6
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
Pin Description  
32-QFN  
48-TQFP 49-STBGA  
NAME  
TYPE  
DESCRIPTION  
PIN #  
PIN #  
PIN #  
RTSB#  
15  
22  
G5  
O
UART channel B Request-to-Send (active low) or general  
purpose output. This port must be asserted prior to using  
auto RTS flow control, see EFR[6] and IER[6]. For auto  
RS485 half-duplex direction control, see DLD[6].  
CTSB#  
16  
23  
F6  
I
UART channel B Clear-to-Send (active low) or general  
purpose input. It can be used for auto CTS flow control,  
see EFR[7] and IER[7]. This input should be connected to  
VCC or GND when not used.  
DTRB#  
DSRB#  
CDB#  
-
-
-
-
-
35  
20  
16  
21  
9
C7  
F5  
F3  
E4  
E3  
O
I
UART channel B Data-Terminal-Ready (active low) or  
general purpose output. If it is not used, leave it uncon-  
nected.  
UART channel B Data-Set-Ready (active low) or general  
purpose input. This input should be connected to VCC or  
GND when not used.  
I
UART channel B Carrier-Detect (active low) or general  
purpose input. This input should be connected to VCC or  
GND when not used.  
RIB#  
I
UART channel B Ring-Indicator (active low) or general  
purpose input. This input should be connected to VCC or  
GND when not used.  
OP2B#  
O
Output Port 2 Channel B - The output state is defined by  
the user and through the software setting of MCR[3].  
INTB is set to the active mode and OP2B# output LOW  
when MCR[3] is set to a logic 1. INTB is set to the three  
state mode and OP2B# output HIGH when MCR[3] is set  
to a logic 0. See MCR[3]. If INTB is used, this output  
should not be used as a general output else it will disturb  
the INTB output functionality.  
ANCILLARY SIGNALS  
XTAL1  
XTAL2  
10  
11  
13  
14  
G1  
G2  
I
Crystal or external clock input.  
Crystal or buffered clock output.  
O
PwrSave  
16/68#  
-
-
F1  
I
PowerSave (active high, internal pull-down resistor). This  
feature isolates the 752’s data bus interface from the host  
preventing other bus activities that cause higher power  
drain during sleep mode. See Sleep Mode with Auto  
Wake-up and PowerSave Feature section for details.  
17  
24  
G6  
I
Intel or Motorola Bus Select (internal pull-up resistor).  
This pin is not available for the XR16M752. This pin is  
available for the XR68M752 only.  
When 16/68# pin is HIGH, 16 or Intel Mode, the device  
will operate in the Intel bus type of interface.  
When 16/68# pin is LOW, 68 or Motorola mode, the  
device will operate in the Motorola bus type of interface.  
7
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
Pin Description  
REV. 1.1.1  
32-QFN  
PIN #  
48-TQFP 49-STBGA  
NAME  
TYPE  
DESCRIPTION  
PIN #  
PIN #  
RESET  
24  
36  
B7  
I
When 16/68# pin is HIGH for Intel bus interface, this input  
becomes RESET (active high). When 16/68# pin is LOW  
for Motorola bus interface, this input becomes RESET#  
(active low).  
(RESET#)  
A 40 ns minimum active pulse on this pin will reset the  
internal registers and all outputs of channel A and B. The  
UART transmitter output will be held HIGH, the receiver  
input will be ignored and outputs are reset during reset  
period (see Table 16).  
EN485#  
-
-
A6  
I
Auto RS-485 half-duplex direction output enable for  
channel A and B (active low, internal pull-up resistor).  
Connect this pin to VCC or leave unconnected for normal  
RTS# A/B function. Connect to GND for auto RS-485  
half-duplex direction output via the RTS# A/B pins. The  
Auto RS-485 half-duplex direction output control feature  
can be disabled via DLD[6] after power-up. SEE ”AUTO  
RS485 HALF-DUPLEX CONTROL” ON PAGE 18.  
ENIR#  
-
-
F7  
I
IR mode enable for channel A and B (active low, internal  
pull-up resistor). Connect this pin to VCC or leave uncon-  
nected for normal TX and RX. Connect to GND for both  
channel A and B to power up in the IR mode. The IR  
mode can be disabled via DLD[7] after power-up. SEE  
”INFRARED MODE” ON PAGE 20.  
VCC  
GND  
GND  
26  
13  
42  
17  
-
B5  
G3  
-
Pwr  
Pwr  
Pwr  
1.62V to 3.63V power supply.  
Power supply common, ground.  
Center Pad  
The center pad on the backside of the QFN package is  
metallic and should be connected to GND on the PCB.  
The thermal pad size on the PCB should be the approxi-  
mate size of this center pad and should be solder mask  
defined. The solder mask opening should be at least  
0.0025" inwards from the edge of the PCB thermal pad.  
NC  
9
12, 25, 37  
A1  
No Connection.  
Pin type: I=Input, O=Output, I/O= Input/output, OD=Output Open Drain.  
8
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
1.0 PRODUCT DESCRIPTION  
The XR16M752/XR68M752 (M752) integrates the functions of 2 enhanced 16C550 Universal Asynchronous  
Receiver and Transmitter (UART). Each UART is independently controlled having its own set of device  
configuration registers. The configuration registers set is 16550 UART compatible for control, status and data  
transfer. Additionally, each UART channel has 64-bytes of transmit and receive FIFOs, automatic RTS/CTS  
hardware flow control, automatic Xon/Xoff and special character software flow control, programmable transmit  
and receive FIFO trigger levels, infrared encoder and decoder (IrDA ver 1.0), programmable fractional baud  
rate generator with a prescaler of divide by 1 or 4, and data rate up to 16 Mbps with 4X sampling clock rate.  
The XR16M752 is a 1.62V to 3.63V device. The M752 is fabricated with an advanced CMOS process.  
Enhanced Features  
The M752 DUART provides a solution that supports 64 bytes of transmit and receive FIFO memory, instead of  
16 bytes in the industry standard 16C550. The M752 is designed to work with low supply voltage and high  
performance data communication systems, that require fast data processing time. Increased performance is  
realized in the M752 by the larger transmit and receive FIFOs, FIFO trigger level control and automatic flow  
control mechanism. This allows the external processor to handle more networking tasks within a given time.  
For example, the 16C550 with a 16 byte FIFO, unloads 16 bytes of receive data in 1.53 ms (This example uses  
a character length of 11 bits, including start/stop bits at 115.2 Kbps). This means the external CPU will have to  
service the receive FIFO at 1.53 ms intervals. However with the 64 byte FIFO in the M752, the data buffer will  
not require unloading/loading for 6.1 ms. This increases the service interval giving the external CPU additional  
time for other applications and reducing the overall UART interrupt servicing time. In addition, the  
programmable FIFO level trigger interrupt and automatic hardware/software flow control is uniquely provided  
for maximum data throughput performance especially when operating in a multi-channel system. The  
combination of the above greatly reduces the CPU’s bandwidth requirement, increases performance, and  
reduces power consumption.  
The M752 supports a half-duplex output direction control signaling pin, RTS# A/B, to enable and disable the  
external RS-485 transceiver operation. It automatically switches the logic state of the output pin to the receive  
state after the last stop-bit of the last character has been shifted out of the transmitter. After receiving, the logic  
state of the output pin switches back to the transmit state when a data byte is loaded in the transmitter. The  
auto RS-485 direction control pin is not activated after reset. To activate the direction control function, user has  
to set DLD Bit-6 to “1”. This pin is HIGH for receive state and LOW for transmit state.  
Data Rate  
The M752 is capable of operation up to 16 Mbps at 3.3V with 4X internal sampling clock rate, 8 Mbps at 3.3V  
with 8X sampling clock rate, and 4 Mbps at 3.3V with 16X internal sampling clock rate. The device can operate  
with an external 24 MHz crystal on pins XTAL1 and XTAL2, or external clock source of up to 64 MHz on XTAL1  
pin. With a typical crystal of 14.7456 MHz and through a software option, the user can set the prescaler bit for  
data rates of up to 3.68 Mbps.  
The rich feature set of the M752 is available through the internal registers. Automatic hardware/software flow  
control, programmable transmit and receive FIFO trigger levels, programmable TX and RX baud rates, infrared  
encoder/decoder interface, modem interface controls, and a sleep mode are all standard features.  
Following a power on reset or an external reset, the M752 is software compatible with previous generation of  
UARTs, 16C450, 16C550 and 16C2550.  
9
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
2.0 FUNCTIONAL DESCRIPTIONS  
REV. 1.1.1  
2.1  
CPU Interface  
The CPU interface is 8 data bits wide with 3 address lines and control signals to execute data bus read and  
write transactions. The XR16M752 data interface supports the Intel compatible types of CPUs while the  
XR68M752 supports both the Intel and Motorola compatible data interfaces. No clock (oscillator nor external  
clock) is required to operate a data bus transaction. Each bus cycle is asynchronous using CS#, IOR# and  
IOW# signals. Both UART channels share the same data bus for host operations. The data bus  
interconnections are shown in Figure 4.  
FIGURE 4. XR16M752/XR68M752 DATA BUS INTERCONNECTIONS  
VCC  
VCC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
TXA  
RXA  
DTRA#  
RTSA#  
CTSA#  
DSRA#  
CDA#  
UART  
Channel A  
Serial Interface of  
RS-232, RS-422  
or RS-485  
A0  
A1  
A0  
A1  
A2  
A2  
RIA#  
OP2A#  
(no connect)  
IOR#  
IOW#  
IOR#  
IOW#  
TXB  
RXB  
CSA#  
CSB#  
UART_CSA#  
UART_CSB#  
DTRB#  
RTSB#  
UART_INTA  
UART_INTB  
INTA  
INTB  
UART  
Channel B  
Serial Interface of  
RS-232, RS-422  
or RS-485  
CTSB#  
DSRB#  
CDB#  
TXRDYA#  
RXRDYA#  
TXRDYB#  
RXRDYB#  
TXRDYA#  
RXRDYA#  
TXRDYB#  
RXRDYB#  
RIB#  
OP2B#  
(no connect)  
UART_RESET  
RESET  
GND  
Intel Data Bus Interconnections  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
2.25 to 3.6 Volt VCC  
VCC  
TXA  
RXA  
DTRA#  
RTSA#  
CTSA#  
DSRA#  
CDA#  
Serial Interface of  
RS-232, RS-422  
or RS-485  
UART  
Channel A  
A0  
A1  
A0  
A1  
A2  
A2  
A3  
CSB#  
RIA#  
OP2A#  
(no connect)  
VCC  
IOR#  
IOW#  
R/W#  
TXB  
RXB  
CSA#  
UART_CS#  
VCC  
DTRB#  
RTSB#  
CTSB#  
DSRB#  
CDB#  
UART  
Channel B  
Serial Interface of  
UART_IRQ#  
INTA  
INTB  
RS-232, RS-422  
or RS-485  
(no connect)  
TXRDYA#  
RXRDYA#  
TXRDYB#  
RXRDYB#  
TXRDYA#  
RXRDYA#  
TXRDYB#  
RXRDYB#  
RIB#  
OP2B#  
(no connect)  
GND  
UART_RESET#  
RESET#  
Motorola Data Bus Interconnections  
10  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
2.2  
Device Reset  
The RESET input resets the internal registers and the serial interface outputs in both channels to their default  
state (see Table 16). An active high pulse of longer than 40 ns duration will be required to activate the reset  
function in the device.  
2.3  
Channel A and B Selection  
The UART provides the user with the capability to bi-directionally transfer information between an external  
CPU and an external serial communication device. During Intel Bus Mode (16/68# pin connected to VCC), a  
logic 0 on chip select pins, CSA# or CSB#, allows the user to select UART channel A or B to configure, send  
transmit data and/or unload receive data to/from the UART. Selecting both UARTs can be useful during power  
up initialization to write to the same internal registers, but do not attempt to read from both UARTs  
simultaneously. Individual channel select functions are shown in Table 1.  
TABLE 1: CHANNEL A AND B SELECT IN 16 MODE  
CSA#  
CSB#  
FUNCTION  
1
0
1
0
1
1
0
0
UART de-selected  
Channel A selected  
Channel B selected  
Channel A and B selected  
During Motorola Bus Mode (16/68# pin connected to GND), the package interface pins are configured for  
connection with Motorola, and other popular microprocessor bus types. In this mode the M752 decodes an  
additional address, A3, to select one of the UART ports. The A3 address decode function is used only when in  
the Motorola Bus Mode. See Table 2.  
TABLE 2: CHANNEL A AND B SELECT IN 68 MODE  
CS#  
A3  
N/A  
0
FUNCTION  
1
0
0
UART de-selected  
Channel A selected  
Channel B selected  
1
2.4  
Channel A and B Internal Registers  
Each UART channel in the M752 has a set of enhanced registers for control, monitoring and data loading and  
unloading. The configuration register set is compatible to those already available in the standard single  
16C550 and dual ST16C2550. These registers function as data holding registers (THR/RHR), interrupt status  
and control registers (ISR/IER), a FIFO control register (FCR), receive line status and control registers (LSR/  
LCR), modem status and control registers (MSR/MCR), programmable data rate (clock) divisor registers (DLL/  
DLM/DLD), and a user accessible Scratchpad Register (SPR).  
Beyond the general 16C550 features and capabilities, the M752 offers enhanced feature registers (EFR, Xon/  
Xoff 1, Xon/Xoff 2, TCR, TLR and DLD) that provide automatic RTS and CTS hardware flow control, Xon/Xoff  
software flow control, automatic RS-485 half-duplex direction output enable/disable, and programmable FIFO  
trigger level control. All the register functions are discussed in full detail later in “Section 3.0, UART Internal  
Registers” on page 24.  
11  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
2.5  
DMA Mode  
The device does not support direct memory access. The DMA Mode (a legacy term) in this document doesn’t  
mean “direct memory access” but refers to data block transfer operation. The DMA mode affects the state of  
the RXRDY# A/B and TXRDY# A/B output pins. The transmit and receive FIFO trigger levels provide additional  
flexibility to the user for block mode operation. The LSR bits 5-6 provide an indication when the transmitter is  
empty or has an empty location(s) for more data. The user can optionally operate the transmit and receive  
FIFO in the DMA mode (FCR bit-3=1). When the transmit and receive FIFO are enabled and the DMA mode is  
disabled (FCR bit-3 = 0), the M752 is placed in single-character mode for data transmit or receive operation.  
When DMA mode is enabled (FCR bit-3 = 1), the user takes advantage of block mode operation by loading or  
unloading the FIFO in a block sequence determined by the programmed trigger level. In this mode, the M752  
sets the TXRDY# pin when the transmit FIFO becomes full, and sets the RXRDY# pin when the receive FIFO  
becomes empty. The following table shows their behavior. Also see Figures 20 through 25.  
TABLE 3: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE  
FCR BIT-0=0  
PINS  
FCR BIT-0=1 (FIFO ENABLED)  
(FIFO DISABLED)  
FCR Bit-3 = 0  
(DMA Mode Disabled)  
FCR Bit-3 = 1  
(DMA Mode Enabled)  
RXRDY# A/B LOW = 1 byte.  
HIGH = no data.  
LOW = at least 1 byte in FIFO. HIGH to LOW transition when FIFO reaches the  
trigger level, or time-out occurs.  
HIGH = FIFO empty.  
LOW to HIGH transition when FIFO empties or  
LSR[7] = 1.  
TXRDY# A/B LOW = THR empty. LOW = FIFO empty.  
LOW = FIFO is below the trigger level.  
HIGH = byte in THR. HIGH = at least 1 byte in FIFO. HIGH = FIFO is full.  
2.6  
INTA and INTB Outputs  
The INTA and INTB interrupt output changes according to the operating mode and enhanced features setup.  
Table 4 and 5 summarize the operating behavior for the transmitter and receiver. Also see Figures 20  
through 25.  
TABLE 4: INTA AND INTB PINS OPERATION FOR TRANSMITTER  
