XRD9855 [EXAR]

CCD Image Digitizers with CDS, PGA and 10-Bit A/D; 与CDS , PGA和10位A / D转换的CCD图像数字化
XRD9855
型号: XRD9855
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

CCD Image Digitizers with CDS, PGA and 10-Bit A/D
与CDS , PGA和10位A / D转换的CCD图像数字化

CD
文件: 总35页 (文件大小:683K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XRD9855/9856  
XRD98L55/98L56  
CCD Image Digitizers with  
CDS, PGA and 10-Bit A/D  
July 2001  
FEATURES  
l 3-State Digital Outputs  
l 10-Bit Resolution ADC  
l ESD Protection to Over 2000V  
l 18 - 27MHz Maximum Sampling Rate  
l CorrelatedDoubleSampling(CDS)  
l Programmable Gain from 6dB to 38dB (PGA)  
l DigitallyControlledAnalogOffset-Calibration  
l CCD Black Level Offset Compensation at Frame  
Rate  
APPLICATIONS  
l DigitalVideoCamcorders  
l Digital Still Cameras  
l PC Video Teleconferencing  
l DigitalCopiers  
l CDS Clocks Sample Rising Edge or Falling Edge  
l Single 5V or 3V Power Supply  
l Infrared Image Digitizers  
l CCD/CISImagerInterface  
l CCTV/SecurityCamera  
l 2D Bar Code Readers  
l IndustrialCameras  
l Low Power for Battery Applications:  
XRD9855/56:  
250/300mW @ V DD = 5.0V  
XRD98L55/L56: 120/150mW @ VDD = 3.0V  
l 50mA-Typ Current in Stand By Mode  
GENERALDESCRIPTION  
The XRD9855/XRD9856 are complete CCD Image  
Digitizers for digital cameras. The products include a  
highbandwidthdifferentialCorrelatedDoubleSampler  
(CDS), 8-bit digitally Programmable Gain Amplifier  
(PGA), 10-bit Analog-to-Digital Converter (ADC) and  
digital controlled black level auto-calibration circuitry.  
The PGA is digitally controlled with 8-bit resolution on  
a linear dB scale, resulting in a gain range of 6dB to  
38dB with 0.125dB per LSB of the gain code.  
ThePGAandblacklevelauto-calibrationarecontrolled  
through a simple 3-wire serial interface. The timing  
circuitry is designed to enable users to select a wide  
variety of available CCD and image sensors for their  
applications.  
TheCorrelatedDoubleSampler(CDS)subtractsthe  
CCD output signal black level from the video level.  
Commonmodesignalnoiseandpowersupplynoiseare  
rejectedbythedifferentialCDSinputstage.CDSinputs  
aredesigned to be used eitherdifferential orsingle-  
ended.  
TheXRD9855/XRD9856hasdirectaccesstothePGA  
output and ADC input through the pin TESTVIN.  
TheXRD9855/XRD9856arepackagedin48-leadsur-  
face mount TQFP to reduce space and weight, and  
suitable for hand-held and portable applications.  
Theautocalibrationcircuitcompensatesforanyinter-  
naloffsetoftheXRD9855/XRD9856aswellasblack  
leveloffsetfrom theCCD.  
ORDERINGINFORMATION  
Operating  
Maximum  
Part No.  
Package  
Temperature Range PowerSupply Sampling Rate  
XRD9855AIV  
48 Lead TQFP (7 x 7 x 1.4 mm)  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
5.0V  
3.0V  
5.0V  
3.0V  
18 MSPS  
18 MSPS  
27 MSPS  
27 MSPS  
XRD98L55AIV 48 Lead TQFP (7 x 7 x 1.4 mm)  
XRD9856AIV 48 Lead TQFP (7 x 7 x 1.4 mm)  
XRD98L56AIV 48 Lead TQFP (7 x 7 x 1.4 mm)  
Rev. 1.01  
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 · (510) 668-7000 · FAX (510) 668-7017 · www.exar.com  
XRD9855/9856  
XRD98L55/98L56  
TESTVIN  
VDD  
VRBO  
VRB  
VRT  
VRTO  
VDD  
GND  
DVDD  
In_Pos  
In_Neg  
ADC  
Reg  
DB[9:0]  
PGA  
CDS  
DGND  
SHD  
SHP  
Timing  
Generator  
RSTCCD  
CLAMP  
CLK_POL  
SYNC  
OVER  
UNDER  
Offset  
Calibration  
SCLK  
SDI  
Serial Port  
Registers  
LOAD  
GND  
STBY1  
STBY2  
RESET  
EnableCal  
OE  
Figure 1. XRD9855/XRD9856 Simplified Block Diagram  
Rev. 1.01  
2
XRD9855/9856  
XRD98L55/98L56  
PINCONFIGURATION  
36  
25  
24  
37  
SCLK  
CLAMP  
RESET  
SHD  
SHP  
RSTCCD  
GND  
CLK_POL  
STBY2  
STBY1  
Test  
GND  
VDD  
EnableCal  
VDD  
OE  
SYNC  
UNDER  
DB0  
OVER  
DB1  
NC  
DB9  
DB8  
48  
13  
1
12  
48 Lead TQFP (7 x 7 x 1.0 mm)  
PIN DESCRIPTION – 48 pin TQFP  
Pin #  
1
Symbol  
NC  
Description  
No Connect.  
2
NC  
No Connect.  
3
DB2  
DB3  
DB4  
DGND  
DVDD  
DB5  
DB6  
DB7  
NC  
ADC Output. DB0 is the LSB, DB9 is the MSB.  
ADC Output.  
4
5
ADC Output.  
6
DigitalOutputGround.  
7
Digital Output Power Supply. Must be less than or equal to VDD.  
8
ADC Output.  
ADC Output.  
ADC Output.  
No Connect.  
No Connect.  
ADC Output.  
ADC Output. MSB  
9
10  
11  
12  
13  
14  
15  
NC  
DB8  
DB9  
OVER  
Over Range Output Bit. OVER goes high to indicate the ADC input voltage is  
greater than VRT  
.
Rev. 1.01  
3
XRD9855/9856  
XRD98L55/98L56  
PIN DESCRIPTION – 48 pin TQFP (CONT’D)  
Pin #  
Symbol  
Description  
16  
OE  
Digital Output Enable (Three-State Control). Pull OE low to enable output  
drivers. Pull OE high to put output drivers in high impedance state.  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
VDD  
EnableCal  
GND  
Analog Power Supply.  
Calibration Enable. Automatic offset calibration control.  
AnalogGround.  
TESTVIN  
STBY1  
STBY2  
RESET  
SCLK  
ADC Test Input & PGA Test Output.  
Standby Control 1. Pull low to put chip in power down mode.  
Standby Control 2. Short to STBY1 pin if not using TESTVIN pin.  
Chip Reset. Pull high to reset all internal registers.  
Shift Clock. Shift register latches SDI data on rising edges of SCLK.  
No Connect.  
NC  
LOAD  
Data Load. Rising edge loads data from shift register to internal register. Load  
must be low to enable shift register.  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
SDI  
VRT  
Serial Data Input.  
Top ADC Reference. Voltage at VRT sets full-scale of ADC.  
Internal Bias for VRT. Short VRT to VRTO to use internal reference voltage.  
Analog Power Supply.  
VRTO  
VDD  
In_Neg  
In_Pos  
GND  
CDS Inverting Input. Connect via capacitor to CCD video output.  
CDS Non-inverting Input. Connect via capacitor to CCD supply.  
AnalogGround.  
VRBO  
VRB  
Internal Bias for VRB. Short VRB to VRB0 to use internal reference voltage.  
Bottom ADC Reference. Voltage at VRB sets zero scale of the ADC.  
No Connect.  
NC  
CLAMP  
SHD  
CDS DC Restore Clamp. Clamps In_Pos & In_Neg to internal bias voltage.  
CDS Clock. Controls sampling of the pixel video level.  
CDS Clock. Controls sampling of the pixel black level.  
CCD Reset Pulse Disconnect. Used to decouple CDS during the reset pulse.  
AnalogGround.  
SHP  
RSTCCD  
GND  
CLK_POL  
VDD  
Clock Polarity. Controls the polarity of SHP, SHD & CLAMP.  
Analog Power Supply.  
SYNC  
UNDER  
Digital output for Exar test purposes only. No connect.  
