FDD14AN06L_F085_10 [FAIRCHILD]

N-Channel PowerTrench® MOSFET 60V, 50A, 14.6mΩ; N沟道MOSFET PowerTrench® 60V , 50A , 14.6mÎ ©
FDD14AN06L_F085_10
型号: FDD14AN06L_F085_10
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

N-Channel PowerTrench® MOSFET 60V, 50A, 14.6mΩ
N沟道MOSFET PowerTrench® 60V , 50A , 14.6mÎ ©

文件: 总11页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
December 2010  
FDD14AN06LA0_F085  
®
N-Channel PowerTrench MOSFET  
60V, 50A, 14.6mΩ  
Features  
Applications  
rDS(ON) = 12.8m(Typ.), VGS = 5V, ID = 50A  
Qg(tot) = 25nC (Typ.), VGS = 5V  
Low Miller Charge  
Motor / Body Load Control  
ABS Systems  
Powertrain Management  
Injection Systems  
Low QRR Body Diode  
UIS Capability (Single Pulse and Repetitive Pulse)  
Qualified to AEC Q101  
DC-DC converters and Off-line UPS  
Distributed Power Architectures and VRMs  
Primary Switch for 12V and 24V systems  
RoHS Compliant  
Formerly developmental type 83557  
DRAIN  
(FLANGE)  
D
GATE  
G
SOURCE  
S
TO-252AA  
FDD SERIES  
MOSFET Maximum Ratings TC = 25°C unless otherwise noted  
Symbol  
VDSS  
VGS  
Parameter  
Ratings  
60  
Units  
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
V
V
±20  
Continuous (TC < 100oC, VGS = 10V)  
Continuous (TC < 80oC, VGS = 5V)  
Continuous (Tamb = 25oC, VGS = 5V, with RθJA = 52oC/W)  
Pulsed  
50  
A
ID  
50  
9.5  
A
A
Figure 4  
55  
A
EAS  
Single Pulse Avalanche Energy (Note 1)  
mJ  
Power dissipation  
Derate above 25oC  
125  
W
PD  
0.83  
W/oC  
oC  
TJ, TSTG  
Operating and Storage Temperature  
-55 to 175  
Thermal Characteristics  
RθJC  
Maximum Thermal Resistance Junction to Case TO-252  
1.2  
52  
oC/W  
oC/W  
Maximum Thermal Resistance Junction to Ambient TO-252, 1in2  
copper pad area  
RθJA  
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a  
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/  
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.  
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems  
certification.  
©2010 Fairchild Semiconductor Corporation  
FDD14AN06LA0_F085 Rev. C  
Package Marking and Ordering Information  
Device Marking  
Device  
Package  
Reel Size  
Tape Width  
Quantity  
FDD14AN06LA0  
FDD14AN06LA0_F085  
TO-252AA  
330mm  
16mm  
2500 units  
Electrical Characteristics TC = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
BVDSS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
ID = 250µA, VGS = 0V  
60  
-
-
-
-
-
-
V
V
DS = 50V  
1
IDSS  
µA  
nA  
VGS = 0V  
TC = 150oC  
-
250  
±100  
IGSS  
VGS = ±20V  
-
On Characteristics  
VGS(TH)  
Gate to Source Threshold Voltage  
VGS = VDS, ID = 250µA  
1
-
-
3
V
ID = 50A, VGS = 10V  
0.0102 0.0116  
0.0128 0.0146  
I
I
D = 50A, VGS = 5V  
D = 50A, VGS = 5V,  
-
rDS(ON)  
Drain to Source On Resistance  
-
0.028 0.033  
TJ = 175oC  
Dynamic Characteristics  
CISS  
Input Capacitance  
-
-
-
2810  
270  
115  
25  
-
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
VDS = 25V, VGS = 0V,  
f = 1MHz  
COSS  
CRSS  
Qg(TOT)  
Qg(TH)  
Qgs  
Output Capacitance  
Reverse Transfer Capacitance  
Total Gate Charge at 5V  
Threshold Gate Charge  
-
VGS = 0V to 5V  
32  
3.5  
-
VGS = 0V to 1V  
-
-
-
-
2.7  
VDD = 30V  
D = 50A  
Ig = 1.0mA  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
I
9.7  
Qgs2  
7.0  
-
Qgd  
8.7  
-
Switching Characteristics (VGS = 5V)  
tON  
td(ON)  
tr  
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
14  
132  
27  
47  
-
218  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
V
V
DD = 30V, ID = 50A  
GS = 5V, RGS = 5.1Ω  
td(OFF)  
tf  
Turn-Off Delay Time  
Fall Time  
-
-
tOFF  
Turn-Off Time  
111  
Drain-Source Diode Characteristics  
I
SD = 50A  
-
-
-
-
-
-
-
-
1.25  
1.0  
30  
V
V
VSD  
Source to Drain Diode Voltage  
ISD = 25A  
trr  
Reverse Recovery Time  
ISD = 50A, dISD/dt = 100A/µs  
ISD = 50A, dISD/dt = 100A/µs  
ns  
nC  
QRR  
Reverse Recovered Charge  
24  
Notes:  
1: Starting T = 25°C, L = 70uH, I = 40A.  
J
AS  
©2010 Fairchild Semiconductor Corporation  
FDD14AN06LA0_F085 Rev. C  
Typical Characteristics TC = 25°C unless otherwise noted  
1.2  
80  
1.0  
CURRENT LIMITED  
BY PACKAGE  
60  
0.8  
V
= 10V  
GS  
0.6  
40  
0.4  
V
= 5V  
GS  
20  
0.2  
0
0
150  
0
25  
50  
75  
100  
175  
125  
o
25  
50  
75  
100  
125  
o
150  
175  
T
, CASE TEMPERATURE ( C)  
C
T
, CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
0.01  
PEAK T = P  