Auto RS485  
Mode  
FCR BIT-0 = 0  
FCR BIT-0 = 1 (FIFO ENABLED)  
LOW = FIFO above trigger level  
(FIFO DISABLED)  
INTA/B Pin  
INTA/B Pin  
NO  
LOW = a byte in THR  
HIGH = THR empty  
HIGH = FIFO below trigger level or FIFO empty  
YES  
LOW = a byte in THR  
LOW = FIFO above trigger level  
HIGH = transmitter empty  
HIGH = FIFO below trigger level or transmitter empty  
TABLE 5: INTA AND INTB PIN OPERATION FOR RECEIVER  
FCR BIT-0 = 0  
FCR BIT-0 = 1  
(FIFO DISABLED)  
(FIFO ENABLED)  
INTA/B Pin  
LOW = no data  
HIGH = 1 byte  
LOW = FIFO below trigger level  
HIGH = FIFO above trigger level  
12  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
2.7  
Crystal Oscillator or External Clock Input  
The M752 includes an on-chip oscillator (XTAL1 and XTAL2) to produce a clock for both UART sections in the  
device. The CPU data bus does not require this clock for bus operation. The crystal oscillator provides a  
system clock to the Baud Rate Generators (BRG) section found in each of the UART. XTAL1 is the input to the  
oscillator or external clock buffer input with XTAL2 pin being the output. Please note that the input XTAL1 is not  
5V tolerant and so the maximum at the pin should be VCC. For programming details, see ““Section 2.8,  
Programmable Baud Rate Generator with Fractional Divisor” on page 13.”  
FIGURE 5. TYPICAL OSCILLATOR CONNECTIONS  
XTAL1  
XTAL2  
R1  
0-120 Ω  
(Optional)  
R2  
500 Κ− 1 ΜΩ  
1.8432 MHz  
to  
Y1  
24 MHz  
C1  
C2  
22-47 pF  
22-47 pF  
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,  
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100 ppm frequency  
tolerance) connected externally between the XTAL1 and XTAL2 pins (see Figure 5). The programmable Baud  
Rate Generator is capable of operating with a crystal oscillator frequency of up to 24 MHz. However, with an  
external clock input on XTAL1 pin, it can extend its operation up to 64 MHz (16 Mbps serial data rate) at 3.3V  
with an 4X sampling rate. For further reading on the oscillator circuit please see the Application Note DAN108  
on the EXAR web site at http://www.exar.com.  
2.8  
Programmable Baud Rate Generator with Fractional Divisor  
Each UART has its own Baud Rate Generator (BRG) with a prescaler for the transmitter and receiver. The  
prescaler is controlled by a software bit in the MCR register. The MCR register bit-7 sets the prescaler to divide  
the input crystal or external clock by 1 or 4. The output of the prescaler clocks to the BRG. The BRG further  
divides this clock by a programmable divisor between 1 and (216 - 0.0625) in increments of 0.0625 (1/16) to  
obtain a 16X, 8X or 4X sampling clock of the serial data rate. The sampling clock is used by the transmitter for  
data bit shifting and receiver for data sampling. The BRG divisor (DLL, DLM and DLD registers) defaults to the  
value of ’1’ (DLL = 0x01, DLM = 0x00 and DLD = 0x00) upon reset. Therefore, the BRG must be programmed  
during initialization to the operating data rate. The DLL and DLM registers provide the integer part of the divisor  
and the DLD register provides the fractional part of the dvisior. The four lower bits of the DLD are used to select  
a value from 0 (for setting 0000) to 0.9375 or 15/16 (for setting 1111). Programming the Baud Rate Generator  
Registers DLL, DLM and DLD provides the capability for selecting the operating data rate. Table 6 shows the  
standard data rates available with a 24MHz crystal or external clock at 16X clock rate. If the pre-scaler is used  
(MCR bit-7 = 1), the output data rate will be 4 times less than that shown in Table 6. At 8X sampling rate, these  
data rates would double and at 4X sampling rate, these data rates would quadruple. Also, when using 8X  
sampling mode, the bit time will have a jitter of ± 1/16 whenever the DLD is non-zero and is an odd number.  
13  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
When using 4X sampling mode, the bit time will have a jitter of ± 1/8 whenever DLD is non-zero, odd and not a  
multiple of 4. When using a non-standard data rate crystal or external clock, the divisor value can be calculated  
with the following equation(s):  
Required Divisor (decimal)=(XTAL1 clock frequency / prescaler) /(serial data rate x 16), with 16X mode, DLD[5:4]=’00’  
Required Divisor (decimal)= (XTAL1 clock frequency / prescaler / (serial data rate x 8), with 8X mode, DLD[5:4] = ’01’  
Required Divisor (decimal)= (XTAL1 clock frequency / prescaler / (serial data rate x 4), with 4X mode, DLD[5:4] = ’10’  
The closest divisor that is obtainable in the M752 can be calculated using the following formula:  
ROUND( (Required Divisor - TRUNC(Required Divisor) )*16)/16 + TRUNC(Required Divisor), where  
DLM = TRUNC(Required Divisor) >> 8  
DLL = TRUNC(Required Divisor) & 0xFF  
DLD = ROUND( (Required Divisor-TRUNC(Required Divisor) )*16)  
In the formulas above, please note that:  
TRUNC (N) = Integer Part of N. For example, TRUNC (5.6) = 5.  
ROUND (N) = N rounded towards the closest integer. For example, ROUND (7.3) = 7 and ROUND (9.9) = 10.  
A >> B indicates right shifting the value ’A’ by ’B’ number of bits. For example, 0x78A3 >> 8 = 0x0078.  
FIGURE 6. BAUD RATE GENERATOR  
To Other  
Channel  
DLL, DLM and DLD  
Registers  
MCR Bit-7=0  
(default)  
Prescaler  
Divide by 1  
16X or 8X or 4X  
Sampling  
Rate Clock  
to Transmitter  
and Receiver  
Crystal  
Osc/  
Buffer  
XTAL1  
XTAL2  
Fractional Baud  
Rate Generator  
Logic  
Prescaler  
Divide by 4  
MCR Bit-7=1  
14  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
TABLE 6: TYPICAL DATA RATES WITH A 24 MHZ CRYSTAL OR EXTERNAL CLOCK AT 16X SAMPLING  
Required  
Output Data  
Rate  
DIVISOR FOR  
16x Clock  
(Decimal)  
DIVISOR  
OBTAINABLE IN  
M752  
DLM PROGRAM DLL PROGRAM DLD PROGRAM DATA ERROR  
VALUE (HEX)  
VALUE (HEX)  
VALUE (HEX)  
RATE (%)  
400  
2400  
3750  
625  
3750  
625  
E
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A6  
71  
38  
9C  
96  
4E  
3C  
34  
27  
1E  
1A  
14  
F
0
0
8
4
0
2
0
1
1
0
1
0
0
0
C
8
B
8
0
0
C
4
0
0
A
8
0
0
4800  
312.5  
156.25  
150  
312 8/16  
156 4/16  
150  
0
9600  
0
10000  
19200  
25000  
28800  
38400  
50000  
57600  
75000  
100000  
115200  
153600  
200000  
225000  
230400  
250000  
300000  
400000  
460800  
500000  
750000  
921600  
1000000  
0
78.125  
60  
78 2/16  
60  
0
0
52.0833  
39.0625  
30  
52 1/16  
39 1/16  
30  
0.04  
0
0
26.0417  
20  
26 1/16  
20  
0.08  
0
15  
15  
0
13.0208  
9.7656  
7.5  
13  
D
0.16  
0.16  
0
9 12/16  
7 8/16  
6 11/16  
6 8/16  
6
9
7
6.6667  
6.5104  
6
6
0.31  
0.16  
0
6
6
5
5
5
0
3.75  
3 12/16  
3 4/16  
3
3
0
3.2552  
3
3
0.16  
0
3
2
2
2
0
1.6276  
1.5  
1 10/16  
1 8/16  
1
0.16  
0
1
2.9  
Transmitter  
The transmitter section comprises of an 8-bit Transmit Shift Register (TSR) and 64 bytes of FIFO which  
includes a byte-wide Transmit Holding Register (THR). TSR shifts out every data bit with the 16X/8X/4X  
internal clock. A bit time is 16 (8 if 8X or 4 if 4X) clock periods (see DLD[5:4]). The transmitter sends the start-  
bit followed by the number of data bits, inserts the proper parity-bit if enabled, and adds the stop-bit(s). The  
status of the FIFO and TSR are reported in the Line Status Register (LSR[6:5]).  
15  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
2.9.1  
Transmit Holding Register (THR) - Write Only  
The transmit holding register is an 8-bit register providing a data interface to the host processor. The host  
writes transmit data byte to the THR to be converted into a serial data stream including start-bit, data bits,  
parity-bit and stop-bit(s). The least-significant-bit (Bit-0) becomes first data bit to go out. The THR is the input  
register to the transmit FIFO of 64 bytes when FIFO operation is enabled by FCR bit-0. Every time a write  
operation is made to the THR, the FIFO data pointer is automatically bumped to the next sequential data  
location.  
2.9.2  
Transmitter Operation in non-FIFO Mode  
The host loads transmit data to THR one character at a time. The THR empty flag (LSR bit-5) is set when the  
data byte is transferred to TSR. THR flag can generate a transmit empty interrupt (ISR bit-1) when it is enabled  
by IER bit-1. The TSR flag (LSR bit-6) is set when TSR becomes completely empty.  
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE  
Transmit  
Holding  
Register  
(THR)  
Data  
Byte  
THR Interrupt (ISR bit-1)  
Enabled by IER bit-1  
16X or 8X or 4X  
Clock  
( DLD[5:4] )  
M
S
B
L
S
B
Transmit Shift Register (TSR)  
TXNOFIFO1  
2.9.3  
Transmitter Operation in FIFO Mode  
The host may fill the transmit FIFO with up to 64 bytes of transmit data. The THR empty flag (LSR bit-5) is set  
whenever the FIFO is empty. The THR empty flag can generate a transmit empty interrupt (ISR bit-1) when the  
amount of data in the FIFO falls below its programmed trigger level. The transmit empty interrupt is enabled by  
IER bit-1. The TSR flag (LSR bit-6) is set when TSR/FIFO becomes empty.  
FIGURE 8. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE  
Transmit  
FIFO  
Transmit  
Data Byte  
THR Interrupt (ISR bit-1) falls  
below the programmed Trigger  
Level and then when becomes  
empty. FIFO is Enabled by FCR  
bit-0=1  
Auto CTS Flow Control (CTS# pin)  
Flow Control Characters  
(Xoff1/2 and Xon1/2 Reg.)  
Auto Software Flow Control  
16X or 8X or 4X Clock  
( DLD[5:4] )  
Transmit Data Shift Register  
(TSR)  
TXFIFO1  
16  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
2.10 Receiver  
The receiver section contains an 8-bit Receive Shift Register (RSR) and 64 bytes of FIFO which includes a  
byte-wide Receive Holding Register (RHR). The RSR uses the 16X/8X/4X clock (DLD [5:4]) for timing. It  
verifies and validates every bit on the incoming character in the middle of each data bit. On the falling edge of  
a start or false start bit, an internal receiver counter starts counting at the 16X/8X/4X clock rate. After 8 clocks  
(or 4 if 8X or 2 if 4X) the start bit period should be at the center of the start bit. At this time the start bit is  
sampled and if it is still a logic 0 it is validated. Evaluating the start bit in this manner prevents the receiver from  
assembling a false character. The rest of the data bits and stop bits are sampled and validated in this same  
manner to prevent false framing. If there were any error(s), they are reported in the LSR register bits 2-4. Upon  
unloading the receive data byte from RHR, the receive FIFO pointer is bumped and the error tags are  
immediately updated to reflect the status of the data byte in RHR register. RHR can generate a receive data  
ready interrupt upon receiving a character or delay until it reaches the FIFO trigger level. Furthermore, data  
delivery to the host is guaranteed by a receive data ready time-out interrupt when data is not received for 4  
word lengths as defined by LCR[1:0] plus 12 bits time. This is equivalent to 3.7-4.6 character times. The RHR  
interrupt is enabled by IER bit-0.  
2.10.1 Receive Holding Register (RHR) - Read-Only  
The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift  
Register. It provides the receive data interface to the host processor. The RHR register is part of the receive  
FIFO of 64 bytes by 11-bits wide, the 3 extra bits are for the 3 error tags to be reported in LSR register. When  
the FIFO is enabled by FCR bit-0, the RHR contains the first data character received by the FIFO. After the  
RHR is read, the next character byte is loaded into the RHR and the errors associated with the current data  
byte are immediately updated in the LSR bits 2-4.  
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE  
16X or 8X or 4X Clock  
( DLD[5:4] )  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Error  
Tags in  
LSR bits  
4:2  
Receive  
Data Byte  
and Errors  
Receive Data  
Holding Register  
RHR Interrupt (ISR bit-2)  
(RHR)  
RXFIFO1  
17  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
FIGURE 10. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE  
16X or 8X or 4X Clock  
( DLD[5:4] )  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Example  
- RX FIFO trigger level selected at 16 bytes  
:
(See Note Below)  
64 bytes by 11-bit wide  
FIFO  
Data falls to  
Resume Level  
RTS# re-asserts when data falls to the Resume  
Level to restart remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
Receive  
Data FIFO  
FIFO  
Trigger=16  
RHR Interrupt (ISR bit-2) programmed for  
desired FIFO trigger level.  
FIFO is Enabled by FCR bit-0=1  
Data fills to  
Halt Level  
RTS# de-asserts when data fills to the Halt Level  
to suspend remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
Receive  
Data  
Receive Data  
Byte and Errors  
RXFIFO1  
2.11 Auto RTS (Hardware) Flow Control  
Automatic RTS hardware flow control is used to prevent data overrun to the local receiver FIFO. The RTS#  
output is used to request remote unit to suspend/resume data transmission. The auto RTS flow control  
features is enabled to fit specific application requirement (see Figure 11):  
Enable auto RTS flow control using EFR bit-6.  
The auto RTS function must be started by asserting RTS# output pin (MCR bit-1 to logic 1 after it is enabled).  
If using the Auto RTS interrupt:  
Enable RTS interrupt through IER bit-6 (after setting EFR bit-4). The UART issues an interrupt when the  
RTS# pin makes a transition from low to high: ISR bit-5 will be set to logic 1.  
2.12  
Auto RTS Halt and Resume  
The RTS# pin will not be forced HIGH (RTS off) until the receive FIFO reaches the Halt Level (TCR[3:0]). The  
RTS# pin will return LOW after the RX FIFO is unloaded to the Resume Level (TCR[7:4]). Under these  
conditions, the M752 will continue to accept data if the remote UART continues to transmit data. It is the  
responsibility of the user to ensure that the Halt Level is greater than the Resume Level. If interrupts are used,  
it is recommended that Halt Level > RX Trigger Level > Resume Level. The Auto RTS function is initiated  
when the RTS# output pin is asserted LOW (RTS On).  
2.13  
Auto RS485 Half-duplex Control  
The auto RS485 half-duplex direction control changes the behavior of the transmitter when enabled by DLD  
bit-6. When idle, the auto RS485 half-duplex direction control signal (RTS#) is LOW for receive mode. When  
data is loaded into the THR for transmission, the RTS# output is automatically asserted HIGH prior to sending  
the data. After the last stop bit of the last character that has been transmitted, the RTS# signal is automatically  
de-asserted. This helps in turning around the transceiver to receive the remote station’s response. When the  
host is ready to transmit next polling data packet, it only has to load data bytes to the transmit FIFO. The  
transmitter automatically re-asserts RTS# (HIGH) output prior to sending the data. In addition to changing the  
behavior of the RTS# output, this feature also changes the behavior of the transmit empty interrupt (see  
Table 4). In the 49-pin STBGA package, this feature can be enabled by connecting the EN485# pin to GND. If  
this feature is enabled by the EN485# pin, it can be disabled by DLD bit-6 after power-up.  
18  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
2.14  
Auto CTS Flow Control  
Automatic CTS flow control is used to prevent data overrun to the remote receiver FIFO. The CTS# input is  