Under Range Output Bit. UNDER goes high to indicate the ADC input voltage  
is less than VRB  
.
46  
47  
48  
DBO  
DB1  
NC  
ADC Output. LSB  
ADC Output.  
No Connect.  
Rev. 1.01  
4
XRD9855/9856  
XRD98L55/98L56  
DCELECTRICALCHARACTERISTICSXRD9855andXRD9856  
Unlessotherwisespecified: DV  
= V = 5.0V, Pixel Rate = 18MSPS, V = 3.8V, V = 0.5V  
DD  
DD  
RT  
RB  
Symbol  
Parameter  
Min. Typ. Max. Unit  
Conditions  
CDS Performance  
CDSVIN  
BW  
Input Range  
200 800 mVPP Pixel (Black Level - Video Level)  
Small Signal Bandwidth (-3dB)  
Slew Rate  
60  
40  
MHz  
V/µs  
dB  
SR  
400mV Step Input  
FT  
Feed–through (Hold Mode)  
-60  
PGA Parameters  
AVMIN  
AVMAX  
PGA n  
Minimum Gain  
3.5  
5
37  
8
6.5  
dB  
dB  
Maximum Gain  
Resolution  
35.5  
38.5  
bits  
Transfer function is linear steps in dB  
(1LSB = 0.125dB)  
GE  
Gain Error  
5
% FS  
At maximum or minimum gain  
setting  
ADC Parameters (Measured Through TESTVIN)  
ADC n  
fs  
Resolution  
10  
27  
bits  
MSPS  
LSB  
Max Sample Rate  
Differential Non-Linearity  
DNL  
-1 +0.75 1.2  
Up to 18MHz sample rate  
(XRD9855)  
DNL27  
Differential Non-Linearity  
-1  
+1.3 2.0  
LSB  
Up to 27MHz sample rate  
(XRD9856)  
EZS  
EFS  
VIN  
Zero Scale Error  
Full Scale Error  
DC Input Range  
-50  
50  
4
mV  
% FS  
V
Measured relative to VRB  
GND  
VDD  
VIN of the ADC can swing from GND  
to VDD. Input range is limited by  
the output swing of the PGA  
VRT  
VRB  
Top Reference Voltage  
1.5  
0.3  
3.8  
0.5 VDD-1  
3.3 VDD  
VDD  
V
V
V
VRT >VRB  
VRT >VRB  
Bottom Reference Voltage  
DVREF  
RL  
Differential Reference Voltage 1.0  
Ladder Resistance  
280 400 520 Ohms  
VRB = VDD  
( )  
VRB  
Self Bias VRB  
Self Bias VRT  
0.4  
3.5  
0.5  
3.8  
0.6  
4.1  
V
V
VRB connected to VRBO  
VRT connected to VRTO  
10  
VRT = VDD  
( )  
VRT  
1.30  
Rev. 1.01  
5
XRD9855/9856  
XRD98L55/98L56  
DCELECTRICALCHARACTERISTICSXRD9855and XRD9856(CONT'D)  
Unless otherwise specified: DV = V = 5.0V, Pixel Rate = 18MSPS, V = 3.8V, V = 0.5V  
DD  
DD  
RT  
RB  
Symbol  
Parameter  
Min. Typ. Max. Unit  
Conditions  
System Specifications  
DNLS  
System DNL  
1.0  
1.0  
LSB  
LSB  
LSB  
XRD9855 up to 18 MSPS  
XRD9856 up to 27 MSPS  
DNLS27  
INLSMIN  
System DNL 27 MSPS  
INL @ Minimum Gain  
INL error is dominated by CDS/PGA  
linearity.  
INLSMAX  
INL @ Maximum Gain  
LSB  
mV  
INL error is dominated by CDS/PGA  
linearity.  
VOS MINAV  
Offset (Input Referred) @  
Minimum Gain  
5
1
Offset is defined as the input pixel  
value-0.5 LSB required to cause the  
ADC output to switch from “Zero  
scale” to “Zero scale + 1LSB”.  
Offset is measured after calibration.  
Zero scale is the code in the offset  
register.  
VOS MAXAV Offset (Input Referred) @  
Maximum Gain  
mV  
Offset depends on PGA gain code.  
en  
en  
Input Referred Noise @  
Maximum Gain  
0.2  
1.1  
mVrms Noise depends upon gain setting of  
the PGA.  
MAXAV  
MINAV  
Input Referred Noise @  
Minimum Gain  
mVrms Noise depends upon gain setting of  
the PGA.  
DigitalInputs  
VIH  
Digital Input High Voltage  
Digital Input Low Voltage  
DC Leakage Current  
Input Capacitance  
2.0  
V
V
VIL  
0.7  
IL  
5
5
mA  
Input Between GND and VDD.  
CIN  
pF  
Digital Outputs  
VOH  
VOL  
IOZ  
Digital Output High Voltage  
Digital Output Low Voltage  
High-Z Leakage  
DVDD-0.5  
-10  
V
V
While sourcing 2mA.  
While sinking 2mA.  
0.5  
10  
mA  
OE=1 or STBY1= STBY2 = 0.  
Output between GND & DVDD.  
Rev. 1.01  
6
XRD9855/9856  
XRD98L55/98L56  
DCELECTRICALCHARACTERISTICSXRD9855and XRD9856(CONT'D)  
Unless otherwise specified: DV = V = 5.0V, Pixel Rate = 18MSPS, V = 3.8V, V = 0.5V  
DD  
DD  
RT  
RB  
Symbol  
Parameter  
Min. Typ. Max. Unit  
Conditions  
Digital I/O Timing  
TDL  
TPW1  
TPW2  
TPIX  
TBK  
Data Valid Delay  
Pulse Width of SHD  
20  
25  
ns  
ns  
ns  
ns  
ns  
10  
10  
37  
Pulse Width of SHD  
Pixel Period  
56  
6
Sample Black Aperture Delay  
Sample Video Aperture Delay  
RSTCCD Switch Delay  
VDD = 4.5V to 5.5V,  
Temperature -40°C to 85°C range  
VDD = 4.5V to 5.5V,  
TVD  
5
ns  
ns  
Temperature -40°C to 85°C range  
VDD = 4.5V to 5.5V,  
TRST  
0
4
4
Temperature -40°C to 85°C range  
TSC  
TSET  
Shift Clock Period  
Shift Register Setup Time  
Pipeline Delay  
50  
10  
100  
ns  
ns  
Latency  
Power Supplies  
VDD  
cycles  
Analog Supply Voltage  
Digital Output Supply Voltage  
Supply Current  
4.5  
2.7  
5.0  
5.0  
50  
55  
50  
5.5  
5.5  
75  
V
DVDD  
V
DVDD < VDD Always  
IDD  
mA  
mA  
mA  
DVDD = VDD = 5.0V (XRD9855)  
FS = 27MHz (XRD9856)  
STBY1 = 0 and STBY2 = 0  
IDD27  
Supply Current @ 27MHz  
Power Down Supply Current  
85  
IDDPD  
100  
Rev. 1.01  
7
XRD9855/9856  
XRD98L55/98L56  
DCELECTRICALCHARACTERISTICSXRD98L55and XRD98L56  
Unless otherwise specified: DV = V = 2.7V, Pixel Rate = 18MSPS, V = 2.07V, V = 0.27V  
DD  
DD  
RT  
RB  
Symbol  
Parameter  
Min. Typ. Max. Unit  
Conditions  
CDS Performance  
CDSVIN  
BW  
Input Range  
200 800 mVPP Pixel (Black Level - Video Level)  
Small Signal Bandwidth (-3dB)  
Slew Rate  
60  
40  
MHz  
V/µs  
dB  
SR  
400mV Step Input  
FT  
Feed-through (Hold Mode)  
-60  
PGA Parameters  
AVMIN  
AVMAX  
PGA n  
Minimum Gain  
3.5  
5
37  
8
6.5  
dB  
dB  
Maximum Gain  
Resolution  
36.5  
38.5  
bits  
Transfer function is linear steps in dB  
(1LSB = 0.125dB)  
GE  
Gain Error  
5
% FS  
At maximum or minimum gain  
setting  
ADC Parameters (Measured Through TESTVIN)  
ADC n  
fs  
Resolution  
10  
27  
bits  
MSPS  
LSB  
Max Sample Rate  
Differential Non-Linearity  
DNL  
-1 +0.75 1.2  
Up to 18MHz sample rate  
(XRD98L55)  
DNL27  
Differential Non-Linearity  
-1  
+1.3 2.0  
LSB  
Up to 27MHz sample rate  
(XRD98L56)  
EZS  
EFS  
VIN  
Zero Scale Error  
Full Scale Error  
DC Input Range  
-50  
50  
4
mV  
% FS  
V
Measured relative to VRB  
GND  
VDD  
VIN of the ADC can swing from GND to  
V
DD. Input range is limited by  
the output swing of the PGA  
VRT  
VRB  
Top Reference Voltage  
1.2  
0.2  
2.07 VDD  
0.27 VDD-1  
V
V
V
VRT >VRB  
Bottom Reference Voltage  
VRT >VRB  
DVREF  
RL  
Differential Reference Voltage 1.0  
Ladder Resistance  
1.8  
VDD  
280 400 520 Ohms  
VRB = VDD  
( )  
VRB  
Self Bias VRB  
Self Bias VRT  
0.20 0.30 0.40  
V
V
VRB connected to VRBO  
10  
VRT = VDD  
( )  
VRT  
2.0  
2.3  