x Z  
x R  
+ T  
J
DM  
θJC  
θJC C  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
Figure 3. Normalized Maximum Transient Thermal Impedance  
1000  
o
T
= 25 C  
C
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
V
= 10V  
25  
GS  
V
= 5V  
GS  
100  
40  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
©2010 Fairchild Semiconductor Corporation  
FDD14AN06LA0_F085 Rev. C  
Typical Characteristics TC = 25°C unless otherwise noted  
1000  
100  
10  
500  
If R = 0  
= (L)(I )/(1.3*RATED BV  
10µs  
t
AV  
- V  
DD  
)
AS  
DSS  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
t
- V ) +1]  
DD  
100  
AV  
AS  
DSS  
100µs  
o
1ms  
STARTING T = 25 C  
J
OPERATION IN THIS  
AREA MAY BE  
10ms  
10  
LIMITED BY r  
DS(ON)  
DC  
1
SINGLE PULSE  
o
STARTING T = 150 C  
J
T
= MAX RATED  
J
o
T
= 25 C  
C
1
0.1  
0.001  
0.01  
0.1  
t , TIME IN AVALANCHE (ms)  
AV  
1
10  
100  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
V
DS  
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515  
Figure 6. Unclamped Inductive Switching  
Capability  
Figure 5. Forward Bias Safe Operating Area  
100  
100  
PULSE DURATION = 80µs  
V
= 10V  
GS  
DUTY CYCLE = 0.5% MAX  
V
= 5V  
GS  
V
= 15V  
DD  
75  
50  
25  
0
75  
50  
25  
0
V
= 4V  
GS  
o
T
= 25 C  
C
o
T
= 25 C  
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
T
= 175 C  
J
o
T
= -55 C  
V
= 3V  
J
GS  
2.0  
2.5  
V
3.0  
3.5  
4.0  
4.5  
0
0.5  
V , DRAIN TO SOURCE VOLTAGE (V)  
DS  
1.0  
1.5  
2.0  
, GATE TO SOURCE VOLTAGE (V)  
GS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
13  
12  
11  
10  
9
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 5V  
GS  
V
= 10V  
GS  
V
= 5V, I = 50A  
D
GS  
0
10  
20  
30  
40  
50  
-80  
-40  
0
40  
80  
120  
160  
200  
o
I , DRAIN CURRENT (A)  
T , JUNCTION TEMPERATURE ( C)  
D
J
Figure 9. Drain to Source On Resistance vs Drain  
Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
©2010 Fairchild Semiconductor Corporation  
FDD14AN06LA0_F085 Rev. C  
Typical Characteristics TC = 25°C unless otherwise noted  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
1.1  
1.0  
0.9  
I
= 250µA  
V
= V , I = 250µA  
DS D  
D
GS  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
5000  
10  
V
= 30V  
DD  
C
C
= C + C  
GS GD  
ISS  
8
6
4
2
0
1000  
C
+ C  
GD  
OSS  
DS  
C
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
100  
50  
I
I
= 50A  
= 10A  
D
D
V
= 0V, f = 1MHz  
GS  
0
10  
20  
30  
40  
50  
0.1  
1
10  
60  
V
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
DS  
g
Figure 13. Capacitance vs Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Currents  
©2010 Fairchild Semiconductor Corporation  
FDD14AN06LA0_F085 Rev. C  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
t
P
L
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
V
L
DS  
V
GS  
V
= 5V  
GS  
V
GS  
+
Q
gs2  
V
DD  
-
DUT  
V
= 1V  
GS  
I
g(REF)  
0
Q
g(TH)  
Q
Q
gs  
gd  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
t
t
f
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
-
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
V
10%  
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
©2010 Fairchild Semiconductor Corporation  
FDD14AN06LA0_F085 Rev. C  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, TJM, and the  
125  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, PDM, in an  
R
= 33.32+ 23.84/(0.268+Area) EQ.2  
= 33.32+ 154/(1.73+Area) EQ.3  
θJA  
R
application.  
Therefore the application’s ambient  
θJA  
100  
75  
temperature, TA (oC), and thermal resistance RθJA (oC/W)  
must be reviewed to ensure that TJM is never exceeded.  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(T  
T )  
JM  
A
(EQ. 1)  
P
= -----------------------------  
50  
DM  
Rθ JA  
In using surface mount devices such as the TO-252  
package, the environment in which it is applied will have a  
significant influence on the part’s current and maximum  
power dissipation ratings. Precise determination of PDM is  
complex and influenced by many factors:  
25  
0.01  
(0.0645)  
0.1  
(0.645)  
1
10  
(6.45)  
(64.5)  
2
2
AREA, TOP COPPER AREA in (cm )  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
Fairchild provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 21  
defines the RθJA for the device as a function of the top  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Fairchild device  