monitored to suspend/restart the local transmitter. The auto CTS flow control feature is selected to fit specific  
application requirement (see Figure 11):  
Enable auto CTS flow control using EFR bit-7.  
If using the Auto CTS interrupt:  
Enable CTS interrupt through IER bit-7 (after setting EFR bit-4). The UART issues an interrupt when the  
CTS# pin is de-asserted (HIGH): ISR bit-5 will be set to 1, and UART will suspend transmission as soon as  
the stop bit of the character in process is shifted out. Transmission is resumed after the CTS# input is re-  
asserted (LOW), indicating more data may be sent.  
FIGURE 11. AUTO RTS AND CTS FLOW CONTROL OPERATION  
Local UART  
UARTA  
Remote UART  
UARTB  
RXA  
TXB  
Receiver FIFO  
Trigger Reached  
Transmitter  
RTSA#  
TXA  
CTSB#  
RXB  
Auto RTS  
Trigger Level  
Auto CTS  
Monitor  
Receiver FIFO  
Trigger Reached  
Transmitter  
CTSA#  
RTSB#  
Auto CTS  
Monitor  
Auto RTS  
Trigger Level  
Assert RTS# to Begin  
Transmission  
1
10  
11  
ON  
ON  
ON  
RTSA#  
OFF  
OFF  
7
2
ON  
3
CTSB#  
TXB  
8
Restart  
9
Data Starts  
6
Suspend  
4
RXA FIFO  
Receive  
Data  
RX FIFO  
12  
RTS High  
Threshold  
RTS Low  
Threshold  
5
RX FIFO  
Trigger Level  
Trigger Level  
INTA  
(RXA FIFO  
Interrupt)  
RTSCTS1  
The local UART (UARTA) starts data transfer by asserting RTSA# (1). RTSA# is normally connected to CTSB# (2) of  
remote UART (UARTB). CTSB# allows its transmitter to send data (3). TXB data arrives and fills UARTA receive FIFO  
(4). When RXA data fills up to its receive FIFO trigger level, UARTA activates its RXA data ready interrupt (5) and con-  
tinues to receive and put data into its FIFO. If interrupt service latency is long and data is not being unloaded, UARTA  
monitors its receive data fill level to match the upper threshold of RTS delay and de-assert RTSA# (6). CTSB# follows  
(7) and request UARTB transmitter to suspend data transfer. UARTB stops or finishes sending the data bits in its trans-  
mit shift register (8). When receive FIFO data in UARTA is unloaded to match the lower threshold of RTS delay (9),  
UARTA re-asserts RTSA# (10), CTSB# recognizes the change (11) and restarts its transmitter and data flow again until  
next receive FIFO trigger (12). This same event applies to the reverse direction when UARTA sends data to UARTB  
with RTSB# and CTSA# controlling the data flow.  
19  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
2.15 Auto Xon/Xoff (Software) Flow Control  
REV. 1.1.1  
When software flow control is enabled (See Table 15), the M752 compares one or two sequential receive data  
characters with the programmed Xon or Xoff-1,2 character value(s). If receive character(s) (RX) match the  
programmed values, the M752 will halt transmission (TX) as soon as the current character has completed  
transmission. When a match occurs, the Xoff (if enabled via IER bit-5) flag will be set and the interrupt output  
pin will be activated. Following a suspension due to a match of the Xoff character, the M752 will monitor the  
receive data stream for a match to the Xon-1,2 character. If a match is found, the M752 will resume operation  
and clear the flags (ISR bit-4).  
Reset initially sets the contents of the Xon/Xoff 8-bit flow control registers to 0x00. Following reset the user can  
write any Xon/Xoff value desired for software flow control. Different conditions can be set to detect Xon/Xoff  
characters (See Table 15) and suspend/resume transmissions. When double 8-bit Xon/Xoff characters are  
selected, the M752 compares two consecutive receive characters with two software flow control 8-bit values  
(Xon1, Xon2, Xoff1, Xoff2) and controls TX transmissions accordingly. Under the above described flow control  
mechanisms, flow control characters are not placed (stacked) in the user accessible RX data buffer or FIFO.  
In the event that the receive buffer is overfilling and flow control needs to be executed, the M752 automatically  
sends the Xoff-1,2 via the serial TX output to the remote modem when the RX FIFO reaches the Halt Level  
(TCR[3:0]). To clear this condition, the M752 will transmit the programmed Xon-1,2 characters as soon as RX  
FIFO falls down to the Resume Level.  
2.16  
Special Character Detect  
A special character detect feature is provided to detect an 8-bit character when bit-5 is set in the Enhanced  
Feature Register (EFR). When this character (Xoff2) is detected, it will be placed in the FIFO along with normal  
incoming RX data.  
The M752 compares each incoming receive character with Xoff-2 data. If a match exists, the received data will  
be transferred to FIFO and ISR bit-4 will be set to indicate detection of special character. Although the Internal  
Register Table shows Xon, Xoff Registers with eight bits of character information, the actual number of bits is  
dependent on the programmed word length. Line Control Register (LCR) bits 0-1 defines the number of  
character bits, i.e., either 5 bits, 6 bits, 7 bits, or 8 bits. The word length selected by LCR bits 0-1 also  
determines the number of bits that will be used for the special character comparison.  
2.17 Infrared Mode  
The M752 UART includes the infrared encoder and decoder compatible to the IrDA (Infrared Data Association)  
version 1.0. The IrDA 1.0 standard that stipulates the infrared encoder sends out a 3/16 of a bit wide HIGH-  
pulse for each “0” bit in the transmit data stream. This signal encoding reduces the on-time of the infrared LED,  
hence reduces the power consumption. See Figure 12 below.  
The infrared encoder and decoder can be enabled by setting DLD register bit-7 to a ‘1’. When the infrared  
feature is enabled, the transmit data output, TX, idles LOW. Likewise, the RX input also idles LOW, see  
Figure 12. In the 49-pin STBGA package, this feature can be enabled upon power-up by connecting the  
ENIR# pin of the STBGA package to GND. If the IR mode is enabled via the ENIR# pin, it can be disabled  
after power-up via DLD bit-7.  
The wireless infrared decoder receives the input pulse from the infrared sensing diode on the RX pin. Each  
time it senses a light pulse, it returns a logic 1 to the data bit stream.  
20  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
FIGURE 12. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING  
Character  
Data Bits  
1
1
1
1
1
0
0
0
0
0
TX Data  
Transmit  
IR Pulse  
(TX Pin)  
1/2 Bit Time  
Bit Time  
3/16 Bit Time  
IrEncoder-1  
Receive  
IR Pulse  
(RX pin)  
Bit Time  
1/16 Clock Delay  
1
1
1 1  
1
0
0
0
0
0
RX Data  
Data Bits  
Character  
IRdecoder-  
21  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
2.18  
Sleep Mode with Wake-Up Indicator and PowerSave Feature  
The M2751 supports low voltage system designs, hence, a sleep mode with auto wake-up and PowerSave  
feature is included to reduce power consumption when the device is not actively used.  
2.19 Sleep Mode with Auto Wake-Up  
The M752 supports low voltage system designs, hence, a sleep mode is included to reduce its power  
consumption when the chip is not actively used. In addition, there is a PowerSave Feature on the 49-pin  
STBGA package that eliminates any unnecessary external buffer.  
All of these conditions must be satisfied for the M752 to enter sleep mode:  
no interrupts pending for both channels of the M752 (ISR bit-0 = 1)  
sleep mode of both channels are enabled (IER bit-4 = 1)  
modem inputs are not toggling (MSR bits 0-3 = 0)  
RX input pins are idling HIGH  
The M752 stops its crystal oscillator to conserve power in the sleep mode. User can check the XTAL2 pin for  
no clock output as an indication that the device has entered the sleep mode.  
The M752 resumes normal operation by any of the following:  
a receive data start bit transition (HIGH to LOW)  
a data byte is loaded to the transmitter, THR or FIFO  
a change of logic state on any of the modem or general purpose serial inputs: CTS#, DSR#, CD#, RI#  
If the M752 is awakened by any one of the above conditions, it will return to the sleep mode automatically after  
all interrupting conditions have been serviced and cleared. If the M752 is awakened by the modem inputs, a  
read to the MSR is required to reset the modem inputs. In any case, the sleep mode will not be entered while  
an interrupt is pending from channel A or B. The M752 will stay in the sleep mode of operation until it is  
disabled by setting IER bit-4 to a logic 0.  
If the address lines, data bus lines, IOW#, IOR#, CSA#, CSB#, and modem input lines remain steady when the  
M752 is in sleep mode, the maximum current will be in the microamp range as specified in the DC Electrical  
Characteristics on page 40. If the input lines are floating or are toggling while the M752 is in sleep mode, the  
current can be up to 100 times more. If any of those signals are toggling or floating, then an external buffer  
would be required to keep the address, data and control lines steady to achieve the low current.  
2.19.1 PowerSave Feature (49-pin STBGA pacakge only)  
The PowerSave Feature will eliminate the need for an external buffer by internally isolating the address, data  
and control signals from other bus activities that could cause wasteful power drain. The M752 enters  
PowerSave mode when pin F1 is connected to VCC and the M752 is in sleep mode (see Sleep Mode section  
above).  
Since PowerSave mode isolates the address, data and control signals, the device will wake-up by:  
a receive data start bit transition (HIGH to LOW)  
a change of logic state on any of the modem or general purpose serial inputs: CTS#, DSR#, CD#, RI#  
The M752 will return to the PowerSave mode automatically after a read to the MSR (to reset the modem  
inputs) and all interrupting conditions have been serviced and cleared. The 2751 will stay in the PowerSave  
mode of operation until it is disabled by setting IER bit-4 to a logic 0 and/or the PowerSave pin is connected to  
GND.  
A word of caution: owing to the starting up delay of the crystal oscillator after waking up from sleep mode, the  
first few receive characters may be lost. The number of characters lost during the restart also depends on your  
operating data rate. More characters are lost when operating at higher data rate. Also, it is important to keep  
RX A/B inputs idling HIGH or “marking” condition during sleep mode to avoid receiving a “break” condition  
upon the restart. This may occur when the external interface transceivers (RS-232, RS-485 or another type)  
are also put to sleep mode and cannot maintain the “marking” condition. To avoid this, the designer can use a  
47k-100k ohm pull-up resistor on the RXA and RXB pins.  
22  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
2.20  
Internal Loopback  
The M752 UART provides an internal loopback capability for system diagnostic purposes. The internal  
loopback mode is enabled by setting MCR register bit-4 to logic 1. All regular UART functions operate normally.  
Figure 13 shows how the modem port signals are re-configured. Transmit data from the transmit shift register  
output is internally routed to the receive shift register input allowing the system to receive the same data that it  
was sending. The TX, RTS# and DTR# pins are held while the CTS#, DSR# CD# and RI# inputs are ignored.  
Caution: the RX input pin must be held HIGH during loopback test else upon exiting the loopback test the  
UART may detect and report a false “break” signal. Also, Auto RTS/CTS flow control is not supported during  
internal loopback.  
FIGURE 13. INTERNAL LOOP BACK IN CHANNEL A AND B  
VCC  
TXA/TXB  
Transmit Shift Register  
(THR/FIFO)  
MCR bit-4=1  
Receive Shift Register  
(RHR/FIFO)  
RXA/RXB  
VCC  
RTSA#/RTSB#  
RTS#  
CTS#  
CTSA#/CTSB#  
VCC  
DTRA#/DTRB#  
DTR#  
DSR#  
DSRA#/DSRB#  
OP1#  
RI#  
RIA#/RIB#  
VCC  
OP2A#/OP2B#  
OP2#  
CD#  
CDA#/CDB#  
23  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
3.0 UART INTERNAL REGISTERS  
REV. 1.1.1  
Each of the UART channel in the M752 has its own set of configuration registers selected by address lines A0,  
A1 and A2 with CSA# or CSB# selecting the channel. The complete register set is shown on Table 7 and  
Table 8.  
TABLE 7: UART CHANNEL A AND B UART INTERNAL REGISTERS  
ADDRESSES  
REGISTER  
READ/WRITE  
COMMENTS  
A2 A1 A0  
16C550 COMPATIBLE REGISTERS  
0
0 0  
RHR - Receive Holding Register  
Read-only  
Write-only  
LCR[7] = 0  
THR - Transmit Holding Register  
0
0 0  
0 1  
1 0  
DLL - Divisor LSB  
Read/Write  
Read/Write  
Read/Write  
LCR[7] = 1, LCR 0xBF  
0
0
DLM - Divisor MSB  
DLD - Divisor Fractional  
LCR[7] = 1, LCR 0xBF,  
EFR[4] = 1  
0
0
0 1  
1 0  
IER - Interrupt Enable Register  
Read/Write  
LCR[7] = 0  
ISR - Interrupt Status Register  
FCR - FIFO Control Register  
Read-only  
Write-only  
0
1
1
1
1
1
1
1
1 1  
0 0  
0 1  
1 0  
1 1  
1 0  
1 1  
1 1  
LCR - Line Control Register  
MCR - Modem Control Register  
LSR - Line Status Register  
Read/Write  
Read/Write  
Read-only  
Read-only  
Read/Write  
Read/Write  
Read/Write  
Read-only  
LCR 0xBF  
MSR - Modem Status Register  
SPR - Scratch Pad Register  
TCR - Transmission Control Register  
TLR - Trigger Level Register  
FIFO Rdy - FIFO Ready Register  
See Table 13  
See Table 12  
See Table 13  
See Table 12  
See Table 12  
ENHANCED REGISTERS  
0
1
1
1
1
1 0  
0 0  
0 1  
1 0  
1 1  
EFR - Enhanced Function Register  
Xon-1 - Xon Character 1  
Xon-2 - Xon Character 2  
Xoff-1 - Xoff Character 1  
Xoff-2 - Xoff Character 2  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
LCR = 0xBF  
24  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
.
TABLE 8: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1  
REG  
READ/  
ADDRESS  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
NAME WRITE  
A2-A0  
16C550 Compatible Registers  
0 0 0  
0 0 0  
0 0 1  
RHR  
THR  
RD  
Bit-7  
Bit-7  
0/  
Bit-6  
Bit-6  
0/  
Bit-5  
Bit-5  
0/  
Bit-4  
Bit-4  
0/  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
TX  
Bit-0  
Bit-0  
WR  
IER RD/WR  
Modem RX Line  
Stat. Int. Stat. Int. Empty  
Enable Enable  
RXData  
Int.  
Enable  
CTS Int. RTS Int. Xoff Int. Sleep  
Enable  
Int  
Enable  
Enable  
Enable  
Mode  
Enable  
0 1 0  
0 1 0  
ISR  
RD  
FIFOs  
Enabled Enabled  
FIFOs  
0/  
0/  
INT  
INT  
INT  
INT  
LCR[7]=0  
Source Source Source Source  
Bit-3  
INT  
INT  
Bit-2  
Bit-1  
Bit-0  
Source Source  
Bit-5  
Bit-4  
FCR  
WR RXFIFO RXFIFO  
Trigger Trigger  
0/  
0/  
DMA TXFIFO  
Mode  
Enable  
RX  
FIFO  
Reset  
FIFOs  
Enable  
Reset  
TXFIFO TXFIFO  
Trigger Trigger  
0 1 1  
1 0 0  
LCR RD/WR Divisor  
Enable  
Set TX Set Par-  
Even  
Parity  
Parity  
Enable  
Stop  
Bits  
Word  
Length Length  
Word  
Break  
ity  
Bit-1  
Bit-0  
MCR RD/WR  
0/  
0/  
0/  
Internal OP2#/  
Lopback INT Out-  
Enable  
FIFO  
Rdy  
RTS#  
Output Output  
DTR#  
Clock TCR and XonAny  
Pres-  
caler  
put  
Enable  
Enable Control Control  
TLR  
ENable  
(OP1#)  
Select  
LCR0xBF  
1 0 1  
1 1 0  
LSR  
RD  
RD  
RXFIFO THR &  
THR  
Empty  
RX  
RX  
RX  
RX  
Over-  
run  
RXData  
Ready  
Global  
Error  
TSR  
Empty  
Break Framing Parity  
Error  
Error  
Error  
MSR  
CD# RI# Input DSR#  
Input  
CTS#  
Input  
Delta  
CD#  
Delta  
RI#  
Delta  
DSR#  
Delta  
CTS#  
See Table 13  
See Table 12  
See Table 13  
Input  
1 1 1  
1 1 0  
SPR RD/WR  
Bit-7  
Bit-6  
Bit-5  
Bit-4  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
TCR RD/WR Resume Resume Resume Resume  
Bit-3 Bit-2 Bit-1 Bit-0  
Halt  