2.6  
VRT connected to VRTO. TPW2  
1.30  
Rev. 1.01  
8
XRD9855/9856  
XRD98L55/98L56  
DCELECTRICALCHARACTERISTICSXRD98L55and XRD98L56(CONT'D)  
Unless otherwise specified: DV = V = 2.7V, Pixel Rate = 18MSPS, V = 2.7V, V = 0.27V  
DD  
DD  
RT  
RB  
Symbol  
Parameter  
Min. Typ. Max. Unit  
Conditions  
System Specifications  
DNLS  
System DNL  
1.0  
1.5  
2
LSB  
LSB  
LSB  
XRD98L55 up to 18 MSPS  
XRD98L56 up to 27 MSPS  
DNLS27  
INLSMIN  
System DNL 27 MSPS  
INL @ Minimum Gain  
INL error is dominated by CDS/PGA  
linearity.  
INLSMAX  
INL @ Maximum Gain  
2
5
LSB  
mV  
INL error is dominated by CDS/PGA  
linearity.  
VOS MINAV  
Offset (Input Referred) @  
Minimum Gain  
Offset is defined as the input pixel  
value -0.5 LSB required to cause the  
ADC output to switch from “Zero  
scale” to “Zero scale + 1LSB”.  
Offset is measured after  
calibration.  
VOS MAXAV Offset (Input Referred) @  
Maximum Gain  
1
mV  
Zero scale is the code in the offset  
register.  
Offset depends on PGA gain code.  
en  
en  
Input Referred Noise @  
Maximum Gain  
0.2  
0.7  
mVrms Noise depends upon gain setting of  
the PGA.  
MAXAV  
MINAV  
Input Referred Noise @  
Minimum Gain  
mVrms Noise depends upon gain setting of  
the PGA.  
DigitalInputs  
VIH  
Digital Input High Voltage  
Digital Input Low Voltage  
DC Leakage Current  
Input Capacitance  
1.5  
V
V
VIL  
0.7  
IL  
5
5
mA  
Input Between GND and VDD.  
CIN  
pF  
Digital Outputs  
VOH  
VOL  
IOZ  
Digital Output High Voltage  
Digital Output Low Voltage  
High–Z Leakage  
DV -0.5  
V
V
While sourcing 2mA.  
While sinking 2mA.  
DD  
0.5  
10  
-10  
mA  
OE=1 or STBY1= STBY2 = 0.  
Output between GND & DVDD.  
Rev. 1.01  
9
XRD9855/9856  
XRD98L55/98L56  
DCELECTRICALCHARACTERISTICSXRD98L55andXRD98L56(CONT'D)  
Unless otherwise specified: DV = V = 2.7V, Pixel Rate = 18MSPS, V = 2.07V, V = 0.27V  
DD  
DD  
RT  
RB  
Symbol  
Parameter  
Min. Typ. Max. Unit  
Conditions  
Digital I/O Timing  
TDL  
TPW1  
TPW2  
TPIX  
TBK  
Data Valid Delay  
Pulse Width of SHD  
28  
35  
ns  
ns  
ns  
ns  
ns  
10  
10  
37  
Pulse Width of SHD  
Pixel Period  
56  
7
Sample Black Aperture Delay  
Sample Video Aperture Delay  
RSTCCD Switch Delay  
VDD = 2.7V to 3.6V,  
Temperature -40°C to 85°C range  
VDD = 2.7V to 3.6V,  
TVD  
6
ns  
ns  
Temperature -40°C to 85°C range  
VDD = 2.7V to 3.6V,  
TRST  
0
5
4
Temperature -40°C to 85°C range  
TSC  
TSET  
Shift Clock Period  
Shift Register Setup Time  
Pipeline Delay  
50  
10  
100  
ns  
ns  
Latency  
Power Supplies  
VDD  
cycles  
Analog Supply Voltage  
Digital Output Supply Voltage  
Supply Current  
2.7  
2.7  
3.0  
3.0  
40  
45  
50  
3.6  
3.6  
55  
V
DVDD  
V
DVDD < VDD Always  
IDD  
mA  
mA  
mA  
DVDD = VDD = 3.0 V (XRD9855)  
FS = 27MHz (XRD9856)  
STBY1 = 0 and STBY2 = 0  
IDD27  
Supply Current @ 27MHz  
Power Down Supply Current  
65  
IDDPD  
100  
1, 2, 3  
ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)  
LeadTemperature(Soldering10seconds)  
MaximumJunctionTemperature  
300°C  
150°C  
V
to GND  
+7.0V  
DD  
V
V
& V  
V
V
V
V
+0.5 to GND -0.5V  
+0.5 to GND -0.5V  
+0.5 to GND -0.5V  
+0.5 to GND -0.5V  
-65°Cto150°C  
RT  
RB  
DD  
DD  
DD  
DD  
Package Power Dissipation Ratings (T = +70°C)  
A
IN  
TQFP  
ESD  
θ
= 54°C/W  
JA  
All Inputs  
2000V  
All Outputs  
StorageTemperature  
Notes:  
1
Stresses above those listed as “Absolute Maximum Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode  
clamps (HP5082–2835) from input pin to the supplies. All inputs have protection diodes which will protect the  
device from short transients outside the supplies of less than 100mA for less than 100µs.  
VDD refers to AVDD and DVDD. GND refers to AGND and DGND.  
2
3
Rev. 1.01  
10  
XRD9855/9856  
XRD98L55/98L56  
SYSTEM DESCRIPTION  
Correlated Double Sample/Hold (CDS) &  
Programmable Gain Amplifier (PGA); Gain [7:0]  
During the black reference phase of each pixel the  
SDRK switches are turned on, shorting the PGA1  
The function of the CDS block, shown in Figure 2, is to  
sense the voltage difference between the black level  
and video level for each pixel. The CDS and PGA are  
fully differential. The PGA output is converted to a  
single ended signal, and then fed to the ADC. IN_POS  
(CDS non-inverting input) should be connected, via a  
capacitor, to the CCD "Common" voltage. This is  
typicallytheCCDReferenceoutputorground. IN_NEG  
(CDS inverting input) should be connected, via a ca-  
pacitor, to the CCD output signal.  
inputs to V . The sampling edge of SHP turns off the  
DD  
SDRK switches, sampling the black reference voltage  
on capacitors C1 & C2.  
DuringthevideophaseofeachpixeltheSPIXswitches  
are turned on. The difference between the pixel refer-  
ence level and video level is transmitted through ca-  
pacitors C1 & C2 and converted to a fully differential  
signalbythedifferentialamplifierPGA1. Thesampling  
edge of SHD turns off the SPIX switches, sampling the  
pixel value on capacitors C3 & C4.  
CDS  
PGA  
VDD  
Gain  
Register  
External  
Coupling  
Capacitors  
SDRK  
SPIX  
RSTCCD  
CCD  
Supply  
In_Pos  
C1  
C2  
+
to  
ADC  
PGA1  
-
PGA2  
BUF  
In_Neg  
CCD  
Signal  
C3  
C4  
CLAMP  
Offset  
Calibration  
VBIAS~0.8  
ADC  
Code  
Enable Cal  
Figure 2. Block Diagram of the CDS & PGA  
Rev. 1.01  
11  
XRD9855/9856  
XRD98L55/98L56  
CCD  
RSTCCD  
SHP  
SHD  
(Internal Signals)  
SDRK  
SPIX  
PGA1  
Output  
PGA2  
Output  
ADCLK  
Hold  
Track  
Figure 3. Timing Diagram of the CDS Clocks  
and Internal Signals, CLK_POL = 1, M2=0  
PGA1 provides gains of 0dB, 8dB & 16dB (1x, 2.5x,  
40  
35  
30  
25  
20  
15  
10  
5
and 6.25x). The gain transitions occur at PGA gain  
codes64dand128d(40h&80h). PGA2providesgain  
from 6dB to 22dB (2x to 12.5x) with 0.125dB steps.  
Figure 4 shows the measured PGA gain vs. Gain  
Code. The combined PGA blocks provide a program-  
mable gain range of 32dB. The minimum gain (code  
00h) is 6dB. The maximum gain (code FFh) is 38dB.  
The following equation can be used to compute PGA  
gain from the gain code:  
FS = 18MHz  
VDD = 3.0V  
VRT = 2.3V  
VRB = 0.3V  
TA = 25°C  
0
code  
æ
è
ö
÷
ø
0
64  
128  
192  
256  
Gain[dB] = 6 + 32 ´  
ç
Gain Code  
256  
where code is between 0 and 255.  
Figure 4. PGA Gain vs. Gain Code  
Due to device mismatch the gain steps at codes 63-  
