FAN7033MP [FAIRCHILD]

2W Stereo Power Amplifier with Fixed Gain; 2W立体声功率放大器固定增益
FAN7033MP
型号: FAN7033MP
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

2W Stereo Power Amplifier with Fixed Gain
2W立体声功率放大器固定增益

放大器 功率放大器
文件: 总20页 (文件大小:419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FAN7033MP  
2W Stereo Power Amplifier with Fixed Gain  
Features  
Description  
• 1.9W  
and 2.45W  
RMS  
Power Per Each Channel Into  
The FAN7033MP is a dual fully differential power amplifier  
in a thermally enhanced 14-pin MLP package. When deliv-  
ering 1.9W of continuous RMS power into 4speaker at 5V  
supply, the FAN7033MP has less than 1% of THD+N over  
the entire audible frequency range, 20Hz to 20kHz. To save  
power consumption in the portable applications, the  
FAN7033MP provides shutdown function. Setting the shut-  
down pin to ground level, the FAN7033MP falls into shut-  
down mode and consumes less than 4µA over all supply  
voltage range, 2.7V to 5.5V. Additional components such as  
resistors for gain setting and bootstrap capacitors are not  
needed, making the FAN7033MP well suited for portable  
sound systems and other hand-held sound equipments. Tar-  
get applications include the cellular phones, notebook, desk-  
top computers, etc.  
RMS  
4Load With Less Than 1% and 10% THD+N,  
Respectively  
• Internally Fixed Gain : 21.6dB(Av=12)  
• Low Quiescent Current : Typical 5.5mA@5V  
• Low Shutdown Current : Typical 0.04µA@5V  
• Fully Differential Input, Which Immunes the Common  
Mode Noise  
• Active Low Shutdown Logic  
• Guaranteed Stability Under No Load Condition  
Very Small Volume and Thermally Enhanced Surface-  
Mount 14MLP Package(4mm*4mm)  
Typical Applications  
• Cellular Phones  
14MLP  
• Notebook Computer  
• Desktop Computer  
1
BOTTOM VIEW  
Internal Block Diagram  
90kΩ  
15kΩ  
RIN-  
12  
4
13  
ROUT+  
15kΩ  
15kΩ  
PVDD1  
ROUT-  
10  
9
RIN+  
15kΩ  
90kΩ  
11 VDD  
90kΩ  
90kΩ  
90kΩ  
7
8
BYPASS  
BIAS  
&
14  
SD  
VDD/2  
CONTROL  
GND  
90kΩ  
15kΩ  
90kΩ  
6
2
LIN+  
LIN-  
1
3
LOUT+  
PVDD2  
15kΩ  
15kΩ  
5
LOUT-  
15kΩ  
90kΩ  
Rev. 1.0.0  
©2003 Fairchild Semiconductor Corporation  
FAN7033MP  
Pin Assignments  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
8
TOP VIEW  
BOTTOM VIEW  
Pin Descriptions  
Pin No  
Symbol  
LOUT+  
LIN-  
I/O  
O
I
Decription  
1
2
Left Channel (+) Output  
Left Channel (-) Input  
3**  
4
5
PVDD2  
RIN+  
LOUT-  
LIN+  
I
I
O
I
Left Channel Power Supply Voltage  
Right Channel (+) Input  
Left Channel (-) Output  
Left Channel (+) Input  
6
7
8*  
9
10**  
11**  
12  
13  
BYPASS  
GND  
ROUT-  
PVDD1  
VDD  
O
-
O
I
I
I
Bypass Capacitor Connect  
Ground  
Right Channel (-) Output  
Right Channel Power Supply Voltage  
Power Supply Voltage  
RIN-  
ROUT+  
Right Channel (-) Input  
Right Channel (+) Output  
O
Shutdown Logic Low  
14  
SD  
I
SD=VDD: Device Enable  
SD=GND: Device Shutdown  
* Pin8(GND) and Exposed PAD are internally tied together.  
**For the best performance, VDD, PVDD1 and PVDD2 must be the same voltage level(strongly recommend).  
2
FAN7033MP  
Absolute Maximum Ratings  
Parameter  
Maximum Supply Voltage  
Power Dissipation  
Operating Temperature  
Storage Temperature  
Junction Temperature  
Symbol  
VDDmax  
Value  
6.0V  
Internally Limited  
-40 ~ +85  
-65 ~ +150  
150  
Unit  
V
W
°C  
°C  
°C  
Remark  
P
D
T
OPG  
T
STG  
T
Jmax  
38  
145  
Multi-Layer  
Single-Layer  
Thermal Resistance  
(Junction to Ambient)  
Rthja*  
°C/W  
ESD Rating (Human Body Model)  
