FAN4800C [FAIRCHILD]

PFC/PWM Controller Combination; PFC / PWM控制器组合
FAN4800C
型号: FAN4800C
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

PFC/PWM Controller Combination
PFC / PWM控制器组合

功率因数校正 控制器
文件: 总24页 (文件大小:641K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
April 2009  
FAN4800A/C, FAN4801/1S/2/2L  
PFC/PWM Controller Combination  
Features  
Description  
The  
highly  
integrated  
FAN4800A/C  
and  
ƒ
ƒ
ƒ
Pin-to-Pin Compatible with ML4800 and FAN4800  
and CM6800 and CM6800A  
FAN4801/1S/2/2L are specially designed for power  
supplies that consist of boost PFC and PWM. They  
require very few external components to achieve  
versatile protections / compensation. They are available  
in 16-pin DIP and SOP packages.  
PWM Configurable for Current-Mode or  
Feed-Forward Voltage-Mode Operation  
Internally Synchronized Leading-Edge PFC and  
Trailing-Edge PWM in one IC  
The PWM can be used in either current or voltage  
mode. In voltage mode, feed-forward from the PFC  
output bus can reduce the secondary output ripple.  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Low Operating Current  
Innovative Switching-Charge Multiplier Divider  
Average-Current-Mode for Input-Current Shaping  
PFC Over-Voltage and Under-Voltage Protections  
PFC Feedback Open-Loop Protection  
Peak Current Limiting for PFC  
Compared with older productions, ML4800 and  
FAN4800, FAN4800A/C and FAN4801/1S/2/2L have  
lower operation current that save power consumption in  
external devices. FAN4800A/C and FAN4801/1S/2/2L  
have accurate 49.9% maximum duty of PWM that  
makes the hold-up time longer. Specifically, the  
brownout protection and PFC soft-start functions are not  
in ML4800 and FAN4800.  
Cycle-by-Cycle Current Limiting for PWM  
Power-On Sequence Control and Soft-Start  
Brownout Protection  
To start evaluating FAN4800A/C, FAN4801/1S/2/2L for  
replacing existing FAN4800 and ML4800 boards, five  
things must be done before the fine-tuning procedure:  
Interleaved PFC/PWM Switching  
1. Change RAC resister from the old value to a higher  
FAN4801/1S/2/2L Improve Efficiency at Light Load  
resister: between 6MΩ to 8MΩ.  
fRTCT=4•fPFC=4•fPWM for FAN4800A and  
FAN4801/1S  
2. Change RT/CT pin from the existing values to  
RT=6.8KΩ and CT=1000pF to have fPFC=64KHz,  
PWM=64KHz.  
f
ƒ
fRTCT=4•fPFC=2•fPWM for FAN4800C and  
FAN4802/2L  
3. VRMS pin needs to be 1.224V at VIN=85 VAC for  
universal input application from line input from  
85VAC to 270 VAC. Both poles for the Vrms of  
FAN4801/1S/2/2L don’t need to substantially  
slower than FAN4800; about 5 to 10 times.  
Applications  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Desktop PC Power Supply  
4. At full load, the average VEA needs to ~4.5V and  
the ripple on the VEA needs to be less than 400mV.  
Internet Server Power Supply  
LCD TV, Monitor Power Supply  
UPS  
5. Soft-Start pin, the soft-start current has been  
reduced to half from the FAN4800 capacitor.  
Battery Charger  
DC Motor Power Supply  
Monitor Power Supply  
Telecom System Power Supply  
Distributed Power  
Related Resources  
Complete design instructions are detailed in application  
note AN-6078SC (available in Chinese only).  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
1
Ordering Information  
Operating  
Temperature Range  
Packing  
Method  
Eco  
Status  
Part Number  
Package  
FAN4800ANY  
FAN4800CNY  
FAN4800AMY  
FAN4800CMY  
FAN4801NY  
FAN4801SNY  
FAN4802NY  
FAN4802LNY  
FAN4801MY  
FAN4801SMY  
FAN4802MY  
FAN4802LMY  
-40°C to +105°C  
-40°C to +105°C  
-40°C to +105°C  
-40°C to +105°C  
-40°C to +105°C  
-40°C to +105°C  
-40°C to +105°C  
-40°C to +105°C  
-40°C to +105°C  
-40°C to +105°C  
-40°C to +105°C  
-40°C to +105°C  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
16-pin Dual In-Line Package (DIP)  
16-pin Dual In-Line Package (DIP)  
16-pin Small Out-Line Package (SOP)  
16-pin Small Out-Line Package (SOP)  
16-pin Dual In-Line Package (DIP)  
16-pin Dual In-Line Package (DIP)  
16-pin Dual In-Line Package (DIP)  
16-pin Dual In-Line Package (DIP)  
16-pin Small Out-Line Package (SOP)  
16-pin Small Out-Line Package (SOP)  
16-pin Small Out-Line Package (SOP)  
16-pin Small Out-Line Package (SOP)  
Tube  
Tube  
Tape and Reel  
Tape and Reel  
Tube  
Tube  
Tube  
Tube  
Tape and Reel  
Tape and Reel  
Tape and Reel  
Tape and Reel  
For Fairchild’s definition of “green” Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.  
Part Number  
FAN4800ANY  
FAN4800AMY  
FAN4800CNY  
FAN4800CMY  
FAN4801NY  
FAN4801SNY  
FAN4802NY  
FAN4802LNY  
FAN4801MY  
FAN4801SMY  
FAN4802MY  
FAN4802LMY  
PFC:PWM Frequency Ratio  
Brown Out / In  
1.05V / 1.9V  
1.05V / 1.9V  
1.05V / 1.9V  
1.05V / 1.9V  
1.05V / 1.9V  
1.05V / 1.9V  
1.05V / 1.9V  
0.9V / 1.65V  
1.05V / 1.9V  
1.05V / 1.9V  
1.05V / 1.9V  
0.9V / 1.65V  
Range In / Out  
NA  
1:1  
1:1  
1:2  
1:2  
1:1  
1:1  
1:2  
1:2  
1:1  
1:1  
1:2  
1:2  
NA  
NA  
NA  
1.95V / 2.45V  
2.8V / 3.35V  