64 and 127-128 may not be monotonic.  
Rev. 1.01  
12  
XRD9855/9856  
XRD98L55/98L56  
Analog-to-DigitalConverter  
AutomaticOffsetCalibration,Offset[7:0]  
To get the maximum color resolution and dynamic  
range, this part uses a digital controlled offset calibra-  
tion system to compensate for external offset in the  
CCDsignalaswellasinternaloffsetsoftheCDS, PGA  
andADC.  
The analog-to-digital converter is based upon a two-  
step sub-ranging flash converter architecture with a  
builtintrackandholdinputstage.TheADCconversion  
iscontrolledbyaninternallygeneratedsignal, ADCLK  
(see Figure 3). The ADC tracks the output of the CDS/  
PGA while ADCLK is high and holds when ADCLK is  
low. This allows maximum time for the CDS/PGA  
output to settle to its final value before being sampled.  
The conversion is then performed and the parallel  
output is updated, after a 2.5 cycle pipeline delay, on  
the rising edge of RSTCCD. The pipeline delay of the  
entire XRD9855/XRD9856 is 4 clock cycles.  
ThecalibrationisperformedeveryframewhentheCCD  
outputs the Optical Black pixels, please see the  
section on Frame Timing. The Calibration logic com-  
pares the ADC output to the value stored in the serial  
port offset register, and increments or decrements the  
offset adjust DAC to make the ADC code equal to the  
code in the offset register. The first adjustment re-  
quires 8 pixels, then 6 pixels for subsequent adjust-  
ments.Theoffsetregisteris8bitswide.TwoMSBsset  
to00areaddedwhencomparedtothe10-bitADCcode.  
After power-up the part may require up to 264 adjust-  
ments to converge on the proper offset. These adjust-  
ments can be made over many lines or frames. For  
example, with 20 optical black pixels per line, the  
calibration will make 3 adjustments per line, and initial  
convergence will require at most 88 lines.  
The internal reference values are set by a resistor  
divider between V and GND. To enable the internal  
DD  
reference, connect V  
to V and connect V  
to  
RTO  
RT  
RBO  
V
. To maximize the performance of the XRD9855/  
RB  
XRD9856, the internal references should be used and  
decoupled to GND. Although the internal references  
have been set to maximize the performance of the  
CDS/PGA channel, some applications may require  
other reference values. To use external references,  
drive the V  
pin directly with the desired voltage.  
RT  
Connect V to V  
. Do not drive V directly. The  
RB  
RBO  
RB  
ADCparalleloutputbusisequippedwithahighimped-  
ance capability, controlled by OE. The outputs are  
enabled when OE is low.  
Graph 1. XRD9855 Typical Vdrk (CCD Offset)  
Calibration Range @ 25°C  
Rev. 1.01  
13  
XRD9855/9856  
XRD98L55/98L56  
IN_POS  
10  
CDS  
PGA  
ADC  
DB[9:0]  
XOE  
IN_NEG  
A
Up/Down  
Counter  
A-B  
B
Offset Reg  
State  
Machine  
EnableCal  
ADCLOCK  
Figure 5. Automatic Offset Calibration Loop  
CCD  
Input  
Manual Global Offset, V [1:0]  
DB[9:0]  
CDS  
+
PGA  
ADC  
In some systems the black level offset can be larger  
than the Automatic Offset Calibration Range. The  
XRD9855/XRD9856provideauserprogrammableglo-  
bal offset adjustment which adds to the automatic  
offset calibration. The global offset is applied at the  
PGA input, so it’s input referred value does not change  
withPGAgaincode,seeFigure6. Themagnitudeofthe  
global offset is controlled by bits V[1:0] in the mode  
register. (See Table 1.)  
Automatic  
Offset  
Calibration  
V[1:0]  
Manual  
Global Offset  
Figure 6. Manual Global Offset & Automatic  
OffsetCalibration  
SerialInterface  
V[1]  
V[0]  
Offset  
A three wire serial interface, (LOAD, SCLK, and SDI),  
is used to program the PGA gain register, the Calibra-  
tion offset register, the Mode control register, and the  
Aperture delay register. The shift register is 10 bits  
long. The first two bits loaded are the address bits that  
determine which of the four registers to update. The  
following eight bits are the data bits (MSB first, LSB  
last). When LOAD is high SCLK is internally disabled.  
Since SCLK is gated by LOAD, SCLK can be a  
continuouslyrunningclocksignal, butthiswillincrease  
systemnoise. ToenabletheshiftregistertheLOADpin  
must be pulled low. The data at SDI is strobed into the  
shift register on the rising edges of SCLK. When the  
LOADsignalgoeshighthedatabitswillbewrittentothe  
register selected by the address bits (see Figure 7).  
0
0
1
0
1
0
0mV  
25mV (default)  
50mV  
1
1
75mV  
Table 1. Manual Global  
OffsetProgramming  
Rev. 1.01  
14  
XRD9855/9856  
XRD98L55/98L56  
ADDRESS  
DATA  
(MSB)  
Bit 7  
(LSB)  
Bit 0  
SDI  
AD1  
AD0  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Data Shifts on  
Rising Edges  
TSET=10ns min.  
SCLK  
LOAD  
TSC=50ns min.  
TSET=10ns min.  
Load Internal Register  
TSET=10ns min.  
Figure 7. Serial Port Timing Diagram  
Data  
Address  
Name AD1 AD0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Gain  
0
0
1
1
0
1
0
1
Gain[7]  
Gain[6]  
Gain[5]  
Gain[4]  
Gain[3]  
Gain[2]  
Gain[1]  
Gain[0]  
Offset  
Mode  
Delay  
Offset[7] Offset[6] Offset[5] Offset[4] Offset[3] Offset[2]  
Offset[1] Offset[0]  
V[1]  
V[0]  
M3  
M2  
Test3  
Dd[1]  
Test2  
Dd[0]  
M1  
Reset  
Dr[0]  
Dp[2]  
Dp[1]  
Dp[0]  
Dd[2]  
Dr[1]  
Table 2. Serial Interface Register Address Map  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
Gain [7:0]  
bit 2  
bit 1  
bit 0  
0 0 0 0 0 0 0 0 - minimum gain (6dB) *  
1 1 1 1 1 1 1 1 - maximum gain (38 dB)  
Table 3. Gain Register Bit Assignment  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Offset [7:0]  
0 0 0 0 0 0 0 0 - do not use  
0 0 0 0 0 0 0 1 - do not use  
0 0 0 0 0 0 1 0 - minimum offset code  
0 0 0 0 1 0 0 0 - default offset code, typical offset code 00100000  
0 0 1 1 1 1 1 1 - maximum offset code  
Table 4. Offset Register Bit Assignment  
Rev. 1.01  
15  
XRD9855/9856  
XRD98L55/98L56  
bit 7  
bit 6  
bit 5  
M3  
bit 4  
M2  
bit 3  
bit 2  
Test2  
bit 1  
M1  
bit 0  
V[1:0]  
Test3  
Reset  
0 0 - 0mV offset  
0 1 - 25mV offset*  
1 0 - 50mV offset  
1 1 - 75mV offset  
0 - Clamp only*  
0 - RSTCCD* 0 - TestVin off*  
0 - test off*  
0 - auto detect* 0 - normal*  
1 - Clamp & Cal 1 - no RSTCCD 1 - TestVin on 1 - factory test  
1 - manual  
1 - reset  
Table 5. Mode Register Bit Assignment  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Dp[2:0]  
Dd[2:0]  
Dr[1:0]  