ESD Rating (Machine Model)  
2000  
300  
V
V
* Rthja was derived using the JEDEC boards.  
Operating Rating  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Power Supply Voltage  
V
DD  
2.7  
-
5.5  
V
3
FAN7033MP  
Electrical Characteristics  
(V  
DD  
= 5.0V, Ta = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Conditions  
RL=4Ω, Av=21.6dB  
No Input, No Load  
SD = GND  
THD+N =1%, RL = 4, f = 1kHz  
THD+N =1%, RL = 8, f = 1kHz  
Min. Typ. Max. Unit  
Offset Voltage  
Supply Current  
Shutdown Current  
V
OFF  
-25  
-
25  
10  
4
mV  
mA  
µA  
W
I
-
-
-
-
-
5.5  
0.04  
1.9  
DD  
I
SD  
-
Output Power  
P
O
1.25  
0.6  
-
-
W
%
Total Harmonic Distortion + Noise THD+N  
P
= 1W, RL=4, f = 20kHz  
O
C
= 1µF, RL=4, BTL Mode,  
byp  
Power Supply Rejection Ratio  
Output Noise Voltage  
PSRR  
VN  
38  
-
68  
-
-
dB  
VDD=500mVpp, f = 1kHz  
Input=GND, RL=4, f=1kHz  
-120  
dBv  
Electrical Characteristics  
(V  
DD  
= 3.3 V, Ta = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Conditions  
RL=4Ω, Av=21.6dB  
No Input, No Load  
SD = GND  
THD+N =1%, RL = 4, f = 1kHz  
THD+N =1%, RL = 8, f = 1kHz  
Min. Typ. Max. Unit  
Offset Voltage  
Supply Current  
Shutdown Current  
V
OFF  
-25  
-
25  
8
4
-
mV  
mA  
µA  
W
I
-
-
-
-
-
4.5  
DD  
I
0.04  
0.75  
0.53  
0.75  
SD  
Output Power  
P
O
-
W
Total Harmonic Distortion + Noise THD+N  
P
= 1W, RL=4, f = 20kHz  
-
%
O
C
= 1µF, RL=4, BTL Mode,  
byp  
Power Supply Rejection Ratio  
Output Noise Voltage  
PSRR  
VN  
38  
-
68  
-
-
dB  
VDD=330mVpp, f = 1kHz  
Input=GND, RL=4, f=1kHz  
-120  
dBv  
Electrical Characteristics  
(V  
DD  
= 2.7 V, Ta = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Conditions  
RL=4Ω, Av=21.6dB  
No Input, No Load  
SD = GND  
THD+N =1%, RL = 4, f = 1kHz  
THD+N =1%, RL = 8, f = 1kHz  
Min. Typ. Max. Unit  
Offset Voltage  
Supply Current  
Shutdown Current  
V
OFF  
-25  
-
25  
7
4
-
mV  
mA  
µA  
W
I
-
-
-
-
-
4.1  
DD  
I
0.04  
0.45  
0.32  
0.9  
SD  
Output Power  
P
O
-
W
Total Harmonic Distortion + Noise THD+N  
P
= 0.5W, RL=4, f = 20kHz  
-
%
O
C
= 1µF, RL=4, BTL Mode,  
byp  
Power Supply Rejection Ratio  
Output Noise Voltage  
PSRR  
VN  
36  
-
62  
-
-
dB  
VDD=270mVpp, f = 1kHz  
Input=GND, RL=4, f=1kHz  
-120  
dBv  
4
FAN7033MP  
Typical Application Circuits  
Single-Ended Input  
90kΩ  
1uF  
15kΩ  
RIN-  
12  
ROUT+  
CRINN  
13  
RIGHT  
SE INPUT  
1uF  
15kΩ  
15kΩ  
PVDD1  
4Ω  
10  
9
RIN+  
4
100nF  
ROUT-  
VDD  
CRINP  
RIGHT  
15kΩ  
90kΩ  
OUTPUT  
11  
7
90kΩ  
90kΩ  
90kΩ  
BYPASS  
1uF  
ShutDown  
BIAS  
&
SD  
14  
VDD/2  
CONTROL  
8
GND  
220uF  
90kΩ  
15kΩ  
90kΩ  
CLINP  
1uF  
LIN+  
LIN-  
6
2
LOUT+  
100nF  
1
3
15kΩ  
LEFT  
4Ω  
PVDD2  
SE INPUT  
15kΩ  
CLINN  
1uF  
5
LOUT-  
LEFT  
15kΩ  
OUTPUT  
90kΩ  
5
FAN7033MP  
Typical Application Circuits (continued)  
Differential Input  
90kΩ  
1uF  
15kΩ  
RIN-  
12  
4
ROUT+  
CRINN  
13  
RIGHT  
15kΩ  
15kΩ  
DIFF. INPUT  
PVDD1  
4Ω  
10  
9
1uF  
RIN+  
100nF  
ROUT-  
VDD  
CRINP  
RIGHT  
15kΩ  
90kΩ  
OUTPUT  
11  
7
90kΩ  
90kΩ  
90kΩ  
BYPASS  
1uF  
ShutDown  
BIAS  
&
SD  
14  
VDD/2  
CONTROL  
8
GND  
220uF  
90kΩ  
15kΩ  
90kΩ  
CLINP  
1uF  
LIN+  
LIN-  
6
2
LOUT+  
100nF  
1
3
15kΩ  
LEFT  
4Ω  
PVDD2  
DIFF. INPUT  
15kΩ  
CLINN  
1uF  
5
LOUT-  
LEFT  
15kΩ  
OUTPUT  
90kΩ  
6
FAN7033MP  
Performance Characteristics : Differential Input  
10  
5
10  
5
VDD=5V  
RL=8Ω  
Av=21.6dB  
2
1
2
1
20kHz  
20kHz  
0.5  
0.5  
1kHz  
1kHz  
20Hz  
0.2  
0.1  
0.2  
0.1  
20Hz  
0.05  