Halt  
Halt  
Halt  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
1 1 1  
1 1 1  
TLR RD/WR RX Trig RX Trig RX Trig RX Trig TX Trig TX Trig TX Trig TX Trig  
See Table 12  
See Table 12  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
FIFO  
Rdy  
RD  
0
0
RXFIFO RXFIFO  
B Status A Status  
0
0
TXFIFO TXFIFO  
B Status A Status  
25  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
TABLE 8: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1  
REG  
READ/  
ADDRESS  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
NAME WRITE  
A2-A0  
Baud Rate Generator Divisor  
LCR[7]=1  
0 0 0  
0 0 1  
0 1 0  
DLL RD/WR  
DLM RD/WR  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
Bit-0  
LCR0xBF  
LCR[7]=1  
LCR0xBF  
EFR[4]=1  
DLD RD/WR IR Mode  
Auto  
4X Mode 8X Mode Bit-3  
RS485  
Direction  
Control  
Enhanced Registers  
Enable  
0 1 0  
EFR RD/WR  
Auto AutoRTS Special  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
CTS  
Enable  
Char  
IER [7:4],  
ISR [5:4],  
FCR[5:4],  
Enable  
Select  
MCR[7:5],  
DLD  
Bit-2  
Bit-1  
Bit-0  
Bit-3  
1 0 0 XON1 RD/WR  
1 0 1 XON2 RD/WR  
Bit-7  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
Bit-0  
LCR=0XBF  
1 1 0 XOFF RD/WR  
1
1 1 1 XOFF RD/WR  
2
Bit-7  
Bit-6  
Bit-5  
Bit-4  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
4.0 INTERNAL REGISTER DESCRIPTIONS  
4.1 Receive Holding Register (RHR) - Read- Only  
SEE ”RECEIVER” ON PAGE 17.  
4.2 Transmit Holding Register (THR) - Write-Only  
SEE ”TRANSMITTER” ON PAGE 15.  
4.3 Interrupt Enable Register (IER) - Read/Write  
The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status  
and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR).  
4.3.1  
IER versus Receive FIFO Interrupt Mode Operation  
When the receive FIFO (FCR BIT-0 = 1) and receive interrupts (IER BIT-0 = 1) are enabled, the RHR interrupts  
(see ISR bits 2 and 3) status will reflect the following:  
A. The receive data available interrupts are issued to the host when the FIFO has reached the programmed  
trigger level. It will be cleared when the FIFO drops below the programmed trigger level.  
B. FIFO level will be reflected in the ISR register when the FIFO trigger level is reached. Both the ISR register  
status bit and the interrupt will be cleared when the FIFO drops below the trigger level.  
C. The receive data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to  
the receive FIFO. It is reset when the FIFO is empty.  
26  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
4.3.2  
IER versus Receive/Transmit FIFO Polled Mode Operation  
When FCR BIT-0 equals a logic 1 for FIFO enable; resetting IER bits 0-3 enables the XR16M752 in the FIFO  
polled mode of operation. Since the receiver and transmitter have separate bits in the LSR either or both can  
be used in the polled mode by selecting respective transmit or receive control bit(s).  
A. LSR BIT-0 indicates there is data in RHR or RX FIFO.  
B. LSR BIT-1 indicates an overrun error has occurred and that data in the FIFO may not be valid.  
C. LSR BIT 2-4 provides the type of receive data errors encountered for the data byte in RHR, if any.  
D. LSR BIT-5 indicates THR is empty.  
E. LSR BIT-6 indicates when both the transmit FIFO and TSR are empty.  
F. LSR BIT-7 indicates a data error in at least one character in the RX FIFO.  
IER[0]: RHR Interrupt Enable  
The receive data ready interrupt will be issued when RHR has a data character in the non-FIFO mode or when  
the receive FIFO has reached the programmed trigger level in the FIFO mode.  
Logic 0 = Disable the receive data ready interrupt (default).  
Logic 1 = Enable the receiver data ready interrupt.  
IER[1]: THR Interrupt Enable  
This bit enables the Transmit Ready interrupt which is issued whenever the THR becomes empty in the non-  
FIFO mode or when spaces in the FIFO is above the programmed trigger level in the FIFO mode. If the THR is  
empty when this bit is enabled, an interrupt will be generated.  
Logic 0 = Disable Transmit Ready interrupt (default).  
Logic 1 = Enable Transmit Ready interrupt.  
IER[2]: Receive Line Status Interrupt Enable  
If any of the LSR register bits 1, 2, 3, 4 or 7 is a logic 1, it will generate an interrupt to inform the host controller  
about the error status of the current data byte in FIFO. LSR bit-1 generates an interrupt immediately when the  
character has been received. LSR bit-7 is set if any character in the RX FIFO has a parity or framing error, or is  
a break character. LSR[4:2] always show the error status for the received character available for reading from  
the RX FIFO. If IER[2] = 1, an LSR interrupt will be generated as long as LSR[7] = 1, ie. the RX FIFO contains  
at lease one character with an error.  
Logic 0 = Disable the receiver line status interrupt (default).  
Logic 1 = Enable the receiver line status interrupt.  
IER[3]: Modem Status Interrupt Enable  
Logic 0 = Disable the modem status register interrupt (default).  
Logic 1 = Enable the modem status register interrupt.  
IER[4]: Sleep Mode Enable (requires EFR bit-4 = 1)  
Logic 0 = Disable Sleep Mode (default).  
Logic 1 = Enable Sleep Mode. See Sleep Mode section for further details.  
IER[5]: Xoff Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the software flow control, receive Xoff interrupt (default).  
Logic 1 = Enable the receive Xoff interrupt. See Software Flow Control section for details.  
27  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
IER[6]: RTS# Output Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the RTS# interrupt (default).  
REV. 1.1.1  
Logic 1 = Enable the RTS# interrupt. The UART issues an interrupt when the RTS# pin makes a transition  
from low to high.  
IER[7]: CTS# Input Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the CTS# interrupt (default).  
Logic 1 = Enable the CTS# interrupt. The UART issues an interrupt when CTS# pin makes a transition from  
low to high.  
4.4  
Interrupt Status Register (ISR) - Read-Only  
The UART provides multiple levels of prioritized interrupts to minimize external software interaction. The  
Interrupt Status Register (ISR) provides the user with six interrupt status bits. Performing a read cycle on the  
ISR will give the user the current highest pending interrupt level to be serviced, others are queued up to be  
serviced next. No other interrupts are acknowledged until the pending interrupt is serviced. The Interrupt  
Source Table, Table 9, shows the data values (bit 0-5) for the interrupt priority levels and the interrupt sources  
associated with each of these interrupt levels.  
4.4.1  
Interrupt Generation:  
LSR is by any of the LSR bits 1, 2, 3, 4 and 7.  
RXRDY is by RX trigger level.  
RXRDY Time-out is by a 4-char plus 12 bits delay timer.  
TXRDY is by TX trigger level or TX FIFO empty (or transmitter empty in auto RS-485 control).  
MSR is by any of the MSR bits 0, 1, 2 and 3.  
Receive Xoff/Special character is by detection of a Xoff or Special character.  
CTS# is when its transmitter toggles the input pin (from LOW to HIGH) during auto CTS flow control.  
RTS# is when its receiver toggles the output pin (from LOW to HIGH) during auto RTS flow control.  
4.4.2  
Interrupt Clearing:  
LSR interrupt is cleared by reading all characters with errors out of the RX FIFO.  
RXRDY interrupt is cleared by reading data until FIFO falls below the trigger level.  
RXRDY Time-out interrupt is cleared by reading RHR.  
TXRDY interrupt is cleared by a read to the ISR register or writing to THR.  
MSR interrupt is cleared by a read to the MSR register.  
Xoff interrupt is cleared when Xon character(s) is received.  
Special character interrupt is cleared by a read to ISR.  
RTS# and CTS# flow control interrupts are cleared by a read to the MSR register.  
28  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
]
TABLE 9: INTERRUPT SOURCE AND PRIORITY LEVEL  
PRIORITY  
ISR REGISTER STATUS BITS  
SOURCE OF INTERRUPT  
LEVEL  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
1
2
3
4
5
6
7
-
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
LSR (Receiver Line Status Register)  
RXRDY (Receive Data Time-out)  
RXRDY (Received Data Ready)  
TXRDY (Transmit Ready)  
MSR (Modem Status Register)  
RXRDY (Received Xoff or Special character)  
CTS#, RTS# change of state  
None (default)  
ISR[0]: Interrupt Status  
Logic 0 = An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt  
service routine.  
Logic 1 = No interrupt pending (default condition).  
ISR[3:1]: Interrupt Status  
These bits indicate the source for a pending interrupt at interrupt priority levels (See Interrupt Source Table 9).  
ISR[4]: Xoff/Xon or Special Character Interrupt Status  
This bit is set when EFR[4] = 1 and IER[5] = 1. ISR bit-4 indicates that the receiver detected a data match of  
the Xoff character(s). If this is an Xoff interrupt, it is cleared when XON is received. If it is a special character  
interrupt, it is cleared by reading ISR.  
ISR[5]: RTS#/CTS# Interrupt Status  
This bit is enabled when EFR[4] = 1. ISR bit-5 indicates that the CTS# or RTS# has been de-asserted.  
ISR[7:6]: FIFO Enable Status  
These bits are set to a logic 0 when the FIFOs are disabled. They are set to a logic 1 when the FIFOs are  
enabled.  
4.5  
FIFO Control Register (FCR) - Write-Only  
This register is used to enable the FIFOs, clear the FIFOs, set the transmit/receive FIFO trigger levels, and  
select the DMA mode. The DMA, and FIFO modes are defined as follows:  
FCR[0]: TX and RX FIFO Enable  
Logic 0 = Disable the transmit and receive FIFO (default).  
Logic 1 = Enable the transmit and receive FIFOs. This bit must be set to logic 1 when other FCR bits are  
written or they will not be programmed.  
29  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
FCR[1]: RX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No receive FIFO reset (default)  
Logic 1 = Reset the receive FIFO pointers and FIFO level counter logic (the receive shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
FCR[2]: TX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No transmit FIFO reset (default).  
Logic 1 = Reset the transmit FIFO pointers and FIFO level counter logic (the transmit shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
FCR[3]: DMA Mode Select  
Controls the behavior of the TXRDY# and RXRDY# pins. See DMA operation section for details.  
Logic 0 = Normal Operation (default).  
Logic 1 = DMA Mode.  
FCR[5:4]: Transmit FIFO Trigger Select (requires EFR bit-4=1)  
(logic 0 = default, TX trigger level = 8)  
These 2 bits set the trigger level for the transmit FIFO. The UART will issue a transmit interrupt when the  
number of spaces in the FIFO is above the selected trigger level, or when it gets empty in case that the FIFO  
did not get filled over the trigger level on last re-load. Table 10 shows the selections. The UART will issue a  
transmit interrupt when the number of available spaces in the FIFO is less than the transmit trigger level.  
Table 10 shows the selections.  
FCR[7:6]: Receive FIFO Trigger Select  
(logic 0 = default, RX trigger level = 8)  
These 2 bits are used to set the trigger level for the receive FIFO. The UART will issue a receive interrupt when  
the number of the characters in the FIFO is greater than the receive trigger level or when a receive data  
timeout occurs (see “Section 2.10, Receiver” on page 17).  
TABLE 10: TRANSMIT AND RECEIVE FIFO TRIGGER LEVEL SELECTION  
RECEIVE  
TRIGGER LEVEL TRIGGER LEVEL  
TRANSMIT  
FCR  
BIT-7  
FCR  
BIT-6  
FCR  
BIT-5  
FCR  
BIT-4  
(CHARACTERS)  
(SPACES)  
0
0
1
1
0
1
0
1
8
16  
32  
56  
0
0
1
1
0
1
0
1
8
16  
56  
60  
30  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
4.6  
Line Control Register (LCR) - Read/Write  
The Line Control Register is used to specify the asynchronous data communication format. The word or  
character length, the number of stop bits, and the parity are selected by writing the appropriate bits in this  
register.  
LCR[1:0]: TX and RX Word Length Select  
These two bits specify the word length to be transmitted or received.  
BIT-1  
BIT-0  
WORD LENGTH  
0
0
1
1
0
1
0
1
5
6 (default)  
7
8
LCR[2]: TX and RX Stop-bit Length Select  
The length of stop bit is specified by this bit in conjunction with the programmed word length.  
STOP BIT LENGTH  
(BIT TIME(S))  
WORD  
LENGTH  
BIT-2  
0
1
1
5,6,7,8  
5
1
1-1/2  
6,7,8  
2 (default)  
LCR[3]: TX and RX Parity Select  
Parity or no parity can be selected via this bit. The parity bit is a simple way used in communications for data  
integrity check. See Table 11 for parity selection summary below.  
Logic 0 = No parity.  
Logic 1 = A parity bit is generated during the transmission while the receiver checks for parity error of the  
data character received.  
LCR[4]: TX and RX Parity Select  
If the parity bit is enabled with LCR bit-3 set to a logic 1, LCR bit-4 selects the even or odd parity format.  
Logic 0 = ODD Parity is generated by forcing an odd number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format.  
Logic 1 = EVEN Parity is generated by forcing an even number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format.  
31  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
LCR[5]: TX and RX Parity Select  
If the parity bit is enabled, LCR BIT-5 selects the forced parity format.  
LCR BIT-5 = logic 0, parity is not forced (default).  
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 0, parity bit is forced to a logical 1 for the transmit and receive  
data.  
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 1, parity bit is forced to a logical 0 for the transmit and receive  
data.  
TABLE 11: PARITY SELECTION  
LCR BIT-5 LCR BIT-4 LCR BIT-3  
PARITY SELECTION  
No parity  
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
Odd parity  
Even parity  
Force parity to mark, “1”  
Forced parity to space, “0”  
LCR[6]: Transmit Break Enable  
When enabled, the Break control bit causes a break condition to be transmitted (the TX output is forced to a  
“space", LOW state). This condition remains, until disabled by setting LCR bit-6 to a logic 0.  
Logic 0 = No TX break condition (default).  
Logic 1 = Forces the transmitter output (TX) to a “space”, LOW, for alerting the remote receiver of a line  
break condition.  
LCR[7]: Baud Rate Divisors Enable  
Baud rate generator divisor (DLL, DLM and DLD) enable.  
Logic 0 = Data registers are selected (default).  
Logic 1 = Divisor latch registers are selected.  
4.7  
Modem Control Register (MCR) or General Purpose Outputs Control - Read/Write  
The MCR register is used for controlling the serial/modem interface signals or general purpose inputs/outputs.  
MCR[0]: DTR# Output  
The DTR# pin is a modem control output. If the modem interface is not used, this output may be used as a  
general purpose output.  
Logic 0 = Force DTR# output HIGH (default).  
Logic 1 = Force DTR# output LOW.  
MCR[1]: RTS# Output  
The RTS# pin is a modem control output and may be used for automatic hardware flow control by enabled by  
EFR bit-6. The RTS# pin can also be used for Auto RS485 Half-Duplex direction control enabled by FCTR bit-  
3. If the modem interface is not used, this output may be used as a general purpose output.  
Logic 0 = Force RTS# HIGH (default).  
Logic 1 = Force RTS# LOW.  
32  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
MCR[2]: OP1# / FIFO Rdy Enable  
OP1# is not available as an output pin on the M752. But it is available for use during Internal Loopback Mode  