0 0 0 - SHP min delay *  
1 1 1 - SHP max delay  
0 0 0 - SHD min delay *  
1 1 1 - SHD max delay  
0 0 - RSTCCD min delay *  
1 1 - RSTCCD max delay  
Table 6. Delay Register Bit Assignment  
Note:  
* Indicates default value  
SHP, SHD and RSTCCD Signals, M2 = 0  
The SHP input to the XRD9855/XRD9856 determines  
when the Black level of each pixel is sampled. For  
CLK_POL=high timing mode, the black level is  
sampled on the falling edge of SHP. For  
CLK_POL=lowtimingmode,theblacklevelissampled  
on the rising edge of SHP.  
SHP (see Figure 8). This aperture delay is the time  
from the sampling edge of SHP to the time the pixel  
black level is actually sampled by the CDS. The  
correct positioning of SHP will be 6-7 ns prior to where  
theblacklevelhasadequatelysettled. Thisistypically  
just before the CCD signal starts the transition to the  
video level.  
ThesamplingedgeofSHPshouldbepositionedsothat  
it samples the pixel black level at a stable and repeat-  
ablepoint. Theblacklevelshouldbesampledafterthe  
CCD output has had time to settle from the reset pulse  
andbeforetheoutputtransitionstothevideolevel(see  
TheSHDinputtotheXRD9855/XRD9856 determines  
when the Video level of each pixel is sampled. For  
CLK_POL=high timing mode, the video level is  
sampled on the falling edge of SHD. For  
CLK_POL=lowtimingmode,thevideolevelissampled  
on the rising edge of SHD.  
Figure 8). Aperture delay T needs to be taken into  
BK  
consideration when positioning the sampling edge of  
Rev. 1.01  
16  
XRD9855/9856  
XRD98L55/98L56  
ThesamplingedgeofSHDshouldbepositionedsothat  
it samples the pixel video level at a stable and repeat-  
ablepoint. Thevideolevelshouldbesampledafterthe  
CCDoutputhassettledfromtheblacklevelandbefore  
the output transitions to the reset pulse. Aperture  
delay TVD needs to be taken into consideration when  
positioning the sampling edge of SHD (see Figure  
8). This aperture delay is the time from the sampling  
edgeofSHDtothetimethepixelvideolevelisactually  
sampled by the CDS. The correct positioning of SHD  
will be 5-6 ns prior to where the video level has  
adequately settled.  
RSTCCDisintendedtooverlaptheresetpulseofeach  
pixel. This is intended to eliminate the reset pulse  
transients from getting into the CDS circuitry. Posi-  
tioning of the RSTCCD signal so that it overlaps the  
CCD signal reset pulse is not always practical due to  
the timing generators being used or the frequency at  
which the CCD is running. The most critical thing to  
remember for RSTCCD is that it can not be high when  
sampling either the black level or video level.  
Reset Pulse  
RSTCCD  
Switch  
Turn On  
RSTCCD  
Switch  
Turn Off  
T
BK  
T
VD  
CCD  
Signal  
Pixel Video Level  
Sample Point  
Pixel Black Level  
Sample Point  
T
RST  
RSTCCD  
SHP  
SHD  
Figure 8. CDS Timing Diagram  
(CLK_POL = 1, M2 = 0)  
Rev. 1.01  
17  
XRD9855/9856  
XRD98L55/98L56  
Pixel N  
CCD  
Signal  
Sample Pixel  
Video Level  
Sample Pixel  
Black Level  
SHP  
SHD  
RSTCCD  
TDL  
Data N  
DB[9:0]  
(Output)  
Data N-3  
Data N-2  
Data N-1  
Data N-4  
Figure 9. Conversion Timing Diagram Showing Pipeline Delay  
(CLK_POL = 1, M2 = 0)  
Rev. 1.01  
18  
XRD9855/9856  
XRD98L55/98L56  
CDS Clock Polarity  
The CLK_POL pin is used to determine the polarity of  
theCDSclocks(SHD, SHP, CLAMP). See Figures10  
& 11, and Tables 7 & 8.  
Event  
Action  
Event  
Action  
RSTCCD  
Disconnect CDS Inputs from Reset  
Noise  
RSTCCD  
Disconnect CDS Inputs from Reset  
Noise  
¯RSTCCD  
Connect CDS Inputs and Track Black  
Level  
¯RSTCCD  
Connect CDS Inputs and Track Black  
Level  
¯SHP  
¯SHD  
Hold Black Level and Track Video Level  
Hold Video Level  
SHP  
SHD  
Hold Black Level and Track Video Level  
Hold Video Level  
SHP/SHD No Action  
¯SHP/SHD No Action  
Clamp High Activate DC Restore Clamp  
Enable_Cal Activate Offset Calibration  
High  
Clamp Low Activate DC Restore Clamp  
Enable_Cal Activate Offset Calibration  
High  
Table 7. Timing Event Description  
Table Valid for CLK_POL=1, M2=0  
Table 8. Timing Event Description  
Table Valid for CLK_POL=0, M2=0  
Line N  
Line N+1  
Active Video  
pixels on  
OB LINES  
Active Video  
pixels on  
OB LINES  
Dummy &  
OB pixels  
Vertical Shift  
*
*
OB pixels  
CCD Signal  
EnableCal  
Clamp  
RSTCCD  
SHP  
SHD  
* Note: OB = Optically Black or Shielded pixels.  
Figure 10. CCD Line Timing, CLK_POL= 1, M2 = 0  
Rev. 1.01  
19  
XRD9855/9856  
XRD98L55/98L56  
Line N+1  
Dummy &  
Line N  
Vertical  
Shift  
Active Video Pixels  
on Optical Black Lines  
Active Video  
OB*  
Pixels  
OB*  
Pixels on OB line  
Pixels  
CCD  
Signal  
EnableCal  
Clamp  
RSTCCD  
SHP  
SHD  
CLK_POL=Low  
* Note: OB = Optically Black or Shielded pixels.  
Figure 11. CCD Line Timing with CLK_POL = 0, M2 = 0  
No RSTCCD Pulse Timing, M2 = 1  
To help simplify the timing required to drive the  
XRD9855/XRD9856 we have included a timing mode  
which does not require an active signal for RSTCCD.  
To use this timing, bit M2 in the timing mode register  
must be set high.  
In this timing mode, RSTCCD must be kept low. No  
changesarerequiredforthetimingoftheSHPandSHD  
signals. The polarity of SHP, SHD and Clamp are still  
controlled by the CLK_POL pin. The digital outputs  
change on the sampling edge of SHD (see Figure 12).  
This mode can be used with both the XRD4460 and  
XRD9853 compatible timing as described in the Line  
Timingsection.DataoutputDB[9:0}isdelayedasSHD  
is delayed with the delay feature AD[1:0] = [1,1].  
Pixel N  
CCD Signal  
1
RSTCCD  
0
1
SHP  
0
1
SHD  
0
1
0
Data N-4  
DB[9:0]  
Data N-3  
Data N-2  
Data N-1  
Data N  
Figure 12. Timing for no RSTCCD Pulse,  
M2=1 & CLK_POL=1, RSTCCD=0  
Rev. 1.01  
20  
XRD9855/9856  
XRD98L55/98L56  
ProgrammableApertureDelays  
Dp[2:0],Dd[2:0],Dr[1:0]  
Dr[1]  
Dr[0]  
RSTCCD Aperture  
Delay TRST (typ)  
3ns (default)  
7ns  
To help fine tune the pixel timing, the XRD9855/  
XRD9856 allows the system to adjust the aperture  
0
0
1
1
0
1
0
1
delays associated with SHP (T ), SHD (T ) and  
BK  
VD  
RSTCCD (T  
) by programming the Aperture Delay  
RST  
11ns  
serial port register. On power up these three aperture  
delays are set to their minimum values.  
15ns  
Table 11. Programmable RSTCCD Delays  
The SHP aperture delay is set by bits Dp[2:0]. Each  
LSB adds approximately 2ns of delay. The SHD  