0.05  
VDD=5V  
RL=4Ω  
0.02  
0.01  
0.02  
0.01  
Av=21.6dB  
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
Output Power [W]  
Output Power [W]  
Figure 2. THD+N vs. Output Power  
Figure 1. THD+N vs. Output Power  
10  
5
10  
5
2
1
2
1
20kHz  
1kHz  
20kHz  
0.5  
0.5  
1kHz  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
VDD=3.3V  
RL=8Ω  
VDD=3.3V  
RL=4Ω  
20Hz  
20Hz  
0.02  
0.01  
0.02  
0.01  
Av=21.6dB  
Av=21.6dB  
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
Figure 3. THDO+uNtpuvtsPo.wOeru[Wtp] ut Power  
Figure 4. THDO+uNtpuvtsPo.wOeru[Wtp] ut Power  
10  
5
10  
5
20kHz  
1kHz  
2
1
2
1
20kHz  
1kHz  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
20Hz  
VDD=2.7V  
RL=4Ω  
VDD=2.7V  
RL=8Ω  
20Hz  
0.02  
0.01  
0.02  
0.01  
Av=21.6dB  
Av=21.6dB  
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
Figure 5. THDO+uNtpuvtsPo.wOeru[Wtp] ut Power  
Figure 6. THDO+uNtpuvtsPo.wOeru[Wtp] ut Power  
7
FAN7033MP  
Performance Characteristics(Continued)  
10  
10  
5
5
VDD=5V  
VDD=5V  
Output power =1W  
Output power =1W  
RL=8Ω  
2
2
1
RL=4Ω  
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 7. THD+N vs. Frequency  
Figure 8. THD+N vs. Frequency  
10  
10  
5
5
VDD=3.3V  
VDD=3.3V  
Output power =500mW  
RL=4Ω  
Output power =500mW  
RL=8Ω  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 9. THD+N vs. Frequency  
Figure 10. THD+N vs. Frequency  
10  
5
10  
5
VDD=2.7V  
VDD=2.7V  
Output power =250mW  
RL=4Ω  
Output power =250mW  
RL=8Ω  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 11. THD+N vs. Frequency  
Figure 12. THD+N vs. Frequency  
8
FAN7033MP  
Performance Characteristics(Continued)  
+0  
+0  
-10  
-10  
VDD=5V+/-5%  
VDD=5V+/-5%  
-20  
-20  
-30  
RL=4Ω  
RL=8Ω  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-100  
-110  
-120  
-120  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 13. PSRR vs. Frequency  
Figure 14. PSRR vs. Frequency  
+0  
+0  
-10  
-20  
-10  
VDD=3.3V+/-5%  
VDD=3.3V+/-5%  
-20  
-30  
RL=4Ω  
RL=8Ω  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-100  
-110  
-120  
-120  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 15. PSRR vs. Frequency  
Figure 16. PSRR vs. Frequency  
+0  
+0  
-10  
-10  
VDD=2.7V+/-5%  
VDD=2.7V+/-5%  
-20  
-30  
-20  
-30  
RL=8Ω  
RL=4Ω  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-100  
-110  
-120  
-120  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 17. PSRR vs. Frequency  
Figure 18. PSRR vs. Frequency  
9
FAN7033MP  
Performance Characteristics(Continued)  
+0  
+0  
VDD=5V  
VDD=5V  
-10  
-10  
Output power = 1W  
Output power = 1W  
RL=8Ω  
-20  
-20  
-30  
RL=4Ω  
-30  
-40  
-50  
-60  
-40  
-50  
-60  
-70  
-70  
Left-to-Right  
-80  
-90  
-80  
Left-to-Right  
-90  
-100  
Right-to-Left  
-100  
-110  
Right-to-Left  
-110  
-120  
-120  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 19. Crosstalk vs. Frequency  
Figure 20. Crosstalk vs. Frequency  
7.0m  
6.0m  
5.0m  
4.0m  
3.0m  
2.0m  
1.0m  
0.0  
6.0m  
5.0m  
4.0m  
3.0m  
2.0m  
1.0m  
0.0  
VDD=5V  
VDD=3.3V  
VDD=2.7V  
0
1
2
3
4
5
0
1
2
3
4
5
Supply Voltage [V]  
Shutdown Pin Voltage [V]  
Figure 21. Supply Current vs. Supply Voltage  
Figure 22. Supply Currrent vs. SD Voltage  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD=5V  
VDD=5V  
VDD=3.3V  
VDD=3.3V  
THD less than 1%  
RL=4Ω  
THD less than 1%  
RL=8Ω  
VDD=2.7V  
VDD=2.7V  
f=1kHz  
f=1kHz  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
Output Power [W]  
