FAN54010UCX(1) [FAIRCHILD]

FAN54010 / FAN54011 / FAN54012 / FAN54013 / FAN54014; FAN54010 / FAN54011 / FAN54012 / FAN54013 / FAN54014
FAN54010UCX(1)
型号: FAN54010UCX(1)
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

FAN54010 / FAN54011 / FAN54012 / FAN54013 / FAN54014
FAN54010 / FAN54011 / FAN54012 / FAN54013 / FAN54014

文件: 总36页 (文件大小:1235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 2012  
FAN54010 / FAN54011 / FAN54012 / FAN54013 / FAN54014  
USB-Compliant Single-Cell Li-Ion Switching Charger with  
USB-OTG Boost Regulator  
Features  
Description  
The FAN54010 family (FAN5401X) combines  
a highly  
.
Fully Integrated, High-Efficiency Charger for Single-Cell  
Li-Ion and Li-Polymer Battery Packs  
integrated switch-mode charger, to minimize single-cell Lithium-  
ion (Li-ion) charging time from a USB power source, and a  
boost regulator to power a USB peripheral from the battery.  
.
.
Faster Charging than Linear  
Charge Voltage Accuracy:  
0.5% at 25°C  
1% from 0 to 125°C  
The charging parameters and operating modes are  
programmable through an I2C Interface that operates up to  
3.4 Mbps. The charger and boost regulator circuits switch at  
3MHz to minimize the size of external passive components.  
.
.
.
.
.
.
5% Input Current Regulation Accuracy  
5% Charge Current Regulation Accuracy  
20 V Absolute Maximum Input Voltage  
6 V Maximum Input Operating Voltage  
1.45 A Maximum Charge Rate  
The FAN5401X provides battery charging in three phases:  
conditioning, constant current, and constant voltage.  
To ensure USB compliance and minimize charging time, the  
input current is limited to the value set through the I2C host.  
Charge termination is determined by a programmable  
minimum current level. A safety timer with reset control  
provides a safety backup for the I2C host.  
Programmable through High-Speed I2C Interface  
(3.4 Mb/s) with Fast Mode Plus Compatibility  
Input Current  
The integrated circuit (IC) automatically restarts the charge  
cycle when the battery falls below an internal threshold. If the  
input source is removed, the IC enters a high-impedance  
mode with leakage from the battery to the input prevented.  
Charge status is reported back to the host through the I2C  
port. Charge current is reduced when the die temperature  
reaches 120°C.  
Fast-Charge / Termination Current  
Charger Voltage  
Termination Enable  
.
3 MHz Synchronous Buck PWM Controller with Wide  
Duty Cycle Range  
.
.
.
.
Small Footprint 1H External Inductor  
The FAN5401X can operate as a boost regulator on  
command from the system. The boost regulator includes a  
soft-start that limits inrush current from the battery.  
Safety Timer with Reset Control  
1.8 V Regulated Output from VBUS for Auxiliary Circuits  
The FAN5401X is available in a 1.96 x 1.87 mm, 20-bump,  
0.4 mm pitch, WLCSP package.  
Weak Input Sources Accommodated by Reducing  
Charging Current to Maintain Minimum VBUS Voltage  
.
.
Low Reverse Leakage to Prevent Battery Drain to VBUS  
5 V, 500 mA Boost Mode for USB OTG for 3.0 V to  
4.5 V Battery Input  
Applications  
.
.
.
Cell Phones, Smart Phones, PDAs  
Tablet, Portable Media Players  
Gaming Device, Digital Cameras  
Figure 1. Typical Application  
All trademarks are the property of their respective owners.  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
Ordering Information  
Part Number  
FAN54010UCX(1)  
FAN54011UCX(1)  
FAN54012UCX(1)  
FAN54013UCX  
FAN54014UCX(1)  
Temperature Range  
Package  
PN Bits: IC_INFO[4:2] Packing Method  
-40 to 85°C  
-40 to 85°C  
-40 to 85°C  
-40 to 85°C  
-40 to 85°C  
011  
001  
011  
101  
111  
Tape and Reel  
Tape and Reel  
Tape and Reel  
Tape and Reel  
Tape and Reel  
20-Bump, Wafer-Level  
Chip-Scale Package  
(WLCSP),  
0.4 mm Pitch,  
Estimated Size:  
1.96 x 1.87 mm  
Note:  
1. Preliminary release only; please contact a Fairchild representative for information about part availability.  
Table 1. Feature Comparison Summary  
Battery  
Slave  
Automatic  
Charge  
Special  
Safety  
VREG  
(E3 Pin)  
PN Bits:  
Part Number  
Absent  
E2 Pin  
REG3[4:2]  
Address  
Charger(2) Limits  
Behavior  
FAN54010UCX  
FAN54011UCX  
FAN54012UCX  
FAN54013UCX  
FAN54014UCX  
Note:  
011  
001  
011  
101  
111  
1101011  
1101011  
1101011  
1101011  
1101011  
Yes  
No  
No  
No  
No  
No  
OFF  
OFF  
ON  
AUXPWR  
(Connect  
to VBAT)  
PMID  
1.8V  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
OFF  
OFF  
DISABLE  
2. A “special charger” is a current-limited charger that is not a USB compliant source.  
Table 2. Recommended External Components  
Component  
Description  
Vendor  
Parameter  
Typ.  
Unit  
1 µH ±20%, 1.6 A  
DCR=55 m, 2520  
Murata: LQM2HPN1R0  
L1  
L
1.0  
H  
1 µH ±30%, 1.4A  
DCR=85 m, 2016  
Murata: LQM2MPN1R0  
Murata: GRM188R60J106M  
TDK: C1608X5R0J106M  
CBAT  
CMID  
10 µF, 20%, 6.3 V, X5R, 0603  
4.7 µF, 10%, 6.3 V, X5R, 0603  
1.0 µF, 10%, 25 V, X5R, 0603  
C
C(3)  
C
10  
4.7  
1.0  
F  
F  
F  
Murata: GRM188R60J475K  
TDK: C1608X5R0J475K  
Murata GRM188R61E105K  
TDK:C1608X5R1E105M  
CBUS  
Note:  
3. A 6.3 V rating is sufficient for CMID since PMID is protected from over-voltage surges on VBUS by Q3 (Figure 3).  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
2
Block Diagram  
Figure 2. IC and System Block Diagram  
VBUS  
CIN1  
PMID  
Q3  
CIN2  
CHARGE  
PUMP  
Q1  
Q1A  
Q1B  
CSIN  
SW  
L1  
PMID  
Greater than VBAT  
Less than VBAT  
Q1A Q1B  
ON OFF  
OFF ON  
Q2  
1H  
RSENSE  
68m  
COUT  
PGND  
VBAT  
Battery  
+
CBAT  
SYSTEM  
LOAD  
Figure 3. Power Stage  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
3
Pin Configuration  
A1  
B1  
C1  
D1  
E1  
A2  
B2  
C2  
D2  
E2  
A3  
B3  
C3  
D3  
E3  
A4  
B4  
C4  
D4  
E4  
A4  
B4  
C4  
D4  
E4  
A3  
B3  
C3  
D3  
E3  
A2  
B2  
C2  
D2  
E2  
A1  
B1  
C1  
D1  
E1  
Top View  
Bottom View  
Figure 4. WLCSP-20 Pin Assignments  
Pin Definitions  
Pin #  
A1, A2  
A3  
Name  
VBUS  
NC  
Part # Description  
ALL Charger Input Voltage and USB-OTG output voltage. Bypass with a 1 µF capacitor to PGND.  
ALL No Connect. No external connection is made between this pin and the IC’s internal circuitry.  
ALL I2C Interface Serial Clock. This pin should not be left floating.  
A4  
SCL  
Power Input Voltage. Power input to the charger regulator, bypass point for the input current  
ALL sense, and high-voltage input switch. Bypass with a minimum of 4.7 µF, 6.3 V capacitor to  
PGND.  
B1-B3  
PMID  
B4  
C1-C3  
C4  
SDA  
SW  
ALL I2C Interface Serial Data. This pin should not be left floating.  
ALL Switching Node. Connect to output inductor.  
STAT  
ALL Status. Open-drain output indicating charge status. The IC pulls this pin LOW when charging.  
Power Ground. Power return for gate drive and power transistors. The connection from this pin  
to the bottom of CMID should be as short as possible.  
D1-D3  
D4  
PGND  
OTG  
ALL  
On-The-Go. Enables boost regulator in conjunction with OTG_EN and OTG_PL bits (see Table  
16). On VBUS Power-On Reset (POR), this pin sets the input current limit for t15MIN charging.  
ALL  
Current-Sense Input. Connect to the sense resistor in series with the battery. The IC uses this  
node to sense current into the battery. Bypass this pin with a 0.1F capacitor to PGND.  
E1  
CSIN  
ALL  
10, 11, Auxiliary Power. Connect to the battery pack to provide IC power during High-Impedance  
E2  
AUXPWR  
12  
Mode. Bypass with a 1 µF capacitor to PGND.  
Charge Disable. If this pin is HIGH, charging is disabled. When LOW, charging is controlled by  
the I2C registers. When this pin is HIGH, the 15-minute timer is reset. This pin does not affect  
the 32-second timer.  
13, 14,  
E2  
DISABLE  
Regulator Output. Connect to a 1 µF capacitor to PGND. This pin can supply up to 2 mA of DC  
E3  
E4  
VREG  
VBAT  
ALL load current. For FAN54010-FAN54012, the output voltage is PMID, which is limited to 6.5 V.  
For FAN54013-FAN54014, the output voltage is regulated to 1.8 V.  
Battery Voltage. Connect to the positive (+) terminal of the battery pack. Bypass with a 0.1 μF  
ALL  