aperture delay is set by bits Dd[2:0]. Each LSB adds  
approximately 2ns of delay. The RSTCCD aperture  
delay is set by bits Dr[1:0]. Each LSB adds approxi-  
mately 4ns of delay.  
Line Timing with Frame Calibration  
At thebeginningand/orendofeveryCCDframethere  
are a number of Optical black lines. The XRD9855/  
XRD9856usestheoutputfromthesepixelsfortheDC  
Restore Clamp and Black Level Offset Calibration  
functions.ThesefunctionsarecontrolledbytheClamp  
and/orEnableCalpins.  
Dp[2]  
Dp[1]  
Dp[0]  
SHP Aperture  
Delay TBK (typ)  
6ns (default)  
8ns  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
TheXRD9855/XRD9856isdesignedtobecompatible  
with the Clamp Only timing of the XRD4460 or the  
Clamp & EnableCal timing of the XRD9853. On power  
up the chip will automatically detect which timing is  
being used and make the necessary internal adjust-  
ments. If EnableCal is high when Clamp is active, then  
"Clamp Only" timing is selected (M3=0). If EnableCal  
islowwhenClampisactive, then"Clamp&Cal"timing  
isselected(M3=1).Ifrequired,theautomaticdetection  
functioncanbedisabledthroughtheserialport,andthe  
chip can be forced into one of the two timing modes by  
programming mode register bits M3 & M1. Frame  
clibration however, can only be used with m3=0.  
10ns  
12ns  
14ns  
16ns  
18ns  
20ns  
Table 9. Programmable SHP Delays  
Dd[2]  
Dd[1]  
Dd[0]  
SHD Aperture  
Delay TVD (typ)  
5ns (default)  
7ns  
To maximize dynamic range in the dark areas of an  
image the PGA black level output must be equal to  
the bottom reference voltage of the ADC. This  
ensures that a dark pixel input corresponds to a  
desiredminimumcodeoutputfromtheXRD9855and  
XRD9856.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
9ns  
11ns  
13ns  
The XRD9855 and XRD9856 use the Optically Black  
(OB) pixels on a CCD array to calibrate for itself and  
the CCD. Figure 13 shows the outline of a typical  
CCD. The shaded region on the outside of the array  
indicates the position of the optically black (OB)  
pixels. The center region indicates the position of the  
active pixels used for an image.  
15ns  
17ns  
19ns  
Table 10. Programmable SHD Delays  
Rev. 1.01  
21  
XRD9855/9856  
XRD98L55/98L56  
Optically Black Pixels  
(OB)  
The XRD9855 and XRD9856 use a digital feedback  
looptoachieveauto-calibration.TheoutputoftheADC  
and a desired dark code programmed in the offset  
register are compared during the OB pixel output from  
theCCD. Therecommendedoffsetregistervalueis32  
decimal. The difference determines whether the offset  
adjustment DAC increments or decrements. This ad-  
justs the offset of the PGA to achieve the desired ADC  
output code for a dark pixel input.  
Active Pixels  
The first adjustment requires 8 cycles of SHP/SHD  
clocks but every subsequent adjustment requires only  
6 cycles: 1 cycle for CDS, 3 cycles for A/D conversion,  
1cycleforlogic,and1cycleforDACupdate,seeFigure  
14. When Enable_Cal pin is low, the offset calibration  
logicisdisabled,andthecurrentstateoftheoffsetDAC  
is held constant.  
N+1  
N
TheXRD9855 and XRD9856calibrationtimedepends  
on the calibration method and the number of OB pixels  
available. The time required to achieve calibration, in  
frame calibration, depends on the number of OB pixels  
present in each line.  
Figure 13. Typical Outline of an Area Array  
CCD.  
The CCD has many OB pixels available for use in  
calibration. Some are available at the start and end of  
eachlinewhilewholelinesofOBpixelsareavailableat  
the top and bottom of the array.  
Using Frame calibration, calibration can be achieved  
after several lines depending upon the number of OB  
pixelsatthetoporbottomofanarray.Enable_Calmust  
begeneratedbythetiminggeneratortoproperlyframe  
the optical black lines.  
The XRD9855 and XRD9856 take advantage of the  
large number of OB pixels available at the top and  
bottom of the CCD array to perform calibration before  
any active pixels are processed.  
OB Pixels  
INNEG  
RSTCCD  
SHP  
SHD  
Enable_Cal  
ADC Sample point  
ADC Sample point  
0
1
2
3
4
5
6
7
2
3
4
5
6
7
0
State  
RESET  
Enable  
CDS  
ADC  
ADC  
ADC Digcomp/ DAC  
CDS  
ADC  
ADC  
ADC Digcomp/ DAC  
RESET  
Cal on samples converts converts converts accum Update samples converts converts converts accum Update  
settle input input  
Figure 14. XRD9855 and XRD9856 Offset Calibration Timing, M3 = 1  
Rev. 1.01  
22  
XRD9855/9856  
XRD98L55/98L56  
The timing needed for Frame Calibration Mode is  
shown in Figure 16. In Frame Calibration Mode,  
Enable_Cal needs to be active during the OB line  
output from the CCD. Enable_Cal gates the XRD9855  
and XRD9856’sauto-calibrationlogicandmustnever  
behighwhenCLAMPisactive. Clampstillneedstobe  
active once a line, either during start of line or end of  
line OB pixels.  
Frame calibration uses the OB lines available at the  
startandendofthearray,seethedarkshadedregions  
at the top and bottom of Figure 15, to perform its auto-  
calibration.  
The dark shaded regions of Figure 15 are the OB lines  
at the start and end of the CCD array. Typically, these  
OB lines are the largest blocks of OB pixels available  
onthearray.UsingtheseareaswillallowtheXRD9855  
and XRD9856toachievecalibrationbeforeanyactive  
pixels are processed. This means that the XRD9855  
and XRD9856 canachievecalibrationfortheveryfirst  
frame if OB lines are used for calibration at the start of  
Frame calibration is useful for applications where fast  
calibration is needed. With frame calibration, the  
XRD9855 and XRD9856 can achieve calibration be-  
fore the first frame is started.  
the array.  
Active Pixels  
Frame Calibration  
(OB) Pixels  
Optically Black  
(OB) Pixels  
N+1  
N
Frame Calibration  
(OB) Pixels  
Figure 15. OB Lines Used For Frame Calibration on a Typical CCD Array  
Line N  
Line N+1  
Dummy &  
Active Video  
pixels on  
Active Video  
pixels on  
Vertical Shift  
*
*
OB pixels  
OB pixels  
OB LINES  
OB LINES  
CCD Signal  
EnableCal  
Clamp  
RSTCCD  
SHP  
SHD  
* Note: OB = Optically Black or Shielded pixels.  
Figure 16. Frame Calibration Mode Timing, CLK_POL= High  
Rev. 1.01  
23  
XRD9855/9856  
XRD98L55/98L56  
Clamp Only Timing (XRD4460 compatible)  
M1=1, M3=0, NOT RECOMMENDED  
In this mode EnableCal is held high, and Clamp is  
activated during the Optical Black pixels. While this  