Spice thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and equation 3 is for area in centimeters  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
23.84  
(0.268 + Area)  
R
= 33.32 + ------------------------------------  
(EQ. 2)  
θ JA  
θ JA  
Area in Inches Squared  
154  
= 33.32 + ---------------------------------  
(1.73 + Area)  
R
(EQ. 3)  
Area in Centimeters Squared  
©2010 Fairchild Semiconductor Corporation  
FDD14AN06LA0_F085 Rev. C  
PSPICE Electrical Model  
.SUBCKT FDD14AN06LA0 2 1 3 ;  
Ca 12 8 1.5e-9  
rev January 2004  
Cb 15 14 1.5e-9  
Cin 6 8 28.5e-10  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
Ebreak 11 7 17 18 64.8  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
-
+
50  
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
-
ESG  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
-
18  
22  
MMED  
It 8 17 1  
9
20  
MSTRO  
8
RLGATE  
Lgate 1 9 5e-9  
Ldrain 2 5 1.00e-9  
LSOURCE  
CIN  
SOURCE  
3
7
Lsource 3 7 2e-9  
RSOURCE  
RLSOURCE  
RLgate 1 9 50  
RLdrain 2 5 10  
RLsource 3 7 20  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
-
S1B  
S2B  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 4.2e-3  
Rgate 9 20 2.7  
-
-
8
22  
RVTHRES  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 4e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),3))}  
.MODEL DbodyMOD D (IS=15e-12 RS=3.2e-3 N=1.05 TRS1=1.5e-3 TRS2=1e-6  
+ CJO=10e-10 TT=1.5e-8 M=0.58 IKF=15.00 XTI=3)  
.model dbreakmod d (RS=1e-1 TRS1=1.12e-3 TRS2=1.25e-6)  
.MODEL DplcapMOD D (CJO=80e-11 IS=1e-30 N=10 M=0.57)  
.MODEL MmedMOD NMOS (VTO=2 KP=8 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.7)  
.MODEL MstroMOD NMOS (VTO=2.45 KP=105 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=1.61 KP=0.04 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=27 RS=0.1)  
.MODEL RbreakMOD RES (TC1=0.92e-3 TC2=-0.35e-6)  
.MODEL RdrainMOD RES (TC1=7.92e-3 TC2=3.4e-5)  
.MODEL RSLCMOD RES (TC1=2.8E-3 TC2=1E-7)  
.MODEL RsourceMOD RES (TC1=4.0e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-2.5e-3 TC2=-1e-5)  
.MODEL RvtempMOD RES (TC1=-2.3e-3 TC2=1.5e-6)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.5 VOFF=-0.5)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2.5)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2010 Fairchild Semiconductor Corporation  
FDD14AN06LA0_F085 Rev. C  
SABER Electrical Model  
REV January 2004  
template FDD14AN06LA0 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=15e-12,rs=3.2e-3,nl=1.05,trs1=1.5e-3,trs2=1e-6,cjo=10e-10,tt=1.5e-8,m=0.58,ikf=15.00,xti=3)  
dp..model dbreakmod = (rs=1e-1,trs1=1.12e-3,trs2=1.25e-6)  
dp..model dplcapmod = (cjo=80e-11,isl=10e-30,nl=10,m=0.57)  
m..model mmedmod = (type=_n,vto=2,kp=8,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=2.45,kp=105,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=1.61,kp=0.04,is=1e-30, tox=1,rs=0.1)  
LDRAIN  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2.5,voff=-0.5)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2.5)  
c.ca n12 n8 = 1.5e-9  
c.cb n15 n14 = 1.5e-9  
c.cin n6 n8 = 28.5e-10  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
ISCL  
DBREAK  
11  
50  
-
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
spe.ebreak n11 n7 n17 n18 = 64.8  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
RGATE  
GATE  
1
+
6
-
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
spe.evtemp n20 n6 n18 n22 = 1  
RSOURCE  
RLSOURCE  
i.it n8 n17 = 1  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
l.lgate n1 n9 = 5e-9  
l.ldrain n2 n5 = 1.00e-9  
l.lsource n3 n7 = 2e-9  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
res.rlgate n1 n9 = 50  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 20  
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
res.rbreak n17 n18 = 1, tc1=0.92e-3,tc2=-0.35e-6  
res.rdrain n50 n16 = 4.2e-3, tc1=7.92e-3,tc2=3.4e-5  
res.rgate n9 n20 = 2.7  
res.rslc1 n5 n51 = 1e-6, tc1=2.8e-3,tc2=1e-7  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 4e-3, tc1=4.0e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-2.5e-3,tc2=-1e-5  
res.rvtemp n18 n19 = 1, tc1=-2.3e-3,tc2=1.5e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/200))** 3))  
}
©2010 Fairchild Semiconductor Corporation  
FDD14AN06LA0_F085 Rev. C  
SPICE Thermal Model  
JUNCTION  
th  
REV January 2004  
FDD14AN06LA0T  
CTHERM1 TH 6 2.5e-3  
CTHERM2 6 5 3e-3  
CTHERM3 5 4 4e-3  
CTHERM4 4 3 7e-3  
CTHERM5 3 2 8.2e-3  
CTHERM6 2 TL 5e-2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 TH 6 4.2e-2  
RTHERM2 6 5 8.4e-2  
RTHERM3 5 4 1.04e-1  
RTHERM4 4 3 1.14e-1  
RTHERM5 3 2 2.74e-1  
RTHERM6 2 TL 3.44e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model FDD14AN06LA0T  
template thermal_model th tl  
thermal_c th, tl  
{
4
3
2
ctherm.ctherm1 th 6 =2.5e-3  
ctherm.ctherm2 6 5 =3e-3  
ctherm.ctherm3 5 4 =4e-3  
ctherm.ctherm4 4 3 =7e-3  
ctherm.ctherm5 3 2 =8.2e-3  
ctherm.ctherm6 2 tl =5e-2  
rtherm.rtherm1 th 6 =4.2e-2  
rtherm.rtherm2 6 5 =8.4e-2  
rtherm.rtherm3 5 4 =1.04e-1  
rtherm.rtherm4 4 3 =1.14e-1  
rtherm.rtherm5 3 2 =2.74e-1  
rtherm.rtherm6 2 tl =3.44e-1  
}
tl  
CASE  
©2010 Fairchild Semiconductor Corporation  
FDD14AN06LA0_F085 Rev. C  
TRADEMARKS  
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not  
intended to be an exhaustive list of all such trademarks.  
®
®
AccuPower™  
Auto-SPM™  
F-PFS™  
FRFET  
PowerTrench  
PowerXS™  
The Power Franchise  
®
The Right Technology for Your Success™  
SM  
®
Build it Now™  
CorePLUS™  
Global Power Resource  
Green FPS™  
Programmable Active Droop™  
®
QFET  
CorePOWER™  
CROSSVOLT™  
CTL™  
Green FPS™ e-Series™  
Gmax™  
GTO™  
IntelliMAX™  
ISOPLANAR™  
MegaBuck™  
MICROCOUPLER™  
MicroFET™  
QS™  
TinyBoost™  
TinyBuck™  
TinyCalc™  
Quiet Series™  
RapidConfigure™  
Current Transfer Logic™  
®
TinyLogic  
®
DEUXPEED  
TINYOPTO™  
TinyPower™  
TinyPWM™  
Dual Cool™  
Saving our world, 1mW/W/kW at a time™  
SignalWise™  
SmartMax™  
®
EcoSPARK  
EfficentMax™  
ESBC™  
®
TinyWire™  
MicroPak™  
SMART START™  
TriFault Detect™  
TRUECURRENT™*  
μSerDes™  
®
MicroPak2™  
MillerDrive™  
MotionMax™  
Motion-SPM™  
OptiHiT™  
SPM  
STEALTH™  
SuperFET  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
®
®
Fairchild  
®
Fairchild Semiconductor  
FACT Quiet Series™  
®
®
UHC  
®
OPTOLOGIC  
FACT  
FAST  
®
®
Ultra FRFET™  
UniFET™  
VCX™  
VisualMax™  
XS™  
®
OPTOPLANAR  
SupreMOS  
®
SyncFET™  
Sync-Lock™  
®*  
FastvCore™  
tm  
FETBench™  
®
FlashWriter  
FPS™  
*
PDP SPM™  
Power-SPM™  
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE  
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY  
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY  
THEREIN, WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used here in:  
1. Life support devices or systems are devices or systems which, (a) are  
intended for surgical implant into the body or (b) support or sustain life,  
and (c) whose failure to perform when properly used in accordance with  
instructions for use provided in the labeling, can be reasonably  
expected to result in a significant injury of the user.  
2. A critical component in any component of a life support, device, or  
system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or  
effectiveness.  
ANTI-COUNTERFEITING POLICY  
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,  
www.Fairchildsemi.com, under Sales Support.  
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their  
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed  
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the  
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild  
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild  
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of  
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and  
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is  
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Datasheet contains the design specifications for product development. Specifications  
may change in any manner without notice.  
Advance Information  
Formative / In Design  
Datasheet contains preliminary data; supplementary data will be published at a later  
date. Fairchild Semiconductor reserves the right to make changes at any time without  
notice to improve design.  
Preliminary  
First Production  
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to  
make changes at any time without notice to improve the design.  
No Identification Needed  
Obsolete  
Full Production  
Datasheet contains specifications on a product that is discontinued by Fairchild  
Semiconductor. The datasheet is for reference information only.  
Not In Production  
Rev. I51  
©2010 Fairchild Semiconductor Corporation  
FDD14AN06LA0_F085 Rev. C  