(MCR[4] = 1). In the Internal Loopback Mode, this bit is used to write the state of the modem RI# interface  
signal.  
This bit is also used to select between the SPR, TLR and FIFO Rdy registers. All of these registers are  
accessible at address offset 0x7 when LCR0xBF. However, LCR = 0xBF is required to access EFR.  
TABLE 12: REGISTER AT ADDRESS OFFSET 0X7  
EFR[4] MCR[6] MCR[4, 2]  
Register at Address Offset 0x7  
Scratchpad Register (SPR)  
Scratchpad Register (SPR)  
Trigger Level Register (TLR)  
FIFO Ready Register (FIFO Rdy)  
0
1
1
X
X
0
1
X
’01’  
’01’  
’01’  
=’01’  
MCR[3]: OP2# Output / INT Output Enable  
This bit enables or disables the operation of INT, interrupt output. If INT output is not used, OP2# can be used  
as a general purpose output.  
Logic 0 = INT (A-B) outputs disabled (three state mode) and OP2# output set HIGH(default).  
Logic 1 = INT (A-B) outputs enabled (active mode) and OP2# output set LOW.  
MCR[4]: Internal Loopback Enable  
Logic 0 = Disable loopback mode (default).  
Logic 1 = Enable local loopback mode, see loopback section and Figure 13.  
MCR[5]: Xon-Any Enable (requires EFR bit-4=1 to write to this bit)  
Logic 0 = Disable Xon-Any function (default).  
Logic 1 = Enable Xon-Any function. In this mode, any RX character received will resume transmit operation.  
The RX character will be loaded into the RX FIFO, unless the RX character is an Xon or Xoff character and  
the M752 is programmed to use the Xon/Xoff flow control.  
MCR[6]: TCR and TLR Enable (requires EFR bit-4=1 to write to this bit)  
This bit enables the TCR and TLR registers at address offset 0x6 and 0x7, respectively. See Table 12 above  
for the correct register setting to access the TLR register. See Table 13 below for the setting to access the  
TCR register.  
Logic 0 = Reserved (default).  
Logic 1 = Enable access to the TCR and TLR registers.  
TABLE 13: REGISTER AT ADDRESS OFFSET 0X6  
EFR[4] MCR[6]  
Register at Address Offset 0x6  
Modem Status Register (MSR)  
Modem Status Register (MSR)  
Trigger Control Register (TCR)  
0
1
1
X
0
1
33  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
MCR[7]: Clock Prescaler Select (requires EFR bit-4=1 to write to this bit)  
REV. 1.1.1  
Logic 0 = Divide by one. The input clock from the crystal or external clock is fed directly to the Programmable  
Baud Rate Generator without further modification, i.e., divide by one (default).  
Logic 1 = Divide by four. The prescaler divides the input clock from the crystal or external clock by four and  
feeds it to the Programmable Baud Rate Generator, hence, data rates become one forth.  
4.8  
Line Status Register (LSR) - Read Only  
This register provides the status of data transfers between the UART and the host.  
LSR[0]: Receive Data Ready Indicator  
Logic 0 = No data in receive holding register or FIFO (default).  
Logic 1 = Data has been received and is saved in the receive holding register or FIFO.  
LSR[1]: Receiver Overrun Error Flag  
Logic 0 = No overrun error (default).  
Logic 1 = Overrun error. A data overrun error condition occurred in the receive shift register. This happens  
when additional data arrives while the FIFO is full. In this case the previous data in the receive shift register  
is overwritten. Note that under this condition the data byte in the receive shift register is not transferred into  
the FIFO, therefore the data in the FIFO is not corrupted by the error.  
LSR[2]: Receive Data Parity Error Tag  
Logic 0 = No parity error (default).  
Logic 1 = Parity error. The receive character in RHR does not have correct parity information and is suspect.  
This error is associated with the character available for reading in RHR.  
LSR[3]: Receive Data Framing Error Tag  
Logic 0 = No framing error (default).  
Logic 1 = Framing error. The receive character did not have a valid stop bit(s). This error is associated with  
the character available for reading in RHR.  
LSR[4]: Receive Break Error Tag  
Logic 0 = No break condition (default).  
Logic 1 = The receiver received a break signal (RX was LOW for at least one character frame time). In the  
FIFO mode, only one break character is loaded into the FIFO.  
LSR[5]: Transmit Holding Register Empty Flag  
This bit is the Transmit Holding Register Empty indicator. The THR bit is set to a logic 1 when the last data byte  
is transferred from the transmit holding register to the transmit shift register. The bit is reset to logic 0  
concurrently with the data loading to the transmit holding register by the host. In the FIFO mode this bit is set  
when the transmit FIFO is empty, it is cleared when the transmit FIFO contains at least 1 byte.  
LSR[6]: THR and TSR Empty Flag  
This bit is set to a logic 1 whenever the transmitter goes idle. It is set to logic 0 whenever either the THR or  
TSR contains a data character. In the FIFO mode this bit is set to a logic 1 whenever the transmit FIFO and  
transmit shift register are both empty.  
LSR[7]: Receive FIFO Data Error Flag  
Logic 0 = No FIFO error (default).  
Logic 1 = A global indicator for the sum of all error bits in the RX FIFO. At least one parity error, framing error  
or break indication is in the FIFO data. This bit clears when there is no more error(s) in any of the bytes in the  
RX FIFO.  
4.9  
Modem Status Register (MSR) - Read Only  
This register provides the current state of the modem interface input signals. Lower four bits of this register are  
used to indicate the changed information. These bits are set to a logic 1 whenever a signal from the modem  
34  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
changes state. These bits may be used for general purpose inputs when they are not used with modem  
signals.  
MSR[0]: Delta CTS# Input Flag  
Logic 0 = No change on CTS# input (default).  
Logic 1 = The CTS# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[1]: Delta DSR# Input Flag  
Logic 0 = No change on DSR# input (default).  
Logic 1 = The DSR# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[2]: Delta RI# Input Flag  
Logic 0 = No change on RI# input (default).  
Logic 1 = The RI# input has changed from a LOW to HIGH, ending of the ringing signal. A modem status  
interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[3]: Delta CD# Input Flag  
Logic 0 = No change on CD# input (default).  
Logic 1 = Indicates that the CD# input has changed state since the last time it was monitored. A modem  
status interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[4]: CTS Input Status  
CTS# pin may function as automatic hardware flow control signal input if it is enabled and selected by Auto  
CTS (EFR bit-7). Auto CTS flow control allows starting and stopping of local data transmissions based on the  
modem CTS# signal. A HIGH on the CTS# pin will stop UART transmitter as soon as the current character has  
finished transmission, and a LOW will resume data transmission. Normally MSR bit-4 bit is the complement of  
the CTS# input. However in the loopback mode, this bit is equivalent to the RTS# bit in the MCR register. The  
CTS# input may be used as a general purpose input when the modem interface is not used.  
MSR[5]: DSR Input Status  
Normally this bit is the complement of the DSR# input. In the loopback mode, this bit is equivalent to the DTR#  
bit in the MCR register. The DSR# input may be used as a general purpose input when the modem interface is  
not used.  
MSR[6]: RI Input Status  
Normally this bit is the complement of the RI# input. In the loopback mode this bit is equivalent to bit-2 in the  
MCR register. The RI# input may be used as a general purpose input when the modem interface is not used.  
MSR[7]: CD Input Status  
Normally this bit is the complement of the CD# input. In the loopback mode this bit is equivalent to bit-3 in the  
MCR register. The CD# input may be used as a general purpose input when the modem interface is not used.  
35  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
4.10 Scratch Pad Register (SPR) - Read/Write  
REV. 1.1.1  
This is a 8-bit general purpose register for the user to store temporary data. The content of this register is  
preserved during sleep mode but becomes 0xFF (default) after a reset or a power off-on cycle. There are also  
two other registers (TLR and FIFO Rdy) that share the same address location as the Scratch Pad Register.  
See Table 12.  
4.11 Transmission Control Register (TCR) - Read/Write (requires EFR bit-4 = 1)  
This register replaces MSR and is accessible only when MCR[6] = 1. This 8-bit register is used to store the RX  
FIFO threshold levels to halt/resume transmission during hardware or software flow control.  
TCR[3:0]: RX FIFO Halt Level  
A value of 0-60 (decimal value of TCR[3:0] multiplied by 4) can be selected as the Halt Level. When the RX  
FIFO is greater than or equal to this value, the RTS# output will be de-asserted if Auto RTS flow control is used  
or the XOFF character(s) will be transmitted if Auto XON/XOFF flow control is used. It is recommended that  
this value is greater than the RX Trigger Level.  
TCR[7:4]: RX FIFO Resume Level  
A value of 0-60 (decimal value of TCR[7:4] multiplied by 4) can be selected as the Resume Level. When the  
RX FIFO is less than or equal to this value, the RTS# output will be re-asserted if Auto RTS flow control is used  
or the XON character(s) will be transmitted if Auto XON/XOFF flow control is used. It is recommended that this  
value is less than the RX Trigger Level.  
4.12 Trigger Level Register (TLR) - Read/Write (requires EFR bit-4 = 1)  
This register replaces SPR and is accessible under the conditions listed in Table 12. This 8-bit register is used  
to store the RX and TX FIFO trigger levels used for interrupts.  
TLR[3:0]: TX FIFO Trigger Level  
A value of 4-60 (decimal value of TCR[3:0] multiplied by 4) can be selected as the TX FIFO Trigger Level.  
When the number of available spaces in the TX FIFO is greater than or equal to this value, a Transmit Ready  
interrupt is generated. For any non-zero value, TCR[3:0] will be used as the TX FIFO Trigger Level. If  
TCR[3:0] = 0x0, then the TX FIFO Trigger Level is the value selected by FCR[5:4]. See Table 10.  
TLR[7:4]: RX FIFO Trigger Level  
A value of 4-60 (decimal value of TCR[7:4] multiplied by 4) can be selected as the RX FIFO Trigger Level.  
When the number of characters received in the RX FIFO is greater than or equal to this value, a Receive Data  
Ready interrupt is generated (a Receive Data Timeout interrupt is independent of the RX FIFO Trigger Level  
and can be generated any time there is at least 1 byte in the RX FIFO and the RX input has been idle for the  
timeout period described in “Section 2.10, Receiver” on page 17). For any non-zero value, TCR[7:4] will be  
used as the RX FIFO Trigger Level. If TCR[7:4] = 0x0, then the RX FIFO Trigger Level is the value selected by  
FCR[7:6]. See Table 10.  
4.13 Baud Rate Generator Registers (DLL, DLM and DLD[3:0]) - Read/Write  
These registers make-up the value of the baud rate divisor. The concatenation of the contents of DLM and  
DLL is a 16-bit value is then added to DLD[3:0]/16 to achieve the fractional baud rate divisor. DLD must be  
enabled via EFR bit-4 before it can be accessed. SEE ”PROGRAMMABLE BAUD RATE GENERATOR  
WITH FRACTIONAL DIVISOR” ON PAGE 13.  
DLD[5:4]: Sampling Rate Select  
These bits select the data sampling rate. By default, the data sampling rate is 16X. The maximum data rate will  
double if the 8X mode is selected and will quadruple if the 4X mode is selected. See Table 14 below.  
TABLE 14: SAMPLING RATE SELECT  
DLD[5]  
DLD[4]  
SAMPLING RATE  
0
0
16X  
36  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
TABLE 14: SAMPLING RATE SELECT  
DLD[5]  
DLD[4]  
SAMPLING RATE  
0
1
1
8X  
4X  
X
DLD[6]: Auto RS-485 Direction Control  
Logic 0 = Standard ST16C550 mode. Transmitter generates an interrupt when transmit holding register  
becomes empty and transmit shift register is shifting data out. The RTS# output can be used as a general  
purpose output or for Auto RTS flow control.  
Logic 1 = Enable Auto RS485 Direction Control function. The direction control signal, RTS# pin, changes its  
output logic state from HIGH to LOW one bit time after the last stop bit of the last character is shifted out.  
Also, the Transmit interrupt generation is delayed until the transmitter shift register becomes empty. The  
RTS# output pin will automatically return to a HIGH when a data byte is loaded into the TX FIFO. See  
“Section 2.13, Auto RS485 Half-duplex Control” on page 18.  
DLD[7]: Infrared Encoder/Decoder Enable  
Logic 0 = Enable the standard modem receive and transmit input/output interface (default).  
Logic 1 = Enable infrared IrDA receive and transmit inputs/outputs. The TX/RX output/input are routed to the  
infrared encoder/decoder. The data input and output levels conform to the IrDA infrared interface  
requirement. While in this mode, the infrared TX output will be idling LOW. SEE ”INFRARED MODE” ON  
PAGE 20.  
4.14 Enhanced Feature Register (EFR)  
Enhanced features are enabled or disabled using this register. Bit 0-3 provide single or dual consecutive  
character software flow control selection (see Table 15). When the Xon1 and Xon2 and Xoff1 and Xoff2 modes  
are selected, the double 8-bit words are concatenated into two sequential characters. Caution: note that  
whenever changing the TX or RX flow control bits, always reset all bits back to logic 0 (disable) before  
programming a new setting.  
EFR[3:0]: Software Flow Control Select  
Single character and dual sequential characters software flow control is supported. Combinations of software  
flow control can be selected by programming these bits.  
TABLE 15: SOFTWARE FLOW CONTROL FUNCTIONS  
EFR BIT-3  
CONT-3  
EFR BIT-2  
CONT-2  
EFR BIT-1  
CONT-1  
EFR BIT-0  
CONT-0  
TRANSMIT AND RECEIVE SOFTWARE FLOW CONTROL  
0
0
1
0
1
X
X
X
1
0
0
0
1
1
X
X
X
0
0
X
X
X
X
0
1
0
1
0
X
X
X
X
0
No TX and RX flow control (default and reset)  
No transmit flow control  
Transmit Xon1, Xoff1  
Transmit Xon2, Xoff2  
Transmit Xon1 and Xon2, Xoff1 and Xoff2  
No receive flow control  
0
Receiver compares Xon1, Xoff1  
Receiver compares Xon2, Xoff2  
1
1
Transmit Xon1, Xoff1  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
37  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
TABLE 15: SOFTWARE FLOW CONTROL FUNCTIONS  
EFR BIT-3  
CONT-3  
EFR BIT-2  
CONT-2  
EFR BIT-1  
CONT-1  
EFR BIT-0  
CONT-0  
TRANSMIT AND RECEIVE SOFTWARE FLOW CONTROL  
0
1
0
1
1
0
1
1
1
1
1
1
Transmit Xon2, Xoff2  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
Transmit Xon1 and Xon2, Xoff1 and Xoff2,  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
No transmit flow control,  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
EFR[4]: Enhanced Function Bits Enable  
Enhanced function control bit. This bit enables IER bits 4-7, ISR bits 4-5, FCR bits 4-5, MCR bits 5-7, TCR,  
TLR and DLD to be modified. After modifying any enhanced bits, EFR bit-4 can be set to a logic 0 to latch the  
new values. This feature prevents legacy software from altering or overwriting the enhanced functions once  
set. Normally, it is recommended to leave it enabled, logic 1.  
Logic 0 = modification disable/latch enhanced features. IER bits 4-7, ISR bits 4-5, FCR bits 4-5, MCR bits 5-  
7, and DLD are saved to retain the user settings. After a reset, the IER bits 4-7, ISR bits 4-5, FCR bits 4-5,  