mode is available, it is not recommended for best  
performance. This timing does not perform frame  
calibration.  
The Clamp signal is used to trigger a one-shot which  
controlstheinternalDCrestoreswitchandthecalibra-  
tion logic. The DC restore switch is turned on for two  
pixels after Clamp is activated. Then the Calibration  
logic is enabled and runs until Clamp is deactivated.  
The chip can be forced into this timing mode by  
programming the Mode control register bits M1=1 and  
M3=0.  
Line N  
Line N+1  
Dummy &  
OB* Pixels  
Signal  
Pixels  
Optical Black  
Line  
Vertical Shift  
(Horizontal Clocking Off)  
CCD Signal  
1
EnableCal  
0
Minimum 10 OB Pixels  
1
Clamp  
0
2 OB Pixels  
Internal DC  
Restore Switch  
1
0
1
0
1
0
1
0
Internal Calibrate  
RSTCCD  
SHP  
1
0
SHD  
* Note: OB = Optically Black or Shielded pixels.  
Figure 17. Clamp Only Line Timing  
CLK_POL=1, EnableCal=1, M1=1, M3=0, M2=0  
Clamp Only Mode  
CCD  
Input  
CDS  
PGA  
ADC  
DB[9:0]  
DC Restore  
Switch  
Offset  
Calibration  
Bias  
Control  
Logic  
Clk_Pol  
Clamp  
EnableCal  
Figure 18. Clamp Only Mode (XRD4460 Compatible)  
M1=1, M3=0  
Rev. 1.01  
24  
XRD9855/9856  
XRD98L55/98L56  
Clamp&EnableCalTiming(XRD9853Compatible)  
M1=1, M3=1  
InthismodeEnableCalmustbeactiveduringthelarge  
number of Optical Black pixels (usually at the end of  
eachCCDlineoratthestartofaframe), Clampshould  
be active during the Dummy pixels (usually at the  
beginning of each CCD line).  
The Clamp pin (polarity determined by CLK_POL)  
controls only the DC restore switch at the CDS input.  
EnableCal and Clamp must not be active at the same  
time. Clamp must be used every line.  
The chip can be forced into this timing mode by  
programming the Mode control register bits M1=1 and  
M3=1.  
The EnableCal pin (always active high) directly con-  
trols the calibration logic.  
Line N  
Line N+1  
Signal  
Pixels  
Dummy &  
OB Pixels  
Signal  
Pixels  
OB* Pixels  
Vertical Shift  
(Horizontal Clocking Off)  
CCD Signal  
EnableCal  
Min. 8 OB Pixels  
Clamp  
Min. 2 Pixels  
RSTCCD  
SHP  
SHD  
* Note: OB = Optically Black or Shielded Pixels.  
Figure 19. Clamp & EnableCal Timing, CLK_POL=1, M1=1, M3=1, M2=0  
Rev. 1.01  
25  
XRD9855/9856  
XRD98L55/98L56  
Clamp & EnableCal Mode  
CDS PGA  
CCD  
Input  
ADC  
DB[9:0]  
DC Restore  
switch  
Offset  
Calibration  
bias  
Clk_Pol  
Clamp  
EnableCal  
Figure 20. Clamp & Enable Cal Mode (XRD9853 Compatible),  
M1=1, M3=3  
Stand-by Mode (Power Down)  
The STBY1 and STBY2 pins are used to put the chip  
into the Stand-by or Power down mode. In this mode  
all sampling and conversion stops, The digital outputs  
are put into the high impedance mode, and the power  
supply current will drop to less than 50mA.  
For most applications STBY1 and STBY2 should be  
connectedtogetherandtreatedasasinglecontrolpin.  
If an application uses the TestVin pin to access the  
PGA output or the ADC input then STBY1 and STBY2  
must be separately controlled, see the truth table  
below.  
CDS/  
Clock Digital  
STBY2 STBY1 PGA  
ADC  
Off  
Inputs Outputs  
0
1
0
1
0
0
1
1
Off  
On  
Off  
On  
Off  
On  
On  
On  
High-z  
High-z  
On  
Off  
On  
On  
On  
Table 12. Stand-by Truth Table  
Rev. 1.01  
26  
XRD9855/9856  
XRD98L55/98L56  
ChipReset  
Register  
Gain[7:0]  
OS[7:0]  
V[1:0]  
M3  
Default  
Notes  
The chip has an Internal Power-On-Reset function to  
ensure all internal control registers start up in a known  
state. Pulling the Reset pin high or writing a logic 1 to  
the Mode Registers reset bit will also reset the chip to  
the Power-up default conditions.  
00000000 minimum gain  
00001000 code 08 hex  
01  
0
25 mV offset  
Clamp only  
M2  
0
RSTCCD required  
Automatic timing detect On  
Test modes off  
M1  
0
Test3  
Test2  
Reset  
Dp[2:0]  
Dd[2:0]  
Dr[1:0]  
0
0
Test modes off  
0
reset bit will reset itself  
minimum delay  
minimum delay  
minimum delay  
000  
000  
00  
Table 13. Reset Conditions  
Using TestVin (Pin 20)  
To use TestVin as an auxiliary ADC input force  
STBY2=low and STBY1=high. This will disable the  
CDS/PGA and leave the ADC operating. If M2=0, the  
ADC clock is generated from RSTCCD and SHP (See  
Figure 19). If M2=1, the ADC clock is generated from  
SHP & SHD (See Figure 20).  
The TestVin pin allows access to the input of the ADC,  
or it can be used to monitor the CDS/PGA output. The  
TestVin pin accesses the ADC input node through  
switch S1 (see Figure 18). This switch is controlled by  
Bit3 of the serial port Test register. When the TEST3  
bit of the mode register is high, switch S1 is “ON” and  
the TestVin pin can be used to access the ADC input/  
PGA output. When the TEST3 bit of the mode register  
is low, switch S1 is “OFF” and the TestVin pin is  
disconnected from the ADC input/PGA output.  
Rev. 1.01  
27  
XRD9855/9856  
XRD98L55/98L56  
TestVin  
S1  
CDS  
PGA  
ADC  
Figure 21. Using TestVin to Access PGA Output & ADC Input  
Mode Reg.  
TestVin  
AD1  
1
1
AD0  
0
0
V[1]  
0
V[0]  
0
M3  
0
M2  
1
Test3 Test2  
M1  
0
Reset  
1
0
0
0
0
0
Normal  
0
0
0
1
0
Table 14. Serial Port Data to Use TestVin  
CCD  
CCD  
Signal  
Signal  
RSTCCD  
RSTCCD  
SHP  
SHP  
SHD  
SHD  
ADC Clock  
(internal)  
ADC Clock  
Track  
Track  
Hold  
Hold  
(Internal)  
ADC Data  
ADC Data  
Figure 23. ADC Clock Generation,  
CLK_POL=1,M2=1  
Figure 22. ADC Clock Generation,  
CLK_POL=1,M2=0  
Rev. 1.01  
28  
XRD9855/9856  
XRD98L55/98L56  
Digital Output Power Supplies  
Power Supply Sequencing  
There are no power supply sequencing issues if DV  
The DV and DGND pins supply power to the digital  
DD  
DD  
output drivers for pins DB[9:0], UNDER, and OVER.  
andV oftheXRD9855/XRD9856aredrivenfromthe  
DD  
DV  
is isolated from V  
so it can be at a voltage  
same supply.  
separately, V  
When DV  
must come up at the same time or  
and V  
are driven  
DD  
DD  
DD  
DD  
level less than or equal to V . This allows the digital  
outputstointerfacewithadvanceddigitalASICsrequir-  
ingreducedsupplyvoltages. ForexampleV canbe  
5.0 or 3.3V, while DV is 2.5V.  
DD  
DD  
before DV , and go down at the same time or after  
DD  
DV . If the power supply sequencing in this case is  
DD  
DD  
notfollowed,thendamagemayoccurtotheproductdue  
tocurrentflowthroughthesource-bodyjunctiondiodes  
DD  
between DV  
