74ACTQ543SC [FAIRCHILD]

Quiet Series⑩ Octal Registered Transceiver with 3-STATE Outputs; 安静Series⑩八路寄存收发器与3态输出
74ACTQ543SC
型号: 74ACTQ543SC
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Quiet Series⑩ Octal Registered Transceiver with 3-STATE Outputs
安静Series⑩八路寄存收发器与3态输出

总线驱动器 总线收发器 逻辑集成电路 光电二极管 输出元件
文件: 总9页 (文件大小:96K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 1990  
Revised August 2000  
74ACQ54374ACTQ543  
Quiet Series Octal Registered Transceiver  
with 3-STATE Outputs  
General Description  
Features  
Guaranteed simultaneous switching noise level and  
The ACQ/ACTQ543 is a non-inverting octal transceiver  
containing two sets of D-type registers for temporary stor-  
age of data flowing in either direction. Separate Latch  
Enable and Output Enable inputs are provided for each  
register to permit independent input and output control in  
either direction of data flow.  
dynamic threshold performance  
Guaranteed pin-to-pin skew AC performance  
8-bit octal latched transceiver  
Separate controls for data flow in each direction  
Back-to-back registers for storage  
Outputs source/sink 24 mA  
The ACQ/ACTQ utilizes Fairchild Quiet Series technol-  
ogy to guarantee quiet output switching and improved  
dynamic threshold performance FACT Quiet Series fea-  
tures GTO output control and undershoot corrector in  
addition to a split ground bus for superior performance.  
300 mil slim PDIP/SOIC  
Ordering Code:  
Order Number Package Number  
Package Description  
74ACQ543SC  
M24B  
N24C  
24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide  
24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide  
24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide  
24-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150 Wide  
24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide  
74ACQ543SPC  
74ACTQ543SC  
74ACTQ543QSC  
74ACTQ543SPC  
M24B  
MQA24  
N24C  
Device also available in Tape and Reel. Specify by appending suffix letter “X” to the order code.  
Connection Diagram  
Pin Descriptions  
Pin Names  
Description  
OEAB  
OEBA  
CEAB  
CEBA  
LEAB  
LEBA  
A0A7  
A-to-B Output Enable Input (Active LOW)  
B-to-A Output Enable Input (Active LOW)  
A-to-B Enable Input (Active LOW)  
B-to-A Enable Input (Active LOW)  
A-to-B Latch Enable Input (Active LOW)  
B-to-A Latch Enable Input (Active LOW)  
A-to-B Data Inputs or  
B-to-A 3-STATE Outputs  
B0B7  
B-to-A Data Inputs or  
A-to-B 3-STATE Outputs  
FACT , Quiet Series , FACT Quiet Series and GTO are trademarks of Fairchild Semiconductor Corporation.  
© 2000 Fairchild Semiconductor Corporation  
DS010154  
www.fairchildsemi.com  
Logic Symbols  
Functional Description  
The ACQ/ACTQ543 contains two sets of eight D-type  
latches, with separate input and output controls for each  
set. For data flow from A to B, for example, the A-to-B  
Enable (CEAB) input must be LOW in order to enter data  
from A0A7 or take data from B0B7, as indicated in the  
Data I/O Control Table. With CEAB LOW, a LOW signal on  
the A-to-B Latch Enable (LEAB) input makes the A-to-B  
latches transparent; a subsequent LOW-to-HIGH transition  
of the LEAB signal puts the A latches in the storage mode  
and their outputs no longer change with the A inputs. With  
CEAB and OEAB both LOW, the 3-STATE B output buffers  
are active and reflect the data present at the output of the A  
latches. Control of data flow from B to A is similar, but using  