MCR bits 5-7, and DLD are set to a logic 0 to be compatible with ST16C550 mode (default).  
Logic 1 = Enables the above-mentioned register bits to be modified by the user.  
EFR[5]: Special Character Detect Enable  
Logic 0 = Special Character Detect Disabled (default).  
Logic 1 = Special Character Detect Enabled. The UART compares each incoming receive character with  
data in Xoff-2 register. If a match exists, the receive data will be transferred to FIFO and ISR bit-4 will be set  
to indicate detection of the special character. Bit-0 corresponds with the LSB bit of the receive character. If  
flow control is set for comparing Xon1, Xoff1 (EFR [1:0]= ‘10’) then flow control and special character work  
normally. However, if flow control is set for comparing Xon2, Xoff2 (EFR[1:0]= ‘01’) then flow control works  
normally, but Xoff2 will not go to the FIFO, and will generate an Xoff interrupt and a special character  
interrupt, if enabled via IER bit-5.  
EFR[6]: Auto RTS Flow Control Enable  
RTS# output may be used for hardware flow control by setting EFR bit-6 to logic 1. When Auto RTS is  
selected, an interrupt will be generated when the receive FIFO is filled to the programmed trigger level and  
RTS de-asserts HIGH at the programmed HALT level. RTS# will return LOW when FIFO data falls below the  
programmed RESUME level. The RTS# output must be asserted (LOW) before the auto RTS can take effect.  
RTS# pin will function as a general purpose output when hardware flow control is disabled.  
Logic 0 = Automatic RTS flow control is disabled (default).  
Logic 1 = Enable Automatic RTS flow control.  
EFR[7]: Auto CTS Flow Control Enable  
Automatic CTS Flow Control.  
Logic 0 = Automatic CTS flow control is disabled (default).  
Logic 1 = Enable Automatic CTS flow control. Data transmission stops when CTS# input de-asserts HIGH.  
Data transmission resumes when CTS# returns LOW.  
4.14.1 Software Flow Control Registers (XOFF1, XOFF2, XON1, XON2) - Read/Write  
These registers are used as the programmable software flow control characters xoff1, xoff2, xon1, and xon2.  
For more details, see Table 8.  
38  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
TABLE 16: UART RESET CONDITIONS FOR CHANNEL A AND B  
REGISTERS  
RESET STATE  
DLM, DLL  
DLM = 0x00 and DLL = 0x01. Only resets to these values during a power up.  
They do not reset when the Reset Pin is asserted.  
DLD  
RHR  
THR  
IER  
Bits 7-0 = 0x00  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x01  
Bits 7-0 = 0x1D  
Bits 7-0 = 0x00  
Bits 7-0 = 0x60  
FCR  
ISR  
LCR  
MCR  
LSR  
MSR  
Bits 3-0 = Logic 0  
Bits 7-4 = Logic levels of the inputs inverted  
SPR  
Bits 7-0 = 0xFF. Only resets to these values during a power up. They do not  
reset when the Reset Pin is asserted.  
TCR  
TLR  
Bits 7-0 = 0x0F  
Bits 7-0 = 0x00  
Bits 7-0 = 0x03  
Bits 7-0 = 0x00  
FIFO Rdy  
EFR  
XON1  
Bits 7-0 = 0x00. Only resets to these values during a power up. They do not  
reset when the Reset Pin is asserted.  
XON2  
XOFF1  
XOFF2  
Bits 7-0 = 0x00. Only resets to these values during a power up. They do not  
reset when the Reset Pin is asserted.  
Bits 7-0 = 0x00. Only resets to these values during a power up. They do not  
reset when the Reset Pin is asserted.  
Bits 7-0 = 0x00. Only resets to these values during a power up. They do not  
reset when the Reset Pin is asserted.  
I/O SIGNALS  
TX  
RESET STATE  
HIGH  
OP2#  
HIGH  
RTS#  
HIGH  
DTR#  
HIGH  
RXRDY#  
TXRDY#  
INT  
HIGH  
LOW  
Three-State Condition  
39  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
5.0 ELECTRICAL CHARACTERISTICS  
REV. 1.1.1  
ABSOLUTE MAXIMUM RATINGS  
Power Supply Range  
4 Volts  
Voltage at Any Pin  
GND-0.3V to 4V  
-40o to +85oC  
Operating Temperature  
-65o to +150oC  
500 mW  
Storage Temperature  
Package Dissipation  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%)  
theta-ja =59oC/W, theta-jc = 16oC/W  
Thermal Resistance (48-TQFP)  
theta-ja = 33oC/W, theta-jc = 22oC/W  
Thermal Resistance (32-QFN)  
DC ELECTRICAL CHARACTERISTICS  
o
o
TA= -40 to +85 C, Vcc is 1.62V to 3.63V  
LIMITS  
LIMITS  
2.5V  
LIMITS  
SYMBOL  
PARAMETER  
1.8V  
3.3V  
UNITS  
CONDITIONS  
MIN  
-0.3  
1.4  
MAX  
MIN  
MAX  
MIN  
MAX  
VILCK Clock Input Low Level  
VIHCK Clock Input High Level  
0.3  
-0.3  
1.8  
0.6  
-0.3  
0.6  
V
V
V
V
VCC  
0.2  
VCC  
0.5  
2.4  
-0.3  
2.0  
VCC  
0.8  
VIL  
VIH  
VOL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
-0.3  
1.4  
-0.3  
1.8  
VCC  
VCC  
VCC  
0.4  
V
V
IOL = 4 mA  
0.4  
IOL = 2 mA  
0.4  
IOL = 1.5 mA  
VOH  
Output High Voltage  
2.0  
V
V
IOH = -1 mA  
1.8  
IOH = -400 uA  
IOH = -200 uA  
1.4  
IIL  
IIH  
Input Low Leakage Current  
Input High Leakage Current  
Input Pin Capacitance  
±10  
±10  
5
±10  
±10  
5
±10  
±10  
5
uA  
uA  
pF  
mA  
uA  
uA  
CIN  
ICC  
Power Supply Current  
0.5  
3
1
2
XTAL1 = 2 MHz  
See Test 1  
ISLEEP Sleep Current (16 Mode)  
ISLEEP Sleep Current (68 Mode)  
10  
75  
15  
100  
50  
See Test 1  
Test 1: The following inputs must remain steady at VCC or GND state to minimize Sleep current: A0-A2, D0-  
D7, IOR#, IOW#, CSA# (CS# in 68 Mode), CSB# and all modem inputs. Also, RXA and RXB inputs must idle  
HIGH while asleep. Floating inputs will result in sleep currents in the mA range.  
40  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
AC ELECTRICAL CHARACTERISTICS  
o
o
Unless otherwise noted: TA=-40 to +85 C, Vcc=1.62 - 3.63V, 70 pF load where applicable  
LIMITS  
LIMITS  
LIMITS  
SYMBOL  
PARAMETER  
1.8V ± 10%  
2.5V ± 10%  
3.3V ± 10%  
UNIT  
MIN  
MAX MIN  
MAX MIN  
MAX  
XTAL1  
ECLK  
TECLK  
UART Crystal Oscillator  
24  
32  
24  
50  
24  
64  
MHz  
MHz  
ns  
External Clock  
External Clock Time Period  
15  
5
10  
5
7
5
TAS  
TAH  
Address Setup Time (16 mode)  
Address Hold Time (16 mode)  
Chip Select Width (16 mode)  
IOR# Strobe Width (16 mode)  
Read Cycle Delay (16 mode)  
Data Access Time (16 mode)  
Data Disable Time (16 mode)  
IOW# Strobe Width (16 mode)  
Write Cycle Delay (16 mode)  
Data Setup Time (16 mode)  
Data Hold Time (16 mode)  
Address Setup (68 Mode)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
0
TCS  
60  
60  
60  
30  
30  
30  
30  
30  
30  
TRD  
TDY  
TRDV  
TDD  
55  
20  
25  
20  
25  
10  
0
60  
60  
15  
5
0
30  
30  
10  
5
0
30  
30  
10  
5
TWR  
TDY  
TDS  
TDH  
TADS  
TADH  
TRWS  
TRDA  
TRDH  
TWDS  
TWDH  
TRWH  
5
5
5
Address Hold (68 Mode)  
0
0
0
R/W# Setup to CS# (68 Mode)  
Read Data Access (68 mode)  
Read Data Disable (68 mode)  
Write Data Setup (68 mode)  
Write Data Hold (68 Mode)  
5
5
5
55  
20  
25  
20  
25  
10  
15  
5
10  
5
10  
5
CS# De-asserted to R/W# De-asserted (68  
Mode)  
5
5
5
TCSL  
TCSD  
TWDO  
TMOD  
TRSI  
CS# Width (68 Mode)  
60  
60  
30  
30  
30  
30  
ns  
ns  
CS# Cycle Delay (68 Mode)  
Delay From IOW# To Output  
50  
50  
50  
1
50  
50  
50  
1
50  
50  
50  
1
ns  
Delay To Set Interrupt From MODEM Input  
Delay To Reset Interrupt From IOR#  
Delay From Stop To Set Interrupt  
ns  
ns  
TSSI  
Bclk  
41  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
AC ELECTRICAL CHARACTERISTICS  
REV. 1.1.1  
o
o
Unless otherwise noted: TA=-40 to +85 C, Vcc=1.62 - 3.63V, 70 pF load where applicable  
LIMITS  
LIMITS  
LIMITS  
SYMBOL  
PARAMETER  
1.8V ± 10%  
2.5V ± 10%  
3.3V ± 10%  
UNIT  
MIN  
MAX MIN  
MAX MIN  
MAX  
TRRI  
TSI  
Delay From IOR# To Reset Interrupt  
Delay From Stop To Interrupt  
45  
45  
24  
45  
1
45  
45  
24  
45  
1
45  
45  
24  
45  
1
ns  
ns  
TINT  
TWRI  
TSSR  
TRR  
Delay From Initial INT Reset To Transmit Start  
Delay From IOW# To Reset Interrupt  
Delay From Stop To Set RXRDY#  
Delay From IOR# To Reset RXRDY#  
Delay From IOW# To Set TXRDY#  
Delay From Center of Start To Reset TXRDY#  
Reset Pulse Width  
8
8
8
Bclk  
ns  
Bclk  
ns  
45  
45  
8
45  
45  
8
45  
45  
8
TWT  
TSRT  
TRST  
Bclk  
ns  
Bclk  
ns  
40  
40  
40  
Baud Clock  
16X or 8X or 4X of data rate  
Hz  
FIGURE 14. CLOCK TIMING  
TECLK  
TECL  
TECH  
VIH  
External  
Clock  
VIL  
42  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
FIGURE 15. MODEM INPUT/OUTPUT TIMING FOR CHANNELS A & B  
IOW #  
Active  
TW DO  
RTS#  
DTR#  
Change of state  
Change of state  
CD#  
CTS#  
DSR#  
Change of state  
Change of state  
TMOD  
TMOD  
INT  
Active  
Active  
Active  
Active  
TRSI  
IOR#  
Active  
Active  
TMOD  
Change of state  
RI#  
FIGURE 16. 16 MODE (INTEL) DATA BUS READ TIMING  
A0-A2  
Valid Address  
TCS  
Valid Address  
TCS  
TAS  
TAS  
TAH  
TAH  
CSA#/  
CSB#  
TDY  
TRD  
TRD  
IOR#  
TDD  
TDD  
TRDV  
TRDV  
D0-D7  
Valid Data  
Valid Data  
RDTm  
43  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
FIGURE 17. 16 MODE (INTEL) DATA BUS WRITE TIMING  
A0-A2  
Valid Address  
TCS  
Valid Address  
TCS  
TAS  
TAS  
TAH  
TAH  
CSA#/  
CSB#  
TDY  
TWR  
TWR  
IOW#  
TDH  
TDH  
TDS  
Valid Data  
TDS  
Valid Data  
D0-D7  
16Write  
FIGURE 18. 68 MODE (MOTOROLA) DATA BUS READ TIMING  
A0-A2  
CS#  
Valid Address  
TCSL  
Valid Address  
TADS  
TADH  
TCSD  
TRWS  
TRWH  
R/W#  
D0-D7  
TRDH  
TRDA  
Valid Data  
Valid Data  
68Read  
44  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
FIGURE 19. 68 MODE (MOTOROLA) DATA BUS WRITE TIMING  
A0-A2  
CS#  
Valid Address  
TCSL  
Valid Address  
TADS  
TADH  
TCSD  
TRWS  
TRWH  
R/W#  
D0-D7  
T
WDH  
TWDS  
Valid Data  
Valid Data  
68Write  
FIGURE 20. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A & B  
RX  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
TSSR  
TSSR  
TSSR  
1 Byte  
1 Byte  
1 Byte  
in RHR  
in RHR  
in RHR  
INT  
TSSR  
TSSR  
TSSR  
Active  
Data  
Active  
Data  
Active  
Data  
RXRDY#  
Ready  
Ready  
Ready  
TRR  
TRR  
TRR  
IOR#  
(Reading data  
out of RHR)  
RXNFM  
45  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
FIGURE 21. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A & B  
TX  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
IER[1]  
enabled  
ISR is read  
ISR is read  
ISR is read  
INT*  
TWRI  
TWRI  
TWRI  
TSRT  
TSRT  
TSRT  
TXRDY#  
TWT  
TWT  
TWT  
IOW#  
(Loading data  
into THR)  
*INT is cleared when the ISR is read or when data is loaded into the THR.  
TXNonFIFO  
FIGURE 22. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED] FOR CHANNELS A & B  
Start  
Bit  
RX  
S
S
S
S
T
D0:D7  
D0:D7  
D0:D7  
T
D0:D7  
TSSI  
D0:D7  
S
T
S
D0:D7  
T
D0:D7  
T
Stop  
Bit  
RX FIFO drops  
below RX  
Trigger Level  
INT  
TSSR  
FIFO  
Empties  
RX FIFO fills up to RX  
Trigger Level or RX Data  
Timeout  
RXRDY#  
First Byte is  
Received in  
RX FIFO  
TRRI  
TRR  
IOR#  
(Reading data out  
of RX FIFO)  
RXINTDMA#  
46  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
FIGURE 23. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED] FOR CHANNELS A & B  
Start  
Bit  
Stop  
Bit  
RX  
S
S
S
S
T
D0:D7  
D0:D7  
D0:D7  
T
D0:D7  
TSSI  
D0:D7  
S
T
S
D0:D7  
T
D0:D7  
T
RX FIFO drops  
below RX  
Trigger Level  
INT  
RX FIFO fills up to RX  
Trigger Level or RX Data  
Timeout  
TSSR  
FIFO  
Empties  
RXRDY#  
TRRI  
TRR  
IOR#  
(Reading data out  
of RX FIFO)  
RXFIFODMA  
FIGURE 24. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED] FOR CHANNELS A & B  
Stop  
Bit  
Start  
Bit  
Last Data Byte  
Transmitted  
TX FIFO  
Empty  
TX  
(Unloading)  
T
S
S
S
T
S
T
S
D0:D7  
D0:D7  
T
S D0:D7  
T
D0:D7  
T
D0:D7  
D0:D7  
T
ISR is read  
TSI  
IER[1]  
enabled  
ISR is read  
TSRT  
INT*  
TX FIFO  
Empty  
TX FIFO fills up  
to trigger level  
TX FIFO drops  
below trigger level  
TWRI  
Data in  
TX FIFO  
TXRDY#  
TWT  
IOW#  
(Loading data  
into FIFO)  
*INT is cleared when the ISR is read or when TX FIFO fills up to the trigger level.  
TXDMA#  
47  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
FIGURE 25. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE ENABLED] FOR CHANNELS A & B  
Stop  
Bit  
Start  
Bit  
Last Data Byte  
Transmitted  
TX  
(Unloading)  
S
D0:D7  
S
D0:D7  
S
S
D0:D7  
T
T
T
D0:D7  
D0:D7  
S
D0:D7  
T
S D0:D7  
T
T
IER[1]  
enabled  
ISR Read  
ISR Read  
TSI  
TSRT  
INT*  
TX FIFO fills up  
to trigger level  
TX FIFO drops  
below trigger level  
TWRI  
At least 1  
empty location  
in FIFO  
TX FIFO  
Full  
TXRDY#  
TWT  
IOW#  
(Loading data  
into FIFO)  
*INT cleared when the ISR is read or when TX FIFO fills up to trigger level.  
TXDMA  
48  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1 mm)  
D
D
1
36  
25  
37  
24  
D
1
D
48  
13  
1
1
2
B
e
A
2
C
A
Seating  
Plane  
α
A
1
L
Note: The control dimension is the millimeter column  
INCHES MILLIMETERS  
MAX  
SYMBOL  
MIN  
MIN  
MAX  
1.20  
0.15  
A
0.039  
0.002  
0.047  
0.006  
1.00  
0.05  
A1  
A2  
0.037  
0.041  
0.95  
1.05  
B
C
0.007  
0.004  
0.346  
0.272  
0.011  
0.008  
0.362  
0.280  
0.17  
0.09  
8.80  
6.90  
0.27  
0.20  
9.20  
7.10  
D
D1  
e
L
a
0.020 BSC  
0.50 BSC  
0.018  
0.030  
0.45  
0.75  
0°  
7°  
0°  
7°  
49  
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
PACKAGE DIMENSIONS (32 PIN QFN - 5 X 5 X 0.9 mm)  
Note: the actual center pad  
is metallic and the size (D2)  
is device-dependent with a  
typical tolerance of 0.3mm  
Note: The control dimension is in millimeter.  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
0.039  
0.002  
0.010  
0.201  
0.150  
0.012  
MIN  
0.80  
0.00  
0.15  
4.90  
3.50  
0.18  
MAX  
1.00  
0.05  
0.25  
5.10  
3.80  
0.30  
A
A1  
A3  
D
0.031  
0.000  
0.006  
0.193  
0.138  
0.007  
D2  
b
e
0.0197 BSC  
0.50 BSC  
L
0.012  
0.008  
0.020  
-
0.35  
0.20  
0.45  
-
k
50  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
PACKAGE DIMENSIONS (49 PIN SHRINK THIN BALL GRID ARRAY - 4 X 4mm)  
7
6
5
4
3
2
1
A1 corner  
A
B
C
D
E
F
D
D1  
G
D1  
D
(A1 corner feature is mfger option)  
Seating  
Plane  
b
A2  
A
A1  
e
Note: The control dimension is in millimeter.  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
0.046  
0.011  
0.035  
0.161  
MIN  
MAX  
1.18  
0.28  
0.90  
4.10  
A
A1  
A2  
D
0.035  
0.007  
0.028  
0.154  
0.88  
0.18  
0.70  
3.90  
D1  
b
0.118 BSC  
3.00 BSC  
0.010  
0.014  
0.26  
0.36  
e
0.020 BSC  
0.50 BSC  
51  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REVISION HISTORY  
DATE  
July 2006  
REVISION  
P1.0.0  
1.0.0  
DESCRIPTION  
Preliminary Datasheet.  
September 2006  
May 2007  
Final Datasheet. Updated AC Electrical Characteristics.  
1.0.1  
Corrected pin names pin out assignment for 48-pin TQFP package for XR68M752 in  
Motorola mode. Added GND center pad for QFN package to pin description. Added  
Motorola mode Read/Write timing waveforms. Updated QFN package dimensions  
drawing to show minimum "k" parameter.  
May 2007  
1.0.2  
1.1.0  
Updated pin description table, correct pin # of RXA in QFN-32 package.  
December 2007  
Added 49-pin STBGA package with these additional pins - PwrSave, ENIR# and  
EN485#.  
June 2009  
1.1.1  
Corrected page 30 FCR[7:6] and FCR[5:4] default trigger levels.  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to  
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that  
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication  
has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the  
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless  
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has  
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately  
protected under the circumstances.  