capacitor to PGND if the battery is connected through long leads.  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
4
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above  
the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended  
exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum  
ratings are stress ratings only.  
Symbol  
VBUS  
VSTAT  
VI  
Parameter  
Min.  
–1.4  
–2.0  
–0.3  
Max.  
Unit  
Continuous  
VBUS Voltage  
20.0  
V
Pulsed, 100 ms Maximum Non-Repetitive  
STAT Voltage  
PMID Voltage  
16.0  
7.0  
V
V
SW, CSIN, VBAT, AUXPWR, DISABLE Voltage  
Voltage on Other Pins  
–0.3  
–0.3  
7.0  
6.5(4)  
VO  
V
dVBUS  
dt  
Maximum VBUS Slope above 5.5 V when Boost or Charger are Active  
4
V/s  
Human Body Model per JESD22-A114  
Charged Device Model per JESD22-C101  
2000  
500  
Electrostatic Discharge  
Protection Level  
ESD  
V
TJ  
TSTG  
TL  
Junction Temperature  
Storage Temperature  
–40  
–65  
+150  
+150  
+260  
°C  
°C  
°C  
Lead Soldering Temperature, 10 Seconds  
Note:  
4. Lesser of 6.5 V or VI + 0.3 V.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating  
conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend  
exceeding them or designing to absolute maximum ratings.  
Symbol  
Parameter  
Min.  
Max.  
6
Unit  
V
VBUS  
Supply Voltage  
4
VBAT(MAX) Maximum Battery Voltage when Boost enabled  
4.5  
4
V
TA < 60°C  
TA > 60°C  
dVBUS  
dt  
Negative VBUS Slew Rate during VBUS Short Circuit,  
MID < 4.7 µF (see VBUS Short While Charging)  
V/s  
C
2
TA  
TJ  
Ambient Temperature  
Junction Temperature (see Thermal Regulation and Protection section)  
–30  
–30  
+85  
+120  
°C  
°C  
Thermal Properties  
Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer  
2s2p boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature  
T
J(max) at a given ambient temperature TA. For measured data, see Table 11.  
Symbol Parameter  
Typical  
60  
Unit  
°C/W  
°C/W  
Junction-to-Ambient Thermal Resistance  
Junction-to-PCB Thermal Resistance  
JA  
JB  
20  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
5
Electrical Specifications  
Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for TJ and TA;  
VBUS=5.0 V; HZ_MODE; OPA_MODE=0; (Charge Mode); SCL, SDA, OTG=0 or 1.8 V; and typical values are for TJ=25°C.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Power Supplies  
VBUS > VBUS(min), PWM Switching  
10  
mA  
mA  
VBUS > VBUS(min); PWM Enabled,  
Not Switching (Battery OVP  
Condition); I_IN Setting=100mA  
2.5  
IVBUS  
VBUS Current  
0°C < TJ < 85°C, HZ_MODE=1  
63  
90  
5.0  
20  
10  
A  
A  
V
BAT < VLOWV, 32S Mode  
0°C < TJ < 85°C, HZ_MODE=1,  
BAT=4.2 V, VBUS=0 V  
0°C < TJ < 85°C, HZ_MODE=1,  
BAT=4.2 V  
ILKG  
VBAT to VBUS Leakage Current  
0.2  
V
V
Battery Discharge Current in High-  
Impedance Mode  
IBAT  
A  
FAN54013-14, DISABLE=1,  
0°C < TJ < 85°C, VBAT=4.2 V  
Charger Voltage Regulation  
Charge Voltage Range  
3.5  
–0.5%  
–1%  
4.4  
VOREG  
TA=25°C  
+0.5%  
+1%  
V
Charge Voltage Accuracy  
Charging Current Regulation  
Output Charge Current Range  
TJ=0 to 125°C  
VLOWV < VBAT < VOREG  
550  
1450  
mA  
%
RSENSE=68m  
FAN54010-12  
FAN54013-14  
FAN54010-12  
FAN54013-14  
95  
92  
97  
94  
100  
97  
105  
102  
103  
100  
20 mV < VIREG  
40 mV  
<
IOCHRG  
Charge Current Accuracy Across  
RSENSE  
100  
97  
VIREG > 40 mV  
Rising Voltage  
Weak Battery Detection  
Weak Battery Threshold Range  
3.4  
–5  
3.7  
+5  
V
%
VLOWV  
Weak Battery Threshold Accuracy  
Weak Battery Deglitch Time  
30  
ms  
Logic Levels: DISABLE, SDA, SCL, OTG  
VIH  
VIL  
IIN  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Bias Current  
1.05  
V
V
0.4  
Input Tied to GND or VIN  
0.01  
1.00  
A  
Charge Termination Detection  
Termination Current Range  
50  
–25  
–5  
400  
+25  
+5  
mA  
%
VBAT > VOREG – VRCH, RSENSE=68 m  
[VCSIN – VBAT ] from 3 mV to 20 mV  
[VCSIN – VBAT ] from 20 mV to 40 mV  
2 mV Overdrive  
I(TERM)  
Termination Current Accuracy  
Termination Current Deglitch Time  
30  
ms  
1.8V Linear Regulator  
VREG  
1.8 V Regulator Output  
IREG from 0 to 2 mA, FAN54013-14  
1.7  
1.8  
1.9  
V
Continued on the following page…  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
6
Electrical Specifications  
Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for TJ and TA;  
VBUS=5.0 V; HZ_MODE; OPA_MODE=0; (Charge Mode); SCL, SDA, OTG=0 or 1.8 V; and typical values are for TJ=25°C.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Input Power Source Detection  
VIN(MIN)1 VBUS Input Voltage Rising  
VIN(MIN)2 Minimum VBUS During Charge  
To Initiate and Pass VBUS Validation  
During Charging  
4.29  
3.71  
30  
4.42  
3.94  
V
V
tVBUS_VALID VBUS Validation Time  
ms  
Special Charger (VBUS) (FAN54013, FAN54014)  
–3  
+3  
%
VSP  
Special Charger Setpoint Accuracy  
Input Current Limit  
IIN Set to 100 mA  
IIN Set to 500 mA  
88  
93  
98  
IINLIM  
Input Current Limit Threshold  
mA  
450  
475  
500  
VREF Bias Generator  
Bias Regulator Voltage  
Short-Circuit Current Limit  
V
BUS > VIN(MIN) or VBAT > VBAT(MIN)  
6.5  
V
VREF  
20  
mA  
Battery Recharge Threshold  
Recharge Threshold  
Below V(OREG)  
100  
120  
130  
150  
mV  
VRCH  
Deglitch Time  
VBAT Falling Below VRCH Threshold  
ms  
STAT Output  
VSTAT(OL)  
ISTAT(OH)  
STAT Output Low  
ISTAT=10 mA  
VSTAT=5 V  
0.4  
V  
STAT High Leakage Current  
1
A  
Battery Detection  
Battery Detection Current before  
IDETECT  
tDETECT  
–0.80  
262  
mA  
ms  
Charge Done (Sink Current)(5)  
Battery Detection Time  
Begins after Termination Detected  
and VBAT < VOREG –VRCH  
Sleep Comparator  
Sleep-Mode Entry Threshold,  
BUS – VBAT  
VSLP  
2.3 V < VBAT < VOREG, VBUS Falling  
Rising Voltage  
0
0.04  
30  
0.10  
V
V
Deglitch Time for VBUS Rising  
Above VBAT by VSLP  
tSLP_EXIT  
ms  
Power Switches (see Figure 3)  
Q3 On Resistance (VBUS to PMID) IIN(LIMIT)=500 mA  
180  
130  
150  
250  
225  
225  
RDS(ON)  
Q1 On Resistance (PMID to SW)  
Q2 On Resistance (SW to GND)  
m  
Charger PWM Modulator  
fSW  
Oscillator Frequency  
2.7  
3.0  
3.3  
MHz  
%
DMAX  
DMIN  
Maximum Duty Cycle  
Minimum Duty Cycle  
100  
0
%
Synchronous to Non-Synchronous  
Current Cut-Off Threshold(6)  
Low-Side MOSFET (Q2) Cycle-by-  
Cycle Current Limit  
ISYNC  
140  
mA  
Continued on the following page…  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
7
Electrical Specifications  
Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for TJ and TA;  
VBUS=5.0 V; HZ_MODE; OPA_MODE=0; (Charge Mode); SCL, SDA, OTG=0 or 1.8 V; and typical values are for TJ=25°C.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Boost Mode Operation (OPA_MODE=1, HZ_MODE=0)  
2.5 V < VBAT < 4.5 V, ILOAD from 0 to  
200 mA  
4.80  
4.77  
5.07  
5.07  
5.17  
5.17  
VBOOST  
Boost Output Voltage at VBUS  
V
3.0 V < VBAT < 4.5 V, ILOAD from 0 to  
500 mA  
IBAT(BOOST) Boost Mode Quiescent Current  
PFM Mode, VBAT=3.6 V, IOUT=0  
140  
1590  
2.42  
2.58  
300  
A  
ILIMPK(BST)  
Q2 Peak Current Limit  
1272  
1908  
mA  
While Boost Active  
Minimum Battery Voltage for Boost  
Operation  
UVLOBST  
V
To Start Boost Regulator  
2.70  
6.49  
VBUS Load Resistance  
Normal Operation  
Charger Validation  
1500  
100  
K  
RVBUS  
VBUS to PGND Resistance  
Protection and Timers  
VBUS Over-Voltage Shutdown  
V
BUS Rising  
6.09  
6.29  
100  
V
VBUSOVP  
ILIMPK(CHG)  
VSHORT  
ISHORT  
Hysteresis  
VBUS Falling  
mV  
Q1 Cycle-by-Cycle Peak Current  
Limit  
Charge Mode  
2.3  
A  
Battery Short-Circuit Threshold  
Hysteresis  
VBAT Rising  
1.95  
20  
2.00  
100  
30  
2.05  
40  
V
VBAT Falling  
mV  
mA  
Linear Charging Current  
Thermal Shutdown Threshold(7)  
Hysteresis(7)  
VBAT < VSHORT  
TJ Rising  
145  
10  
TSHUTDWN  
°C  
TJ Falling  
TCF  
tINT  
Thermal Regulation Threshold(7)  
Charge Current Reduction Begins  
120  
2.1  
°C  
s
Detection Interval  
Charger Enabled  
20.5  
18.0  
12.0  
–25  
25.2  
25.2  
13.5  
28.0  
34.0  
15.0  
25  
t32S  
32-Second Timer(8)  
s
Charger Disabled  
t15MIN  
15-Minute Timer  
15-Minute Mode (FAN54013-14)  
Charger Inactive  