the CEBA, LEBA and OEBA inputs  
IEEE/IEC  
Data I/O Control Table  
Inputs  
Latch Status Output Buffers  
CEAB LEAB OEAB  
H
X
L
X
H
L
X
X
X
H
L
Latched  
Latched  
Transparent  
High Z  
X
X
High Z  
Driving  
L
X
H = HIGH Voltage Level  
L = LOW Voltage Level  
X = Immaterial  
A-to-B data flow shown; B-to-A flow control is the same, except using  
CEBA, LEBA and OEBA  
Logic Diagram  
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.  
www.fairchildsemi.com  
2
Absolute Maximum Ratings(Note 1)  
Recommended Operating  
Conditions  
Supply Voltage (VCC  
)
0.5V to +7.0V  
DC Input Diode Current (IIK  
VI = −0.5V  
)
Supply Voltage VCC  
ACQ  
20 mA  
+20 mA  
2.0V to 6.0V  
4.5V to 5.5V  
0V to VCC  
VI = VCC + 0.5V  
ACTQ  
DC Input Voltage (VI)  
0.5V to VCC + 0.5V  
Input Voltage (VI)  
Output Voltage (VO)  
Operating Temperature (TA)  
Minimum Input Edge Rate V/t  
ACQ Devices  
DC Output Diode Current (IOK  
)
0V to VCC  
V
V
O = −0.5V  
20 mA  
+20 mA  
40°C to +85°C  
O = VCC + 0.5V  
DC Output Voltage (VO)  
DC Output Source  
0.5V to VCC + 0.5V  
V
IN from 30% to 70% of VCC  
or Sink Current (IO)  
± 50 mA  
VCC @3.0V, 4.5V, 5.5V  
Minimum Input Edge Rate V/t  
ACTQ Devices  
125 mV/ns  
125 mV/ns  
DC VCC or Ground Current  
per Output Pin (ICC or IGND  
)
± 50 mA  
Storage Temperature (TSTG  
DC Latch-up Source or  
Sink Current  
)
65°C to +150°C  
V
IN from 0.8V to 2.0V  
VCC @ 4.5V, 5.5V  
± 300 mA  
140°C  
Note 1: Absolute maximum ratings are those values beyond which damage  
to the device may occur. The databook specifications should be met, with-  
out exception, to ensure that the system design is reliable over its power  
supply, temperature, and output/input loading variables. Fairchild does not  
recommend operation of FACT circuits outside databook specifications.  
Junction Temperature (TJ)  
PDIP  
DC Electrical Characteristics for ACQ  
VCC  
T
A = +25°C  
TA = −40°C to +85°C  
Symbol  
VIH  
Parameter  
Units  
Conditions  
(V)  
3.0  
4.5  
5.5  
3.0  
4.5  
5.5  
3.0  
4.5  
5.5  
Typ  
1.5  
Guaranteed Limits  
Minimum HIGH Level  
Input Voltage  
2.1  
3.15  
3.85  
0.9  
2.1  
3.15  
3.85  
0.9  
V
OUT = 0.1V  
2.25  
2.75  
1.5  
V
or VCC 0.1V  
VIL  
Maximum LOW Level  
Input Voltage  
V
OUT = 0.1V  
2.25  
2.75  
2.99  
4.49  
5.49  
1.35  
1.65  
2.9  
1.35  
1.65  
2.9  
V
V
or VCC 0.1V  
VOH  
Minimum HIGH Level  
Output Voltage  
4.4  
4.4  
IOUT = −50 µA  
5.4  
5.4  
VIN = VIL or VIH  
3.0  
4.5  
5.5  
3.0  
4.5  
5.5  
2.56  
3.86  
4.86  
0.1  
2.46  
3.76  
4.76  
0.1  
IOH = 12 mA  
V
V
IOH = 24 mA  
IOH = 24 mA (Note 2)  
VOL  
Maximum LOW Level  
Output Voltage  
0.002  
0.001  
0.001  
0.1  
0.1  
IOUT = 50 µA  
0.1  
0.1  
VIN = VIL or VIH  
3.0  
4.5  
5.5  
0.36  
0.36  
0.36  
0.44  
0.44  
0.44  
IOL = 12 mA  
V
IOL = 24 mA  
IOL = 24 mA (Note 2)  
IIN  
Maximum Input  
VI = VCC  
,
5.5  
± 0.1  
± 1.0  
µA  
(Note 4)  
IOLD  
Leakage Current  
Minimum Dynamic  
Output Current (Note 3)  
Maximum Quiescent  
Supply Current  
GND  
5.5  
5.5  
75  
mA  
mA  
V
OLD = 1.65V Max  
OHD = 3.85V Min  
IN = VCC  
IOHD  
ICC  
75  
V
V
5.5  
8.0  
80.0  
µA  
(Note 4)  
IOZT  
or GND  
Maximum I/O  
VI (OE) = VIL, VIH  
VI = VCC, GND  
Leakage Current  
5.5  
± 0.6  
± 6.0  
µA  
VO = VCC, GND  
3
www.fairchildsemi.com  
DC Electrical Characteristics for ACQ (Continued)  
VCC  
(V)  
T
A = +25°C  
T
A = −40°C to +85°C  
Symbol  
Parameter  
Quiet Output  
Units  
Conditions  
Figures 1, 2  
Typ  
Guaranteed Limits  
VOLP  
5.0  
5.0  
5.0  
5.0  
1.1  
1.5  
1.2  
3.5  
V
V
V
V
Maximum Dynamic VOL  
Quiet Output  
(Note 5)(Note 6)  
Figures 1, 2  
VOLV  
VIHD  
VILD  
0.6  
3.1  
Minimum Dynamic VOL  
Minimum HIGH Level  
Dynamic Input Voltage  
Maximum LOW Level  
Dynamic Input Voltage  
(Note 5)(Note 6)  
(Note 5)(Note 7)  
(Note 5)(Note 7)  
1.9  
1.5  
Note 2: Maximum of 8 outputs loaded; thresholds on input associated with output under test.  
Note 3: Maximum test duration 2.0 ms, one output loaded at a time.  
Note 4: IIN and ICC @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V VCC  
.
Note 5: Plastic DIP package.  
Note 6: Max number of outputs defined as (n). Data Inputs are driven 0V to 5V. One output @ GND.  
Note 7: Max number of Data Inputs (n) switching. (n1) Inputs switching 0V to 5V (ACQ). Input-under-test switching: 5V to threshold (VILD),  
0V to threshold (VIHD), f = 1 MHz.  
DC Electrical Characteristics for ACTQ  
VCC  
T
A = +25°C  
TA = −40°C to +85°C  
Symbol  
Parameter  
Units  
Conditions  
(V)  
4.5  
5.5  
4.5  
5.5  
4.5  
5.5  
Typ  
1.5  
Guaranteed Limits  
Minimum HIGH Level  
Input Voltage  
2.0  
2.0  
0.8  
0.8  
4.4  
5.4  
2.0  
2.0  
0.8  
0.8  
4.4  
5.4  
V
OUT = 0.1V  
or VCC 0.1V  
OUT = 0.1V  
or VCC 0.1V  
VIH  
V
V
V
1.5  
Maximum LOW Level  
Input Voltage  
1.5  
V
VIL  
1.5  
Minimum HIGH Level  
Output Voltage  
4.49  
5.49  
I
OUT = −50 µA  
VOH  
V
IN = VIL or VIH  
4.5  
5.5  
4.5  
5.5  
3.86  
4.86  
0.1  
3.76  
4.76  
0.1  
V
V
V
IOH = 24 mA  
I
I
OH = 24 mA (Note 8)  
OUT = 50 µA  
Maximum LOW Level  
Output Voltage  
0.001  
0.001  
0.1  
0.1  
VOL  
VIN = VIL or VIH  
4.5  
5.5  
5.5  
0.36  
0.36  
± 0.1  
0.44  
0.44  
± 1.0  
IOL = 24 mA  
IOL = 24 mA (Note 8)  
VI = VCC, GND  
V(OE) = VIL, VIH  
IIN  
Maximum Input Leakage Current  
Maximum I/O  
µA  
µA  
IOZT  
5.5  
±0.6  
6.0  
Leakage Current  
V
O = VCC, GND  
ICCT  
IOLD  
IOHD  
ICC  
Maximum ICC/Input  
Minimum Dynamic  
5.5  
5.5  
5.5  
5.5  
0.6  
1.5  
75  
mA  
mA  
mA  
µA  
VI = VCC 2.1V  
V
V
V
OLD = 1.65V Max  
OHD = 3.85V Min  
IN = VCC or GND  
Output Current (Note 9)  
Maximum Quiescent Supply Current  
Quiet Output  
75  
80.0  
8.0  
1.5  
Figures 1, 2  
VOLP  
5.0  
5.0  
1.1  
V
V
Maximum Dynamic VOL  
Quiet Output  
(Note 10)(Note 11)  
Figures 1, 2  
VOLV  
VIHD  
VILD  
0.6  
1.2  
Minimum Dynamic VOL  
(Note 10)(Note 11)  
Minimum HIGH Level Dynamic  
Input Voltage  
5.0  
5.0  
1.9  
1.2  
2.2  
0.8  
V
V
(Note 10)(Note 12)  
(Note 10)(Note 12)  
Maximum LOW Level Dynamic  
Input Voltage  
Note 8: Maximum of 8 outputs loaded; thresholds on input associated with output under test.  
Note 9: Maximum test duration 2.0 ms, one output loaded at a time.  
Note 10: DIP package  
Note 11: Max number of outputs defined as (n). (n1) Data Inputs are driven 0V to 3V, one output @ GND.  
Note 12: Max number of Data Inputs (n) switching. (n1) Inputs switching 0V to 3V (ACTQ). Input-under-test switching: 3V to threshold (VILD),  
0V to threshold (VIHD), f =1 MHz.  
www.fairchildsemi.com  
4
AC Electrical Characteristics for AC  
VCC  
T
A = +25°C  
T
A = −40°C to +85°C  
L = 50 pF  
Max  
C
L = 50 pF  
C
Symbol  
Parameter  
(V)  
(Note 13)  
3.3  
Units  
Min  
1.5  
1.5  
Typ  
8.0  
5.0  
Max  
11.0  
7.0  
Min  
tPLH  
Propagation Delay  
1.5  
1.5  
11.5  
7.5  
tPHL  
Transparent Mode  
5.0  
ns  
ns  
An to Bn or Bn to An  
tPLH  
tPHL  
tPZH  
tPZL  
