XRT82D20_06 [EXAR]

SINGLE CHANNEL E1 LINE INTERFACE UNIT; 单路E1线路接口单元
XRT82D20_06
型号: XRT82D20_06
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

SINGLE CHANNEL E1 LINE INTERFACE UNIT
单路E1线路接口单元

文件: 总27页 (文件大小:439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
AUGUST 2006  
REV.1.0.8  
GENERAL DESCRIPTION  
Clock Recovery and Selectable Crystal-less Jitter  
attenuator  
The XRT82D20 is a fully integrated, single channel,  
Line Interface Unit (Transceiver) for 75 or 120 E1  
(2.048 Mbps) applications. The LIU consists of a  
receiver with adaptive data slicer for accurate data  
and clock recovery and a transmitter which accepts  
either single or dual-rail digital inputs for signal  
transmission to the line using a low- impedance  
differential line driver. The LIU also includes a crystal-  
less jitter attenuator for clock and data smoothing  
which, depending on system requirements, can be  
selected in either the transmit or receive path.  
Compliant with ETS300166 Return Loss  
Compliant with the ITU-T G.823 Jitter Tolerance  
Requirements  
Remote, Local and Digital Loop backs  
Declares and Clears LOS per ITU-T G.775  
Logic Inputs accept either 3.3V or 5.0V levels  
0
0
- 40 C to 85 C Temperature Range  
Low Power Dissipation; 145mW with 120 or  
160mW with 75 typical  
Coupling the XRT82D20 to the line requires  
transformers on both the Receiver and Transmitter  
sides, and supports both 120 balanced and 75 Ω  
+3.3V or +5V Supply Operation  
Pin Compatible with the XRT7288  
APPLICATIONS  
unbalanced interfaces.  
The receiver can be  
capacitive coupled to for cost reduction  
FEATURES  
PDH Multiplexers  
Complete E1 (CEPT) line interface unit  
SDH Multiplexers  
Generates transmit output pulses that are  
compliant with the ITU-T G.703 Pulse Template for  
2.048Mbps (E1) rates  
Digital Cross-Connect Systems  
DECT (Digital European Cordless Telephone) Base  
Stations  
On-Chip Pulse Shaping for both 75 and 120 Ω  
Line Drivers  
CSU/DSU Equipment  
Test Equipment  
FIGURE 1. BLOCK DIAGRAM OF THE XRT82D20  
TTIP  
TClk  
TPOS  
TNEG  
HDB3  
Encoder  
Tx Pulse  
Shaper  
Line  
Driver  
MUX  
TRing  
Jitter Attenuator  
Local  
Loopback  
Digital  
Remote  
Loopback  
Loopback  
LOS  
RLOS  
Detect  
Data &  
Timing  
Recovery  
RClk  
RPOS  
RNEG  
HDB3  
Decoder  
Data  
Peak  
RTIP  
MUX  
Slicer  
Detector  
RRing  
Timing  
Generator  
MClk  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
FIGURE 2. PINOUT OF THE XRT82D20  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RTIP  
RLOS  
2
RRing  
MuteRx  
AGND  
AVDD  
TxLEV  
TTIP  
ClkLOS  
3
TNEG/CODE  
4
RNEG/LCV  
5
RClk  
6
RPOS/RData  
7
TClk  
TPOS/TData  
LLoop  
TVDD  
TRing  
TGND  
JAEN  
DIGI  
8
9
10  
11  
12  
13  
14  
RLoop  
DLoop  
ATM  
JATx/Rx  
MClk  
RAOS  
TAOS  
ORDERING INFORMATION  
PART #  
PACKAGE  
OPERATING TEMPERATURE RANGE  
-40oC to + 85oC  
XRT82D20IW  
28 Lead 300 Mil Jedec SOJ  
2
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
TABLE OF CONTENTS  
GENERAL DESCRIPTION................................................................................................ 1  
FEATURES................................................................................................................................................. 1  
APPLICATIONS.......................................................................................................................................... 1  
FIGURE 1. BLOCK DIAGRAM OF THE XRT82D20............................................................................................................................... 1  
FIGURE 2. PINOUT OF THE XRT82D20............................................................................................................................................. 2  
ORDERING INFORMATION .............................................................................................................................. 2  
TABLE OF CONTENTS ............................................................................................................ I  
PIN DESCRIPTIONS......................................................................................................... 3  
FIGURE 3. INTERFACE TIMING DIAGRAM IN BOTH SINGLE-RAIL AND DUAL-RAIL MODE, WITH DIGI (PIN 17) = “0” ............................... 6  
FIGURE 4. INTERFACE TIMING DIAGRAM IN DUAL-RAIL MODE ONLY, WITH DIGI (PIN 17) = “1” ........................................................... 6  
ELECTRICAL CHARACTERISTICS................................................................................. 7  
TABLE 1: RECEIVER CHARACTERISTICS ............................................................................................................................................ 7  
TABLE 2: TRANSMITTER CHARACTERISTICS ....................................................................................................................................... 7  