min  
%
tLF  
Low-Frequency Timer Accuracy  
Notes:  
5. Negative current is current flowing from the battery to VBUS (discharging the battery).  
6. Q2 always turns on for 60 ns, then turns off if current is below ISYNC  
.
7. Guaranteed by design; not tested in production.  
8. This tolerance (%) applies to all timers on the IC, including soft-start and deglitching timers.  
© 2011 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5401X Family • Rev. 1.0.4  
8
I2C Timing Specifications  
Guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Standard Mode  
Fast Mode  
100  
400  
kHz  
fSCL  
SCL Clock Frequency  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
3400  
1700  
4.7  
Bus-Free Time between STOP  
and START Conditions  
tBUF  
s  
Fast Mode  
1.3  
Standard Mode  
4
s  
ns  
ns  
s  
s  
ns  
ns  
s  
ns  
ns  
ns  
s  
ns  
ns  
START or Repeated START  
Hold Time  
tHD;STA  
Fast Mode  
600  
160  
4.7  
1.3  
160  
320  
4
High-Speed Mode  
Standard Mode  
Fast Mode  
tLOW  
SCL LOW Period  
SCL HIGH Period  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
Fast Mode  
600  
60  
tHIGH  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
120  
4.7  
600  
160  
250  
100  
10  
tSU;STA  
Repeated START Setup Time  
Data Setup Time  
Fast Mode  
High-Speed Mode  
Standard Mode  
tSU;DAT  
Fast Mode  
ns  
High-Speed Mode  
Standard Mode  
0
0
0
0
3.45  
900  
70  
s  
ns  
ns  
ns  
Fast Mode  
tHD;DAT  
Data Hold Time  
SCL Rise Time  
SCL Fall Time  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
150  
1000  
300  
80  
20+0.1CB  
20+0.1CB  
10  
Fast Mode  
tRCL  
ns  
ns  
ns  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
20  
160  
300  
300  
40  
20+0.1CB  
20+0.1CB  
10  
Fast Mode  
tFCL  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
20  
80  
20+0.1CB  
20+0.1CB  
10  
1000  
300  
80  
SDA Rise Time  
Fast Mode  
tRDA  
tRCL1  
Rise Time of SCL after a  
Repeated START Condition  
and after ACK Bit  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
20  
160  
Continued on the following page…  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
9
I2C Timing Specifications  
Guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Standard Mode  
Fast Mode  
20+0.1CB  
300  
300  
80  
20+0.1CB  
tFDA  
SDA Fall Time  
ns  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
10  
20  
160  
4
s  
ns  
ns  
pF  
tSU;STO  
Stop Condition Setup Time  
Fast Mode  
600  
160  
High-Speed Mode  
CB  
Capacitive Load for SDA, SCL  
400  
Timing Diagrams  
tF  
tSU;STA  
tBUF  
SDA  
tR  
TSU;DAT  
tHD;STO  
tHIGH  
tHD;DAT  
SCL  
tLOW  
tHD;STA  
tHD;STA  
REPEATED  
START  
START  
STOP  
START  
Figure 5. I2C Interface Timing for Fast and Slow Modes  
REPEATED  
START  
STOP  
tFDA  
tRDA  
tSU;DAT  
SDAH  
tSU;STA  
tRCL1  
tFCL  
tHIGH  
tHD;DAT  
note A  
tRCL  
tSU;STO  
SCLH  
tLOW  
tHD;STA  
REPEATED  
START  
= MCS Current Source Pull-up  
= RP Resistor Pull-up  
Note A: First rising edge of SCLH after Repeated Start and after each ACK bit.  
Figure 6. I2C Interface Timing for High-Speed Mode  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
10  
Charge Mode Typical Characteristics  
Unless otherwise specified, circuit of Figure 1, VOREG=4.2 V, VBUS=5.0 V, and TA=25°C.  
180  
160  
140  
120  
100  
80  
900  
800  
700  
600  
500  
400  
300  
200  
100  
-
60  
40  
5.5VBUS  
5.0VBUS  
4.5VBUS  
5.5VBUS  
5.0VBUS  
4.5VBUS  
20  
-
2.5  
3
3.5  
4
4.5  
2.5  
3
3.5  
4
4.5  
Battery Voltage, VBAT (V)  
Battery Voltage, VBAT (V)  
Figure 7. Battery Charge Current vs. VBUS with  
IINLIM=100 mA  
Figure 8. Battery Charge Current vs. VBUS with  
IINLIM=500 mA  
97%  
94%  
92%  
90%  
88%  
4.20VBAT, 4.5VBUS  
4.20VBAT, 5.0VBUS  
3.54VBAT, 5.0VBUS  
3.54VBAT, 4.5VBUS  
94%  
91%  
88%  
85%  
82%  
4.5VBUS  
86%  
5.0VBUS  
5.5VBUS  
84%  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
100  
300  
500  
700  
900  
1100  
1300  
1500  
Battery Voltage, VBAT (V)  
Battery Charge Current (mA)  
Figure 9. Charger Efficiency, No IINLIM, IOCHARGE=1,450 mA  
Figure 10. Charger Efficiency vs. VBUS, IINLIM=500 mA  
Figure 11. Auto-Charge Startup at VBUS Plug-in,  
IINLIM=100 mA, OTG=1, VBAT=3.4 V  
Figure 12. Auto-Charge Startup at VBUS Plug-in,  
IINLIM=500 mA, OTG=1, VBAT=3.4 V  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
11  
Charge Mode Typical Characteristics  
Unless otherwise specified, circuit of Figure 1, VOREG=4.2 V, VBUS=5.0 V, and TA=25°C.  
Figure 13. AutoCharge Startup with 300 mA Limited  
Charger / Adaptor, IINLIM=500 mA, OTG=1, VBAT=3.4 V  
Figure 14. Charger Startup with HZ_MODE Bit Reset,  
IINLIM=500 mA, IOCHARGE=1,050 mA, OREG=4.2 V, VBAT=3.6 V  
Figure 15. Battery Removal / Insertion During Charging, Figure 16. Battery Removal / Insertion During Charging,  
VBAT=3.9 V, IOCHARGE=1,050 mA, No IINLIM, TE=0  
VBAT=3.9 V, IOCHARGE=1,050 mA, No IINLIM, TE=1  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
12  
Charge Mode Typical Characteristics  
Unless otherwise specified, circuit of Figure 1, VOREG=4.2 V, VBUS=5.0 V, and TA=25°C.  
Figure 17. No Battery at VBUS Power-up; FAN54010,  
Figure 18. No Battery at VBUS Power-up; FAN54012  
FAN54013  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
200  
150  
100  
50  
-30C  
+25C  
+85C  
-10C, 5.0VBUS  
+25C, 5.0VBUS  
+85C, 5.0VBUS  
0
4.0  
4.5  
5.0  
5.5  
6.0  
0
1
2
3
4
5
1.8V Regulator Load Current (mA)  
Input Voltage, VBUS (V)  
Figure 19. VBUS Current in High-Impedance Mode  
with Battery Open  
Figure 20. VREG 1.8 V Output Regulation  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
13  
Boost Mode Typical Characteristics  
Unless otherwise specified, using circuit of Figure 1, VBAT=3.6 V, TA=25°C.  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
3.0 VBAT  
3.6 VBAT  
4.2 VBAT  
-10C, 3.6VBAT  
+25C, 3.6VBAT  
+85C, 3.6VBAT  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
V
BUS Load Current (mA)  
V
BUS Load Current (mA)  
Figure 21. Efficiency vs. VBAT  
Figure 22. Efficiency Over Temperature  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
3.0 VBAT  
3.6 VBAT  
4.2 VBAT  
-10C, 3.6VBAT  
+25C, 3.6VBAT  
+85C, 3.6VBAT  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
V
BUS Load Current (mA)  
V
BUS Load Current (mA)  
Figure 23. Output Regulation vs. VBAT  
Figure 24. Output Regulation Over Temperature  
250  
200  
150  
100  
50  
20  
-30C  
+25C  
+85C  
15  
10  
-30C  
5
+25C  
+85C  
0
2
2.5  
3
3.5  
4
4.5  
5
2
2.5  
3
3.5  
4
4.5  
5
Battery Voltage, VBAT (V)  
Battery Voltage, VBAT (V)  
Figure 25. Quiescent Current  
Figure 26. High-Impedance Mode Battery Current  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
14  
Boost Mode Typical Characteristics  
Unless otherwise specified, using circuit of Figure 1, VBAT=3.6 V, TA=25°C.  
Figure 27. Boost PWM Waveform  
Figure 28. Boost PFM Waveform  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
2.7 VBAT  
3.6 VBAT  
4.2 VBAT  
4.5 VBAT  
-30C, 3.6VBAT  
+25C, 3.6VBAT  
+85C, 3.6VBAT  
0
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
V
BUS Load Current (mA)  
V
BUS Load Current (mA)  
Figure 29. Output Ripple vs. VBAT  
Figure 30. Output Ripple vs. Temperature  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
15  
Boost Mode Typical Characteristics  
Unless otherwise specified, using circuit of Figure 1, VBAT=3.6 V, TA=25°C.  
Figure 32. VBUS Fault Response, 3.6 VBAT  
Figure 31. Startup, 3.6 VBAT, 44 Load, Additional 10 µF,  
X5R Across VBUS  
Figure 33. Load Transient, 5-155-5 mA, tR=tF=100 ns  
Figure 34. Load Transient, 5-255-5 mA, tR=tF=100 ns  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
16  
Circuit Description / Overview  
When charging batteries with a current-limited input source,  
such as USB, a switching charger’s high efficiency over a  
wide range of output voltages minimizes charging time.  
The FAN5401X is designed to work with a current-limited  
input source at VBUS. During the current regulation phase of  
charging, IINLIM or the programmed charging current limits the  
amount of current available to charge the battery and power  