Output Power [W]  
Figure 23. Power Dissipation vs. Output Power  
Figure 24. Power Dissipation vs. Output Power  
10  
FAN7033MP  
Performance Characteristics(Continued)  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
f=1kHz  
f=1kHz  
RL=4  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
RL=8Ω  
10% THD+N  
10% THD+N  
1% THD+N  
1% THD+N  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Supply Voltage [V]  
Supply Voltage [V]  
Figure 25. Output Power vs. Supply Voltage  
Figure 26. Output Power vs. Supply Voltage  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VDD=5V  
VDD=3.3V  
f=1kHz  
f=1kHz  
2.0  
1.5  
1.0  
0.5  
0.0  
10% THD+N  
10% THD+N  
1% THD+N  
1% THD+N  
0
8
16  
24  
32  
40  
48  
56  
64  
0
8
16  
24  
32  
40  
48  
56  
64  
RL-Load Resistance []  
RL-Load Resistance []  
Figure 27. Output Power vs. Output Load  
Figure 28. Output Power vs. Output Load  
100u  
50u  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD=2.7V  
f=1kHz  
VDD=5V  
RL=4Ω  
20u  
10u  
5u  
Av=21.6dB  
10% THD+N  
2u  
1u  
1% THD+N  
500n  
200n  
100n  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
0
8
16  
24  
32  
40  
48  
56  
64  
RL-Load Resistance []  
Frequency [Hz]  
Figure 29. Output Power vs. Output Load  
Figure 30. Outut Noise Voltage vs. Frequency  
11  
FAN7033MP  
Performance Characteristics : Single-Ended Input  
10  
5
10  
5
VDD=5V  
RL=8Ω  
Av=21.6dB  
2
1
2
1
20kHz  
20kHz  
0.5  
0.5  
1kHz  
1kHz  
0.2  
0.1  
0.2  
0.1  
20Hz  
0.05  
0.05  
20Hz  
VDD=5V  
RL=4Ω  
0.02  
0.01  
0.02  
0.01  
Av=21.6dB  
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
Output Power [W]  
Output Power [W]  
Figure 33. THD+N vs. Output Power  
Figure 34. THD+N vs. Output Power  
10  
5
10  
5
20kHz  
1kHz  
2
1
2
1
20kHz  
1kHz  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
VDD=3.3V  
RL=4Ω  
VDD=3.3V  
RL=8Ω  
20Hz  
20Hz  
0.02  
0.01  
0.02  
0.01  
Av=21.6dB  
Av=21.6dB  
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
Output Power [W]  
Output Power [W]  
Figure 35. THD+N vs. Output Power  
Figure 36. THD+N vs. Output Power  
10  
5
10  
5
20kHz  
1kHz  
2
1
2
1
20kHz  
0.5  
0.5  
1kHz  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
20Hz  
20Hz  
VDD=2.7V  
RL=4Ω  
VDD=2.7V  
RL=8Ω  
0.02  
0.01  
0.02  
0.01  
Av=21.6dB  
Av=21.6dB  
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
Output Power [W]  
Output Power [W]  
Figure 37. THD+N vs. Output Power  
Figure 38. THD+N vs. Output Power  
12  
FAN7033MP  
Performance Characteristics(Continued)  
10  
10  
5
5
VDD=5V  
VDD=5V  
Output power =1W  
Output power =1W  
RL=8Ω  
2
2
1
RL=4Ω  
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 39. THD+N vs. Frequency  
Figure 40. THD+N vs. Frequency  
10  
10  
5
5
VDD=3.3V  
VDD=3.3V  
Output power =500mW  
RL=4Ω  
Output power =500mW  
2
1
2
1
RL=8Ω  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 41. THD+N vs. Frequency  
Figure 42. THD+N vs. Frequency  
10  
5
10  
5
VDD=2.7V  
VDD=2.7V  
Output power =250mW  
RL=4Ω  
Output power =250mW  
RL=8Ω  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 43. THD+N vs. Frequency  
Figure 44. THD+N vs. Frequency  
13  
FAN7033MP  
Performance Characteristics(continued)  
4.0  
3.5  
Multi Layer  
3.0  
2.5  
2.0  
1.5  
Single Layer  
1.0  
0.5  
0.0  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [°C]  
Figure 45. Power Derating Curve  
Notes :  
- Single Layer(JESD51-3) :  
Thermal Vias : 0  
Board Size : 76.2mm*114.3mm*1.57mm(JESD51-3)  