1.95V / 2.45V  
1.95V / 2.45V  
1.95V / 2.45V  
2.8V / 3.35V  
1.95V / 2.45V  
1.95V / 2.45V  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
2
Application Diagram  
VEA  
FBPFC  
VREF  
VDD  
IEA  
IAC  
ISENSE  
VDD  
VRMS  
SS  
OPFC  
OPWM  
GND  
FBPWM  
RT/CT  
RAMP  
ILIMIT  
VREF  
FAN4800A/C  
FAN4801/1S/2/2L  
Secondary  
Figure 1. Typical Application Current Mode  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
3
Application Diagram  
VEA  
FBPFC  
VREF  
VDD  
IEA  
IAC  
ISENSE  
VDD  
VRMS  
SS  
OPFC  
OPWM  
GND  
FBPWM  
RT/CT  
RAMP  
ILIMIT  
VREF  
FAN4800A/C  
FAN4801/1S/2/2L  
VREF  
Secondary  
Figure 2. Typical Application Voltage Mode  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
4
Block Diagram  
Figure 3.  
FAN4800A/C Function Block Diagram  
Figure 4.  
FAN4801/1S/2/2L Function Block Diagram  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
5
Marking Information  
F – Fairchild Logo  
Z – Plant Code  
X – 1-Digit Year Code  
Y – 1-Digit Week Code  
TT – 2-Digit Die Run Code  
T – Package Type (N:DIP, M:SOP)  
P – Y: Green Package  
M – Manufacture Flow Code  
Figure 5.  
Top Mark  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
6
Pin Configuration  
Figure 6.  
Pin Configuration (Top View)  
Pin Definitions  
Pin #  
Name  
Description  
Output of PFC Current Amplifier. The signal from this pin is compared with an internal  
sawtooth to determine the pulse width for PFC gate drive.  
1
IEA  
Input AC Current. For normal operation, this input provides current reference for the multiplier.  
The suggested maximum IAC is 100µA.  
2
IAC  
PFC Current Sense. The non-inverting input of the PFC current amplifier and the output of  
multiplier and PFC ILIMIT comparator.  
3
4
ISENSE  
VRMS  
Line-Voltage Detection. Line voltage detection. The pin is used for PFC multiplier.  
PWM Soft-Start. During startup, the SS pin charges an external capacitor with a 10µA  
constant current source. The voltage on FBPWM is clamped by SS during startup. In the event  
of a protection condition occurring and/or PWM disabled, the SS pin is quickly discharged.  
5
SS  
6
7
FBPWM  
RT/CT  
PWM Feedback Input. The control input for voltage-loop feedback of PWM stage.  
Oscillator RC Timing Connection. Oscillator timing node; timing set by RT and CT.  
PWM RAMP Input. In current mode, this pin functions as the current sense input; when in  
voltage mode, it is the feed forward sense input from PFC output 380V (feedforward ramp).  
8
RAMP  
9
ILIMIT  
GND  
Peak Current Limit Setting for PWM. The peak current limits setting for PWM.  
Ground.  
10  
PWM Gate Drive. The totem-pole output drive for PWM MOSFET. This pin is internally  
clamped under 15V to protect the MOSFET.  
11  
12  
OPWM  
OPFC  
PFC Gate Drive. The totem pole output drive for PWM MOSFET. This pin is internally clamped  
under 15V to protect the MOSFET.  
Supply. The power supply pin. The threshold voltages for startup and turn-off are 11V and  
9.3V, respectively. The operating current is lower than 10mA.  
13  
14  
15  
VDD  
VREF  
FBPFC  
Reference Voltage. Buffered output for the internal 7.5V reference.  
Voltage Feedback Input for PFC. The feedback input for PFC voltage loop. The inverting  
input of PFC error amplifier. This pin is connected to the PFC output through a divider network.  
Output of PFC Voltage Amplifier. The error amplifier output for PFC voltage feedback loop.  
A compensation network is connected between this pin and ground.  
16  
VEA  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
7
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device  
reliability. The absolute maximum ratings are stress ratings only.  
Symbol  
VDD  
Parameter  
Min.  
Max.  
30  
Unit  
V
DC Supply Voltage  
VH  
SS, FBPWM, RAMP, OPWM, OPFC  
IAC, VRMS, RT/CT, ILIMIT, FBPFC, VEA  
VREF  
-0.3  
-0.3  
30.0  
7.0  
V
VL  
V
VVREF  
VIEA  
7.5  
V
IEA  
0
VVREF+0.3  
0.7  
V
VN  
ISENSE  
-5.0  
V
IAC  
Input AC Current  
1
mA  
mA  
A
IREF  
VREF Output Current  
5
IPFC-OUT  
IPWM-OUT  
PD  
Peak PFC OUT Current, Source or Sink  
Peak PWM OUT Current, Source or Sink  
Power Dissipation TA < 50°C  
0.5  
0.5  
A
800  
mW  
°C/W  
°C/W  
°C  
°C  
°C  
kV  
V
DIP  
SOP  
80.80  
104.10  
+125  
+150  
+260  
4.5  
RΘ j-a  
Thermal Resistance (Junction-to-Air)  
TJ  
TSTG  
TL  
Operating Junction Temperature  
Storage Temperature Range  
Lead Temperature(Soldering)  
-40  
-55  
Human Body Model, JESD22-A114  
Charged Device Model, JESD22-C101  
Electrostatic Discharge  
Capability  
ESD  
1000  
Notes:  
1. All voltage values, except differential voltage, are given with respect to GND pin.  
2. Stresses beyond those listed under “absolute maximum ratings “may cause permanent damage to the device.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
TA  
Operating Ambient Temperature  
-40  
+105  
°C  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
8
Electrical Characteristics  