Copyright 2008 EXAR Corporation  
Datasheet June 2009.  
Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
52  
XR16M752/XR68M752  
REV. 1.1.1  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
TABLE OF CONTENTS  
GENERAL DESCRIPTION................................................................................................ 1  
APPLICATIONS .............................................................................................................................................. 1  
FEATURES.................................................................................................................................................... 1  
FIGURE 1. XR16M752 BLOCK DIAGRAM .......................................................................................................................................... 1  
FIGURE 2. PIN OUT ASSIGNMENT - TQFP AND QFN PACKAGES ....................................................................................................... 2  
FIGURE 3. PIN OUT ASSIGNMENT - STBGA PACKAGE ...................................................................................................................... 3  
ORDERING INFORMATION ............................................................................................................................... 3  
PIN DESCRIPTIONS ........................................................................................................ 4  
1.0 PRODUCT DESCRIPTION ...................................................................................................................... 9  
2.0 FUNCTIONAL DESCRIPTIONS ............................................................................................................ 10  
2.1 CPU INTERFACE .............................................................................................................................................. 10  
FIGURE 4. XR16M752/XR68M752 DATA BUS INTERCONNECTIONS................................................................................................ 10  
2.2 DEVICE RESET................................................................................................................................................. 11  
2.3 CHANNEL A AND B SELECTION .................................................................................................................... 11  
TABLE 1: CHANNEL A AND B SELECT IN 16 MODE .......................................................................................................................... 11  
TABLE 2: CHANNEL A AND B SELECT IN 68 MODE .......................................................................................................................... 11  
2.4 CHANNEL A AND B INTERNAL REGISTERS................................................................................................. 11  
2.5 DMA MODE ....................................................................................................................................................... 12  
TABLE 3: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE ........................................................................................... 12  
2.6 INTA AND INTB OUTPUTS............................................................................................................................... 12  
TABLE 4: INTA AND INTB PINS OPERATION FOR TRANSMITTER ...................................................................................................... 12  
TABLE 5: INTA AND INTB PIN OPERATION FOR RECEIVER ............................................................................................................. 12  
2.7 CRYSTAL OSCILLATOR OR EXTERNAL CLOCK INPUT.............................................................................. 13  
FIGURE 5. TYPICAL OSCILLATOR CONNECTIONS............................................................................................................................... 13  
2.8 PROGRAMMABLE BAUD RATE GENERATOR WITH FRACTIONAL DIVISOR ........................................... 13  
FIGURE 6. BAUD RATE GENERATOR ............................................................................................................................................... 14  
TABLE 6: TYPICAL DATA RATES WITH A 24 MHZ CRYSTAL OR EXTERNAL CLOCK AT 16X SAMPLING ................................................... 15  
2.9 TRANSMITTER.................................................................................................................................................. 15  
2.9.1 TRANSMIT HOLDING REGISTER (THR) - WRITE ONLY........................................................................................... 16  
2.9.2 TRANSMITTER OPERATION IN NON-FIFO MODE.................................................................................................... 16  
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE .............................................................................................................. 16  
2.9.3 TRANSMITTER OPERATION IN FIFO MODE ............................................................................................................. 16  
FIGURE 8. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE ..................................................................................... 16  
2.10 RECEIVER....................................................................................................................................................... 17  
2.10.1 RECEIVE HOLDING REGISTER (RHR) - READ-ONLY ............................................................................................ 17  
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE.................................................................................................................... 17  
FIGURE 10. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE ....................................................................... 18  
2.11 AUTO RTS (HARDWARE) FLOW CONTROL................................................................................................ 18  
2.12 AUTO RTS HALT AND RESUME .................................................................................................................. 18  
2.13 AUTO RS485 HALF-DUPLEX CONTROL ..................................................................................................... 18  
2.14 AUTO CTS FLOW CONTROL........................................................................................................................ 19  
FIGURE 11. AUTO RTS AND CTS FLOW CONTROL OPERATION....................................................................................................... 19  
2.15 AUTO XON/XOFF (SOFTWARE) FLOW CONTROL...................................................................................... 20  
2.16 SPECIAL CHARACTER DETECT.................................................................................................................. 20  
2.17 INFRARED MODE........................................................................................................................................... 20  
FIGURE 12. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING.......................................................................... 21  
2.18 SLEEP MODE WITH WAKE-UP INDICATOR AND POWERSAVE FEATURE ........................................... 22  
2.19 SLEEP MODE WITH AUTO WAKE-UP .......................................................................................................... 22  
2.19.1 POWERSAVE FEATURE (49-PIN STBGA PACAKGE ONLY) ................................................................................. 22  
2.20 INTERNAL LOOPBACK................................................................................................................................. 23  
FIGURE 13. INTERNAL LOOP BACK IN CHANNEL A AND B ................................................................................................................ 23  
3.0 UART INTERNAL REGISTERS............................................................................................................. 24  
TABLE 7: UART CHANNEL A AND B UART INTERNAL REGISTERS ...................................................................................... 24  
TABLE 8: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1 ......................................... 25  
4.0 INTERNAL REGISTER DESCRIPTIONS.............................................................................................. 26  
4.1 RECEIVE HOLDING REGISTER (RHR) - READ- ONLY.................................................................................. 26  
4.2 TRANSMIT HOLDING REGISTER (THR) - WRITE-ONLY ............................................................................... 26  
4.3 INTERRUPT ENABLE REGISTER (IER) - READ/WRITE ................................................................................ 26  
4.3.1 IER VERSUS RECEIVE FIFO INTERRUPT MODE OPERATION ............................................................................... 26  
I
XR16M752/XR68M752  
HIGH PERFORMANCE DUART WITH 64-BYTE FIFO  
REV. 1.1.1  
4.3.2 IER VERSUS RECEIVE/TRANSMIT FIFO POLLED MODE OPERATION.................................................................. 27  
4.4 INTERRUPT STATUS REGISTER (ISR) - READ-ONLY .................................................................................. 28  
4.4.1 INTERRUPT GENERATION: ........................................................................................................................................ 28  
4.4.2 INTERRUPT CLEARING: ............................................................................................................................................. 28  
TABLE 9: INTERRUPT SOURCE AND PRIORITY LEVEL ....................................................................................................................... 29  
4.5 FIFO CONTROL REGISTER (FCR) - WRITE-ONLY......................................................................................... 29  
TABLE 10: TRANSMIT AND RECEIVE FIFO TRIGGER LEVEL SELECTION ............................................................................................ 30  
4.6 LINE CONTROL REGISTER (LCR) - READ/WRITE......................................................................................... 31  
TABLE 11: PARITY SELECTION ........................................................................................................................................................ 32  
4.7 MODEM CONTROL REGISTER (MCR) OR GENERAL PURPOSE OUTPUTS CONTROL - READ/WRITE.. 32  
TABLE 12: REGISTER AT ADDRESS OFFSET 0X7 ............................................................................................................................. 33  
TABLE 13: REGISTER AT ADDRESS OFFSET 0X6 ............................................................................................................................. 33  
4.8 LINE STATUS REGISTER (LSR) - READ ONLY.............................................................................................. 34  
4.9 MODEM STATUS REGISTER (MSR) - READ ONLY ....................................................................................... 34  
4.10 SCRATCH PAD REGISTER (SPR) - READ/WRITE ....................................................................................... 36  
4.11 TRANSMISSION CONTROL REGISTER (TCR) - READ/WRITE (REQUIRES EFR BIT-4 = 1)..................... 36  
4.12 TRIGGER LEVEL REGISTER (TLR) - READ/WRITE (REQUIRES EFR BIT-4 = 1) ...................................... 36  
4.13 BAUD RATE GENERATOR REGISTERS (DLL, DLM AND DLD[3:0]) - READ/WRITE................................ 36  
TABLE 14: SAMPLING RATE SELECT ............................................................................................................................................... 36  
4.14 ENHANCED FEATURE REGISTER (EFR) ..................................................................................................... 37  
TABLE 15: SOFTWARE FLOW CONTROL FUNCTIONS ........................................................................................................................ 37  
4.14.1 SOFTWARE FLOW CONTROL REGISTERS (XOFF1, XOFF2, XON1, XON2) - READ/WRITE .............................. 38  
TABLE 16: UART RESET CONDITIONS FOR CHANNEL A AND B ............................................................................................ 39  
5.0 ELECTRICAL CHARACTERISTICS...................................................................................................... 40  
ABSOLUTE MAXIMUM RATINGS..................................................................................................................... 40  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%).............................................. 40  
DC ELECTRICAL CHARACTERISTICS ............................................................................................................. 40  
AC ELECTRICAL CHARACTERISTICS ............................................................................................................. 41  
FIGURE 14. CLOCK TIMING............................................................................................................................................................. 42  
FIGURE 15. MODEM INPUT/OUTPUT TIMING FOR CHANNELS A & B ................................................................................................. 43  
FIGURE 16. 16 MODE (INTEL) DATA BUS READ TIMING................................................................................................................... 43  
FIGURE 17. 16 MODE (INTEL) DATA BUS WRITE TIMING.................................................................................................................. 44  
FIGURE 18. 68 MODE (MOTOROLA) DATA BUS READ TIMING .......................................................................................................... 44  
FIGURE 20. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A & B ......................................................... 45  
FIGURE 19. 68 MODE (MOTOROLA) DATA BUS WRITE TIMING......................................................................................................... 45  
FIGURE 21. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE] FOR CHANNELS A & B ....................................................... 46  
FIGURE 22. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED] FOR CHANNELS A & B........................................ 46  
FIGURE 23. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED] FOR CHANNELS A & B......................................... 47  
FIGURE 24. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED] FOR CHANNELS A & B............................ 47  
FIGURE 25. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE ENABLED] FOR CHANNELS A & B ............................ 48  
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1 mm)................................................................................... 49  
PACKAGE DIMENSIONS (32 PIN QFN - 5 X 5 X 0.9 mm)................................................................................ 50  
PACKAGE DIMENSIONS (49 PIN SHRINK THIN BALL GRID ARRAY - 4 X 4mm) ................................................. 51  
REVISION HISTORY...................................................................................................................................... 52  
II  