the system. The effect of IINLIM on ICHARGE can be seen in  
Figure 36.  
FAN5401X combines a highly integrated synchronous buck  
regulator for charging with a synchronous boost regulator,  
which can supply 5 V to USB On-The-Go (OTG) peripherals.  
The regulator employs synchronous rectification for both the  
charger and boost regulators to maintain high efficiency over  
a wide range of battery voltages and charge states.  
VOREG  
ICHARGE  
IOCHARGE  
The FAN5401X has three operating modes:  
1. Charge Mode:  
Charges a single-cell Li-ion or Li-polymer battery.  
ITERM  
VSHORT  
2. Boost Mode:  
Provides 5 V power to USB-OTG with an integrated  
synchronous rectification boost regulator using the  
battery as input.  
ISHORT  
3. High-Impedance Mode:  
PRE-  
CHARGE  
CURRENT REGULATION  
VOLTAGE  
REGULATION  
Both the boost and charging circuits are OFF in this  
mode. Current flow from VBUS to the battery or from the  
battery to VBUS is blocked in this mode. This mode  
consumes very little current from VBUS or the battery.  
Figure 35. Charge Curve, ICHARGE Not Limited by IINLIM  
V
Note: Default settings are denoted by bold typeface.  
OREG  
Charge Mode  
In Charge Mode, FAN5401X employs four regulation loops:  
1. Input Current: Limits the amount of current drawn from  
VBUS. This current is sensed internally and can be  
programmed through the I2C interface.  
ITERM  
V
SHORT  
2. Charging Current: Limits the maximum charging current.  
This current is sensed using an external RSENSE resistor.  
ISHORT  
3. Charge Voltage: The regulator is restricted from  
exceeding this voltage. As the internal battery voltage  
rises, the battery’s internal impedance and RSENSE work  
in conjunction with the charge voltage regulation to  
decrease the amount of current flowing to the battery.  
Battery charging is completed when the voltage across  
RSENSE drops below the ITERM threshold.  
PRE-  
CHARGE  
CURRENT REGULATION  
VOLTAGE  
REGULATION  
Figure 36. Charge Curve, IINLIM Limits ICHARGE  
Assuming that VOREG is programmed to the cell’s fully  
charged “float” voltage, the current that the battery accepts  
with the PWM regulator limiting its output (sensed at VBAT)  
to VOREG declines, and the charger enters the voltage  
regulation phase of charging. When the current declines to  
the programmed ITERM value, the charge cycle is complete.  
Charge current termination can be disabled by resetting the  
TE bit (REG1[3]).  
4. Temperature: If the IC’s junction temperature reaches  
120°C, charge current is reduced until the IC’s  
temperature stabilizes at 120°C.  
5. An additional loop limits the amount of drop on VBUS to  
a programmable voltage (VSP) to accommodate “special  
chargers” that limit current to a lower current than might  
be available from a “normal” USB wall charger.  
The charger output or “float” voltage can be programmed by  
the OREG bits from 3.5 V to 4.44 V in 20 mV increments, as  
shown in Table 3.  
Battery Charging Curve  
If the battery voltage is below VSHORT, a linear current source  
pre-charges the battery until VBAT reaches VSHORT. The PWM  
charging circuit is then started and the battery is charged  
with a constant current if sufficient input power is available.  
The current slew rate is limited to prevent overshoot.  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
17  
A new charge cycle begins when one of the following occurs:  
Table 3. OREG Bits (OREG[7:2]) vs. Charger VOUT  
(VOREG) Float Voltage  
.
.
The battery voltage falls below VOREG - VRCH  
Decimal Hex VOREG  
Decimal Hex VOREG  
VBUS Power on Reset (POR) clears and the battery  
voltage is below the weak battery threshold (VLOWV).  
This occurs for all versions except the FAN54011.  
0
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
3.50  
3.52  
3.54  
3.56  
3.58  
3.60  
3.62  
3.64  
3.66  
3.68  
3.70  
3.72  
3.74  
3.76  
3.78  
3.80  
3.82  
3.84  
3.86  
3.88  
3.90  
3.92  
3.94  
3.96  
3.98  
4.00  
4.02  
4.04  
4.06  
4.08  
4.10  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
4.14  
4.16  
4.18  
4.20  
4.22  
4.24  
4.26  
4.28  
4.30  
4.32  
4.34  
4.36  
4.38  
4.40  
4.42  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
1
.
CE or HZ_MODE is reset through I2C write to  
CONTROL1 (R1) register.  
2
3
4
Charge Current Limit (IOCHARGE  
)
5
Table 5. IOCHARGE (REG4 [6:4]) Current as Function  
of IOCHARGE Bits and RSENSE Resistor Values  
6
7
I
OCHARGE (mA)  
VRSENSE  
(mV)  
DEC  
BIN  
HEX  
8
68m100m  
9
0
1
2
3
4
5
6
7
000  
001  
010  
011  
100  
101  
110  
111  
00  
01  
02  
03  
04  
05  
06  
07  
37.4  
44.2  
51.0  
57.8  
71.4  
78.2  
91.8  
98.6  
550  
650  
374  
442  
510  
578  
714  
782  
918  
986  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
750  
850  
1050  
1150  
1350  
1450  
Termination Current Limit  
Current charge termination is enabled when TE (REG1[3])=1.  
Typical termination current values are given in Table 6.  
Table 6. ITERM Current as Function of ITERM Bits  
(REG4[2:0]) and RSENSE Resistor Values  
FAN54010-FAN54012 FAN54013-FAN54014  
ITERM (mA)  
ITERM (mA)  
VRSENSE  
(mV)  
VRSENSE  
(mV)  
ITERM  
68 m100 m  
68 m100 m  
0
1
2
3
4
5
6
7
3.4  
50  
34  
3.3  
6.6  
49  
33  
66  
6.8  
100  
150  
200  
250  
300  
350  
400  
68  
97  
10.2  
13.6  
17.0  
20.4  
23.8  
27.2  
102  
136  
170  
204  
238  
272  
9.9  
146  
194  
243  
291  
340  
388  
99  
13.2  
16.5  
19.8  
23.1  
26.4  
132  
165  
198  
231  
264  
The following charging parameters can be programmed by  
the host through I2C:  
Table 4. Programmable Charging Parameters  
Parameter  
Output Voltage Regulation  
Battery Charging Current Limit  
Input Current Limit  
Name  
VOREG  
IOCHRG  
IINLIM  
Register  
REG2[7:2]  
REG4[6:4]  
REG1[7:6]  
REG4[2:0]  
REG1[5:4]  
When the charge current falls below ITERM, PWM charging  
stops and the STAT bits change to READY (00) for about  
500 ms while the IC determines whether the battery and  
charging source are still connected. STAT then changes to  
CHARGE DONE (10), provided the battery and charger are  
still connected.  
Charge Termination Limit  
Weak Battery Voltage  
ITERM  
VLOWV  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
18  
PWM Controller in Charge Mode  
USB-Friendly Boot Sequence  
The IC uses a current-mode PWM controller to regulate the  
output voltage and battery charge currents. The synchronous  
rectifier (Q2) has a negative current limit that turns off Q2 at  
140 mA to prevent current flow from the battery.  
For FAN54010/12/13, NOT FAN54011/14  
At VBUS POR, when the battery voltage is above the weak  
battery threshold (VLOWV), the IC operates in accordance with  
its I2C register settings. If VBAT < VLOWV, the IC sets all  
registers to their default values and enables the charger  
using an input current limit controlled by the OTG pin  
(100 mA if OTG is LOW and 500 mA if OTG is HIGH). This  
feature can revive a battery whose voltage is too low to  
ensure reliable host operation. Charging continues in the  
absence of host communication even after the battery has  
reached VOREG, whose default value is 3.54 V, and the  
charger remains active until t15MIN times out. Once the host  
processor begins writing to the IC, charging parameters are  
set by the host, which must continually reset the t32S timer to  
continue charging using the programmed charging  
parameters. If t32S.times out, the register defaults are loaded,  
the FAULT bits are set to 110, STAT is pulsed HIGH, and  
charging continues with default charge parameters.  
Safety Timer  
Section references Figure 41 and Figure 42.  
At the beginning of charging, the IC starts a 15-minute timer  
(t15MIN ). When this timer times out, charging is terminated.  
Writing to any register through I2C stops and resets the t15MIN  
timer, which in turn starts a 32-second timer (t32S). Setting  
the TMR_RST bit (REG0[7]) resets the t32S timer. If the t32S  
timer times out, charging is terminated, the registers are set  
to their default values, and charging resumes using the  