相关型号:

FDD15-03S1

DC - DC CONVERTER 10 ~ 15W SINGLE & DUAL OUTPUT
CHINFA

FDD15-03S2

DC - DC CONVERTER 10 ~ 15W SINGLE & DUAL OUTPUT
CHINFA

FDD15-03S3

DC - DC CONVERTER 10 ~ 15W SINGLE & DUAL OUTPUT
CHINFA

FDD15-0512T1

DC - DC CONVERTER 10 ~ 15W TRIPLE OUTPUT
CHINFA

FDD15-0512T2

DC - DC CONVERTER 10 ~ 15W TRIPLE OUTPUT
CHINFA

FDD15-0512T3

DC - DC CONVERTER 10 ~ 15W TRIPLE OUTPUT
CHINFA

FDD15-0515T1

DC - DC CONVERTER 10 ~ 15W TRIPLE OUTPUT
CHINFA

FDD15-0515T2

DC - DC CONVERTER 10 ~ 15W TRIPLE OUTPUT
CHINFA

FDD15-0515T3

DC - DC CONVERTER 10 ~ 15W TRIPLE OUTPUT
CHINFA

FDD15-05S1

DC - DC CONVERTER 10 ~ 15W SINGLE & DUAL OUTPUT
CHINFA

FDD15-05S2

DC - DC CONVERTER 10 ~ 15W SINGLE & DUAL OUTPUT
CHINFA

FDD15-05S3

DC - DC CONVERTER 10 ~ 15W SINGLE & DUAL OUTPUT
CHINFA