相关型号:

XR68M752IL-0B-EB

EVAL BOARD FOR XR68M752 32QFN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

XR68M752IL32

HIGH PERFORMANCE DUART WITH 64-BYTE FIFO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

XR68M752IL32-F

Serial I/O Controller, 2 Channel(s), 2MBps, CMOS, 5 X 5 MM, 0.90 MM HEIGHT, GREEN, QFN-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

XR68M752IL32TR-F

IC UART FIFO 64B DUAL 32QFN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

XR68M752IM48

HIGH PERFORMANCE DUART WITH 64-BYTE FIFO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

XR68M752IM48-F

Serial I/O Controller, 2 Channel(s), 2MBps, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, GREEN, TQFP-48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

XR68M752IM48TR-F

IC UART FIFO 64B DUAL 48TQFP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

XR7090AA-BC-0001

XLamp㈢ XR LED Binning and Labeling

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CREE

XR7090AA-BC-DD-EF-G-HHHH

XLamp㈢ XR LED Binning and Labeling

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CREE

XR7090AM-L1-0001

XLamp㈢ XR LED Binning and Labeling

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CREE

XR7090BL-L1-0001

XLamp㈢ XR LED Binning and Labeling

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CREE

XR7090CN-L1-0001

XLamp㈢ XR LED Binning and Labeling

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CREE