TABLE 3: 3.3V POWER CONSUMPTION INCLUDING LINE POWER DISSIPATION, TRANSMISSION AND RECEIVE PATHS ALL ACTIVE .......... 7  
TABLE 4: 5V POWER CONSUMPTION INCLUDING LINE POWER DISSIPATION, TRANSMISSION AND RECEIVE PATHS ALL ACTIVE ............. 8  
TABLE 5: AC ELECTRICAL CHARACTERISTICS .................................................................................................................................. 8  
TABLE 6: DC ELECTRICAL CHARACTERISTICS ................................................................................................................................... 9  
ABSOLUTE MAXIMUM RATINGS.............................................................................................................. 9  
FIGURE 5. RECEIVER MAXIMUM JITTER TOLERANCE, TEST CONDITIONS: TEST PATTERN 215-1, (-6DB) CABLE LOSS ....................... 10  
FIGURE 6. RECEIVER JITTER TRANSFER FUNCTION (JITTER ATTENUATOR DISABLED), TEST CONDITIONS: TEST PATTERN 215-1, INPUT JIT-  
TER 0.5UIP-P ................................................................................................................................................................ 10  
FIGURE 7. RECEIVER JITTER TRANSFER FUNCTION (JITTER ATTENUATOR ENABLED) TEST CONDITIONS: TEST PATTERN 215-1, INPUT JITTER  
75% OF MAXIMUM JITTER TOLERANCE........................................................................................................................... 11  
SYSTEM DESCRIPTION................................................................................................. 12  
1.0 THE RECEIVE SECTION....................................................................................................................... 12  
1.1 JITTER ATTENUATOR ..................................................................................................................................... 12  
1.2 THE TRANSMIT SECTION................................................................................................................................ 12  
FIGURE 8. ILLUSTRATION ON HOW THE XRT82D20 SAMPLES THE DATA ON THE TPOS AND TNEG INPUT PINS................................ 13  
1.3 THE PULSE SHAPING CIRCUIT ...................................................................................................................... 13  
FIGURE 9. ILLUSTRATION OF THE ITU-T G.703 PULSE TEMPLATE FOR E1 APPLICATION .................................................................. 14  
1.4 INTERFACING THE TRANSMIT SECTION OF THE XRT82D20 TO THE LINE.............................................. 15  
FIGURE 10. ILLUSTRATION OF HOW TO INTERFACE THE XRT82D20 TO THE LINE FOR 75 OHM APPLICATIONS AND 3.3V OPERATION ONLY  
15  
FIGURE 11. ILLUSTRATION OF HOW TO INTERFACE THE XRT82D20 TO THE LINE FOR 120 OHM APPLICATIONS AND 3.3V OPERATION ONLY  
16  
1.5 INTERFACING THE RECEIVE SECTION TO THE LINE.................................................................................. 17  
FIGURE 12. RECOMMENDED SCHEMATIC FOR TRANSFORMER-COUPLING THE XRT82D20 TO THE LINE FOR 75 OHM APPLICATIONS AND 5  
V OPERATION ONLY ....................................................................................................................................................... 17  
FIGURE 13. RECOMMENDED SCHEMATIC FOR TRANSFORMER-COUPLING THE XRT82D20 TO THE LINE FOR 120 OHM APPLICATIONS AND 5  
V OPERATION ONLY ....................................................................................................................................................... 18  
1.6 CAPACITIVELY-COUPLING THE RECEIVE SECTION(S) OF THE XRT82D20 TO THE LINE...................... 19  
FIGURE 14. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 75 OHM APPLICATION AND 3.3V SUPPLY ..................................... 19  
FIGURE 15. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 120 OHM APPLICATION AND 3.3V SUPPLY ................................... 20  
FIGURE 16. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 75 OHM APPLICATION AND 5V SUPPLY ........................................ 21  
FIGURE 17. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 120 OHM APPLICATION AND 5V SUPPLY ...................................... 22  
2.0 DIAGNOSTIC FEATURES..................................................................................................................... 23  
2.1 THE LOCAL LOOP-BACK MODE .................................................................................................................... 23  
FIGURE 18. ILLUSTRATION OF THE ANALOG LOCAL LOOP-BACK WITHIN THE XRT82D20.................................................................. 23  
2.2 THE REMOTE LOOP BACK MODE.................................................................................................................. 24  
FIGURE 19. ILLUSTRATION OF THE REMOTE LOOP-BACK PATH, WITHIN THE XRT82D20................................................................... 24  