default values with the t15MIN timer running.  
Normal charging is controlled by the host with the t32S timer  
running to ensure that the host is alive. Charging with the  
t15MIN timer running is used for charging that is unattended by  
the host. If the t15MIN timer expires, the IC turns off the  
The FAN54011 and FAN54014 do not automatically initiate  
charging at VBUS POR. Instead, they wait for the host to  
initiate charging through I2C commands.  
charger, sets the  
bit, and indicates a timer fault (110) on  
CE  
the FAULT bits (REG0[2:0]). This sequence prevents  
overcharge if the host fails to reset the t32S timer.  
Input Current Limiting  
VBUS POR / Non-Compliant Charger Rejection  
To minimize charging time without overloading VBUS current  
limitations, the IC’s input current limit can be programmed by  
the IINLIM bits (REG1[7:6]).  
When the IC detects that VBUS has risen above VIN(MIN)1  
(4.4 V), the IC applies a 100load from VBUS to GND. To  
clear the VBUS POR (Power-On-Reset) and begin charging,  
VBUS must remain above VIN(MIN)1 and below VBUSOVP for  
tVBUS_VALID (30 ms) before the IC initiates charging. The  
VBUS validation sequence always occurs before charging is  
initiated or re-initiated (for example, after a VBUS OVP fault  
or a VRCH recharge initiation).  
Table 7. Input Current Limit  
I
INLIM REG1[7:6]  
Input Current Limit  
100 mA  
00  
01  
10  
11  
500 mA  
800 mA  
tVBUS_VALID ensures that unfiltered 50/60 Hz chargers and  
other non-compliant chargers are rejected.  
No limit  
For all versions except the FAN54011/14, the OTG pin  
establishes the input current limit when t15MIN is running. For  
the FAN54011 and FAN54014, no charging occurs  
automatically at VBUS POR; the input current limit is  
established by the IINLIM bits.  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
19  
Flow Charts  
Figure 37. Charger VBUS
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
20  
Flow Charts (Continued)  
Figure 38. Charge Mode  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
21  
Flow Charts (Continued)  
Charge  
Configuration  
State  
T32Sec  
ARMED AND  
CE= 0?  
YES  
Charge State  
NO  
Has T15Min  
and CE= 0  
START T15Min  
NO  
YES  
VBAT < VOREG  
for 262ms?  
NO  
YES  
Figure 39. Charge Configuration  
Figure 40. HZ-State  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
22  
Flow Charts (Continued)  
Charge Start  
Start T15MIN  
Reset Registers  
YES  
T32SEC  
NO  
Expired?  
Start T32SEC  
Stop T15MIN  
YES  
NO  
T15MIN  
Active?  
I2C Write  
received?  
T15MIN  
Continue  
Charging  
YES  
NO  
NO  
Expired?  
Timer Fault :  
Set
YES  
CE  
Figure 41. Timer Flow Chart for FAN54010, FAN54012, FAN54013  
Charge Start  
from Host control  
Timer Fault  
Stop Charging and  
Reset Registers  
T32SEC  
Reset T32SEC  
Charge  
NO  
YES  
Expired?  
NO  
TMR_RST  
bit Set?  
YES  
Figure 42. Timer Flow Chart for FAN54011 and FAN54014  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
23  
Table 9. ISAFE (IOCHARGE Limit) as Function of ISAFE  
Bits (REG6[6:4])  
Special Charger  
FAN54013, FAN54014 Only  
The FAN54013 and FAN54014 have additional functionality  
to limit input current in case a current-limited “special  
charger” is supplying VBUS. These slowly increase the  
charging current until either:  
ISAFE (REG6[6:4])  
ISAFE (mA)  
DEC BIN HEX VRSENSE (mV)  
68 m100 m  
.
IINLIM or IOCHARGE is reached  
0
1
2
3
4
5
6
7
000  
001  
010  
011  
100  
101  
110  
111  
00  
01  
02  
03  
04  
05  
06  
07  
37.4  
44.2  
51.0  
57.8  
71.4  
78.2  
91.8  
98.6  
550  
650  
374  
442  
510  
578  
714  
782  
918  
986  
or  
.
VBUS=VSP.  
750  
If VBUS collapses to VSP when the current is ramping up, the  
FAN54013 and FAN54014 charge with an input current that  
keeps VBUS=VSP. When the VSP control loop is limiting the  
charge current, the SP bit (REG5[4]) is set.  
850  
1050  
1150  
1350  
1450  
Table 8. VSP as Function of SP Bits (REG5[2:0])  
SP (REG5[2:0])  
DEC  
BIN  
000  
001  
010  
011  
100  
101  
110  
111  
HEX  
00  
VSP  
Table 10. VSAFE (VOREG Limit) as Function of VSAFE  
Bits (REG6[3:0])  
0
1
2
3
4
5
6
7
4.213  
4.293  
4.373  
4.453  
4.533  
4.613  
4.693  
4.773  
01  
VSAFE (REG6[3:0])  
02  
Max. OREG  
(REG2[7:2])  
VOREG  
Max.  
DEC  
BIN  
HEX  
03  
04  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
00  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
4.20  
4.22  
4.24  
4.26  
4.28  
4.30  
4.32  
4.34  
4.36  
4.38  
4.40  
4.42  
4.44  
4.44  
4.44  
4.44  
05  
06  
2
07  
3
4
Safety Settings  
FAN54013 and FAN54014 Only  
5
6
The FAN54013 and FAN54014 contain a SAFETY register  
(REG6) that prevents the values in OREG (REG2[7:2]) and  
IOCHARGE (REG4[6:4]) from exceeding the values of the  
VSAFE and ISAFE values.  
7
8
9
After VBAT exceeds VSHORT, the SAFETY register is loaded  
with its default value and may be written only before any  
other register is written. After writing to any other register,  
10  
11  
12  
13  
14  
15  
the SAFETY register is locked until VBAT falls below VSHORT  
.
The ISAFE (REG6[6:4]) and VSAFE (REG6[3:0]) registers  
establish values that limit the maximum values of IOCHARGE  
and VOREG used by the control logic. If the host attempts to  
write a value higher than VSAFE or ISAFE to OREG or  
IOCHARGE, respectively; the VSAFE, ISAFE value appears  
as the OREG, IOCHARGE register value, respectively.  
Thermal Regulation and Protection  
When the IC’s junction temperature reaches TCF (about  
120°C), the charger reduces its output current to 550 mA to  
prevent overheating. If the temperature increases beyond  
TSHUTDOWN; charging is suspended, the FAULT bits are set  
to 101, and STAT is pulsed HIGH. In Suspend Mode, all  
timers stop and the state of the IC’s logic is preserved.  
Charging resumes at programmed current after the die  
cools to about 120°C.  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
24  
Battery Detection During Charging  
Additional JA data points, measured using the FAN5401X  
evaluation board, are given in Table 11 (measured with  
TA=25°C). Note that as power dissipation increases, the  
effective JA decreases due to the larger difference between  
the die temperature and its ambient.  
The IC can detect the presence, absence, or removal of a  
battery if the termination bit (TE) is set. During normal  
charging, once VBAT is close to VOREG and the termination  
charge current is detected, the IC terminates charging and  
sets the STAT bits to 10. It then turns on a discharge current,  
IDETECT, for tDETECT. If VBAT is still above VOREG – VRCH, the  
battery is present and the IC sets the FAULT bits to 000. If  
VBAT is below VOREG – VRCH, the battery is absent and the IC:  
Table 11. FAN5401X Evaluation Board Measured JA  
Power (W)  
0.504  
JA  
54°C/W  
50°C/W  
46°C/W  
1. Sets the registers to their default values.  
2. Sets the FAULT bits to 111.  
0.844  
1.506  
3. Resumes charging with default values after tINT  
.
Battery Short-Circuit Protection  
If the battery voltage is below the short-circuit threshold  
(VSHORT); a linear current source, ISHORT, supplies VBAT until  
Charge Mode Input Supply Protection  
Sleep Mode  
When VBUS falls below VBAT + VSLP, and VBUS is above  
VIN(MIN), the IC enters Sleep Mode to prevent the battery from  
draining into VBUS. During Sleep Mode, reverse current is  
disabled by body switching Q1.  
VBAT > VSHORT.  
Battery Detection During Power-up  
For FAN54010 and FAN54013  
Input Supply Low-Voltage Detection  
The IC continuously monitors VBUS during charging. If VBUS  
falls below VIN(MIN), the IC:  
At VBUS POR, a 5 kload is applied to VBAT for 500 ms to  
discharge any residual system capacitance in case the  
battery is absent. If VBAT  
< VSHORT, linear charging  
commences. When VBAT rises above VSHORT, PWM charging  
proceeds with the float voltage (OREG) temporarily set to  
4 V. If the battery voltage exceeds 3.7 V within 32 ms of the  
beginning of PWM charging, the battery is absent. If battery  
absent is detected:  
1. Terminates charging  