VDD=15V, TA=25°C, RT=6.8k, CT=1000pF unless noted operating specifications.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Units  
VDD Section  
IDD ST  
Startup Current  
VDD=VTH-ON-0.1V; OPFC OPWM Open  
VDD=13V; OPFC OPWM Open  
30  
80  
µA  
IDD-OP  
Operating Current  
2.0  
10  
2.6  
5.0  
mA  
Turn-On Threshold  
Voltage  
VTH-ON  
11  
12  
V
Hysteresis  
VDD OVP  
1.5  
27  
1.9  
29  
V
V
V
ΔVTH  
VDD-OVP  
28  
1
VDD OVP Hysteresis  
ΔVDD-OVP  
Oscillator  
fOSC-RT/CT  
RT/CT Frequency  
RT=6.8k, CT=1000pF  
RT=6.8k, CT=1000pF  
240  
60  
256  
64  
268  
67  
kHz  
kHz  
PFC & PWM Frequency  
fOSC  
FAN4800C,FAN4802/02L  
PWM Frequency  
120  
128  
134  
11V VDD 22V  
fDV  
fDT  
Voltage Stability  
2
2
%
%
Temperature Stability  
-40°C ~ +105°C  
Total Variation  
fTV  
Line, Temperature  
58  
70  
kHz  
(PFC & PWM)(3)  
fRV  
IDischarge  
fRANGE  
tPFCD  
Ramp Voltage(3)  
Discharge Current  
Frequency Range(3)  
PFC Dead Time  
Valley to Peak  
2.8  
V
VRAMP=0V, VRT/CT=2.5V  
6.5  
50  
15  
75  
mA  
kHz  
ns  
RT=6.8k, CT=1000pF  
400  
600  
800  
VREF  
VVREF  
Reference Voltage  
IREF=0mA, CREF=0.1µF  
7.4  
7.5  
30  
7.6  
50  
V
Load Regulation of  
Reference Voltage  
CREF=0.1µF, IREF=0mA to 3.5mA  
mV  
ΔVVREF1  
ΔVVREF2  
VVDD=14V, Rise/Fall Time > 20µs  
Line Regulation of  
Reference Voltage  
CREF=0.1µF, VVDD=11V to 22V  
25  
mV  
(3)  
Temperature Stability  
Total Variation  
-40°C ~ +105°C  
0.4  
0.5  
7.65  
25  
%
V
ΔVVREF-DT  
(3)  
Line, Load, Temp  
TJ=125°C, 0 ~ 1000HRs  
VVREF > 7.35V  
7.35  
5
ΔVVREF-TV  
(3)  
Long-Term Stability  
Maximum Current  
Output Short Circuit  
mV  
mA  
mA  
ΔVVREF-LS  
IREF-MAX  
.
5
(3)  
IOS  
25  
PFC OVP Comparator  
VPFC-OVP  
Over-Voltage Protection  
PFC OVP Hysteresis  
2.70  
200  
2.75  
250  
2.80  
300  
V
mV  
ΔVPFC-OVP  
Low-Power Detect Comparator  
VEAOFF  
VEA Voltage OFF OPFC  
0.2  
0.3  
0.4  
V
VIN OK Comparator  
Voltage Level on FBPFC  
VRD-FBPFC  
to Enable OPWM During  
Startup  
2.3  
2.4  
2.5  
V
V
Hysteresis  
1.15  
1.25  
1.35  
ΔVRD-FBPFC  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
9
Electrical Characteristics (Continued)  
VDD=15V, TA=25°C, RT=6.8k, CT=1000pF unless noted operating specifications.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Units  
Voltage Error Amplifier  
FBPFC  
Vref  
Input Voltage Range(3)  
0
2.45  
35  
6
V
V
Reference Voltage  
Open-Loop Gain(3)  
Transconductance  
at T=25°C  
2.50  
42  
2.55  
AV  
dB  
Gmv  
VNONINV=VINV, VVEA=3.75V at T=25°C  
50  
70  
90  
µmho  
µA  
IFBPFC-L  
IFBPFC-H  
IBS  
Maximum Source Current VFBPFC=2V, VVEA=1.5V  
40  
50  
Maximum Sink Current  
Input Bias Current  
VFBPFC=3V, VVEA=6V  
-50  
-40  
1
µA  
-1  
µA  
Output High Voltage on  
VVEA  
VVEA-H  
VVEA-L  
5.8  
6.0  
0.1  
V
V
Output Low Voltage on  
VVEA  
0.4  
0.7  
Current Error Amplifier  
Input Voltage Range  
VISENSE  
-1.5  
V
(ISENSE Pin)(3)  
GmI  
VOFFSET  
VIEA-H  
VIEA-L  
IL  
Transconductance  
Input Offset Voltage  
Output High Voltage  
Output Low Voltage  
Source Current  
VNONINV=VINV, VIEA=3.75V  
VVEA=0V, IAC Open  
78  
-10  
6.8  
88  
100  
10  
µmho  
mV  
V
7.4  
0.1  
50  
8.0  
0.4  
V
VISENSE=-0.6V, VIEA=1.5V  
VISENSE=+0.6V, VIEA=4.0V  
35  
40  
µA  
µA  
dB  
IH  
Sink Current  
Open-Loop Gain(3)  
-50  
50  
-35  
AI  
Tri-Fault Detect  
VFBPFC=VPFC-UVP to FBPFC OPEN,  
470pF from FBPFC to GND  
tFBPFC_OPEN Time to FBPFC Open(3)  
2
4
ms  
V
PFC Feedback Under-  
VPFC-UVP  
0.4  
0.5  
0.6  
Voltage Protection  
Gain Modulator  
IAC  
Input for AC Current(3)  
GAIN Modulator(4)  
Bandwidth(3)  
Multiplier Linear Range  
0
100  
µA  
IAC=17.67µA, VRMS=1.080V  
7.50  
9.00  
7.00  
4.20  
1.05  
10.50  
VFBPFC=2.25V, at T=25°C  
IAC=20µA, VRMS=1.224V VFBPFC=2.25V,  
at T=25°C  
6.30  
3.80  
0.95  
0.66  
7.70  
4.60  
1.16  
0.80  
IAC=25.69µA, VRMS=1.585V  
GAIN  
V
FBPFC=2.25V, at T=25°C  
IAC=51.62µA, VRMS=3.169V  
FBPFC=2.25V, at T=25°C  
AC=62.23µA, VRMS=3.803V  
FBPFC=2.25V, at T=25°C  
V
I
V
0.73  
2
BW  
IAC=40µA  
kHz  
V
Output Voltage=5.7k×  
IAC=20µA, VRMS=1.224V VFBPFC=2.25V,  
at T=25°C  
Vo(gm)  
0.74  
0.82  
0.90  
(3)  
(ISENSE-IOFFSET  
)
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
10  
Electrical Characteristics (Continued)  
VDD=15V, TA=25°C, RT=6.8k, CT=1000pF unless noted operating specifications.  
Symbol  
PFC ILIMIT Comparator  
Peak Current Limit  
Parameter  
Conditions  
Min. Typ. Max. Units  
VPFC-ILIMIT Threshold Voltage,  
Cycle-by-Cycle Limit  
-1.25 -1.15 -1.05  
200  
V
PFC ILIMIT-Gain  
ΔVpk  
I
AC=17.67µA, VRMS=1.08V  
mV  
Modulator Output  
VFBPFC=2.25V, at T=25°C  
PFC Output Driver  
Gate Output Clamping  
VGATE-CLAMP  
Voltage  
VDD=22V  
13  
15  
17  
V
VGATE-L  
VGATE-H  
tr  
Gate Low Voltage  
Gate High Voltage  
Gate Rising Time  
Gate Falling Time  
Maximum Duty Cycle  
Minimum Duty Cycle  
VDD=15V; IO=100mA  
VDD=13V; IO=100mA  
VDD=15V; CL=4.7nF; O/P=2V to 9V  
VDD=15V; CL=4.7nF; O/P=9V to 2V  
VIEA<1.2V  
1.5  
V
V
8
40  
40  