PACKAGE OUTLINE DRAWING.................................................................................... 25  
REVISION HISTORY ..................................................................................................................................... 26  
I
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
PIN DESCRIPTIONS  
PIN #  
SYMBOL  
TYPE  
DESCRIPTION  
1
RLOS  
O
Receiver Loss of Signal: This pin toggles Low to indicate the loss of signal at the  
receive inputs.  
2
3
ClkLOS  
O
I
Receiver Loss of Clock: With MuteRx=1, this pin will toggle low to indicate a loss  
of clock has occurred when the receive signal is lost (RLOS=0). When RLOS=0, no  
transitions occur on RClk, RPOS/RData and RNEG outputs.  
TNEG/  
CODE  
Transmitter Negative Data Input/Coding Select: With Jitter Attenuator enabled  
(pin 18=1), input activity on this pin determines whether the device is configured to  
operate in single-rail or dual-rail mode. With n-rail transmit data applied to this pin,  
the device is automatically configured to operate in dual-rail mode for both transmit  
input and receive output.  
If this pin is tied high for more than 16 clock cycles, the device is configured to oper-  
ate in single-rail mode with HDB3 encoding and decoding functions enabled.  
If this pin is tied low for more than 16 clock cycles, the device is configured to oper-  
ate in single-rail mode with AMI encoding and decoding functions enabled. (internal  
pull-down).  
4
RNEG/LCV  
O
Receive Negative Data/Line Code Violation Output:  
If the device is configured in Dual-rail mode with n-rail data applied to pin 3, then the  
receive negative data will be output through this pin.  
If the device is configured in Single-rail mode and operate with HDB3 coding  
enabled, HDB3 code violation will be detected and cause this pin to go high.  
If the device is configured in Single-rail mode and with AMI coding selected, every  
bipolar violation will be reported at this pin.  
5
6
RClk  
O
O
Receive Clock:  
Output receive clock signal to the terminal equipment.  
RPOS/  
RData  
Receive Positive/ Data Output:  
In Dual-rail mode, this signal is the p-rail receive output data. In Single-rail mode,  
this signal is the receive output data.  
7
8
TClk  
I
I
Transmitter Clock Input:  
Input clock signal (2.048 MHz ± 50ppm)  
TPOS/  
TData  
Transmit Positive / Data Input:  
In Dual-rail mode, this signal is the p-rail transmit input data. In Single-rail mode,  
this signal is the transmit input data.  
9
LLoop  
RLoop  
I
Local Loop back enable (active low):  
Tie this pin low to enable analog Local Loop-back.In local loop-back mode, transmit  
output data is looped back to the input of the receiver.Input signal at RTIP and  
RRing are ignored. Local Loop-back has priority over Remote and Digital Loop-  
back mode. See “Section 2.2, The Remote Loop Back Mode” on page 24  
for more details. (internal pull-up).  
10  
I
Remote Loop Back Enable (active low):  
Connect this pin to ground to enable Remote Loop-back. In Remote Loop-back  
mode, transmit data at TPOS/TData and TNEG are ignored. See “Section 2.2,  
The Remote Loop Back Mode” on page 24 for more details. (internal pull-  
up).  
3
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
PIN #  
SYMBOL  
TYPE  
DESCRIPTION  
11  
DLoop  
I
Digital Loop Back enable (active low):  
Connect this pin to ground to enable Digital Local Loop-back.In Digital loop-back  
mode, transmit input data after the encoder is looped back to the jitter attenuator (if  
selected) and to the receive decoder. Input data at RTIP and RRing are ignored in  
this mode. (internal pull-up). In this mode, the XRT82D20 can operate only as a jit-  
ter attenuator.  
12  
13  
ATM  
I
I
Alarm Test Mode (Active-Low):  
Connect this pin to ground to force ClkLOS, RLOS = 0 and LCV = 1 for testing with-  
out affecting data transmission. (internal pull-up)  
RAOS  
Receive All Ones:  
With this pin tied to High, an all “1’s” signal is inserted to the receiver output at  
RPOS and RNEG/RData using MCLK as timing reference. This control has priority  
over Digital Loop-back if both are enabled. (internal pull-down).  
14  
15  
TAOS  
MClk  
I
I
Transmit All Ones:  
With this pin tied High, an AMI encoded all “1’s” signal is sent to the transmit output  
using MCLK as timing reference. This control has priority over Remote Loop-back if  
both are enabled. (internal pull-down).  
Master Clock Input:  
This signal is an independent 2.048 MHz clock with accuracy better than + 50 ppM  
and duty cycle within 40% to 60%. The function of MClk is to provide timing source  
for the PLL clock recovery circuit, reference clock to insert all “1’s” data in the trans-  
mit as well as receive paths. This signal must be available for the device to operate.  
16  
JATx/Rx  
(DR/SR)  
I
Jitter Attenuator Path Select:  