2. Pulses the STAT pin, sets the STAT bits to 11, and sets  
the FAULT bits to 011.  
If VBUS recovers above the VIN(MIN) rising threshold after time  
tINT (about two seconds), the charging process is repeated.  
This function prevents the USB power bus from collapsing or  
oscillating when the IC is connected to a suspended USB  
port or a low-current-capable OTG device.  
1. High-Impedance Mode is entered.  
2. FAULT bits are set to 111.  
3. The t15MIN timer is disabled until VBUS is removed.  
If VBAT remains below 3.7 V during the initial 32 ms period,  
the float voltage returns to the OREG register setting and  
PWM charging continues.  
Input Over-Voltage Detection  
When the VBUS exceeds VBUSOVP, the IC:  
1. Turns off Q3  
System Operation with No Battery  
2. Suspends charging  
3. Sets the FAULT bits to 001, sets the STAT bits to 11,  
and pulses the STAT pin.  
The FAN54012 continues charging after VBUS POR with the  
default parameters, regulating the VBAT line to 3.54 V until  
the host processor issues commands or the 15-minute timer  
expires. In this way, the FAN54012 can start the system  
without a battery.  
When VBUS falls about 150mV below VBUSOVP, the fault is  
cleared and charging resumes after VBUS is revalidated (see  
VBUS POR / Non-Compliant Charger Rejection).  
The FAN5401X soft-start function can interfere with the  
system supply with battery absent. The soft-start activates  
whenever VOREG, IINLIM, or IOCHARGE are set from a lower to  
higher value. During soft-start, the IIN limit drops to 100 mA  
for about 1 ms unless IINLIM is set to 11 (no limit). This could  
cause the system processor to fail to start. To avoid this  
behavior, use the following sequence.  
VBUS Short While Charging  
If VBUS is shorted with a very low impedance while the IC is  
charging with IINLIMIT=100 mA, the IC may not meet  
datasheet specifications until power is removed. To trigger  
this condition, VBUS must be driven from 5 V to GND with a  
high slew rate. Achieving this slew rate requires a 0 short  
to the USB cable less than 10cm from the connector.  
1. Set the OTG pin HIGH. When VBUS is plugged in, IINLIM  
is set to 500mA until the system processor powers up  
and can set parameters through I2C.  
Charge Mode Battery Detection & Protection  
VBAT Over-Voltage Protection  
2. Program the Safety Register.  
The OREG voltage regulation loop prevents VBAT from  
overshooting the OREG voltage by more than 50 mV when  
the battery is removed. When the PWM charger runs with no  
battery, the TE bit is not set and a battery is inserted that is  
charged to a voltage higher than VOREG; PWM pulses stop. If  
no further pulses occur for 30 ms, the IC sets the FAULT bits  
to 100, sets the STAT bits to 11, and pulses the STAT pin.  
3. Set IINLIM to 11 (no limit).  
4. Set OREG to the desired value (typically 4.18).  
5. Reset the IOLEVEL bit, then set IOCHARGE.  
6. Set IINLIM to 500mA if a USB source is connected.  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
25  
During the initial system startup, while the charger IC is  
being programmed, the system current is limited to 325 mA  
for 1ms during steps 4 and 5. This is the value of the soft-  
start ICHARGE current used when IINLIM is set to No Limit.  
Charge Mode Control Bits  
Setting either HZ_MODE or CE through I2C disables the  
charger and puts the IC into High-Impedance Mode and  
resets t32S. If VBAT < VLOWV while in High-Impedance Mode,  
t32S begins running and, when it overflows, all registers  
(except SAFETY) reset, which enables t15MIN charging on  
versions with the 15-minute timer.  
If the system is powered up without a battery present, the  
CV bit should be set. When a battery is inserted, the CV bit  
is cleared.  
When t15MIN overflows, the IC sets the CE bit and the IC  
Charger Status / Fault Status  
enters High-Impedance Mode. If CE was set by t15MIN  
overflow, a new charge cycle can only be initiated through  
I2C or VBUS POR.  
The STAT pin indicates the operating condition of the IC and  
provides a fault indicator for interrupt driven systems.  
Table 12. STAT Pin Function  
Setting the RESET bit clears all registers. If HZ_MODE or  
EN_STAT  
Charge State  
X
STAT Pin  
OPEN  
CE bits were set when the RESET bit is set, these bits are  
also cleared, but the t32S timer is not started, and the IC  
remains in High-Impedance Mode.  
0
X
1
Normal Conditions  
Charging  
OPEN  
LOW  
Table 14. FAN54013-14 DISABLE Pin and CE Bit  
Functionality  
Fault  
(Charging or Boost)  
128 µs Pulse,  
then OPEN  
X
Charging  
DISABLE Pin  
HZ_MODE  
CE  
The FAULT bits (R0[2:0]) indicate the type of fault in Charge  
Mode (see Table 13).  
ENABLE  
DISABLE  
DISABLE  
DISABLE  
0
X
X
1
0
1
0
X
1
Table 13. Fault Status Bits During Charge Mode  
Fault Bit  
X
X
Fault Description  
B2 B1 B0  
X
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Normal (No Fault)  
VBUS OVP  
Raising the DISABLE pin stops t32S from advancing, but  
does not reset it. If the DISABLE pin is raised during t15MIN  
charging, the t15MIN timer is reset.  
Sleep Mode  
Operational Mode Control  
Poor Input Source  
Battery OVP  
OPA_MODE (REG1[0]) and the HZ_MODE (REG1[1]) bits in  
conjunction with the FAULT state define the operational  
mode of the charger.  
Thermal Shutdown  
Timer Fault  
Table 15. Operation Mode Control  
HZ_MODE OPA_MODE FAULT Operation Mode  
No Battery  
0
0
0
1
0
X
1
0
1
0
X
Charge  
Charge Configure  
Boost  
X
High Impedance  
The IC resets the OPA_MODE bit whenever the boost is  
deactivated, whether due to a fault or being disabled by  
setting the HZ_MODE bit.  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
26  
VBUS as a function of ILOAD can be computed when the  
regulator is in PWM Mode (continuous conduction) as:  
Boost Mode  
Boost Mode can be enabled if the IC is in 32-Second Mode  
with the OTG pin and OPA_MODE bits as indicated in Table  
16. The OTG pin ACTIVE state is 1 if OTG_PL=1 and 0  
when OTG_PL=0.  
EQ. 1  
V
5.07 R  
I  
OUT LOAD  
OUT  
At VBAT=3.3 V, and ILOAD=200 mA, VBUS would drop to:  
EQ. 1A  
V
5.07 0.260.2 5.018V  
If boost is active using the OTG pin, Boost Mode is initiated  
even if the HZ_MODE=1. The HZ_MODE bit overrides the  
OPA_MODE bit.  
OUT  
At VBAT=2.7 V, and ILOAD=200 mA, VBUS would drop to:  
EQ. 1B  
Table 16. Enabling Boost  
V
5.07 0.327 0.2 5.005V  
OUT  
OTG  
Pin  
HZ_  
MODE MODE  
OPA_  
OTG_EN  
BOOST  
PFM Mode  
If VBUS > VREFBOOST (nominally 5.07 V) when the minimum  
off-time has ended, the regulator enters PFM Mode. Boost  
pulses are inhibited until VBUS < VREFBOOST. The minimum  
on-time is increased to enable the output to pump up  
sufficiently with each PFM boost pulse. Therefore the  
regulator behaves like a constant on-time regulator, with the  
bottom of its output voltage ripple at 5.07 V in PFM Mode.  
1
X
X
0
X
0
X
1
1
X
1
0
X
1
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
ACTIVE  
X
ACTIVE  
X
1
ACTIVE  
ACTIVE  
Table 17. Boost PWM Operating States  
0
0
0
Disabled  
Mode  
LIN  
Description  
Linear Startup  
Boost Soft-Start  
Invoked When  
VBAT > VBUS  
To remain in Boost Mode, the TMR_RST must be set by the  
host before the t32S timer times out. If t32S times out in Boost  
Mode; the IC resets all registers, pulses the STAT pin, sets  
the FAULT bits to 110, and resets the BOOST bit. VBUS  
POR or reading R0 clears the fault condition.  
SS  
VBUS < VBST  
VBAT > UVLOBST and  
SS Completed  
BST  
Boost Operating Mode  
Boost PWM Control  
Startup  
The IC uses a minimum on-time and computed minimum off-  
time to regulate VBUS. The regulator achieves excellent  
transient response by employing current-mode modulation.  
This technique causes the regulator to exhibit a load line.  
During PWM Mode, the output voltage drops slightly as the  
input current rises. With a constant VBAT, this appears as a  
constant output resistance.  
When the boost regulator is shut down, current flow is  
prevented from VBAT to VBUS, as well as reverse flow from  
VBUS to VBAT.  
LIN State  
When EN rises, if VBAT > UVLOBST, the regulator first  