94  
70  
60  
97  
120  
110  
ns  
ns  
%
%
tf  
DPFC-MAX  
DPFC-MIN  
Brown Out  
VIEA>4.5V  
0
FAN4800A/C, FAN4801/1S/2  
FAN4802L  
1.00  
0.85  
1.85  
1.60  
750  
1.05  
0.90  
1.90  
1.65  
850  
1.10  
0.95  
1.95  
1.70  
950  
V
V
VRMS-UVP  
VRMS Threshold Low  
VRMS Threshold High  
Hysteresis  
FAN4800A/C, FAN4801/1S/2  
FAN4802L  
V
VRMS-UVP  
V
FAN4800A/C, FAN4801/1S/2  
FAN4802L  
mV  
mV  
ΔVRMS-UVP  
650  
750  
850  
Under-Voltage  
Protection Delay Time  
tUVP  
340  
9.5  
410  
480  
ms  
Soft-Start  
VSS-MAX  
ISS  
Maximum Voltage  
Soft-Start Current  
VDD=15V  
10.0  
10  
10.5  
V
µA  
PWM ILIMIT Comparator  
VPWM-ILIMIT Threshold Voltage  
tPD  
0.95  
170  
1.00  
250  
1.05  
350  
V
Delay to Output  
ns  
Leading-Edge Blanking  
Time  
tPWM-Bnk  
250  
ns  
Range (FAN4801/1S/2/2L)  
VRMS-L RMS AC Voltage LOW  
VRMS-H  
When VRMS=1.95V at 132VRMS  
1.90  
2.40  
1.90  
2.75  
2.40  
3.30  
18  
1.95  
2.45  
1.95  
2.80  
2.45  
3.35  
20  
2.00  
2.50  
2.00  
2.85  
2.50  
3.40  
22  
V
V
RMS AC Voltage HIGH When VRMS=2.45V at 150VRMS  
VEA LOW  
When VVEA=1.95V at 30% Loading,  
When VVEA=2.80V at 60% Loading  
VEA-L  
V
VEA LOW (FAN4801S)  
VEA HIGH  
When VVEA=2.45V at 40% Loading,  
When VVEA=3.35V at 70% Loading  
VEA-H  
Itc  
V
VEA HIGH (FAN4801S)  
Two-Level Current  
FBPFC Two-Level Current  
µA  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
11  
Electrical Characteristics (Continued)  
VDD=15V, TA=25°C, RT=6.8k, CT=1000pF unless noted operating specifications.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Units  
PWM Output Driver  
VGATE-CLAMP Gate Output Clamping Voltage VDD=22V  
13  
15  
17  
V
V
VGATE-L  
VGATE-H  
tr  
Gate Low Voltage  
VDD=15V; IO=100mA  
VDD=13V; IO=100mA  
VDD=15V; CL=4.7nF  
VDD=15V; CL=4.7nF  
1.5  
Gate High Voltage  
8
30  
V
Gate Rising Time  
60  
50  
120  
110  
50.0  
1.8  
ns  
ns  
%
V
tf  
Gate Falling Time  
30  
DPWM-MAX  
VPWM-LS  
Notes:  
Maximum Duty Cycle  
PWM Comparator Level Shift  
49.0  
1.3  
49.5  
1.5  
3. This parameter, although guaranteed by design, is not 100% production tested.  
4. Gain=K × 5.3 × (VRMS2)-1; K=( ISENSE IOFFSET) × [IAC × (VEA 0.7V)]-1; VEA (MAX.)=5.6V.  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
12  
Typical Characteristics  
20.0  
18.0  
16.0  
14.0  
12.0  
10.0  
8.0  
2.96  
2.94  
2.92  
2.90  
2.88  
2.86  
2.84  
2.82  
2.80  
2.78  
6.0  
4.0  
2.0  
0.0  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 7. IDD-ST vs. Temperature  
Figure 8.  
IDD-OP vs. Temperature  
11.4  
11.3  
11.2  
11.1  
11.0  
10.9  
10.8  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
-40-25-105℃  
203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 9. VTH-ON vs. Temperature  
Figure 10. ΔVTH vs. Temperature  
28.04  
28.02  
28.00  
27.98  
27.96  
27.94  
27.92  
27.90  
27.88  
27.86  
65.0  
64.9  
64.8  
64.7  
64.6  
64.5  
64.4  
64.3  
64.2  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
℃ ℃  
Figure 11.  
VDD-OVP vs. Temperature  
Figure 12. fOSC-FAN4801/1S vs. Temperature  
130.0  
655  
650  
645  
640  
635  
630  
625  
620  
615  
129.8  
129.6  
129.4  
129.2  
129.0  
128.8  
128.6  
128.4  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 13. fOSC-FAN4802/2L vs. Temperature  
Figure 14. tPFCD vs. Temperature  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
13  
Typical Characteristics  
7.520  
7.515  
7.510  
7.505  
7.500  
7.495  
7.490  
7.485  
7.480  
7.475  
6
5
4
3
2
1
0
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 15. VVREF vs. Temperature  
Figure 16. ΔVVREF1 vs. Temperature  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 18.  
IREF-MAX. vs. Temperature  
Figure 17. ΔVVREF2 vs. Temperature  
2.742  
252.2  
252.0  
251.8  
251.6  
251.4  
251.2  
251.0  
250.8  
2.740  
2.738  
2.736  
2.734  
2.732  
2.730  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 19. VPFC-OVP vs. Temperature  
Figure 20. ΔVPFC-OVP vs. Temperature  
2.400  
1.275  
1.270  
1.265  
1.260  
1.255  
1.250  
1.245  
1.240  
2.398  
2.396  
2.394  
2.392  
2.390  
2.388  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 21. VRD-FBPFC vs. Temperature  
Figure 22. ΔVRD-FBPFC vs. Temperature  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
14  
Typical Characteristics  
74  
73  
73  
72  
72  
71  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
2.488  
-40-25-105203550658095110125℃  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
℃ ℃  
Figure 23. VREF vs. Temperature  
Figure 24. GmV vs. Temperature  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
94  
92  
90  
88  
86  
84  
82  
80  
78  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 25. VOFFSET vs. Temperature  
Figure 26. GmI vs. Temperature  
7.10  
6.1  
7.05  
7.00  
6.95  
6.90  
6.85  
6.80  
6.75  
6.70  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 27. GAIN2 vs. Temperature  
Figure 28. Rmul vs. Temperature  
-1.1775  
295  
-1.1780  
-1.1785  
-1.1790  