and V . An external diode (5082-  
DD  
DD  
2235) layed out close to the converter from DV to  
DD  
V
prevents damage from occurring when power is  
DD  
cycled incorrectly.  
Note:V mustbegreaterthanorequaltoDV or the  
DD  
DD  
source-body diodes will be forward based.  
V
DD  
DVDD  
Source-Body  
Junction Diode  
Between DVDD  
& VDD  
Output  
Register  
Digital Output  
Source-Body  
Junction Diode  
Between  
DGND & GND  
GND  
DGND  
Figure 24. DV & DGND Digital Output Power Supplies,  
DD  
V
> DV  
DD  
DD  
Rev. 1.01  
29  
XRD9855/9856  
XRD98L55/98L56  
General Power Supply and Board Design Issues  
Ingeneral,alltracesleadingtotheXRD9855/XRD9856  
should be as short as possible to minimize signal  
crosstalk and high frequency digital signals from feed-  
ing into sensitive analog inputs. The two CCD inputs,  
In_Pos and In_Neg, should be routed as fully differen-  
tial signals and should be shielded and matched.  
Efforts should be made to minimize the board leakage  
currents on In_Pos and In_Neg since these nodes are  
AC coupled from the CCD to the XRD9855/XRD9856.  
Thedigitaloutputtracesshouldbeasshortaspossible  
tominimizethecapacitiveloadingontheoutputdrivers  
(see Figure25)  
All of the GND pins, including DGND, should be con-  
nected directly to the analog ground plane under the  
XRD9855/XRD9856. The V ’s should be supplied  
DD  
from a low noise, well filtered regulator which derives  
the power supply voltage from the CCD power supply.  
All of the V  
pins are analog power supplies and  
DD  
shouldbelocallydecoupledtothenearestGNDpinwith  
a 0.1µF, high frequency capacitor. DV is the power  
DD  
supply for the digital outputs and should be locally  
decoupled. DV should be connected to the same  
DD  
power supply network as the digital ASIC which re-  
ceives data from the XRD9855/XRD9856.  
12V  
5V/3V  
Regulator  
5V/3V  
Regulator  
VDD  
DVDD  
DVDD  
In_Neg  
Digital  
ASIC  
CCD  
DB[9:0]  
DGND  
In_Pos  
GND  
DGN  
D
XRD9855/XRD9856  
AGND  
AGND  
Figure 25. XRD9855/XRD9856 Power Supply Connections  
ApplicationNote  
If increasing the PGA Gain to code 128 (80h) or higher  
causes a larger than expected offset increase in the  
ADC digital output codes, the problem may be due to  
the limited Automatic Offest Calibration range. This  
problemmaybesolvedbyincreasingtheGlobalOffset  
code, V[1:0], in the Mode Register. The default is  
V[1:0] = 01 (binary). Try increasing to V[1:0] = 10, or  
V[1:0] = 11.  
For additional information on the XRD9855 feaures:  
- Auto-detect  
- EnableCal & Clamp Line Timing  
- Clamp Only Line Timing  
- Digital Clibration Loop  
- Dark Voltage Calibration Range  
Please see Application Notes XRDAN109,  
XRDAN110,XRDAN112,XRDAN113and  
XRDAN114.  
Rev. 1.01  
30  
XRD9855/9856  
XRD98L55/98L56  
Serial  
Interface  
0.1m F  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
SCLK  
24  
23  
CLAMP  
SHD  
From Clock  
Signal  
Generator  
RESET  
STBY2 22  
SHP  
VDD  
STBY1  
Test  
21  
20  
19  
RSTCCD  
GND  
GND  
CLK_POL  
VDD  
0.1m F  
from Clock Signal  
Generator  
XRD9855/XRD9856  
EnableCal 18  
VDD  
0.1m F  
VDD  
VDD  
OE  
17  
16  
15  
14  
13  
SYNC  
UNDER  
DB0  
OVER  
DB9  
DB1  
NC  
DB8  
Digital Data Bus  
Figure 26. XRD9855/XRD9856 Application Schematic  
CLK_POL=0  
Rev. 1.01  
31  
XRD9855/9856  
XRD98L55/98L56  
2.4  
2.2  
A
V
V
= D  
= 5.0V  
VDD  
VDD  
= A  
/1.3  
VDD  
RT  
RB  
2.0  
= A  
/10  
VDD  
30MHz  
MODE = NON-RSTCCD  
1.8  
27MHz  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
25MHz  
18MHz  
12MHz  
0
32  
64  
96  
128  
160  
192  
224  
255  
GAIN CODES  
Figure 27. Input Reference Noise vs. PGA Gain Codes  
Rev. 1.01  
32  
XRD9855/9856  
XRD98L55/98L56  
XRD98L55 INPUT REFERRED NOISE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
A
V
V
= D  
= 3.0V  
VDD  
VDD  
= A  
/1.3  
VDD  
RT  
RB  
= A  
/10  
VDD  
MODE = NON-RSTCCD  
30MHz  
25MHz  
27MHz  
18MHz  
12MHz  
255  
0
32  
64  
96  
128  
160  
192  
224  
GAIN CODES  
Figure 28. XRD98L55 Input Referred Noise  
Rev. 1.01  
33  
XRD9855/9856  
XRD98L55/98L56  
48 LEAD THIN QUAD FLAT PACK  
(7 x 7 x 1.4 mm TQFP)  
rev. 2.00  
D
D1  
36  
25  
37  
24  
D1  
D
48  
13  
1
2
1
B
e
A2  
C
A
Seating  
Plane  
a
A1  
L
INCHES  
MIN  
MILLIMETERS  
SYMBOL  
MAX  
0.063  
0.006  
0.057  
0.011  
0.008  
0.362  
0.280  
MIN  
MAX  
1.60  
0.15  
1.45  
0.27  
0.20  
9.20  
7.10  
A
A1  
A2  
B
C
D
0.055  
0.002  
0.053  
0.007  
0.004  
0.346  
0.272  
1.40  
0.05  
1.35  
0.17  
0.09  
8.80  
6.90  
D1  
e
0.020 BSC  
0.50 BSC  
L
a
0.018  
0×  
0.030  
7×  
0.45  
0×  
0.75  
7×  
Rev. 1.01  
34  
XRD9855/9856  
XRD98L55/98L56  
NOTICE  
EXARCorporationreservestherighttomakechangestotheproductscontainedinthispublicationinordertoimprove  
design,performanceorreliability.EXARCorporationassumesnoresponsibilityfortheuseofanycircuitsdescribed  
herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of  
patentinfringement.Chartsandschedulescontainedhereinareonlyforillustrationpurposesandmayvarydepending  
upon a user’s specific application. While the information in this publication has been carefully checked; no  
responsibility, however, is assumed for in accuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure  
ormalfunctionoftheproductcanreasonablybeexpectedtocausefailureofthelifesupportsystemortosignificantly  
affectitssafetyoreffectiveness. ProductsarenotauthorizedforuseinsuchapplicationsunlessEXARCorporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the  
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the  
circumstances.  
Copyright2001 EXARCorporation  
Datasheet July 2001  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
Rev. 1.01  
35  

相关型号:

XRD9855AIV

CCD Image Digitizers with CDS, PGA and 10-Bit A/D
EXAR

XRD9856

CCD Image Digitizers with CDS, PGA and 10-Bit A/D
EXAR

XRD9856AIV

CCD Image Digitizers with CDS, PGA and 10-Bit A/D
EXAR

XRD9859AIU

Consumer Circuit, PDSO28, 5.30 MM, SSOP-28
EXAR

XRD9859CAMAD9803EVAL

Analog Circuit
EXAR

XRD9859CAMAD9843EVAL

Analog Circuit
EXAR

XRD9861CAMAD9803EVAL

Analog Circuit
EXAR

XRD9861CAMAD9843EVAL

Analog Circuit
EXAR
EXAR

XRD98L23

8-Bit, High-speed Linear CIS/CCD Sensor Signal Processor with Serial Control
EXAR

XRD98L23ACD

8-Bit, High-speed Linear CIS/CCD Sensor Signal Processor with Serial Control
EXAR

XRD98L23ACD-F

暂无描述
EXAR