Copper Thickness : 2.0oz  
Copper Coverage : Top Layer : Traces + Metalization Area(3.34mm*2.24mm)  
- Multi Layer(JESD51-7) :  
Thermal Vias : 6  
Board Size : 76.2mm*114.3mm*1.6mm(JESD51-7)  
Copper Thickness : 2.0oz/1.0oz/1.0oz  
Copper Coverage : Top Layer : Traces + Metalization Area(3.34mm*2.24mm)  
Middle Layers(Power/Ground Planes) : 74.2mm*74.2mm  
- JESD51-3 : Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages(Single Layer)  
- JESD51-7 : High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages(Multi Layers)  
- JESD51-2 : Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection(Still Air)  
14  
FAN7033MP  
Applications Information  
Functional Description  
The FAN7033MP is a stereo power amplifier capable of delivering 1.9W continuous RMS(Root Mean Square)  
power into 4load with 1% THD(Total Harmonic Distortion). At 10% THD, the FAN7033MP can deliver above 2W  
into 4load. The FAN7033MP has 5 supply input pins. Three among them are used for positive supply and the  
rest of them is for the ground. Three positive supply input pins : pin3(PVDD2), pin10(PVDD1) and pin11(VDD) must  
be tied together. To improve the cross-talk between cannels, these pins are not connected internally. Therefore,  
these pins must be externally connected on the PCB. Pin 8 and the exposed pad are allocated to ground. Thus, the  
exposed pad must be connected to the ground.  
The FAN7033MP is provided with differential inputs. These inputs increase the common-mode noise immunity.  
Furthermore, differential configuration in the input section helps to decrease total harmonic distortion and pop  
noise that occurs when shutdown is released. When only single input is available, the distortion performance is  
slightly degraded.  
To save the standby power consumption, the FAN7033MP provides shutdown function. Putting pin14(SD) to be  
low, the chip falls into shutdown mode. At this mode, it consumes micro power at the room temperature of 25°C  
and this power consumption is only due to the leakage current of the chip. This leakage current is the strong func-  
tion of the temperature. Thus at the high ambient temperature, the shutdown current slightly increases. The logic  
threshold of shutdown pin lies nearby VDD/2. So, the logic threshold level does not follow TTL logic level. Thus,  
when the users want to control the chip according to the TTL logic level, some kinds of logic-level-changing circuit  
may be needed.  
Operation of the Amplifier  
90kΩ  
CINN  
15kΩ  
INN  
OUTP  
AMP1  
15kΩ  
CINP  
15kΩ  
INP  
OUTN  
AMP2  
15kΩ  
90kΩ  
90kΩ  
90kΩ  
VDD/2  
Figure 1. Configuration of Power Amplifier  
Figure 1 shows the configuration of the single channel BTL(Bridge-Tied Load) power amplifier. To make the differ-  
ential input configuration, the FAN7033MP uses several resistor networks as depicted in figure 1. For the input  
resistor, 15kis used. This resistor converts the input voltage signal to the current signal. The converted current  
signal flows to the feedback resistor. For FAN7033MP, the feedback resistance is six times larger than input resis-  
tance. Thus, the gain is 12(about 21.6dB). For the 5V supply, the input signal has 0.83Vpeak voltage swing makes  
10Vpp output swing. The exact gain formula is given by  
OUTP OUTN = 12(INP INN)  
(1)  
As shown in equation (1), for the single-ended input case, the gain is also preserved. However, to get the same  
output swing with the differential input case, the input swing must be double comparing with the differential input  
swing.  
