XRT5897 [EXAR]

Seven-Channel E1 Line Interface; 七路E1线路接口
XRT5897
型号: XRT5897
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Seven-Channel E1 Line Interface
七路E1线路接口

文件: 总21页 (文件大小:609K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XRT5897  
Seven-Channel E1  
Line Interface  
December 2001-3  
FEATURES  
D Compliant with ITU G.703 Pulse Mask Template for  
D Compliant with ITU--T G.823 Jitter Tolerance Re-  
2.048Mbps (E1) Rates  
quirements  
D Logical Inputs Accept either 3.3V or 5.0V Levels  
D Ultra-Low Power Dissipation  
D Seven Independent CEPT Transceivers  
D Supports Differential Transformer Coupled  
Receivers and Transmitters  
D +3.3V Supply Operation  
D Individual Transmit Channel Over Temperature  
D On Chip Pulse Shaping for Both 75and 120Line  
Protection  
Drivers  
D Compliant with ITU G.775 LOS Declaration/Clearing  
APPLICATIONS  
Recommendation  
D SDH Multiplexer  
D Optional User Selectable LOS Declaration/Clearing  
Delay  
D Digital Cross Connects  
GENERAL DESCRIPTION  
The XRT5897 is an optimized seven channel 3.3V line  
interface unit fabricated using low power CMOS  
technology. The device contains seven independent E1  
channels. It is primarily targeted toward SDH multiplexers  
that accommodate TU12 Tributary Unit Frames. Line  
cards in these units multiplex 21 E1 interfaces into higher  
SDH rates. Devices with seven E1 interfaces such as the  
XRT5897 provide the most efficient method of  
implementing 21 channel line cards. Each channel  
performs the driver and receiver functions necessary to  
convert bipolar signals to logical levels and vice versa.  
The device requires transformers on both receiver and  
transmitter sides, and supports both balanced and  
unbalanced interfaces.  
The device offers two distinct modes of LOS detection.  
The first method, which does not require an external  
clock, provides an LOS output indication signal with  
thresholds and delay that comply with the ITU G.775  
requirements. In the second mode, the user provides an  
external clock that increases the delay for LOS  
declaration and clearing. This feature provides the user  
with the flexibility to implement LOS specifications that  
require a delay greater than the G.775 requirements.  
ORDERING INFORMATION  
Operating  
Part No.  
Package  
100 Lead TQFP (14 x 14 x 1.4mm)  
Temperature Range  
XRT5897IV  
-40°C to +75°C  
Rev. 1.11  
E2001  
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 z (510) 668-7000 z FAX (510) 668-7017  
XRT5897  
BLOCK DIAGRAM  
Tranceiver 1  
Tranceiver 2  
Tranceiver 3  
Tranceiver 4  
Tranceiver 5  
Tranceiver 6  
Tranceiver 7  
RTIP7 (69)  
RXPOS7 (5)  
1:2  
R1  
R2  
Singnal  
Receive  
Comparators  
RXNEG7 (6)  
TIP  
RX INPUT  
RING  
Peak  
Detector  
RRING7 (68)  
V
CC  
1
LOS7 (4)  
MUX  
O
LOS  
Detect  
Loss  
Delay  
LOSCNT (73)  
LOSSEL (38)  
Counter  
Transmit  
Line  
Drivers  
Duty  
Cycle  
Adjust  
TXCLK7 (87)  
TXPOS7 (85)  
TXNEG7 (86)  
R3  
9.1  
R4  
NRZ  
To  
TTIP7 (89)  
0
0
2:1  
TIP  
TX OUTPUT  
RING  
RZ  
Pulse  
MUX  
Shaping  
TRING7 (91)  
1
1
9.1  
Figure 1. XRT5897 Block Diagram  
Receiver Notes  
D The same type 1:2CT ratio transformer may be  
D LOSCNT (pin 73) is unconnected when LOSSEL is  
logic 1, or connected to an external clock when  
LOSSEL is logic 0.  
used at the receiver input and transmitter output.  
D R1 and R2 are both 150for 75operation, or  
240for 120operation.  
Transmitter Notes  
D Return loss exceeds ITU G.703 specification with  
D Return loss exceeds ETSI 300 166 specification  
these resistors and a 1:2CT ratio input transformer.  
with a 1:2 ratio transformer.  
D R3 and R4 are always 9.1for both 75and 120Ω  
applications.  
LOS (Loss of Signal) Notes  
D An approach exists that permits the user to operate  
the XRT5897 with a 5V power supply. For more  
information, please see application note TAN-12.  