With the jitter attenuator enabled, (pin 18 =”1”), tie this pin “High” to select the jitter  
attenuator in the transmit path and tie it “Low” to select in the receive path. Data  
input/output format is then controlled automatically by the status of the TNEG input.  
If TNEG data is present the device operates in Dual-rail data mode.  
Dual-Rail/Single-Rail Select:  
With the jitter attenuator disabled, (pin 18 =”0”), tie this pin “High” to select Dual-Rail  
data format and tie it “Low” to select Single-Rail data format. (internal pull-down)  
17  
DIGI  
I
Digital Interface:  
With this pin tied Low, input data at TPOS/TData and TNEG/CODE is active-high  
and will be sampled by TClk on the falling edge, while active-high RPOS/RData and  
RNEG output data are updated on the falling edge of RClk. See Figure 3 and 4 for  
details.  
With his pin tied high and in Dual-rail mode, transmit input accepts active-low  
TPOS/TData and TNEG/CODE data and will be sampled by TClk on the falling  
edge, while RPOS/RData and RNEG/LCV are active-low, data is updated on the  
rising edge of RClk. (internal pull-down).  
18  
JAEN  
I
Jitter Attenuator Enable (active high):  
Connect this pin high to enable the jitter attenuation function. Jitter Attenuator Path  
select is determined by the pin 16 setting. (internal pull-down)  
19  
20  
TGND  
TRing  
-
Transmitter Supply Ground  
O
Transmitter Ring Output:  
Negative bipolar data output to the line.  
21  
TVDD  
-
Transmit Positive Supply:  
5.0 V + 5% or 3.3 V + 5%  
4
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
PIN #  
SYMBOL  
TYPE  
DESCRIPTION  
22  
TTIP  
O
Transmitter TIP Output:  
Positive bipolar data output to the line.  
23  
24  
TxLEV  
AVDD  
I
Transmit Level:  
Tie this pin high for 120 twisted pair cable operation and tie it low for 75 coaxial  
cable operation (internal pull-down). This pin is only active for 5.0V operation.  
-
Analog Positive Supply  
5.0 V + 5% or 3.3 V+ 5%  
25  
26  
AGND  
-
I
Analog Supply Ground  
MuteRx  
Mute Receive Output:  
With this pin tied high, a loss of receive input signal (RLOS=0) will cause ClkLOS to  
go low and generate the following.  
Dual-rail mode operation:  
With DIGI = 0, RClk = 1, RPOS and RNEG/RData = 0  
fWith DIGI = 1, RClk =0, RPOS and RNEG/RData = 1  
Single-rail mode:  
RClk = 1 and RData=0  
(internal pull-down)  
27  
28  
RRing  
RTIP  
I
I
Receive Bipolar Negative Input:  
Bipolar line signal input to the receiver.  
Receiver Bipolar Positive Input:  
Bipolar line signal input to the receiver.  
5
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
FIGURE 3. INTERFACE TIMING DIAGRAM IN BOTH SINGLE-RAIL AND DUAL-RAIL MODE, WITH DIGI (PIN 17) = “0”  
TClk  
tr  
tf  
TClk  
TPOS/TData  
or  
Active High  
TNEG/CODE  
tTSU  
tTHO  
tRCD  
tr  
tf  
RClk  
tRSU  
RPOS/RData  
or  
Active High  
RNEG/LCV  
tRHO  
FIGURE 4. INTERFACE TIMING DIAGRAM IN DUAL-RAIL MODE ONLY, WITH DIGI (PIN 17) = “1”  
TClk  
tr  
tf  
TClk  
TPOS/TData  
Active Low  
tTSU  
tTHO  
tRCD  
tr  
tf  
RClk  
tRSU  
RPOS/RData  
Active Low  
tRHO  
6
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
ELECTRICAL CHARACTERISTICS  
TABLE 1: RECEIVER CHARACTERISTICS  
TA = 25°C, VDD = 3.3V± 5% or 5V± 5% Unless otherwise specified  
MIN.  
PARAMETER  
TYP.  
MAX  
UNIT  
Vp  
Receiver Sensitivity  
0.7  
-18  
0.9  
4.2  
Interference Margin with -6db Cable Loss  
-14  
2.0  
-
-
dB  
Input Impedance measured between RTIP or RRing to  
ground  
kΩ  
Recovered Clock Jitter Transfer Corner Frequency  
Peaking Amplitude  
-
-
18  
36  
kHz  
dB  
0.1  
0.5  
Jitter Attenuator Corner Frequency (-3dB curve)  
-
20  
40  
Hz  
Return Loss  
51kHz-102kHz  
102kHz-2048kHz  
2048kHz-3072kHz  
12  
18  
14  
25  
35  
25  
-
-
-
dB  
dB  
dB  
TABLE 2: TRANSMITTER CHARACTERISTICS  
TA = 25°C, VDD = 3.3V± 5% or 5V± 5% Unless otherwise specified  
PARAMETER  
MIN.  
TYP.  
MAX  
UNIT  
AMI Output Pulse Amplitude  
75 Application  
120 Application  
2.14  
2.70  
2.37  
3.00  
2.60  
3.30  
V
V
Output Pulse Width  
224  
0.9  
-
244  
1.0  
264  
1.1  
ns  
Output Pulse Amplitude Ratio  
Jitter Added by the Transmitter Output  
0.025  
0.050  
UIpp  
Output Return Loss:  
51kHz -102kHz  
-
-
-
20  
25  
20  
-
-
-
dB  
dB  
dB  
102kHz-2048kHz  
2048kHz-3072kHz  
TABLE 3: 3.3V POWER CONSUMPTION INCLUDING LINE POWER DISSIPATION, TRANSMISSION AND RECEIVE PATHS  
ALL ACTIVE  
TA = -40° to 85°C, VDD = 3.3V± 5% Unless otherwise specified  
SYMBO  
PARAMETER  
MIN.  
TYP.  
MAX  
UNIT  
CONDITIONS  
L
PC  
PC  
PC  
Power Consumption  
Power Consumption  
Power Consumption  
-
-
-
100  
92  
140  
130  
190  
mW  
mW  
mW  
75load, operating at 50% Mark Density  
120load, operating at 50% Mark Density  
75load, operating at 100% Mark Density  
150  
7
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
TABLE 3: 3.3V POWER CONSUMPTION INCLUDING LINE POWER DISSIPATION, TRANSMISSION AND RECEIVE PATHS  