Propagation Delay  
3.3  
5.0  
1.5  
1.5  
9.0  
6.0  
12.5  
8.0  
1.5  
1.5  
13.0  
8.5  
LEBA, LEAB to An, Bn  
Output Enable Time  
OEBA or OEAB to An or Bn  
CEBA or CEAB to An or Bn  
Output Disable Time  
OEBA or OEAB to An or Bn  
CEBA or CEAB to An or Bn  
Output to Output  
3.3  
5.0  
1.5  
1.5  
10.5  
7.0  
15.0  
9.5  
1.5  
1.5  
15.5  
10.0  
ns  
tPHZ  
tPLZ  
3.3  
5.0  
3.3  
5.0  
1.0  
1.0  
8.0  
5.0  
1.0  
0.5  
11.0  
7.0  
1.5  
1.0  
1.0  
1.0  
11.5  
7.5  
1.5  
1.0  
ns  
ns  
tOSHL  
tOSLH  
Skew (Note 14)  
Note 13: Voltage Range 5.0 is 5.0V ± 0.5V  
Voltage Range 3.3 is 3.3V ± 0.3V  
Note 14: Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device.  
The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH). Parameter guaranteed by  
design. Not tested.  
AC Operating Requirements for AC  
VCC  
T
A = +25°C  
L = 50 pF  
T
A = −40°C to +85°C  
L = 50 pF  
Guaranteed Minimum  
C
C
Symbol  
Parameter  
(V)  
(Note 15)  
3.3  
Units  
ns  
Typ  
tS  
Setup Time, HIGH or LOW  
3.0  
3.0  
1.5  
4.0  
An or Bn to LEBA or LEAB  
5.0  
tH  
Hold Time, HIGH or LOW  
An or Bn to LEBA or LEAB  
Latch Enable  
3.3  
1.5  
4.0  
ns  
5.0  
tW  
3.3  
ns  
Pulse Width, LOW  
5.0  
Note 15: Voltage Range 5.0 is 5.0V ± 0.5V  
Voltage Range 3.3 is 3.0V ± 0.3V  
5
www.fairchildsemi.com  
AC Electrical Characteristics for ACTQ  
VCC  
T
A = +25°C  
T
A = −40°C to +85°C  
L = 50 pF  
Max  
C
L = 50 pF  
C
Symbol  
Parameter  
(V)  
Units  
ns  
(Note 16)  
Min  
Typ  
Max  
Min  
tPLH  
Propagation Delay  
tPHL  
Transparent Mode  
An to Bn or Bn to An  
Propagation Delay  
LEBA, LEAB  
5.0  
5.0  
5.0  
1.5  
5.5  
6.5  
8.0  
7.5  
1.5  
1.5  
1.5  
1.0  
8.0  
9.0  
tPLH  
tPHL  
1.5  
1.5  
1.0  
8.5  
ns  
to An, Bn  
tPZH  
tPZL  
Output Enable Time  
OEBA or OEAB to An or Bn  
CEBA or CEAB to An or Bn  
Output Disable Time  
OEBA or OEAB to An or Bn  
CEBA or CEAB to An or Bn  
Output to Output  
10.0  
10.5  
ns  
tPHZ  
tPLZ  
5.0  
5.0  
5.5  
0.5  
7.5  
1.0  
8.0  
1.0  
ns  
ns  
tOSHL  
tOSLH  
Skew (Note 17)  
Note 16: Voltage Range 5.0 is 5.0V ± 0.5V  
Note 17: Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device.  
The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH). Parameter guaranteed by  
design. Not tested.  
AC Operating Requirements for ACTQ  
VCC  
T
A = +25°C  
L = 50 pF  
T
A = −40°C to +85°C  
C
C
L = 50 pF  
Symbol  
Parameter  
(V)  
Units  
(Note 18)  
Typ  
Guaranteed Minimum  
tS  
tS  
tW  
Setup Time, HIGH or LOW  
An or Bn to LEBA or LEAB  
Hold Time, HIGH or LOW  
5.0  
5.0  
5.0  
3.0  
1.5  
4.0  
3.0  
ns  
ns  
ns  
1.5  
4.0  
A
n or Bn to LEBA or LEAB  
Latch Enable  
Pulse Width, LOW  
Note 18: Voltage Range 5.0 is 5.0V ± 0.5V  
Capacitance  
Symbol  
Parameter  
Typ  
4.5  
Units  
pF  
Conditions  
CC = OPEN  
CC = 5.0V  
CIN  
Input Capacitance  
V
CPD  
Power Dissipation Capacitance  
70.0  
pF  
V
www.fairchildsemi.com  
6
FACT Noise Characteristics  
The setup of a noise characteristics measurement is critical  
to the accuracy and repeatability of the tests. The following  
is a brief description of the setup used to measure the  
noise characteristics of FACT.  
VOLP/VOLV and VOHP/VOHV:  
Determine the quiet output pin that demonstrates the  
greatest noise levels. The worst case pin will usually be  
the furthest from the ground pin. Monitor the output volt-  
ages using a 50coaxial cable plugged into a standard  
SMB type connector on the test fixture. Do not use an  
active FET probe.  
Equipment:  
Hewlett Packard Model 8180A Word Generator  
PC-163A Test Fixture  
Measure VOLP and VOLV on the quiet output during the  
Tektronics Model 7854 Oscilloscope  
Procedure:  
worst case transition for active and enable. Measure  
VOHP and VOHV on the quiet output during the worst  
1. Verify Test Fixture Loading: Standard Load 50 pF,  
case active and enable transition.  
500.  
Verify that the GND reference recorded on the oscillo-  
scope has not drifted to ensure the accuracy and repeat-  
ability of the measurements.  
2. Deskew the HFS generator so that no two channels  
have greater than 150 ps skew between them. This  
requires that the oscilloscope be deskewed first. It is  
important to deskew the HFS generator channels  
before testing. This will ensure that the outputs switch  
simultaneously.  
V
ILD and VIHD:  
Monitor one of the switching outputs using a 50coaxial  
cable plugged into a standard SMB type connector on  
the test fixture. Do not use an active FET probe.  
3. Terminate all inputs and outputs to ensure proper load-  
ing of the outputs and that the input levels are at the  
correct voltage.  
First increase the input LOW voltage level, VIL, until the  
output begins to oscillate or steps out a min of 2 ns.  
Oscillation is defined as noise on the output LOW level  
that exceeds VIL limits, or on output HIGH levels that  
4. Set the HFS generator to toggle all but one output at a  
frequency of 1 MHz. Greater frequencies will increase  
DUT heating and effect the results of the measure-  
ment.  
exceed VIH limits. The input LOW voltage level at which  
oscillation occurs is defined as VILD  
.
5. Set the HFS generator input levels at 0V LOW and 3V  
HIGH for ACT devices and 0V LOW and 5V HIGH for  
AC devices. Verify levels with an oscilloscope.  
Next decrease the input HIGH voltage level, VIH, until  
the output begins to oscillate or steps out a min of 2 ns.  
Oscillation is defined as noise on the output LOW level  
that exceeds VIL limits, or on output HIGH levels that  
exceed VIH limits. The input HIGH voltage level at which  
oscillation occurs is defined as VIHD  
Verify that the GND reference recorded on the oscillo-  
scope has not drifted to ensure the accuracy and repeat-  
ability on the measurements.  
FIGURE 1. Quiet Output Noise Voltage Waveforms  
Note 19: VOHVand VOLP are measured with respect to ground reference.  
Note 20: Input pulses have the following characteristics:  
r = 3 ns, tf = 3 ns, skew < 150 ps.  
f = 1 MHz,  
t
FIGURE 2. Simultaneous Switching Test Circuit  
7
www.fairchildsemi.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide  
Package Number M24B  
24-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150 Wide  
Package Number MQA24  
www.fairchildsemi.com  
8
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide  
Package Number N24C  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and  
Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD  
SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the  
body, or (b) support or sustain life, and (c) whose failure  
to perform when properly used in accordance with  
instructions for use provided in the labeling, can be rea-  
sonably expected to result in a significant injury to the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be rea-  
sonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
9
www.fairchildsemi.com  

相关型号:

74ACTQ543SCQR

ACT SERIES, 8-BIT REGISTERED TRANSCEIVER, TRUE OUTPUT, PDSO24, SOIC-24
TI

74ACTQ543SCX

Single 8-bit Bus Transceiver
FAIRCHILD

74ACTQ543SCX

ACT SERIES, 8-BIT REGISTERED TRANSCEIVER, TRUE OUTPUT, PDSO24, 0.300 INCH, SLIM, SOIC-24
TI

74ACTQ543SC_NL

Registered Bus Transceiver, ACT Series, 1-Func, 8-Bit, True Output, CMOS, PDSO24, 0.300 INCH, LEAD FREE, MS-013, SOIC-24
FAIRCHILD

74ACTQ543SPC

Quiet Series⑩ Octal Registered Transceiver with 3-STATE Outputs
FAIRCHILD

74ACTQ543SPC

ACT SERIES, 8-BIT REGISTERED TRANSCEIVER, TRUE OUTPUT, PDIP24, 0.300 INCH, SLIM, PLASTIC, DIP-24
TI

74ACTQ544

Quiet Series⑩ Octal Registered Transceiver with 3-STATE Outputs
FAIRCHILD

74ACTQ544DC

ACT SERIES, 8-BIT REGISTERED TRANSCEIVER, INVERTED OUTPUT, CDIP24, CERAMIC, DIP-24
TI

74ACTQ544FCQR

ACT SERIES, 8-BIT REGISTERED TRANSCEIVER, INVERTED OUTPUT, CDFP24, CERAMIC, DFP-24
TI

74ACTQ544FCX

ACT SERIES, 8-BIT REGISTERED TRANSCEIVER, INVERTED OUTPUT, CDFP24, CERAMIC, DFP-24
TI

74ACTQ544LC

ACT SERIES, 8-BIT REGISTERED TRANSCEIVER, INVERTED OUTPUT, CQCC28, CERAMIC, LCC-28
TI

74ACTQ544LCQR

ACT SERIES, 8-BIT REGISTERED TRANSCEIVER, INVERTED OUTPUT, CQCC28, CERAMIC, LCC-28
TI