PCB Layout and Supply Regulation  
Metal trace resistance between the BTL output and the parasitic resistance of the power supply line both heavily  
15  
FAN7033MP  
affect the output power. In order to obtain the maximum power depicted in the performance characteristics figures,  
outputs, power, and ground lines need wide metal trace. The parasitic resistance of the power line increases ripple  
noise and degrades the THD and PSRR performance. To reduce such unwanted effect, a large capacitor must be  
connected between V  
pin and GND pin as close as possible. To improve power supply regulation performance,  
DD  
use a capacitor with low ESR.  
Power Supply Bypassing  
Selection of a proper power supply bypassing capacitor is critical to obtaining lower noise as well as higher power  
supply rejection. Larger capacitors may help to increase immunity to the supply noise. However, considering eco-  
nomical design, attaching 10µF electrolytic capacitor or tantalum capacitor with 0.1µF ceramic capacitor as close  
as possible to the VDD pins are enough to get a good supply noise rejection.  
Selection of Input Capacitor  
The input capacitors CINN and CINP block the DC voltage also low frequency input signal. Thus, these capacitors  
act as a high pass filter. When there are DC level differences between input source and the amplifier, these capac-  
itors block DC voltage and make easy connection. However, these capacitors limit the low frequency input signal.  
Thus to cover the full audio frequency range, the values of these are very important. The input impedance and the  
capacitance of these capacitors stand for the low frequency characteristics and -3dB frequency is  
1
(2)  
fL = ----------------------------  
2π ⋅ Zin C  
Where Zin is the input equivalent impedance and C is the capacitance of the input capacitor.  
For FAN7033MP, the input has several resistors and these resistors determine the input impedance. In the normal  
condition, (-) input of the amplifier looks like a voltage source since the negative feedback topology makes (-) input  
virtually be the AC ground. Thus, resistance between the negative input of the amplifier and input pin is 15k. The  
resistance toward (+) input is the summation of 15kand 90k. Thus total input impedance is  
(3)  
||  
Zin = 15kΩ (15k+ 90kΩ) = 13.125kΩ  
Considering f =20Hz(the lowest frequency of the audio freqeuncy range), it is possible to get the capacitance value  
L
from equation(2) and (3) as follow:  
1
----------------------------  
Cin =  
= 0.606uF  
(4)  
2π ⋅ Zin fL  
Thus, Cin must be higher than 0.606uF. In the application note, 1uF is chosen by considering input impedance vari-  
ation during the chip fabrication.  
When using a capacitor which has the polarity, customers must carefully connect the capacitor. The input DC level  
of the FAN7033MP is a half of VDD. Thus, if the DC level of a source is higher than VDD/2, the positive lead of the  
capacitor must be faced toward the source.  
Shutdown Mode  
In order to reduce power consumption while not in use, the FAN7033MP contains a shutdown pin to externally turn-  
off bias circuitry. This shutdown feature turns the amplifier off when a logic low is placed on the shutdown pin. The  
trigger point between a logic low and logic high level is typically half-supply. It is best to switch between ground and  
supply to provide maximum device performance. By switching the shutdown pin to VDD , the FAN7033MP supply  