-1.1795  
-1.1800  
-1.1805  
-1.1810  
-1.1815  
-1.1820  
-1.1825  
290  
285  
280  
275  
270  
265  
260  
255  
250  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 29. VPFC-ILIMIT vs. Temperature  
Figure 30. ΔVpk vs. Temperature  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
15  
Typical Characteristics  
1.010  
1.009  
1.008  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
10.1  
10.0  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 31. VPWM-ILIMIT vs. Temperature  
Figure 32. ISS vs. Temperature  
1.048  
867.5  
867.0  
866.5  
866.0  
865.5  
865.0  
864.5  
864.0  
863.5  
863.0  
862.5  
862.0  
1.047  
1.046  
1.045  
1.044  
1.043  
1.042  
1.041  
1.040  
1.039  
1.038  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 33.  
VRMS-UVP vs. Temperature  
Figure 34. ΔVRMS-UVP vs. Temperature  
2.446  
1.940  
2.445  
2.444  
2.443  
2.442  
2.441  
2.440  
2.439  
2.438  
2.437  
2.436  
2.435  
1.939  
1.938  
1.937  
1.936  
1.935  
1.934  
1.933  
1.932  
1.931  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 35. VRMS-L vs. Temperature  
Figure 36. VRMS-H vs. Temperature  
1.942  
2.436  
2.434  
2.432  
2.430  
2.428  
2.426  
2.424  
1.940  
1.938  
1.936  
1.934  
1.932  
1.930  
1.928  
110 125  
-40-25-105203550658095℃  
-40-25-105203550658095110125℃  
Figure 37. VEA-L vs. Temperature  
Figure 38. VEA-H vs. Temperature  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
16  
Typical Characteristics  
14.4  
14.3  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
14.7  
14.6  
14.5  
14.4  
14.3  
14.2  
14.1  
14.0  
13.9  
110 125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
-40-25-105203550658095110125℃  
Figure 39. VGATE-CLAMP-PFC vs. Temperature  
Figure 40. VGATE-CLAMP-PWM vs. Temperature  
96.06  
96.04  
96.02  
96.00  
95.98  
95.96  
95.94  
95.92  
95.90  
95.88  
49.80  
49.75  
49.70  
49.65  
49.60  
49.55  
49.50  
110 125  
-40-25-105203550658095℃  
-40-25-105203550658095110125℃  
Figure 41. DPFC-MAX vs. Temperature  
Figure 42. DPWM-MAX vs. Temperature  
21.0  
1.460  
20.8  
20.6  
20.4  
20.2  
20.0  
19.8  
19.6  
19.4  
1.455  
1.450  
1.445  
1.440  
1.435  
1.430  
-40-25-105203550658095110125℃  
-40-25-105203550658095110125℃  
Figure 43. Itc vs. Temperature  
Figure 44. VPWM-LS vs. Temperature  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
17  
Functional Description  
The FAN4800A/C and FAN4801/1S/2/2L consist of an  
average current controlled, continuous boost Power  
Factor Correction (PFC) front-end and a synchronized  
Pulse Width Modulator (PWM) back-end. The PWM  
can be used in current or voltage mode. In voltage  
mode, feed forward from the PFC output bus can be  
used to improve the line regulation of PWM. In either  
mode, the PWM stage uses conventional trailing-edge,  
duty-cycle modulation. This proprietary leading/trailing  
edge modulation results in a higher usable PFC error  
amplifier bandwidth and can significantly reduce the  
size of the PFC DC bus capacitor.  
IAC ×(VEA 0.7)  
IGAINMOD  
=
×K  
(1)  
2
VRMS  
Note that the output current of the gain modulator is  
limited around 159μA and the maximum output voltage  
of the gain modulator is limited to 159μA  
5.7K=0.906V. This 0.906V also determines the  
maximum input power.  
x
However, IGAINMOD cannot be measured directly from  
SENSE. ISENSE=IGAINMOD – IOFFSET and IOFFSET can only be  
I
measured when VEA is less than 0.5V and IGAINMOD is 0A.  
Typical IOFFSET is around 31μA ~ 48μA.  
The synchronization of the PWM with the PFC  
simplifies the PWM compensation due to the controlled  
ripple on the PFC output capacitor (the PWM input  
capacitor). The PWM section of the FAN4800A,  
FAN4801/1S operates at the same frequency as the  
PFC; and FAN4800C, FAN4802/2L operates at double  
with PFC.  
Selecting RAC for IAC Pin  
The IAC pin is the input of the gain modulator and also  
a current mirror input and requires current input.  
Selecting a proper resistor RAC provides a good sine  
wave current derived from the line voltage and helps  
program the maximum input power and minimum input  
line voltage. RAC=VIN peak x 56K. For example, if the  
minimum line voltage is 75VAC, the RAC=75 x 1.414 x  
56K=6M.  
In addition to power factor correction, a number of  
protection features are built into this series. They  
include soft-start, PFC over-voltage protection, peak  
current limiting, brownout protection, duty cycle limiting,  
and under-voltage lockout (UVLO).  
Current Amplifier Error, IEA  
Gain Modulator  
The current error amplifier’s output controls the PFC  
duty cycle to keep the average current through the  
boost inductor a linear function of the line voltage. At  
the inverting input to the current error amplifier, the  
output current of the gain modulator is summed with a  
current, which results in a negative voltage being  
impressed upon the ISENSE pin.  
The gain modulator is the heart of the PFC, as the  