D LOSSEL (pin 38) is connected to logic “1” for ITU  
G.775 compliant LOS delay, or to logic 0 for user  
programmable additional delay.  
Rev. 1.11  
2
XRT5897  
PIN CONFIGURATION  
51  
75  
LOS6  
50  
TXNEG4  
TXPOS4  
LOS4  
76  
TXPOS6  
TXNEG6  
TXCLK6  
RXPOS4  
RXNEG4  
TXPOS5  
TXNEG5  
TXCLK5  
RXNEG5  
RXPOS5  
LOS5  
GND  
TTIP6  
V
CC  
TRING6  
GND  
TXPOS7  
TXNEG7  
TXCLK7  
GND  
GND  
LOSSEL  
TTIP7  
V
CC  
V
CC  
LOS2  
TRING7  
RXPOS2  
RXNEG2  
TXCLK2  
TXNEG2  
TXPOS2  
RXNEG3  
RXPOS3  
LOS3  
GND  
TRING1  
V
CC  
TTIP1  
GND  
TXCLK1  
TXNEG1  
TXPOS1  
LOS1  
TXPOS3  
TXNEG3  
100  
26  
1
25  
100 LEAD THIN QUAD FLAT PACK  
(14 x 14 x 1.4 mm, TQFP)  
Rev. 1.11  
3
XRT5897  
PIN DESCRIPTION  
Pin #  
1
Symbol  
RXPOS1  
RXNEG1  
VCC  
Type Description  
O
O
Receiver 1 Positive Data Out. Positive RZ data output for channel 1.  
2
Receiver 1 Negative Data Out. Negative RZ data output for channel 1.  
Positive Supply (+3.3V + 5%). Digital circuitry.  
3
4
LOS7  
O
O
O
I
Receiver 7 Loss of Signal. Asserted during LOS condition.  
Receiver 7 positive Data Out. Positive RZ data output for channel 7.  
Receiver 7 Negative Data Out. Negative RZ data output for channel 7.  
Receiver 1 Positive Bipolar Input.  
5
RXPOS7  
RXNEG7  
RTIP1  
6
7
8
RRING1  
VCC  
I
Receiver 1 Negative Bipolar Input.  
9
Positive Supply (+3.3V + 5%). Analog circuitry.  
Analog Ground.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
GND  
VCC  
Positive Supply (+3.3V + 5%). Receivers 1, 2, 3, and 7.  
Receiver 2 Negative Bipolar Input.  
RRING2  
RTIP2  
I
I
Receiver 2 Positive Bipolar Input.  
GND  
Analog Ground. Receivers 1, 2, 3, and 7.  
TTIP2  
O
O
O
O
Transmitter 2 Positive Bipolar Output.  
VCC  
Positive Supply (+3.3V + 5%). Transmitter channel 2.  
Transmitter 2 Negative Bipolar Output.  
TRING2  
GND  
Digital Ground. Transmitter channel 2.  
TRING3  
VCC  
Transmitter 3 Negative Bipolar Output.  
Positive Supply (+3.3V + 5%). Transmitter channel 3.  
Transmitter 3 Positive Bipolar Output.  
TTIP3  
GND  
Digital Ground. Transmitter channel 3.  
RTIP3  
I
I
Receiver 3 Positive Bipolar Input.  
RRING3  
TXCLK3  
TXNEG3  
TXPOS3  
LOS3  
Receiver 3 Negative Bipolar Input.  
I
Transmitter 3 Clock Input. Use for clocked mode with NRZ data.1  
Transmitter 3 Negative Data Input. Negative NRZ or RZ data input.1  
Transmitter 3 Positive Data Input. Positive NRZ or RZ data input.1  
Receiver 3 Loss of Signal. Asserted during LOS condition.  
Receiver 3 Positive Data Out. Positive RZ data output for channel 3.  
Receiver 3 Negative Data Out. Negative RZ data output for channel 3.  
Transmitter 2 Positive Data Input. Positive NRZ or RZ data input.1  
Transmitter 2 Negative Data Input. Negative NRZ or RZ data input.1  
Transmitter 2 Clock Input. Use for clocked mode with NRZ data.1  
Receiver 2 Negative Data Out. Negative RZ data output for channel 2.  
Receiver 2 Positive Data Out. Positive RZ data output for channel 2.  
I
I
O
O
O
I
RXPOS3  
RXNEG3  
TXPOS2  
TXNEG2  
TXCLK2  
RXNEG2  
RXPOS2  
I
I
O
O
Note:  
1
Has internal pull-up 50Kresistor.  
Rev. 1.11  
4
XRT5897  
PIN DESCRIPTION (CONT’D)  
Pin #  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Symbol  
LOS2  
Type Description  
O
Receiver 2 Loss of Signal. Asserted during LOS condition.  
Digital Supply (+3.3V + 5%). Digital circuitry.  
VCC  
LOSSEL  
GND  
I
Loss of Signal Delay Select. “Hi” selects G.775, “Lo” selects user programmable.1  
Digital Ground.  
LOS5  
O
O
O
I
Receiver 5 Loss of Signal. Asserted during LOS condition.  
Receiver 5 Positive Data Out. Positive RZ data output for channel 5.  
Receiver 5 Negative Data Out. Negative RZ data output for channel 5.  
Transmitter 5 Clock Input. Use for clocked mode with NRZ data.1  
Transmitter 5 Negative Data Input. Negative NRZ or RZ data input.1  
Transmitter 5 Positive Data Input. Positive NRZ or RZ data input.1  
Receiver 4 Negative Data Out. Negative RZ data output for channel 4.  
Receiver 4 Positive Data Out. Positive RZ data output for channel 4.  
Receiver 4 Loss of Signal. Asserted during LOS condition.  
Transmitter 4 Positive Data Input. Positive NRZ or RZ data input.1  
Transmitter 4 Negative Data Input. Negative NRZ or RZ data input.1  
Transmitter 4 Clock Input. Use for clocked mode with NRZ data.1  
Receiver 4 Negative Bipolar Input.  
RXPOS5  
RXNEG5  
TXCLK5  
TXNEG5  
TXPOS5  
RXNEG4  
RXPOS4  
LOS4  
I
I
O
O
O
I
TXPOS4  
TXNEG4  
TXCLK4  
RRING4  
RTIP4  
GND  
I
I
I
I
Receiver 4 Positive Bipolar Input.  
Analog Ground.  
TTIP4  
O
O
O
O
Transmitter 4 Positive Bipolar Output.  
VCC  
Positive Supply (+3.3V + 5%). Transmitter channel 4.  
Transmitter 4 Negative Bipolar Output.  
TRING4  
GND  
Digital Ground. Transmitter channel 4.  
TRING5  
VCC  
Transmitter 5 Negative Bipolar Output.  
Positive Supply (+3.3V + 5%). Transmitter channel 5.  
Transmitter 5 Positive Bipolar Output.  
TTIP5  
GND  
Digital Ground. Transmitter channel 5.  
RTIP5  
RRING5  
VCC  
I
I
Receiver 5 Positive Bipolar Input.  
Receiver 5 Negative Bipolar Input.  
Positive Supply (+3.3V + 5%). Low level transmitter analog circuitry.  
Analog Ground. Low level transmitter analog circuitry.  
Positive Supply (+3.3V + 5%). Receiver channels 4, 5, and 6.  
Receiver 7 Negative Bipolar Input.  
GND  
VCC  
RRING7  
RTIP7  
RRING6  
I
I
I
Receiver 7 Positive Bipolar Input.  
Receiver 6 Negative Bipolar Input.  
Note:  
1
Has internal pull-up 50Kresistor.  
Rev. 1.11  
5
XRT5897  
PIN DESCRIPTION (CONT’D)  
Pin #  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Symbol  
RTIP6  
Type Description  
I
Receiver 6 Positive Bipolar Input.  
GND  
Analog Ground. Receiver channels 4, 5, and 6.  
LOSCNT  
RXNEG6  
RXPOS6  
LOS6  
I
O
O
O
I
Loss of Signal Timing Clock Input. For user-programmable LOS delay.1  
Receiver 6 Negative Data Out. Negative RZ data output for channel 6.  
Receiver 6 Positive Data Out. Positive RZ data output for channel 6.  
Receiver 6 Loss of Signal. Asserted during LOS condition.  
Transmitter 6 Positive Data Input. Positive NRZ or RZ data input.1  
Transmitter 6 Negative Data Input. Negative NRZ or RZ data input.1  
Transmitter 6 Clock Input. Use for clocked mode with NRZ data.1  
Digital Ground. Transmitter channel 6.  
TXPOS6  
TXNEG6  
TXCLK6  
GND  
I
I
TTIP6  
O
O
Transmitter 6 Positive Bipolar Output.  
VCC  
Positive Supply (+3.3V + 5%). Transmitter channel 6.  
Transmitter 6 Negative Bipolar Output.  
TRING6  
GND  
Digital Ground.  
TXPOS7  
TXNEG7  
TXCLK7  
GND  
I
I
I
Transmitter 7 Positive Data Input. Positive NRZ or RZ data input.1  
Transmitter 7 Negative Data Input. Negative NRZ or RZ data input.1  
Transmitter 7 Clock Input. Use for clocked mode with NRZ data.1  
Analog Ground.  
TTIP7  
O
O
O
O
Transmitter 7 Positive Bipolar Output.  
VCC  
Positive Supply (+3.3V + 5%). Transmitter channel 7.  
Transmitter 7 Negative Bipolar Output.  
TRING7  
GND  
Digital Ground. Transmitter channel 7.  
TRING1  
VCC  
Transmitter 1 Negative Bipolar Output.  
Positive Supply (+3.3V + 5%). Transmitter channel 1.  
Transmitter 1 Positive Bipolar Output.  
TTIP1  
GND  
Digital Ground. Transmitter channel 1.  
TXCLK1  
TXNEG1  
TXPOS1  
LOS1  
I
I
Transmitter 1 Clock Input. Use for clocked mode with NRZ data.1  
Transmitter 1 Negative Data Input. Negative NRZ or RZ data input.1  
Transmitter 1 Positive Data Input. Positive NRZ or RZ data input.1  
Receiver 1 Loss of Signal. Asserted during LOS condition.  
I
O
Note:  
1
Has internal pull-up 50Kresistor.  
Rev. 1.11  
6
XRT5897  
ELECTRICAL CHARACTERISTICS  
Test Conditions: V = 3.3V + 5%, T = -40 to 25 to 75°C, Unless Otherwise Specified  
CC  
A
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Conditions  
DC Electrical Characteristics  
Parameters  
VCC  
Inputs  
Voltage Supply  
3.135  
2.0  
3.3  
3.465  
V
3.3V operation  
VIH  
VIL  
Input High Level  
Input Low Level  
5.0  
0.8  
V
V
Outputs  
VOH  
Output High Level  
Output Low Level  
2.4  
0
V
V
IOH = -4mA  
IOL = 4mA  
VOL  
0.4  
12  
Receiver Specifications  
RXCL  
Allowable Cable Loss  
dB  
Cable loss at 1.024MHz (Relative  
to 0dB = 2.37Vp measured from  
RTIP or RRING to ground).  
RXIM  
RXXI  
Interference Margin  
-15  
-12  
50  
dB  
%
With 6dB cable loss  
Receiver Slicing Threshold  
45  
55  
% of peak input voltage at -3dB  
cable loss  
RXLOSSET LOS Must Be Set If RX Sig.  
Atten. ² 32dB (For Any Valid  
Data Pattern)  
15  
13  
2
dB  
dB  
Relative to 0dB = 2.37Vp  
Measured from RTIP or RRING to  
ground.  
RXLOSCLR LOS Must Be Cleared If RX Sig.  
Atten. < 9dB  
Relative to 0dB = 2.37Vp  
measured from RTIP or RRING to  
ground.  
RXLOSHYST Hysteresis on Input Data  
dB  
For LOS output state change  
RXIN  
Input Impedance  
5
kΩ  
Up to 3.072MHz (Measured from  
RTIP or RRING to ground).  
Jitter Tolerance:  
20Hz  
10  
5
UIpp  
UIpp  
UIpp  
700Hz  
10kHz -- 100kHz  
Return Loss:  
0.3  
51khz -- 102kHz  
102kHz -- 2048kHz  
2048kHz -- 3072kHz  
14  
20  
16  
dB  
dB  
dB  
Per ITU--T G.703  
Power Specifications VCC = 3.3V  
PD  
Power Dissipation  
715  
920  
mW  
All 1’s Transmit and Receive 75Ω  
PD  
PC  
PC  
Power Dissipation  
117  
1260  
880  
155  
1465  
1065  
mW  
mW  
mW  
All Drivers Power Down  
Power Consumption 75Ω  
Power Consumption 75Ω  
All 1’s Transmit and Receive  
50% data density, Transmit and Re-  
ceive  
Rev. 1.11  
7
XRT5897  
PC  
PC  
Power Consumption 120Ω  
Power Consumption 120Ω  
1025  
745  
1255  
945  
mW  
mW  
All 1’s Transmit and Receive  
50% data density, Transmit and Re-  
ceive  
Note:  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
Rev. 1.11  
8
XRT5897  
ELECTRICAL CHARACTERISTICS (CONT’D)  
Test Conditions: V = 3.3V + 5%, T = -40 to 25 to 75°C, Unless Otherwise Specified  
CC  
A
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Conditions  
AC Electrical Characteristics  
VTXOUT  
Output Pulse Amplitude  
2.13  
2.70  
224  
2.37  
3.0  
2.60  
3.30  
264  
V
V
Trans. = 1:2 ratio, 9.1in series  
(RL = 75)  
with each end of primary  
VTXOUT  
Output Pulse Amplitude  
(RL = 120)  
Trans. = 1:2 ratio, 9.1in series  
with each end of primary  
TXPW  
PNIMP  
T1  
Output Pulse Width  
244  
5
ns  
%
Pos/Neg Pulse Unbalanced  
TXCLK Clock Period (E1)  
TXCLK Duty Cycle  
488  
50  
ns  
%
T2  
30  
75  
70  
TSU  
Data Set-up Time, TDATA to  
TXCLK  
ns  
50% TXCLK Duty Cycle  
50% TXCLK Duty Cycle  
THO  
Data Hold Time, TDATA to  
TXCLK  
30  
ns  
TR  
TF  
TXCLK Rise Time (10% to 90%)  
TXCLK Fall Time (10% to 90%)  
40  
40  
35  
ns  
ns  
ns  
T3-noclk  
Data Prop. Delay No-Clock  
Mode  
50  
T3-clk  
T4  
Data Prop. Delay Clock Mode  
Receive Data High  
470  
244  
ns  
ns  
ns  
ns  
ns  
50% TXCLK Duty Cycle  
0dB Cable Loss  
15pF Load  
219  
269  
40  
T5  
RX Data Prop. Delay  
Receive Rise Time  
T6  
40  
15pF Load  
T7  
Receive Rise Time  
40  
15pF Load  
Note:  
Bold face parameters are covered by production test and guaranteed over operating temperature range.  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature . . . . . . . . . . . . -65°C to +150°C  
Operating Temperature . . . . . . . . . . -40°C to +75°C  
Supply Voltage . . . . . . . . . . . . . . . . . . +0.3V to +6.0V  
Rev. 1.11  
9
XRT5897  
Disabling Output Drivers  
Output drivers may be individually disabled (hi-z output) by either of the following methods.  
1. Either connect the transmit data inputs TXPOS  
and TXNEG for the channel to be disabled to a log-  
2. Connect TXCLK for the channel to be disabled to  
logic 0 source (Ground), and also apply data to the  
TXPOS and TXNEG inputs of that channel.  
ic 1 source (V ), or allow them to float (inputs  
CC  
have internal pull--up resistors).  
TRANSFORMER REQUIREMENTS  
Turns Ratio  
Line Impedance  
Turns Ratio  
Line Impedance  
1:2 CT  
75or 120Ω  
1:2  
75or 120Ω  
Table 1. Input Transformer Requirements  
Table 2. Output Transformer Requirements  
Note:  
The same type 1:2 CT ratio device may be used at both receiver input and transmitter output.  
The following transformers have been tested with the XRT5897:  
HALO type TG26-1205(package contains two 1 CT:2 CT ratio transformers)  
Pulse type PE-65535 (1:2 CT ratio)  
Transpower Technologies type TTI 7154-R (1:2 CT ratio)  
Magnetic Supplier Information:  
HALO Electronics, Inc.  
P.O. Box 5826  
Redwood City, CA 94063  
Tel. (415) 568-5800  
Fax. (415)568-6161  
Pulse  
Telecom Product Group  
P.O. Box 12235  
San Diego, CA 92112  
Tel. (619) 674-8100  
Fax. (619) 674-8262  
Transpower Technologies, Inc.  
24 Highway 28, Suite 202  
Crystal Bay, NV 89402--0187  
Tel. (702) 831--0140  
Fax. (702) 831--3521  
Rev. 1.11  
10  
XRT5897  
TSU THO  
TXPOS (n)  
TSU THO  
TXNEG (n)  
TXCLK (n)  
TXOUT (n)  
T1  
T2  
TR  
TF  
TXPW  
T3  
T3  
VTXOUT  
VTXOUT  
TXPW  
Figure 2. Transmit Timing Diagram  
RXIN (n)  
T5  
T4  
T6  
T7  
RPOS (n)  
T5  
T6  
T7  
T4  
RXNEG (n)  
Figure 3. Receive Timing Diagram  
Rev. 1.11  
11  
XRT5897  
RETURN LOSS SPECIFICATIONS  
The following transmitter and receiver return loss specifications are based on a typical 1:2CT ratio transformer.  
75Ω  
120Ω  
Frequency Range  
51kHz to 102kHz  
Min.  
16  
Typ.  
22  
Min.  
10  
Typ.  
15  
Unit  
dB  
102kHz to 2.048MHz  
2.048MHz to 3.072MHz  
16  
22  
10  
15  
dB  
11  
18  
10  
14  
dB  
Table 3. Transmitter Return Loss Specification  
Transmit Return Loss Notes  
D Output transformer ratio is 1:2 (return loss exceeds  
D For both 75and 120applications, 9.1, 1% re-  
sistors are connected between each end of the  
transformer primary and the XRT5897 TTIP and  
TRING pins.  
ETSI 300 166 with this transformer).  
75Ω  
120Ω  
Frequency Range  
51kHz to 102kHz  
Min.  
16  
Typ.  
28  
Min.  
15  
Typ.  
18  
Unit  
dB  
102kHz to 2.048MHz  
2.048MHz to 3.072MHz  
22  
34  
22  
25  
dB  
18  
26  
20  
30  
dB  
Table 4. Receiver Return Loss Specification  
Receiver Return Loss Notes  
D Input transformer ratio is 1:2 CT.  
D Each half of transformer secondary is terminated  
with 150for 75operation, or 240for 120op-  
eration (resistors are 1% tolerance).  
D Transformer center tap is grounded.  
Rev. 1.11  
12  
XRT5897  
SYSTEM DESCRIPTION  
This device is a seven channel E1 transceiver that  
provides an electrical interface for 2.048Mbps  
applications. Its unique architecture includes seven  
receiver circuits that convert ITU G.703 compliant bipolar  
signals to TTL compatible logic levels. Each receiver  
includes a LOS (Loss of Signal) detection circuit that may  
be configured for either a fixed or a user-programmable  
LOS response time delay. Similarly, in the transmit  
direction, seven transmitters convert TTL compatible  
logic levels to G.703 compatible bipolar signals. Each  
transmitter may be operated either with RZ, or NRZ data  
types. In NRZ mode a transmit clock is required as well.  
The following description applies to any of the seven  
receivers or transmitters contained in the XRT5897.  
Therefore, the suffix numbers for a particular channel are  
deleted for simplicity. i.e. “RTIP” applies to RTIP1 through  
RTIP7.  
compliance with ITU G.775 specification. When LOSSEL  
is connected to logic “0”, the user-programmable delay  
mode is enabled. In this mode the user has the option of  
extending the delay of LOS declaration and clearing  
specified in the ITU G.775. This is done by providing a  
user-supplied clock to LOSCNT (pin 73). The “user  
programmable mode” is provisioned to allow systems  
designers to comply with older versions of LOS  
specifications in legacy systems. It needs to be stressed  
that the delay for declaration and clearing of the LOS  
condition will never be less than the range specified in the  
G.775 specification (10-255 pulse intervals).  
The LOS detection/clearing circuitry of the XRT5897 in  
“automatic” mode will detect LOS when the incoming  
signalhas “no transitions,” i.e. when the signal levelis less  
than or equal to a signal level A dB below nominal signal  
D
level, for N consecutive pulse intervals, where 10<N<255.  
The value of A  
can vary between 10dB to 32dB  
D
Receiver Operation  
depending on the ones density of the incoming signal  
assuming the received data has minimum permissible  
ones density. Furthermore LOS detect is cleared when  
the incoming signal has “transitions,” i.e. when the signal  
level is greater than or equal to a signal level of A dB  
below nominal, for N consecutive pulse intervals, where  
A bipolar signal is transformer-coupled to the receiver  
differential inputs (RTIP and RRING). The receiver is able  
to tolerate up to 12dB of line loss measured at 1.024MHz.  
It contains slicing circuitry that automatically samples the  
incoming data at a fixed percentage (50% nominal) of the  
peak signal amplitude. A precision peak detector  
maintains the slicing level accuracy. The TTL compatible  
receiver output data rails appear at the RXPOS and  
RXNEG pins. The pulse width of this data; which is in RZ  
format, is a function of the amount of the cable loss  
present.  
C
10<N<255. The value of A can vary between 9dB to  
C
31dB depending on the ones density of the incoming  
signal assuming the received data has minimum  
permissible ones density. Each pulse interval is 488ns at  
E1 rates. The absolute value of A is always smaller than  
A by at least 1dB.  
D
C
The LOS detection/clearing criteria described above is  
fully compliant with G.775 LOS specification. In the “user  
programmable” mode the user has the option of  
extending the declaration and clearing delay (10<N<255)  
by an amount which is equal to 2048 x T. T is the time  
period of the clock supplied to LOSCNT (pin 73) by the  
user.  
Receiver Loss Of Signal Detection (LOS)  
Absence of signal at any receiver input is detected by the  
loss of signal (LOS) circuit. One LOS detection circuitry is  
provisioned for each receiver. The LOS signal is asserted  
(LOS=1) when a LOS condition is detected and is cleared  
(LOS=0) when a valid input signal is restored.  
Nominal signal level is defined as 2.37V peak measured  
between RTIP or RRING and ground. (This voltage will  
be present in 75applications using a 1:2 CT ratio input  
transformer terminated in 300with the center tap  
grounded with 0dB of cable and a 2.37V peak amplitude  
transmit pulse at the cable input.)  
Two modes of LOS circuit operation are supported.  
These distinct modes are called “automatic” and  
“user-programmable”. When LOSSEL (pin 38) is set to  
logic “1”, the automatic mode is selected. In this mode the  
LOS condition will be declared and cleared in full  
Rev. 1.11  
13  
XRT5897  
Transmitters  
This device contains four identical ITU G.703 compliant  
transmitters. The output stage of each transmitter is a  
differential voltage driver. External resistors need to be  
connected to the primary of output transformer. This is  
necessary to maintain an accurate source impedance  
that ensures compliance to ETSI 300 166 return loss  
requirement.  
modes of operation referred to as “clocked” or “clockless”  
modes. The operational mode is selected automatically  
based on the signal provided to TXCLK input. If a clock is  
present at this pin, the transmitter detects its presence  
and operates in the clocked mode. In this mode, the  
transmit input should be supplied with full-width NRZ  
pulses. If a clock is not present at the TXCLK input (pin is  
left open), the part operates in the clockless mode. In this  
mode, RZ data should be supplied to the device. Each  
transmit channel of XRT5897 has a duty cycle correction  
circuitry. This enables the device to produce output  
bipolar pulses fully compliant with G.703 despite having  
TXCLK signal with 30% to 70% duty cycle.  
TTL compatible dual rail transmit data signals are  
supplied to TXPOS and TXNEG inputs. The transmitter  
differential outputs TTIP and TRING are connected to the  
output transformer primary through series 9.1resistors.  
All the four transmitters can be operated in two distinct  
269 ns  
(244 + 25)  
Nominal pulse  
20%  
10%  
V = 100%  
194 ns  
(244 -- 50)  
10%  
20%  
50%  
244 ns  
219 ns  
(244 -- 25)  
10%  
0%  
10%  
10%  
10%  
20%  
488 ns  
(244 + 244)  
Note: V corresponds to the nominal peak value  
Figure 4. CCITT G.703 Pulse Template  
Rev. 1.11  
14  
XRT5897  
Transmitter Output Pulse Measurement  
Figure 1 shows a typical transmit pulse plotted on the template shown in ITU G.703 Figure 15/G.703. The following  
conditions apply:  
V =3.30V  
CC  
Transmitter output transformer secondary terminated with 120.  
All ones signal.  
Receiver output looped backed into transmitter digital input.  
Operation without transmitter clock (RZ data).  
Measurement made with a Tektronix TDS640 digital scope set to full bandwidth.  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-244  
-122  
0
122  
244  
Time (ns)  
Figure 5. XRT5897 Output Pulse  
Rev. 1.11  
15  
XRT5897  
Transmitter Output Return Loss Measurements  
The following measurements were made with a Wandel  
and Goltermann SNA--2 Network Analyzer equipped with  
an RFZ--1 75Return Loss Bridge. A 75to 120Ω  
impedance matching transformer was used to make the  
120measurement. A network analyzer calibration run  
subtracted out the effects of this transformer.  
This configuration was used for both 75and 120Ω  
measurements. The only change was the termination  
resistance provided by the return loss bridge.  
Test Results:  
Table 5 compares measured output return loss with  
requirements in ETSI FINAL DRAFT prETS 300 166,  
June 1993. These results show that measured return loss  
is mainly determined by the characteristics of the output  
transformer. This is particularly evident for the 120load  
where the measured result is better than the calculated  
value.  
Test Conditions:  
D Output transformer ratio was 1:2.  
D Transmitter series resistors (R3 and R4 in Figure 1)  
were 9.1.  
D Device was powered from a 3.3V source, transmitter  
was enabled, and no output data was present.  
Specified  
Frequency  
Frequency  
(KHz)  
ETSI Spec.  
(Min. dB)  
Meas. Value (dB)  
Meas. Value (dB)  
75Load  
120Load  
0.025 fb  
0.05 fb  
1.5 fb  
51.2  
102.4  
3072  
6
8
8
22.6  
22.6  
18.0  
15.4  
15.7  
14.6  
Table 5. Transmitter Output Return Loss Measurements  
Notes:  
fb = 2048KHz  
This data shows that the XRT5897 is fully compliant with the ETSI Output Return Loss Specification for E1 operation with either  
75or 120loads.  
Rev. 1.11  
16  
XRT5897  
The following pictures show typical results of measurements that made over a 50 KHz to 3.5MHz frequency range.  
Figure 6. 75Return Loss Measurement  
Figure 6, shows a return loss better than 20dB at low frequencies that decreases to about 12dB at 3.5MHz. Since the  
source and load resistances are well--matched, the return loss degradation is due to the transformer.  
Figure 7. 120Return Loss Measurement  
Figure 7, shows that for the 120case, transformer characteristics improve return loss at lower frequencies. At 3.5  
MHz, return loss is close to the calculated 13.8dB for a 75source terminated with 120.  
Rev. 1.11  
17  
XRT5897  
Output Transformer Selection  
A 1:2 ratio transformer is recommended for both 75and 120operation because the transmitter, when equipped with  
this device, meets both the ITU G.703 output pulse amplitude requirement and, the ETSI return loss specification.  
Although a center--tapped output transformer is not required, choosing a part with a center-tapped secondary allows the  
use of the same type of unit at the receiver input.  
A theoretical justification for the 1:2 ratio transformer follows:  
RS  
TTIP  
R3  
pos  
1:n  
VS  
VS  
pos  
neg  
V
R
L
O
TRING  
RS  
R4  
neg  
Figure 8. Transmitter Line Driver Model  
Where:  
Vs  
Rs  
= Vs  
= 1.25V typical (Differential line driver peak output voltage swing)  
pos  
pos  
neg  
= Rs  
= 0.8typical (Differential line driver internal source resistance)  
neg  
R3 = R4 = 9.1(Differential line driver external source resistance from Figure 1)  
R = 75or 120(Transmitter load resistance)  
L
n = 2 (Transformer turns ratio)  
Vo = Transmitter peak output voltage (Measured across R = 75or R = 120)  
L
L
Figure 9 may be converted to a single--ended model:  
RS  
RS  
ext  
int  
1:n  
V
S
V
R
L
O
Figure 9. Single-ended Line Driver Model  
Where:  
VS = Vs + Vs  
neg  
pos  
RS = RS  
+ Rs  
neg  
int  
pos  
RS = R3 + R4  
ext  
Rev. 1.11  
18  
XRT5897  
This may be further simplified:  
R
I
T
V
V
eq  
s
Figure 10. Equivalent Circuit  
Where:  
R = RS + Rs  
T
int  
ext  
R
L
R
=
eq  
n2  
Therefore:  
I =  
Vs  
+ Req  
R
T
V
eq  
= I R  
eq  
V = n V  
o
eq  
And:  
R + R  
T
eq  
Return Loss = 20 log  
R -- R  
T
eq  
Table 6. contains the results of calculations madewith theseequations. The numbers showthat outputpulse amplitude  
is within millivolts of the nominal values of 2.37V and 3.00V specified by ITU G.703 for 75and 120operation. Also,  
the 1:2 ratio transformer provides an almost-perfect match for 75operation, and return loss is well within the ETSI  
specification for the 120load.  
Load Resistance  
Pulse Amplitude  
Vo (Volts Peak)  
Output  
Return Loss (dB)  
RL ()  
75  
2.43  
3.01  
31.3  
13.8  
120  
Table 6. Calculated Transmitter Pulse Amplitude and Return Loss  
Rev. 1.11  
19  
XRT5897  
100 LEAD THIN QUAD FLAT PACK  
(14 x 14 x 1.4 mm, TQFP)  
Rev. 2.00  
D
75  
51  
76  
50  
D
100  
26  
1
25  
A
2
B
C
A
α
Seating Plane  
A
1
L
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
0.055  
0.002  
0.053  
0.007  
0.004  
0.622  
0.547  
0.020 BSC  
0.018  
0°  
0.063  
0.006  
0.057  
0.011  
0.008  
0.638  
0.555  
1.40  
0.05  
1.60  
0.15  
A
A
B
C
D
D
e
1
2
1.35  
0.17  
0.09  
15.80  
13.90  
1.45  
0.27  
0.20  
16.20  
14.10  
0.50 BSC  
0.75  
1
L
0.030  
0.45  
α
7°  
0°  
7°  
Note: The control dimension is the millimeter column  
Rev. 1.11  
20  
XRT5897  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to im-  
prove design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits de-  
scribed herein, conveys no license under any patent or other right, and makes no representation that the circuits are  
free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary  
depending upon a user’s specific application. While the information in this publication has been carefully checked;  
no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or  
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly  
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the  
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circum-  
stances.  
Copyright 2001 EXAR Corporation  
Datasheet October 2001  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
Rev. 1.11  
21  

相关型号:

XRT5897IV

Seven-Channel E1 Line Interface
EXAR

XRT5997

Seven-Channel E1 Line Interface Unit
EXAR

XRT5997IV

Seven-Channel E1 Line Interface Unit
EXAR

XRT5997IV-F

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, TQFP-100
EXAR

XRT59L91

Single-Chip E1 Line Interface Unit
EXAR

XRT59L91ID

Single-Chip E1 Line Interface Unit
EXAR

XRT59L921

TWENTY-ONE CHANNEL E1 LINE INTERFACE UNIT
EXAR

XRT59L921IB

TWENTY-ONE CHANNEL E1 LINE INTERFACE UNIT
EXAR

XRT6164

Digital Line Interface Transceiver
EXAR

XRT6164A

Digital Line Interface Transceiver
EXAR

XRT6164AID

Digital Line Interface Transceiver
EXAR

XRT6164AID-F

PCM Transceiver, 1-Func, T-1(DS1), CMOS, PDSO16, 0.300 INCH, GREEN, SOIC-16
EXAR