attempts to bring PMID within 400mV of VBAT using an  
internal 450 mA current source from VBAT (LIN State). If  
PMID has not achieved VBAT – 400mV after 560 µs, a FAULT  
state is initiated.  
The “droop” caused by the output resistance when a load is  
applied allows the regulator to respond smoothly to load  
transients with no undershoot from the load line. This can be  
seen in Figure 33 and Figure 43.  
SS State  
350  
325  
300  
275  
250  
225  
200  
When PMID > VBAT – 400 mV, the boost regulator begins  
switching with a reduced peak current limit of about 50% of  
its normal current limit. The output slews up until VBUS is  
within 5% of its setpoint; at which time, the regulation loop is  
closed and the current limit is set to 100%.  
If the output fails to achieve 95% of its setpoint (VBST) within  
128 µs, the current limit is increased to 100%. If the output  
fails to achieve 95% of its setpoint after this second 384s  
period, a fault state is initiated.  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Battery Voltage, VBAT (V)  
Figure 43. Output Resistance (ROUT  
)
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
27  
BST State  
VREG Pin  
This is the normal operating mode of the regulator. The  
regulator uses a minimum tOFF-minimum tON modulation  
The VREG pin on FAN54010, FAN54011, and FAN54012  
provides a voltage protected from over-voltage surges on  
VBUS, which can be used to run auxiliary circuits. This  
voltage is essentially a current-limited replica of PMID. The  
maximum voltage on this node is 5.9 V.  
V
IN  
scheme. The minimum tOFF is proportional to  
, which  
V
OUT  
keeps the regulator’s switching frequency reasonably  
constant in CCM. tON(MIN) is proportional to VBAT and is a  
higher value if the inductor current reached 0 before tOFF(MIN)  
in the prior cycle.  
FAN54013 and FAN54014 provide a 1.8 V regulated output  
on this pin, which can be disabled through I2C by setting the  
DIS_VREG bit (REG5[6]). VREG can supply up to 2 mA.  
This circuit, which is powered from PMID, is enabled only  
when PMID > VBAT and does not drain current from the  
battery. During boost, VREG is off. It is also off when the  
HZ_MODE bit (REG1[1])=1.  
To ensure the VBUS does not pump significantly above the  
regulation point, the boost switch remains off as long as  
FB > VREF  
.
Boost Faults  
If a BOOST fault occurs:  
Monitor Register (Reg10H)  
Additional status monitoring bits enable the host processor  
to have more visibility into the status of the IC. The monitor  
bits are real-time status indicators and are not internally  
debounced or otherwise time qualified.  
1. The STAT pin pulses.  
2. OPA_MODE bit is reset.  
3. The power stage is in High-Impedance Mode.  
4. The FAULT bits (REG0[2:0]) are set per Table 18.  
The state of the MONITOR register bits listed in High-  
Impedance Mode are only valid when VBUS is valid.  
Restart After Boost Faults  
If boost was enabled with the OPA_MODE bit and  
OTG_EN=0, Boost Mode can only be enabled through  
subsequent I2C commands since OPA_MODE is reset on  
boost faults. If OTG_EN=1 and the OTG pin is still ACTIVE  
(see Table 16), the boost restarts after a 5.2 ms delay, as  
shown in Figure 44. If the fault condition persists, restart is  
attempted every 5 ms until the fault clears or an I2C  
command disables the boost.  
Table 18. Fault Bits During Boost Mode  
Fault Bit  
Fault Description  
B2 B1 B0  
0
0
0
0
0
1
Normal (no fault)  
VBUS > VBUSOVP  
VBUS fails to achieve the voltage required to  
advance to the next state during soft-start or  
sustained (>50 µs) current limit during the  
BST state.  
0
1
0
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
VBAT < UVLOBST  
N/A: This code does not appear.  
Thermal shutdown  
Timer fault; all registers reset.  
N/A: This code does not appear.  
0
VBUS  
560  
5200  
450mA  
BATTERY  
CURRENT  
0
64  
BOOST  
ENABLED  
Figure 44. Boost Response Attempting to Start into VBUS  
Short Circuit (Times in µs)  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
28  
Table 19. MONITOR Register Bit Definitions  
STATE  
BIT#  
NAME  
Active When  
0
1
MONITOR  
Address 10H  
CSIN – VBAT < VITERM  
VCSIN – VBAT < 1 mV  
BAT < VSHORT  
V
VCSIN – VBAT > VITERM  
VCSIN – VBAT > 1 mV  
VBAT > VSHORT  
Charging with TE=1  
Charging with TE=0  
Charging  
7
ITERM_CMP  
VBAT_CMP  
V
6
VBAT < VLOWV  
VBAT > VLOWV  
High-Impedance Mode  
Boosting  
VBAT < UVLOBST  
VBAT > UVLOBST  
Linear Charging Enabled  
TJ > 120°C  
5
4
LINCHG  
T_120  
Linear Charging Not Enabled  
TJ < 120°C  
Charging  
Charging Current Controlled by  
Charging Current Not Controlled by  
ICHARGE Control Loop  
3
ICHG  
Charging  
I
CHARGE Control Loop  
2
1
0
IBUS  
IBUS Limiting Charging Current  
VBUS Not Valid  
Charge Current Not Limited by IBUS Charging  
VBUS_VALID  
CV  
VBUS is Valid  
VBUS > VBAT  
Charging  
Constant Current Charging  
Constant Voltage Charging  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
29  
I2C Interface  
The FAN5401X’s serial interface is compatible with  
Standard, Fast, Fast Plus, and High-Speed Mode I2C-Bus®  
specifications. The SCL line is an input and the SDA line is a  
bi-directional open-drain output; it can only pull down the bus  
when active. The SDA line only pulls LOW during data reads  
and signaling ACK. All data is shifted in MSB (bit 7) first.  
A transaction ends with a STOP condition, which is defined  
as SDA transitioning from 0 to 1 with SCL HIGH, as shown  
in Figure 47.  
Slave Releases  
Master Drives  
tHD;STO  
ACK(0) or  
NACK(1)  
SDA  
SCL  
Slave Address  
Table 20. I2C Slave Address Byte  
Part Types  
7 6  
5
4
3
2
1
0
FAN54010–FAN54014  
1
1
0
1
0
1
1
Figure 47. Stop Bit  
R/W  
During a read from the FAN5401X (Figure 50), the master  
issues a Repeated Start after sending the register address  
and before resending the slave address. The Repeated Start  
is a 1-to-0 transition on SDA while SCL is HIGH, as shown in  
Figure 48.  
In hex notation, the slave address assumes a 0 LSB. The  
hex slave address is D6H the family of parts.  
Bus Timing  
As shown in Figure 45, data is normally transferred when  
SCL is LOW. Data is clocked in on the rising edge of SCL.  
Typically, data transitions shortly at or after the falling edge  
of SCL to allow ample time for the data to set up before the  
next SCL rising edge.  
High-Speed (HS) Mode  
The protocols for High-Speed (HS), Low-Speed (LS), and  
Fast-Speed (FS) Modes are identical except the bus speed  
for HS Mode is 3.4 MHz. HS Mode is entered when the bus  
master sends the HS master code 00001XXX after a start  
condition. The master code is sent in Fast or Fast Plus Mode  
(less than 1MHz clock); slaves do not ACK this transmission.  
Data change allowed  
SDA  
TH  
The master then generates a repeated start condition  
(Figure 48) that causes all slaves on the bus to switch to HS  
Mode. The master then sends I2C packets, as described  
above, using the HS Mode clock rate and timing.  
TSU  
SCL  
Figure 45. Data Transfer Timing  
The bus remains in HS Mode until a stop bit (Figure 47) is  
sent by the master. While in HS Mode, packets are  
separated by repeated start conditions (Figure 48).  
Each bus transaction begins and ends with SDA and SCL  
HIGH. A transaction begins with a START condition, which is  
defined as SDA transitioning from 1 to 0 with SCL HIGH, as  
shown in Figure 46.  
Slave Releases  
tSU;STA  
tHD;STA  
ACK(0) or  
NACK(1)  
SLADDR  
MS Bit  
SDA  
SCL  
THD;STA  
Slave Address  
MS Bit  
SDA  
SCL  
Figure 48. Repeated Start Timing  
Figure 46. Start Bit  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
30  
Read and Write Transactions  
Table 21. Bit Definitions for Figure 49, Figure 50  
The figures below outline the sequences for data read and  
write. Bus control is signified by the shading of the packet,  
Symbol  
Definition  
Master Drives Bus  
Slave Drives Bus  
defined as  
and  
.
S
START, see Figure 46.  
All addresses and data are MSB first.  
ACK. The slave drives SDA to 0 to acknowledge  
the preceding packet.  
A
A