circuit block controls the response of the current loop to  
line voltage waveform and frequency, RMS line voltage,  
and PFC output voltages. There are three inputs to the  
gain modulator:  
1. A current representing the instantaneous input  
voltage (amplitude and wave shape) to the PFC.  
The rectified AC input sine wave is converted to a  
proportional current via a resistor and is fed into the  
gain modulator at IAC. Sampling current in this way  
minimizes ground noise, required in high-power,  
switching-power conversion environments. The gain  
modulator responds linearly to this current.  
The negative voltage on ISENSE represents the sum of  
all currents flowing in the PFC circuit and is typically  
derived from a current sense resistor in series with the  
negative terminal of the input bridge rectifier.  
The inverting input of the current error amplifier is a  
virtual ground. Given this fact, and the arrangement of  
the duty cycle modulator polarities internal to the PFC,  
an increase in positive current from the gain modulator  
causes the output stage to increase its duty cycle until  
the voltage on ISENSE is adequately negative to  
cancel this increased current. Similarly, if the gain  
modulator’s output decreases, the output duty cycle  
decreases to achieve a less negative voltage on the  
ISENSE pin.  
2. A voltage proportional to the long-term RMS AC line  
voltage, derived from the rectified line voltage after  
scaling and filtering. This signal is presented to the  
gain modulator at VRMS. The output of the gain  
modulator is inversely proportional to VRMS (except at  
unusually low values of VRMS, where special gain  
contouring takes over to limit power dissipation of  
the circuit components under brownout conditions).  
3. The output of the voltage error amplifier, VEA. The  
gain modulator responds linearly to variations in this  
voltage.  
PFC Cycle-By-Cycle Current Limiter  
As well as being a part of the current feedback loop,  
the ISENSE pin is a direct input to the cycle-by-cycle  
current limiter for the PFC section. If the input voltage  
at this pin is less than -1.15V, the output of the PFC is  
disabled until the protection flip-flop is reset by the  
clock pulse at the start of the next PFC power cycle.  
The output of the gain modulator is a current signal, in  
the form of a full wave rectified sinusoid at twice the  
line frequency. This current is applied to the virtual  
ground (negative) input of the current error amplifier. In  
this way, the gain modulator forms the reference for the  
current error loop and ultimately controls the  
instantaneous current draw of the PFC from the power  
line. The general form of the output of the gain  
modulator is:  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
18  
TriFault Detect™  
Error Amplifier Compensation  
To improve power supply reliability, reduce system  
component count, and simplify compliance to UL 1950  
safety standards, the FAN4800A/C, FAN4801/1S/2/2L  
includes TriFault Detect. This feature monitors FBPFC  
for certain PFC fault conditions.  
The PWM loading of the PFC can be modeled as a  
negative resistor because an increase in the input  
voltage to the PWM causes a decrease in the input  
current.  
This  
response  
dictates  
the  
proper  
compensation of the two transconductance error  
amplifiers. Figure 45 shows the types of compensation  
networks most commonly used for the voltage and  
current error amplifiers, along with their respective  
return points. The current-loop compensation is  
returned to VREF to produce a soft-start characteristic  
on the PFC: As the reference voltage increases from  
0V, it creates a differentiated voltage on IEA, which  
prevents the PFC from immediately demanding a full  
duty cycle on its boost converter. Complete design is  
referred in application note AN-6078SC.  
In a feedback path failure, the output of the PFC could  
exceed safe operating limits. With such a failure,  
FBPFC exceeds its normal operating area. Should  
FBPFC go too LOW, too HIGH, or OPEN, TriFault  
Detect senses the error and terminates the PFC output  
drive.  
TriFault detect is an entirely internal circuit. It requires  
no external components to serve its protective function.  
PFC Over-Voltage Protection  
There is an RC filter between RSENSE and ISENSE pin.  
There are two reasons to add a filter at the ISENSE pin:  
In the FAN4800A/C, FAN4801/1S/2/2L, the PFC OVP  
comparator serves to protect the power circuit from  
being subjected to excessive voltages if the load  
changes suddenly. A resistor divider from the high-  
voltage DC output of the PFC is fed to FBPFC. When  
the voltage on FBPFC exceeds 2.75V, the PFC output  
driver is shut down. The PWM section continues to  
operate. The OVP comparator has 250mV of hysteresis  
and the PFC does not restart until the voltage at  
FBPFC drops below 2.50V. VDD OVP can also serve as  
a redundant PFC OVP protection. VDD OVP threshold is  
28V with 1V hysteresis.  
1. Protection: During startup or inrush current conditions,  
there is a large voltage across RSENSE, which is the  
sensing resistor of the PFC boost converter. It  
requires the ISENSE filter to attenuate the energy.  
2. To reduce L, the boost inductor: The ISENSE filter also  
can reduce the boost inductor value since the ISENSE  
filter behaves like an integrator before the ISENSE pin,  
which is the input of the current error amplifier, IEA.  
The ISENSE filter is an RC filter. The resistor value of the  
I
SENSE filter is between 100and 50because IOFFSET x  
RFILTER can generate a negative offset voltage of IEA.  
Selecting an RFILTER equal to 50keeps the offset of  
the IEA less than 3mV. Design the pole of ISENSE filter at  
Selecting PFC Rsense  
RSENSE is the sensing resistor of the PFC boost  
converter. During the steady state, line input current x  
f
PFC/6, one sixth of the PFC switching frequency, so the  
boost inductor can be reduced six times without  
disturbing the stability. The capacitor of the ISENSE filter,  
RSENSE equals IGAINMOD x 5.7K.  
At full load, the average VEA needs to around 4.5V and  
ripple on the VEA needs to be less than 400mV. Choose  
the resistance of the sensing resistor:  
CFILTER, is approximately 100nF.  
V
REF  
(4.5 0.7)× 5.7KΩ × I  
2× (5.6 0.7)× Line Input Power  
where 5.6 is VEA maximum output.  
×Gain ×V  
× 2  
AC  
IN  
R
=
(2)  
CV2  
RV1  
CI2  
RI1  
SENSE  
CV1  
CI1  
PFC Output  
IEA  
VEA  
1
16  
PFC Soft-Start  
PFC startup is controlled by VEA level. Before FBPFC  
voltage reaches 2.4V, the VEA level is around 2.8V. At  
90VAC, the PFC soft-start time is 90ms.  
RF1  
RF2  
Rmul  
GMi  
GMv  
FBPFC  
IAC  
15  
2.5V  
2
4
3
IMO  
Gain  
V(t)  
Rmul  
Modulator  
VRMS  
RFILTER  
ISENSE  
PFC Brownout  
RSENSE  
The AC UVP comparator monitors the AC input voltage.  
The FAN4800A/C, FAN4801/1S/2 disables OPFC when  
the VRMS is less than 1.05V and continues 500ms. The  
VRMS threshold low voltage of FAN4802L is 0.9V, which  
is different from the FAN4802.  
CFILTER  
Figure 45.  
Compensation Network Connection  
for the Voltage and Current Error Amplifiers  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
19  
Two-Level PFC Function  
Pulse Width Modulator (PWM)  
To improve the efficiency, the system can reduce PFC  
switching loss at low line and light load by reducing the  
PFC output voltage. The two-level PFC output of  
FAN4801/1S/2/2L can be programmable.  
The operation of the PWM section is straightforward,  
but there are several points that should be noted.  
Foremost among these is the inherent synchronization  
of PWM with the PFC section of the device, from which  
it also derives its basic timing. The PWM is capable of  
current-mode or voltage-mode operation. In current-  
mode applications, the PWM ramp (RAMP) is usually  
derived directly from a current sensing resistor or  
current transformer in the primary of the output stage. It  
is thereby representative of the current flowing in the  
converter’s output stage. ILIMIT, which provides cycle-by-  
cycle current limiting, is typically connected to RAMP in  
such applications. For voltage-mode operation and  
certain specialized applications, RAMP can be  
connected to a separate RC timing network to generate  
a voltage ramp against which FBPWM is compared.  
Under these conditions, the use of voltage feed-forward  
from the PFC bus can assist in line regulation accuracy  
and response. As in current-mode operation, the ILIMIT  
input is used for output stage over-current protection.  
No voltage error amplifier is included in the PWM  
stage, as this function is generally performed on the  
output side of the PWM’s isolation boundary. To  
facilitate the design of opto-coupler feedback circuitry,  
an offset has been built into the PWM’s RAMP input  
that allows FBPWM to command a 0% duty cycle for  
input voltages below typical 1.5V.  
As Figure 46 shows, FAN4801/1S/2/2L detect VEA pin  
and VRMS pin to determine the system operates low  
line and light load or not. At the second-level PFC,  
there is a current of 20µA through RF2 from FBPFC pin.  
So the second-level PFC output voltage can be  
calculated as.  
R
+ R  
F2  
F1  
Output ≅  
×(2.5V 20μA × R )  
F2  
(3)  
R
F2  
For example, if the second-level PFC output voltage is  
expected as 300V and normal voltage is 387V,  
according to the equation, RF2 is 28kRF1 is 4.3M.  
The programmable range of second level PFC output  
voltage is 340V ~ 300V.  
VEA  
PFC Output  
16  
VDD  
RF1  
20µA  
gmv  
FBPFC  
15  
2.5V  
PWM Cycle-By-Cycle Current Limiter  
RF2  
The ILIMIT pin is a direct input to the cycle-by-cycle  
current limiter for the PWM section. Should the input  
voltage at this pin ever exceed 1V, the output flip-flop is  
reset by the clock pulse at the start of the next PWM  
power cycle. When the ILIMIT triggers the cycle-by-cycle  
bi-cycle current, it limits the PWM duty cycle mode and  
the power dissipation is reduced during the dead-short  
condition.  
Range  
4
VRMS  
Figure 46.  
Two-Level PFC Scheme  
Oscillator (RT/CT)  
The oscillator frequency is determined by the values of  
RT and CT, which determine the ramp and off-time of  
the oscillator output clock:  
VIN OK Comparator  
The VIN OK comparator monitors the DC output of the  
PFC and inhibits the PWM if the voltage on FBPFC is  
less than its nominal 2.4V. Once the voltage reaches  
2.4V, which corresponds to the PFC output capacitor  
being charged to its rated boost voltage, the soft-start  
begins.  
1
fRT /CT  
=
(4)  
tRT /CT + tDEAD  
The dead time of the oscillator is derived from the  
following equation:  
PWM Soft-Start (SS)  
V
1  
REF  
3.8  
t
= C × R × In  
T T  
(5)  
RT /CT  
PWM startup is controlled by selection of the external  
capacitor at soft-start. A current source of 10µA  
supplies the charging current for the capacitor and  
startup of the PWM begins at 1.5V.  
V
REF  
at VREF=7.5V and tRT/CT=CT x RT x 0.56.  
The dead time of the oscillator is determined using:  
2.8V  
tDEAD  
=
×CT = 360×CT  
(6)  
7.78mA  
The dead time is so small (tRT/CT>>tDEAD) that the  
operating frequency can typically be approximated by:  
1
fRT /CT  
=
(7)  
tRT /CT  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
20  
PWM Control (RAMP)  
Leading/Trailing Modulation  
When the PWM section is used in current mode, RAMP  
is generally used as the sampling point for a voltage,  
representing the current in the primary of the PWM’s  
output transformer. The voltage is derived either from a  
current sensing resistor or a current transformer. In  
voltage mode, RAMP is the input for a ramp voltage  
generated by a second set of timing components  
(RRAMP, CRAMP) that have a minimum value of 0V and a  
peak value of approximately 6V. In voltage mode, feed  
forward from the PFC output bus is an excellent way to  
derive the timing ramp for the PWM stage.  
Conventional PWM techniques employ trailing-edge  
modulation, in which the switch turns on right after the  
trailing edge of the system clock. The error amplifier  
output is then compared with the modulating ramp up.  
The effective duty cycle of the trailing edge modulation  
is determined during the on-time of the switch.  
In the case of leading-edge modulation, the switch is  
turned off exactly at the leading edge of the system  
clock. When the modulating ramp reaches the level of  
the error amplifier output voltage, the switch is turned  
on. The effective duty-cycle of the leading-edge  
modulation is determined during off-time of the switch.  
Generating VDD  
After turning on the FAN4800A/C, FAN4801/1S/2/2L at  
11V, the operating voltage can vary from 9.3V to 28V.  
The threshold voltage of the VDD OVP comparator is  
28V and its hysteresis is 1V. When VDD reaches 28V,  
OPFC is LOW, and the PWM section is not disturbed.  
There are two ways to generate VDD: use auxiliary  
power supply around 15V or use bootstrap winding to  
self-bias the FAN4800A/C, FAN4801/1S/2/2L system.  
The bootstrap winding can be taped from the PFC  
boost choke or the transformer of the DC-to-DC stage.  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
21  
Physical Dimensions  
A
19.68  
18.66  
9
16  
6.60  
6.09  
1
8
(0.40)  
TOP VIEW  
0.38 MIN  
5.33 MAX  
8.13  
7.62  
3.42  
3.17  
3.81  
2.92  
15  
0
0.35  
0.20  
2.54  
0.58  
0.35  
A
1.78  
1.14  
8.69  
17.78  
SIDE VIEW  
NOTES: UNLESS OTHERWISE SPECIFIED  
A
THIS PACKAGE CONFORMS TO  
JEDEC MS-001 VARIATION BB  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,  
MOLD FLASH, AND TIE BAR PROTRUSIONS  
D) CONFORMS TO ASME Y14.5M-1994  
E) DRAWING FILE NAME: N16EREV1  
Figure 47.  
16-Pin Dual In-Line Package (DIP)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify  
or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically  
the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
22  
Physical Dimensions (Continued)  
Figure 48.  
16-Pin Small Outline Package (SOIC)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify  
or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically  
the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
23  
© 2008 Fairchild Semiconductor Corporation  
FAN4800A/C, FAN4801/1S/2/2L • Rev. 1.0.2  
www.fairchildsemi.com  
24  

相关型号:

FAN4800CMY

PFC/PWM Controller Combination
FAIRCHILD

FAN4800CMY

CCM PFC + PWM Combination Controller, 2500-REEL
ONSEMI

FAN4800CNY

PFC/PWM Controller Combination
FAIRCHILD

FAN4800CNY

CCM PFC + PWM Combination Controller, MDIP 16L, 9000-RAIL
ONSEMI

FAN4800CS

PFC/PWM Controller Combination
FAIRCHILD

FAN4800CSMY

PFC/PWM Controller Combination
FAIRCHILD

FAN4800CSMY

功率因数控制器 (PFC) CCM + PWM 控制器,浪涌能力增强
ONSEMI

FAN4800CSNY

PFC/PWM Controller Combination
FAIRCHILD

FAN4800CSNY

功率因数控制器 (PFC) CCM + PWM 控制器,浪涌能力增强
ONSEMI

FAN4800CUM

PFC/ PWM Controller Combination
FAIRCHILD

FAN4800CUM

功率因数控制器 (PFC) CCM + PWM 控制器,线路下垂保护
ONSEMI

FAN4800CUN

PFC/ PWM Controller Combination
FAIRCHILD