ALL ACTIVE  
TA = -40° to 85°C, VDD = 3.3V± 5% Unless otherwise specified  
SYMBO  
PARAMETER  
MIN.  
TYP.  
MAX  
UNIT  
CONDITIONS  
L
PC  
Power Consumption  
-
125  
160  
mW  
120load, operating at 100% Mark Den-  
sity  
TABLE 4: 5V POWER CONSUMPTION INCLUDING LINE POWER DISSIPATION, TRANSMISSION AND RECEIVE PATHS ALL  
ACTIVE  
(TA = -40° to 85°C, VDD = 5V ± 5% Unless otherwise specified)  
SYMBO  
PARAMETER  
MIN.  
TYP.  
MAX  
UNIT  
CONDITIONS  
L
PC  
PC  
PC  
PC  
Power Consumption  
Power Consumption  
Power Consumption  
Power Consumption  
-
-
-
-
160  
145  
200  
180  
210  
195  
260  
240  
mW  
mW  
mW  
mW  
75load, operating at 50% Mark Density  
120load, operating at 50% Mark Density  
75load, operating at 100% Mark Density  
120load, operating at 100% Mark Den-  
sity  
TABLE 5: AC ELECTRICAL CHARACTERISTICS  
TA = -40 to +85 °C, VDD = 3.3V± 5% or 5V ± 5% Unless otherwise specified  
PARAMETER  
SYMBOL  
MClk  
MClk  
TClk  
MIN.  
TYP  
2.048  
50  
MAX  
UNITS  
Clock Frequency  
-50 ppm  
+50ppm MHz  
Clock Duty Cycle  
Clock Period  
40  
-
60  
-
%
ns  
%
ns  
244  
50  
TClk Duty Cycle  
TCDU  
tTSU  
30  
40  
70  
-
Transmit Data Setup Time  
-
Transmit Data Hold Time  
TClk Rise Time (10% /90%)  
TClk Fall Time (90% / 10%)  
RClk Duty Cycle  
tTHO  
tr  
40  
-
-
-
-
ns  
ns  
ns  
%
40  
40  
55  
-
tf  
-
-
RCDU  
tRSU  
45  
150  
50  
244  
Receive Data Setup Time  
ns  
-
Receive Data Hold Time  
RClk to Data Delay  
tRHO  
tRCD  
tr  
150  
244  
ns  
ns  
ns  
ns  
-
-
-
-
-
-
40  
40  
40  
RClk Rise Time (10%/90%)  
RClk Fall Time (90%/10%)  
tf  
8
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
TABLE 6: DC ELECTRICAL CHARACTERISTICS  
Ta = 25°C, Vdd=3.3V ± 5% or 5V ± 5% unless otherwise specified  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Input High Voltage  
Input Low Voltage  
VIH  
2.0  
3.3 or 5.0  
5.5  
V
V
V
VIL  
0.5  
0
-
0.8  
Output High Voltage @IOH=5mA (See Note)  
VDD=3.3V  
VDD=5.0v  
VOH  
2.4  
2.4  
VDD  
VDD  
Output Low Voltage @ IOL=5mA (See Note)  
-
V
VDD=3.3V  
VDD=5.0v  
VOL  
0
0
0.4  
0.4  
Input Leakage Current (except input pins with pull-up  
resistors)  
IL  
-
0
10  
uA  
Input Capacitance  
CI  
-
-
5
-
20  
20  
pF  
pF  
Output Load Capacitance  
CO  
NOTE: All Digital output pins except pin 1 and pin 2, which typically source 20µA at VOH and sink -4mA at VOL  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
Operating Temperature  
Supply Voltage  
-65 to 150°C  
-40 to 85°C  
-0.5V to +5.5V  
9
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
15  
FIGURE 5. RECEIVER MAXIMUM JITTER TOLERANCE, TEST CONDITIONS: TEST PATTERN 2 -1, (-6dB) CABLE LOSS  
103  
JAT Disabled  
102  
JAT Enabled  
101  
ITU-T G.823 Mask  
100  
10−1  
100  
101  
102  
103  
104  
105  
(Freq.(MHz))  
FIGURE 6. RECEIVER JITTER TRANSFER FUNCTION (JITTER ATTENUATOR DISABLED), TEST CONDITIONS: TEST PAT-  
15  
TERN 2 -1, INPUT JITTER 0.5UIP-P  
2
G.735-G739 Specification  
0
−2  
−4  
T82D20 Performance  
−6  
−8  
−10  
−12  
−14  
102  
103  
104  
105  
(Freq.(MHz))  
10  
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
FIGURE 7. RECEIVER JITTER TRANSFER FUNCTION (JITTER ATTENUATOR ENABLED) TEST CONDITIONS: TEST PAT-  
15  
TERN 2 -1, INPUT JITTER 75% OF MAXIMUM JITTER TOLERANCE  
10  
ITU.G.736 Mask  
0
−10  
−20  
−30  
T82D20 Performance  
−40  
−50  
−60  
100  
101  
102  
103  
104  
105  
(Freq.(MHz))  
11  
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
SYSTEM DESCRIPTION  
The XRT82D20 is a single channel E1 transceiver that provides an electrical interface for 2.048Mbps  
applications. XRT82D20 includes a receive circuit that converts an ITU-T G.703 compliant bipolar signal into a  
TTL compatible logic levels. The receiver also includes an LOS (Loss of Signal) detection circuit. Similarly, in  
the Transmit Direction, the Transmitter converts TTL compatible logic levels into a G.703 compatible bipolar  
signal.  
The XRT82D20 consists of both a Receive Section, Jitter Attenuator and Transmit Section; each of these  
sections will be discussed below.  
1.0 THE RECEIVE SECTION  
At the receiver input, cable attenuated AMI signal can be coupled to the receiver using a capacitor or  
transformer. The receive data first goes through the peak detector and data slicer for accurate data  
recovery.The digital representation of the AMI signals go to the clock recovery circuit for timing recovery and  
subsequently to the decoder (if selected) for HDB3 decoding before being output to the RPOS/RData and  
RNEG/LCV pins. The digital data output can be in NRZ or RZ format depending the mode of operation  
selected and with the option to be in dual-rail or single rail mode. Clock timing recovery of the line interface is  
accomplished by means of a digital PLL scheme which has high input jitter tolerance.  
The purpose of the Receive Output Interface block is to interface directly with the Receiving Terminal  
Equipment. The Receive Output Interface block outputs the data (which has been recovered from the  
incoming line signal) to the Receive Terminal Equipment via the RPOS and RNEG output pins.  
If the Receive Section of the XRT82D20 has received a Positive-Polarity pulse, via the RTIP and  
RRing input pins, then the Receive Output Interface will output a pulse at the RPOS output pin.  
Similarly, if the Receive Section of the XRT82D20 has received a Negative-Polarity pulse, via the RTIP and  
RRing input pins, then the Receive Output Interface will output a pulse at the RNEG output pin.  
1.1  
JITTER ATTENUATOR  
To reduce frequency jitter in the transmit clock or receive clock, a crystal-less jitter attenuator is provided. The  
jitter attenuator can be selected either in the transmit or receive path or it can be disabled.  
1.2  
THE TRANSMIT SECTION  
In general, the purpose of the Transmit Section (within the XRT82D20) is to accept TTL/CMOS level digital  
data (from the Terminal Equipment), and to encode it into a format such that it can:  
1. Be efficiently transmitted over coaxial- or twisted pair cable at the E1 data rate; and  
2. Be reliably received by the Remote Terminal Equipment at the other end of the E1 data link.  
3. Comply with the ITU-T G.703 pulse template requirements, for E1 applications  
A 2.048 MHz clock is applied to the TClk input pin and NRZ data at the TPOS and TNEG input pins. The  
Transmit Input Interface circuit will sample the data, at the TPOS and TNEG input pins, upon the falling edge of  
TClk, as illustrated in Figure 8 below.  
12  
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
FIGURE 8. ILLUSTRATION ON HOW THE XRT82D20 SAMPLES THE DATA ON THE TPOS AND TNEG INPUT PINS  
tHO  
tSU  
TPOS  
TNEG  
TClk  
In general, if the XRT82D20 samples a “1” on the TPOS input pin, then the Transmit Section will ultimately  
generate a positive polarity pulse via the TTIP and TRing output pins (across a 1:2 transformer). Conversely, if  
the XRT82D20 samples a “1” on the TNEG input pin, then the Transmit Section of the device will ultimately  
generate a negative polarity pulse via the TTIP and TRing output pins (across a 1:2 transformer).  
1.3  
The Pulse Shaping Circuit  
The purpose of the Transmit Pulse Shaping circuit is to generate Transmit Output pulses that comply with the  
ITU-T G.703 Pulse Template Requirements for E1 Applications.  
An illustration of the ITU-T G.703 Pulse Template Requirements is presented below in Figure 9.  
With input signal as described above, the XRT82D20 will take each mark (which is provided to it via the  
Transmit Input Interface block, and will generate a pulse that complies with the pulse template, presented in  
Figure 9 (when measured on the secondary side of the Transmit Output Transformer).  
13  
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
FIGURE 9. ILLUSTRATION OF THE ITU-T G.703 PULSE TEMPLATE FOR E1 APPLICATION  
269 ns  
(244 + 25)  
V = 100%  
194 ns  
(244 – 50)  
Nominal pulse  
50%  
244 ns  
219 ns  
(244 – 25)  
0%  
488 ns  
(244 + 244)  
Note  
– V corresponds to the nominal peak value.  
14  
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
1.4  
Interfacing the Transmit Section of the XRT82D20 to the Line  
ITU-T G.703 specifies that the E1 line signal can be transmitted over coaxial cable and terminated with 75or  
transmitted over twisted-pair and terminated with 120.  
In both applications (e.g., 75or 120, the user is advised to interface the Transmitter to the Line, in the  
manner as depicted in Figure 10 and Figure 11, respectively.  
FIGURE 10. ILLUSTRATION OF HOW TO INTERFACE THE XRT82D20 TO THE LINE FOR 75 OHM APPLICATIONS AND  
3.3V OPERATION ONLY  
75 Coax  
RPOS/RData  
1 : 2  
RTIP  
RNEG/LCV  
270 Ω  
270 Ω  
RClk  
75 Ω  
Signal  
Source  
Rxx Input  
TVDD  
AVDD  
+3.3 V  
RRING  
10µF  
0.1 µF  
TxLEV  
TGND  
AGND  
75 Coax  
2 : 1  
TTIP  
9.1 Ω  
R Load  
75 Ω  
Tx Output  
TNEG/CODE  
TPOS/TData  
TClk  
9.1 Ω  
TRING  
15  
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
FIGURE 11. ILLUSTRATION OF HOW TO INTERFACE THE XRT82D20 TO THE LINE FOR 120 OHM APPLICATIONS AND  
3.3V OPERATION ONLY  
120 Twisted Pair  
RPOS/RData  
RNEG/LCV  
RClk  
1 : 2  
RTIP  
866 Ω  
866 Ω  
120 Ω  
Signal  
Source  
Rx Input  
RRING  
TTIP  
TVDD  
AVDD  
+3.3 V  
10 µF  
0.1 µF  
TxLEV  
TGND  
AGND  
120 Twisted Pair  
2 : 1  
9.1 Ω  
R Load  
120 Ω  
Tx Output  
TRING  
TNEG/CODE  
TPOS/TData  
TClk  
9.1 Ω  
NOTES:  
1. Figure 10 and Figure 11indicate that for 3.3 V operation, both 75 and 120 applications, the user should  
connect a 9.1resistor in series between the TTIP/TRing outputs and the transformer.  
2. Figure 10 and Figure 11indicate that the user should use a 2 : 1 STEP-UP Transformer.  
16  
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
1.5  
Interfacing the Receive Section to the Line  
The design of the XRT82D20 permits the user to transformer-couple the Receive Section to the line. As  
mentioned earlier, the specifications for E1 require 75termination loads, when transmitting over coaxial  
cable, and 120loads, when transmitting over twisted-pair. Figure 12 and Figure 13 present the various  
methods that the user can employ to interface the Receiver of the XRT82D20 to the line.  
FIGURE 12. RECOMMENDED SCHEMATIC FOR TRANSFORMER-COUPLING THE XRT82D20 TO THE LINE FOR 75 OHM  
APPLICATIONS AND 5 V OPERATION ONLY  
75 Coax  
RPOS/RData  
RNEG/LCV  
RClk  
1 : 2  
RTIP  
270 Ω  
270 Ω  
75 Ω  
Signal  
Source  
Rx Input  
TVDD  
AVDD  
+5 V  
RRING  
10 µF  
0.11 µF  
TxLEV  
TGND  
AGND  
75 Coax  
1.36 : 1  
TTIP  
15.4 Ω  
R Load  
75 Ω  
Tx Output  
TNEG/CODE  
TPOS/TData  
TClk  
15.4 Ω  
TRING  
17  
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
FIGURE 13. RECOMMENDED SCHEMATIC FOR TRANSFORMER-COUPLING THE XRT82D20 TO THE LINE FOR 120  
OHM APPLICATIONS AND 5 V OPERATION ONLY  
120 Twisted Pair  
RPOS/RData  
RNEG/LCV  
RClk  
1 : 2  
RTIP  
866 Ω  
866 Ω  
120 Ω  
Signal  
Source  
Rx Input  
RRING  
TVDD  
AVDD  
+5 V  
10 µF  
0.1 µF  
TxLEV  
TGND  
AGND  
120 Twisted Pair  
1.36 : 1  
TTIP  
26.1 Ω  
R Load  
120 Ω  
Tx Output  
TNEG/CODE  
TPOS/TData  
TClk  
26.1 Ω  
TRING  
NOTE: Figure 12 and Figure 13indicate that the user should use a 1.36 :1 STEP-UP transformer, when interfacing the  
receiver to the line.  
18  
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
1.6  
Capacitively-coupling the Receive Section(s) of the XRT82D20 to the line  
Capacitive coupling provides a lower cost interface to the line. It must be noted that the line isolation is limited  
to the breakdown voltage of the capactior versus the typical transformer isolation of 1,500 to 3,000 volts. With  
a capacitor there is also no DC isolation to ground as there is with with a transformer.  
Applications that are not sensitive to these issues can benefit from the lower cost approach of using capacitor  
coupling on the receive input.  
See Figure 14, Figure 15, Figure 16 and Figure 17 for the recommended schematics for capacitively  
coupling the receiver to the line.  
FIGURE 14. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 75 OHM APPLICATION AND 3.3V SUPPLY  
75 Coax  
RPOS/RData  
RTIP  
RNEG/LCV  
37.4 Ω  
0.1 µF  
RClk  
75 Ω  
Signal  
Source  
Rx Input  
37.4 Ω  
TVDD  
0.1 µF  
+3.3 V  
AVDD  
RRING  
10µF  
0.1µF  
TxLEV  
TGND  
AGND  
75 Coax  
2:1  
TTIP  
9.1 Ω  
Tx Output  
R Load  
75 Ω  
TNEG/CODE  
TPOS/TData  
TClk  
9.1 Ω  
TRING  
NOTE: Resistive divider attenuates the input signal by one-half for both 75 and 120 applications.  
19  
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
FIGURE 15. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 120 OHM APPLICATION AND 3.3V SUPPLY  
120 Twisted Pair  
RPOS/RData  
RNEG/LCV  
RClk  
RTIP  
30.1 Ω  
0.1 µF  
0.1 µF  
Rx Input  
120 Ω  
Signal  
Source  
60.4 Ω  
TVDD  
AVDD  
30.1 Ω  
+3.3 V  
RRING  
10 µF  
0.1µF  
TxLEV  
TGND  
AGND  
120 Twisted Pair  
2:1  
TTIP  
9.1 Ω  
Tx Output  
R Load  
120 Ω  
TNEG/CODE  
TPOS/TData  
TClk  
9.1 Ω  
TRING  
NOTE: Resistive divider attenuates the input signal by one-half for both 75 and 120 applications.  
20  
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
FIGURE 16. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 75 OHM APPLICATION AND 5V SUPPLY  
75 Coax  
RPOS/RData  
RTIP  
RNEG/LCV  
0.1 µF  
RClk  
75 Ω  
Signal  
Source  
Rx Input  
37.4 Ω  
TVDD  
0.1 µF  
AVDD  
RRING  
+5 V  
10 µF  
0.1 µF  
TxLEV  
75 Coax  
1.36:1  
TGND  
AGND  
TTIP  
15.4 Ω  
Tx Output  
R Load  
75 Ω  
TNEG/CODE  
TPOS/TData  
TClk  
15.4 Ω  
TRING  
NOTE: Resistive divider attenuates the input signal by one-half for both 75 and 120 applications.  
21  
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
FIGURE 17. CAPACITIVELY-COUPLING THE RECEIVE SECTION FOR 120 OHM APPLICATION AND 5V SUPPLY  
120 Twisted Pair  
RPOS/RData  
RNEG/LCV  
RClk  
RTIP  
30.1 Ω  
0.1 µF  
0.1 µF  
Rx Input  
120 Ω  
Signal  
Source  
60.4 Ω  
TVDD  
AVDD  
30.1 Ω  
+5 V  
RRING  
10 µF  
0.1 µF  
TxLEV  
TGND  
AGND  
120 Twisted Pair  
1.36:1  
TTIP  
26.1 Ω  
Tx Output  
R Load  
120 Ω  
TNEG/CODE  
TPOS/TData  
TClk  
26.1 Ω  
TRING  
NOTE: Resistive divider attenuates the input signal by one-half for both 75 and 120 applications.  
22  
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
2.0 DIAGNOSTIC FEATURES  
REV.1.0.8  
In order to support diagnostic operations, the XRT82D20 supports the following loop-back modes:  
Local Loopback  
Remote Loopback  
Digital Loopback  
Each of these loop-back modes will be discussed below.  
2.1  
The Local Loop-Back Mode  
When the XRT82D20 is configured to operate in the Local Loop-Back Mode, the XRT82D20 will ignore any  
signals that are input to the RTIP and RRing input pins. The Transmitting Terminal Equipment will transmit  
data into the XRT82D20 via the TPOS, TNEG and TClk input pins. This data will be processed through the  
Transmit Terminal Input Interface and the Pulse Shaping circuit. Finally, this data will be output to the line via  
the TTIP and TRing output pins. Additionally, this data (which is being output via the TTIP and TRing output  
pins) will be looped back into the Receiver block. As a consequence, this data will also be processed through  
the entire Receive Section of the XRT82D20. After this post-loop-back data has been processed through the  
Receive Section it will output, to the Near-End Receiving Terminal Equipment via the RPOS and RNEG output  
pins.  
Figure 18, illustrates the path that the data takes (within the XRT82D20), when the chip is configured to  
operate in the Local Loop-Back Mode.  
The user can configure the XRT82D20 to operate in the Local Loop-Back Mode, by pulling the LLoop input pin  
(pin 9) to GND.  
FIGURE 18. ILLUSTRATION OF THE ANALOG LOCAL LOOP-BACK WITHIN THE XRT82D20  
TTIP  
TClk  
TPOS  
TNEG  
HDB3  
Encoder  
Tx Pulse  
Shaper  
Line  
Driver  
MUX  
TRing  
Jitter Attenuator  
Local  
Loopback  
LOS  
Detect  
RLOS  
Data &  
Timing  
Recovery  
RClk  
RPOS  
RNEG  
HDB3  
Decoder  
Data  
Peak  
RTIP  
MUX  
Slicer  
Detector  
RRing  
Timing  
Generator  
MClk  
23  
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
2.2  
The Remote Loop Back Mode  
When the XRT82D20 is configured to operate in the Remote Loop-Back Mode, the XRT82D20 will ignore any  
signals that are input to the TPOS and TNEG input pins. The XRT82D20 will receive the incoming line signals,  
via the RTIP and RRing input pins. This data will be processed through the entire Receive Section (within the  
XRT82D20) and will output to the Receive Terminal Equipment via the RPOS and RNEG output pins.  
Additionally, this data will also be internally looped back to the Transmit Input Interface block within the  
Transmit Section. At this point, this data will be routed through the remainder of the Transmit Section of the  
XRT82D20 and will be transmitted out onto the line via the TTIP and TRing output pins.  
Figure 19, illustrates the path that the data takes (within the XRT82D20) when the chip is configured to  
operate in the Remote Loop-Back Mode.  
FIGURE 19. ILLUSTRATION OF THE REMOTE LOOP-BACK PATH, WITHIN THE XRT82D20  
TTIP  
TClk  
TPOS  
TNEG  
HDB3  
Encoder  
Tx Pulse  
Shaper  
Line  
Driver  
MUX  
TRing  
Jitter Attenuator  
Remote  
Loopback  
LOS  
RLOS  
Detect  
Data &  
Timing  
Recovery  
RClk  
RPOS  
RNEG  
HDB3  
Decoder  
Data  
Slicer  
Peak  
Detector  
RTIP  
RRing  
MUX  
Timing  
Generator  
MClk  
NOTE: During Remote Loop-Back operation, any data which is input via the RTIP and RRING input pins, will also be output  
to the Terminal Equipment, via the RPOS and RNEG output pins.  
24  
XRT82D20  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REV.1.0.8  
PACKAGE OUTLINE DRAWING  
25  
XRT82D20  
REV. 1.0.8  
SINGLE CHANNEL E1 LINE INTERFACE UNIT  
REVISION HISTORY  
Rev. 1.0.6 corrections to figures, remove values from pull-up/down resistors, correct formating of ±.  
Rev. 1.0.7 Minor edits of figures and text. Added 4 new figures 14, 15, 16 and 17, showing capacitive coupling  
of the receiver to the line.  
Rev. 1.0.8 Edit Pin 9 and 10 as internal pull-up. Updated new format with new Exar logo.  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to  
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that  
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication  
has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the  
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless  
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has  
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately  
protected under the circumstances.  
Copyright 2006 EXAR Corporation  
Datasheet August 2006.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
26  

相关型号:

XRT82L24

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L24A

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L24AIV

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L24AIV-F

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, CMOS, PQFP100, 14 X 14 MM, 1.4 MM HEIGHT, GREEN, TQFP-100
EXAR

XRT82L24IV

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L34IV

Interface IC
ETC

XRT82L38IV

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, THERMALLY ENHANCED, TQFP-144
EXAR

XRT83D10

SINGLE CHANNEL DS1/CEPT LINE INTERFACE UNIT
EXAR

XRT83D10IW

SINGLE CHANNEL DS1/CEPT LINE INTERFACE UNIT
EXAR

XRT83L30

SINGLE-CHANNEL T1/E1/J1 LH/SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT83L30IV

SINGLE-CHANNEL T1/E1/J1 LH/SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT83L30IV-F

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, GREEN, TQFP-64
EXAR