current draw will be minimized in idle mode. In either case, the shutdown pin should be tied to a definite voltages to  
avoid unwanted state changes.  
In many appplications, a microcontroller or microprocessor output is used to control the shutdown circuitry which  
provides a quick, smooth transition into shutdown. Another solution is to use a single-pole, single-throw switch in  
conjunction with an external pull-down resistor. When the switch is closed, the shutdown pin is connected to VDD  
and enables the amplifier. If the switch is open, then the external pull-down resistor will disable the FAN7033MP.  
This scheme guarantees that the shutdown pin will not float thus preventing unwanted state changes.  
16  
FAN7033MP  
Single-Ended Input  
For the case, a source does not provide the fully differential signal, the residual input must be well treated.  
90kΩ  
CINN  
15kΩ  
INPUT  
OUTP  
AMP1  
15kΩ  
15kΩ  
OUTN  
FLOATING  
AMP2  
15kΩ  
90kΩ  
90kΩ  
90kΩ  
VDD/2  
Case (A) : Residual Input Pin Floating  
90kΩ  
CINN  
15kΩ  
INPUT  
OUTP  
OUTN  
AMP1  
15kΩ  
CINP  
15kΩ  
AMP2  
15kΩ  
90kΩ  
90kΩ  
90kΩ  
VDD/2  
Case (B) : AC Coupling to Ground  
Case(A) : For this case, input is left alone without any treatment, that is, input pin is floating. Even the pin is float-  
ing, the BTL amplifier works and drives load. However, this configuration might cause unwanted noise at the output  
signal. Furthemore, floated configuration decreases PSRR(Power Supply Rejection Ratio) and increase POP  
noise.  
Case(B) : Case(B) is strongly recommended. This configuration increases PSRR and decreases POP noise as  
well. Of cource, to get the best performance, CINP must be the same value with CINN.  
THD+N(Total Harmonic Distortion plus Noise)  
THD+N stands for linearity and output noise of the amplifier as well. The FAN7033MP has the circuit for enhancing  
THD. In spite of that, to get low THD+N, users should follow the recommendation:  
(1) Use fully differential input configuration : A fully differential input makes low THD at output. Thus, for a single-  
ended input case, THD+N slightly increaes.  
(2) Do not miss C  
. C helps to increase PSRR. Thus, using this capacitor, it is possible to increase noise  
BYP BYP  
immunity from the supply line.  
(3) Do not miss C  
. Voltage fluctuation in supply line increases THD. Thus, such voltage fluctuation must be  
SUP  
reduced to get low THD by connecting this capacitor between all VDD pins and the ground as closely as possible.  
17  
FAN7033MP  
Mechanical Dimensions  
Package  
Dimensions in millimeters  
14MLP  
18  
FAN7033MP  
Ordering Information  
Device  
Package  
Operating Temperature  
FAN7033MP  
14MLP  
-40°C ~ +85°C  
19  
FAN7033MP  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER  
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
8/20/03 0.0m 001  
Stock#DSxxxxxxxx  
2003 Fairchild Semiconductor Corporation  

相关型号:

FAN7040

3W Mono BTL Amplifier with DC Volume Control
FAIRCHILD

FAN7040M

3W Mono BTL Amplifier with DC Volume Control
FAIRCHILD

FAN7040MX

3W Mono BTL Amplifier with DC Volume Control
FAIRCHILD

FAN7040MX

1 CHANNEL(S), VOLUME CONTROL CIRCUIT, PDSO20, SOP-20
ROCHESTER

FAN7071

Landing Correction IC
FAIRCHILD

FAN7071S

Consumer Circuit, PSFM10, SIP-10
FAIRCHILD

FAN7071TS

Consumer Circuit, PSFM10, SIP-10
FAIRCHILD

FAN7080

Half Bridge Gate Driver
FAIRCHILD

FAN7080-GF085

Half Bridge Gate Driver
ONSEMI

FAN7080CM

Half Bridge Gate Driver
FAIRCHILD

FAN7080CM-F085

Micro Peripheral IC
FAIRCHILD

FAN7080CMX

Half Bridge Gate Driver
FAIRCHILD