NACK. The slave sends a 1 to NACK the  
preceding packet.  
R
P
Repeated START, see Figure 48  
STOP, see Figure 47  
0
0
0
7 bits  
8 bits  
8 bits  
Data  
S
Slave Address  
0
A
Reg Addr  
A
A
P
Figure 49. Write Transaction  
0
0
0
1
7 bits  
Slave Address  
8 bits  
7 bits  
8 bits  
Data  
S
0
A
Reg Addr  
A
R
Slave Address  
1
A
A
P
Figure 50. Read Transaction  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
31  
Register Descriptions  
FAN54010-FAN54012 have seven user-accessible registers; FAN54013 and FAN54014 have an additional two registers,  
defined in Table 22.  
Table 22. I2C Register Address  
Register  
Address Bits  
IC  
Name  
REG#  
7
0
0
0
6
0
0
0
5
0
0
0
4
0
0
0
3
0
0
0
2
0
0
0
1
0
0
1
0
0
1
0
CONTROL0  
CONTROL1  
OREG  
0
1
2
ALL  
03  
or  
IC_INFO  
0
0
0
0
0
0
1
1
3BH  
IBAT  
4
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
1
0
0
SP_CHARGER  
SAFETY  
FAN54013 and FAN54014  
ALL  
6
MONITOR  
10H  
Table 23. Register Bit Definitions  
This table defines the operation of each register bit for all IC versions. Default values are in bold text.  
Bit  
Name  
Value Type  
Description  
CONTROL0  
Register Address: 00  
Default Value=X1XX 0XXX  
W
Writing a 1 resets the t32S timer; writing a 0 has no effect  
Returns the OTG pin level (1=HIGH)  
TMR_RST  
7
1
OTG  
R
Prevents STAT pin from going LOW during charging; STAT pin still pulses to  
enunciate faults  
0
R/W  
6
EN_STAT  
1
00  
01  
10  
11  
0
Enables STAT pin LOW when IC is charging  
R
Ready  
Charge in progress  
5:4  
STAT  
Charge done  
Fault  
R
IC is not in Boost Mode  
3
BOOST  
FAULT  
1
IC is in Boost Mode  
2:0  
R
Fault status bits: for Charge Mode, see Table 13; for Boost Mode, see Table 18  
CONTROL1  
Register Address: 01  
Default Value=0011 0000 (30H)  
7:6  
IINLIM  
R/W Input current limit, see Table 7  
00  
01  
10  
11  
0
R/W 3.4 V  
3.5 V  
5:4  
VLOWV  
Weak battery voltage threshold  
3.6 V  
3.7 V  
R/W Disable charge current termination  
Enable charge current termination  
R/W Charger enabled  
Charger disabled  
3
2
TE  
CE  
1
0
1
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
32  
Table 23. Register Bit Definitions  
This table defines the operation of each register bit for all IC versions. Default values are in bold text.  
Bit  
Name  
Value Type  
Description  
0
1
0
1
R/W Not High-Impedance Mode  
High-Impedance Mode  
R/W Charge Mode  
1
HZ_MODE  
See Table 16  
0
OPA_MODE  
Boost Mode  
OREG  
Register Address: 02  
Default Value=0000 1010 (0AH)  
Charger output “float” voltage; programmable from 3.5 V to 4.44 V in 20 mV  
increments; defaults to 000010 (3.54 V), see Table 3  
7:2  
OREG  
R/W  
0
1
0
1
R/W OTG pin active LOW  
OTG pin active HIGH  
R/W Disables OTG pin  
Enables OTG pin  
1
0
OTG_PL  
OTG_EN  
IC_INFO  
Register Address: 03 or 3B  
Default Value=100X X100  
7:5  
4:2  
Vendor Code  
100  
00  
R
R
R
Identifies Fairchild Semiconductor as the IC supplier  
PN  
Part number bits, see the Ordering Info on page 1  
1:0  
REV  
IC Revision, revision 1.X, where X is the decimal of these three bits  
IBAT  
Register Address: 04  
Default Value=1000 1001 (89H)  
Writing a 1 resets charge parameters, except the Safety register (Reg6), to their  
defaults: writing a 0 has no effect; read returns 1  
7
RESET  
1
W
6:4  
3
IOCHARGE  
Reserved  
ITERM  
Table 5  
1
R/W Programs the maximum charge current, see Table 5  
Unused  
R/W Sets the current used for charging termination, see Table 6  
R
2:0  
Table 6  
SP_CHARGER (FAN54013-14)  
Register Address: 05  
Default Value=001X X100  
7
Reserved  
0
0
1
0
R
Unused  
R/W 1.8 V regulator is ON  
6
DIS_VREG  
1.8 V regulator is OFF  
R/W Output current is controlled by IOCHARGE bits  
Voltage across RSENSE for output current control is set to 22.1 mV (325 mAfor  
5
4
IO_LEVEL  
SP  
1
RSENSE=68 m, 221 mA for 100 m)  
0
R
R
Special charger is not active (VBUS is able to stay above VSP)  
1
Special charger has been detected and VBUS is being regulated to VSP  
DISABLE pin is LOW  
0
1
3
EN_LEVEL  
VSP  
DISABLE pin is HIGH  
2:0  
Table 8  
R/W Special charger input regulation voltage, see Table 8  
SAFETY (FAN54013-14)  
Register Address: 06  
Default Value=0100 0000 (40H)  
7
Reserved  
ISAFE  
0
R
Bit disabled and always returns 0 when read back  
6:4  
3:0  
Table 9  
R/W Sets the maximum IOCHARGE value used by the control circuit, see Table 9  
VSAFE  
Table 10 R/W Sets the maximum VOREG used by the control circuit, see Table 10  
Register Address: 10H (16)  
See Table 19  
MONITOR  
7
6
5
ITERM_CMP  
R
R
R
ITERM comparator output, 1 when VRSENSE > ITERM reference  
Output of VBAT comparator  
VBAT_CMP Table 19  
LINCHG  
30 mA linear charger ON  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
33  
Table 23. Register Bit Definitions  
This table defines the operation of each register bit for all IC versions. Default values are in bold text.  
Bit  
Name  
Value Type  
Description  
Thermal regulation comparator; when=1 and T_145=0, the charge current is limited  
to 22.1 mV across RSENSE  
4
T_120  
R
3
2
1
ICHG  
IBUS  
R
R
R
0 indicates the ICHARGE loop is controlling the battery charge current  
0 indicates the IBUS (input current) loop is controlling the battery charge current  
1 indicates VBUS has passed validation and is capable of charging  
VBUS_VALID  
1 indicates the constant-voltage loop (OREG) is controlling the charger and all  
current limiting loops have released  
0
CV  
R
PCB Layout Recommendations  
Bypass capacitors should be placed as close to the IC as  
possible. In particular, the total loop length for CMID should  
be minimized to reduce overshoot and ringing on the SW,  
PMID, and VBUS pins. All power and ground pins must be  
routed to their bypass capacitors, using top copper whenever  
possible. Copper area connecting to the IC should be  
maximized to improve thermal performance if possible.  
Figure 51. PCB Layout Recommendations  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
34  
Physical Dimensions  
F
BALL A1  
E
A
INDEX AREA  
1.20  
B
Ø0.20  
Cu Pad  
0.03 C  
2X  
A1  
1.60  
D
0.40  
Ø0.30 Solder  
Mask Opening  
0.40  
0.03 C  
2X  
TOP VIEW  
RECOMMENDED LAND PATTERN  
(NSMD TYPE)  
0.06 C  
0.625  
0.547  
0.378±0.018  
0.208±0.021  
E
0.05 C  
C
D
SEATING PLANE  
SIDE VIEWS  
NOTES:  
A. NO JEDEC REGISTRATION APPLIES.  
B. DIMENSIONS ARE IN MILLIMETERS.  
0.005  
C A B  
1.20  
Ø0.260±0.02  
20X  
0.40  
C. DIMENSIONS AND TOLERANCE  
PER ASMEY14.5M, 1994.  
E
D
C
B
1.60  
D. DATUM C IS DEFINED BY THE SPHERICAL  
CROWNS OF THE BALLS.  
(Y) ±0.018  
F
0.40  
A
E. PACKAGE NOMINAL HEIGHT IS 586 MICRONS  
±39 MICRONS (547-625 MICRONS).  
2
3
4
1
(X) ±0.018  
F. FOR DIMENSIONS D, E, X, AND Y SEE  
PRODUCT DATASHEET.  
BOTTOM VIEW  
G. DRAWING FILNAME: MKT-UC020AArev2.  
Figure 52. 20-Ball WLCSP, 4X5 Array, 0.4 mm Pitch, 250 µm Ball  
Product-Specific Dimensions  
Product  
D
E
X
Y
FAN5401XUCX  
1.960 +0.030  
1.870 +0.030  
0.335  
0.180  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without  
notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most  
recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty  
therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
35  
© 2011 Fairchild Semiconductor Corporation  
FAN5401X Family • Rev. 1.0.4  
www.fairchildsemi.com  
36  

相关型号:

FAN54011

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54011UCX

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54011UCX(1)

FAN54010 / FAN54011 / FAN54012 / FAN54013 / FAN54014
FAIRCHILD

FAN54012

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54012UCX

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54012UCX(1)

FAN54010 / FAN54011 / FAN54012 / FAN54013 / FAN54014
FAIRCHILD

FAN54013

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54013BUCX

符合 USB 标准的单锂离子电池开关充电器,带 USB-OTG 升压稳压器
ONSEMI

FAN54013UCX

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54013_12

FAN54010 / FAN54011 / FAN54012 / FAN54013 / FAN54014
FAIRCHILD

FAN54014

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54014UCX

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD