FGP20N6S2D [FAIRCHILD]

600V, SMPS II Series N-Channel IGBT with Anti-Parallel StealthTM Diode; 600V ,开关电源II系列N沟道IGBT与反并联二极管StealthTM
FGP20N6S2D
型号: FGP20N6S2D
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

600V, SMPS II Series N-Channel IGBT with Anti-Parallel StealthTM Diode
600V ,开关电源II系列N沟道IGBT与反并联二极管StealthTM

晶体 二极管 开关 晶体管 功率控制 瞄准线 双极性晶体管 栅 局域网
文件: 总9页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 2002  
FGH20N6S2D / FGP20N6S2D / FGB20N6S2D  
600V, SMPS II Series N-Channel IGBT with Anti-Parallel StealthTM Diode  
General Description  
Features  
The FGH20N6S2D FGP20N6S2D, FGB20N6S2D are Low  
Gate Charge, Low Plateau Voltage SMPS II IGBTs  
combining the fast switching speed of the SMPS IGBTs  
along with lower gate charge, plateau voltage and high  
avalanche capability (UIS). These LGC devices shorten  
delay times, and reduce the power requirement of the gate  
drive. These devices are ideally suited for high voltage  
switched mode power supply applications where low  
conduction loss, fast switching times and UIS capability are  
essential. SMPS II LGC devices have been specially  
designed for:  
• 100kHz Operation at 390V, 7A  
• 200kHZ Operation at 390V, 5A  
• 600V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . 85ns at TJ = 125 C  
• Low Gate Charge . . . . . . . . . 30nC at V = 15V  
GE  
• Low Plateau Voltage . . . . . . . . . . . . .6.5V Typical  
• UIS Rated . . . . . . . . . . . . . . . . . . . . . . . . . 100mJ  
• Low Conduction Loss  
Power Factor Correction (PFC) circuits  
Full bridge topologies  
Half bridge topologies  
Push-Pull circuits  
Uninterruptible power supplies  
Zero voltage and zero current switching circuits  
• Low E  
on  
• Soft Recovery Diode  
IGBT (co-pack) formerly Developmental Type TA49332  
(Diode formerly Developmental Type TA49469)  
Symbol  
Package  
C
TO-247  
E
C
E
TO-220AB  
C
G
G
TO-263AB  
G
G
E
E
COLLECTOR (FLANGE)  
Device Maximum Ratings T = 25°C unless otherwise noted  
C
Symbol  
BV  
Parameter  
Collector to Emitter Breakdown Voltage  
Collector Current Continuous, T = 25°C  
Ratings  
600  
Units  
V
CES  
I
28  
A
C25  
C
I
Collector Current Continuous, T = 110°C  
13  
A
C110  
C
I
Collector Current Pulsed (Note 1)  
Gate to Emitter Voltage Continuous  
Gate to Emitter Voltage Pulsed  
40  
A
CM  
V
±20  
V
GES  
GEM  
V
±30  
V
SSOA  
Switching Safe Operating Area at T = 150°C, Figure 2  
35A at 600V  
100  
A
J
E
Pulsed Avalanche Energy, I = 7.0A, L = 4mH, V = 50V  
mJ  
W
AS  
CE  
DD  
P
Power Dissipation Total T = 25°C  
125  
D
C
Power Dissipation Derating T > 25°C  
1.0  
W/°C  
°C  
°C  
C
T
Operating Junction Temperature Range  
Storage Junction Temperature Range  
-55 to 150  
-55 to 150  
J
T
STG  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and  
operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. Pulse width limited by maximum junction temperature.  
©2002 Fairchild Semiconductor Corporation  
FGH20N6S2D / FGP20N6S2D / FGB20N6S2D Rev. A1  
Package Marking and Ordering Information  
Device Marking  
20N6S2D  
Device  
Package  
TO-247  
Tape Width  
N/A  
Quantity  
30  
FGH20N6S2D  
FGP20N6S2D  
FGB20N6S2D  
FGB20N6S2DT  
20N6S2D  
TO-220AB  
TO-263AB  
TO-263AB  
N/A  
50  
20N6S2D  
N/A  
50  
20N6S2D  
24mm  
800 units  
Electrical Characteristics T = 25°C unless otherwise noted  
J
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off State Characteristics  
BV  
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
= 250µA, V = 0  
600  
-
-
-
-
-
V
CES  
C
GE  
I
V
= 600V  
T = 25°C  
-
-
-
250  
2.0  
µA  
mA  
nA  
CES  
CE  
J
T = 125°C  
J
I
Gate to Emitter Leakage Current  
V
= ± 20V  
±250  
GES  
GE  
On State Characteristics  
V
Collector to Emitter Saturation Voltage  
I
V
= 7.0A,  
T = 25°C  
-
-
-
2.2  
1.9  
1.9  
2.7  
2.2  
2.7  
V
V
V
CE(SAT)  
C
J
= 15V  
GE  
T = 125°C  
J
V
Diode Forward Voltage  
I
= 7.0A  
EC  
EC  
Dynamic Characteristics  
Q
Gate Charge  
I
V
= 7.0A,  
V
V
= 15V  
= 20V  
-
-
30  
38  
36  
45  
nC  
nC  
V
G(ON)  
C
GE  
= 300V  
CE  
GE  
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Plateau Voltage  
I
I
= 250µA, V = 600V  
3.5  
-
4.3  
6.5  
5.0  
8.0  
GE(TH)  
C
C
CE  
V
= 7.0A, V = 300V  
V
GEP  
CE  
Switching Characteristics  
SSOA  
Switching SOA  
T = 150°C, R = 25, V =  
GE  
35  
-
-
A
J
G
15V, L = 0.5mH V = 600V  
CE  
t
Current Turn-On Delay Time  
Current Rise Time  
IGBT and Diode at T = 25°C,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
7.7  
4.5  
87  
-
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
ns  
ns  
d(ON)I  
J
I
= 7A,  
t
CE  
-
-
rI  
d(OFF)I  
V
V
= 390V,  
= 15V,  
CE  
GE  
t
Current Turn-Off Delay Time  
Current Fall Time  
t
50  
-
fI  
R
= 25Ω  
G
E
E
E
Turn-On Energy (Note 1)  
Turn-On Energy (Note 1)  
Turn-Off Energy (Note 2)  
Current Turn-On Delay Time  
Current Rise Time  
25  
-
ON1  
ON2  
OFF  
L = 0.5mH  
Test Circuit - Figure 26  
85  
-
58  
75  
-
t
IGBT and Diode at T = 125°C  
7
d(ON)I  
J
I
= 7A,  
t
CE  
4.5  
120  
85  
-
rI  
d(OFF)I  
V
V
= 390V,  
= 15V,  
CE  
GE  
t
Current Turn-Off Delay Time  
Current Fall Time  
145  
105  
-
t
fI  
R
= 25Ω  
G
E
E
E
Turn-On Energy (Note 1)  
Turn-On Energy (Note 1)  
Turn-Off Energy (Note 2)  
Diode Reverse Recovery Time  
20  
ON1  
ON2  
OFF  
L = 0.5mH  
Test Circuit - Figure 26  
125  
135  
26  
140  
180  
31  
24  
t
I
I
= 7A, dI /dt = 200A/µs  
EC  
rr  
EC  
EC  
= 1A, dI /dt = 200A/µs  
20  
EC  
Thermal Characteristics  
R
Thermal Resistance Junction-Case  
IGBT  
-
-
1.0  
2.2  
°C/W  
°C/W  
θJC  
Diode  
NOTE:  
1. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss  
ON1  
of the IGBT only. E  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T  
J
ON2  
as the IGBT. The diode type is specified in figure 26.  
2. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of  
OFF  
the input pulse and ending at the point where the collector current equals zero (I = 0A). All devices were tested per  
CE  
JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produc-  
es the true total Turn-Off Energy Loss.  
©2002 Fairchild Semiconductor Corporation  
FGH20N6S2D / FGP20N6S2D / FGB20N6S2D Rev. A1  
Typical Performance Curves  
30  
40  
35  
30  
25  
20  
15  
10  
5
o
T
= 150 C, R = 25, V = 15V, L = 500µH  
G GE  
J
V
= 15V  
GE  
25  
20  
15  
10  
5
0
0
25  
50  
75  
100  
125  
150  
0
100  
200  
300  
400  
500  
600  
700  
o
T
, CASE TEMPERATURE ( C)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
C
Figure 1. DC Collector Current vs Case  
Temperature  
Figure 2. Minimum Switching Safe Operating Area  
210  
180  
150  
120  
90  
12  
10  
8
700  
o
T
75 C  
o
C =  
V
t
= 390V, R = 25, T = 125 C  
G J  
CE  
SC  
400  
V
= 15V  
GE  
V
= 10V  
GE  
I
SC  
f
f
= 0.05 / (t  
+ t  
)
MAX1  
MAX2  
d(OFF)I  
d(ON)I  
100  
= (P - P ) / (E  
+ E  
)
OFF  
D
C
ON2  
6
P
= CONDUCTION DISSIPATION  
C
(DUTY FACTOR = 50%)  
o
R
= 0.27 C/W, SEE NOTES  
ØJC  
4
o
T
= 125 C, R = 25, L = 500µH, V = 390V  
G CE  
J
20  
2
60  
1
10  
, COLLECTOR TO EMITTER CURRENT (A)  
20  
9
10  
11  
12  
13  
14  
15  
I
V
, GATE TO EMITTER VOLTAGE (V)  
CE  
GE  
Figure 3. Operating Frequency vs Collector to  
Emitter Current  
Figure 4. Short Circuit Withstand Time  
14  
14  
DUTY CYCLE < 0.5%, V = 15V  
GE  
DUTY CYCLE < 0.5%, V = 10V  
GE  
PULSE DURATION = 250µs  
PULSE DURATION = 250µs  
12  
10  
8
12  
10  
8
6
6
o
o
o
o
T
= 25 C  
T
= 25 C  
T
= 150 C  
T = 150 C  
J
J
J
J
4
4
2
2
o
o
T
= 125 C  
T
= 125 C  
J
J
0
0
0.50 0.75  
1.0  
1.25  
1.5  
1.75  
2.0  
2.25  
2.5  
2.75  
0.50  
0.75  
1.0  
1.25  
1.5  
1.75  
2.0  
2.25  
2.5  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
Figure 5. Collector to Emitter On-State Voltage  
Figure 6. Collector to Emitter On-State Voltage  
©2002 Fairchild Semiconductor Corporation  
FGH20N6S2D / FGP20N6S2D / FGB20N6S2D Rev. A1  
Typical Performance Curves (Continued)  
400  
350  
300  
250  
200  
150  
100  
50  
R
= 25, L = 500µH, V = 390V  
R
= 25, L = 500µH, V = 390V  
G
CE  
G
CE  
350  
300  
250  
200  
150  
100  
50  
o
o
T
= 25 C, T = 125 C, V = 10V  
J GE  
J
o
T
= 125 C, V = 10V, V = 15V  
J
GE  
GE  
o
o
o
T
= 25 C, V = 10V, V = 15V  
J
GE  
GE  
T
= 25 C, T = 125 C, V = 15V  
J
J
GE  
0
0
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
Figure 7. Turn-On Energy Loss vs Collector to  
Emitter Current  
Figure 8. Turn-Off Energy Loss vs Collector to  
Emitter Current  
13  
35  
R
= 25, L = 500µH, V = 390V  
R = 25, L = 500µH, V = 390V  
G CE  
G
CE  
12  
11  
10  
9
30  
25  
20  
15  
10  
5
o
o
o
o
T
= 25 C, T = 125 C, V = 10V  
J GE  
T
= 25 C, T = 125 C, V = 10V  
J GE  
J
J
o
o
T
= 25 C, T = 125 C, V = 15V  
J GE  
J
8
7
o
o
T
= 25 C, T = 125 C, V =15V  
J GE  
J
6
0
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
Figure 9. Turn-On Delay Time vs Collector to  
Emitter Current  
Figure 10. Turn-On Rise Time vs Collector to  
Emitter Current  
140  
120  
R
= 25, L = 500µH, V = 390V  
R
= 25, L = 500µH, V = 390V  
G
CE  
G
CE  
o
V
= 10V, V = 15V, T = 125 C  
GE J  
GE  
120  
100  
80  
100  
80  
o
T
= 125 C, V = 10V or 15V  
GE  
J
60  
o
T
= 25 C, V = 10V or 15V  
J
GE  
o
V
= 10V, V = 15V, T = 25 C  
GE  
GE  
J
60  
40  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
Figure 11. Turn-Off Delay Time vs Collector to  
Emitter Current  
Figure 12. Fall Time vs Collector to Emitter  
Current  
©2002 Fairchild Semiconductor Corporation  
FGH20N6S2D / FGP20N6S2D / FGB20N6S2D Rev. A1  
Typical Performance Curves (Continued)  
120  
16  
14  
12  
10  
8
o
DUTY CYCLE < 0.5%, V = 10V  
CE  
I
= 1mA, R = 42.6, T = 25 C  
G(REF)  
L
J
PULSE DURATION = 250µs  
100  
80  
60  
40  
20  
0
V
= 600V  
CE  
o
T
= 25 C  
J
6
V
= 400V  
CE  
4
V
= 200V  
10  
CE  
o
T
= 125 C  
J
2
o
T
= -55 C  
J
0
0
5
15  
, GATE CHARGE (nC)  
G
20  
25  
30  
35  
4
6
8
10  
12  
14  
16  
V
, GATE TO EMITTER VOLTAGE (V)  
Q
GE  
Figure 13. Transfer Characteristic  
Figure 14. Gate Charge  
0.8  
0.6  
0.4  
10  
o
T
= 125 C, L = 500µH, V = 390V, V = 15V  
R
= 25, L = 500µH, V = 390V, V = 15V  
CE GE  
J
CE  
GE  
G
E
= E  
+ E  
TOTAL  
ON2 OFF  
E
= E  
+ E  
OFF  
TOTAL  
ON2  
I
= 14A  
CE  
1
I
= 14A  
= 7A  
CE  
I
I
= 7A  
= 3A  
CE  
CE  
I
CE  
CE  
0.2  
0
I
= 3A  
0.1  
0.05  
1
10  
100  
1000  
25  
50  
75  
100  
125  
150  
o
T
, CASE TEMPERATURE ( C)  
R , GATE RESISTANCE ()  
G
C
Figure 15. Total Switching Loss vs Case  
Temperature  
Figure 16. Total Switching Loss vs Gate  
Resistance  
1.2  
3.6  
DUTY CYCLE < 0.5%  
FREQUENCY = 1MHz  
o
PULSE DURATION = 250µs, T = 25 C  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
J
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
I
= 14A  
CE  
C
IES  
I
= 7A  
CE  
I
= 3A  
CE  
C
OES  
C
RES  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, GATE TO EMITTER VOLTAGE (V)  
CE  
GE  
Figure 17. Capacitance vs Collector to Emitter  
Voltage  
Figure 18. Collector to Emitter On-State Voltage vs  
Gate to Emitter Voltage  
©2002 Fairchild Semiconductor Corporation  
FGH20N6S2D / FGP20N6S2D / FGB20N6S2D Rev. A1  
Typical Performance Curves (Continued)  
250  
200  
150  
100  
50  
14  
DUTY CYCLE < 0.5%,  
PULSE DURATION = 250µs  
dI /dt = 200A/µs, V = 390V  
EC  
CE  
12  
o
125 C t , t  
b
rr  
10  
8
6
o
o
125 C  
25 C t , t  
b
rr  
4
o
25 C  
o
125 C t  
2
0
a
o
25  
t
a
0
0
2
4
6
8
10  
12  
14  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
, FORWARD VOLTAGE (V)  
I
EC  
, FORWARD CURRENT (A)  
EC  
Figure 19. Diode Forward Current vs Forward  
Voltage Drop  
Figure 20. Recovery Times vs Forward Current  
160  
500  
V
= 390V  
I
= 7A, V = 390V  
CE  
CE  
EC  
140  
120  
100  
80  
450  
400  
350  
300  
250  
200  
150  
100  
o
125 C, I = 7A  
EC  
o
125 C t  
b
o
125 C, I = 3.5A  
EC  
o
25 C t  
b
60  
o
25 C, I = 7A  
EC  
40  
o
125 C t  
a
o
20  
25 C, I = 3.5A  
EC  
o
25 C t  
a
0
200  
300  
400  
500  
600  
700  
800  
900  
s)  
1000  
200  
300  
400  
500  
600  
700  
800  
900  
s)  
1000  
dI /dt, RATE OF CHANGE OF CURRENT (A/  
µ
dI /dt, RATE OF CHANGE OF CURRENT (A/µ  
EC  
EC  
Figure 21. Recovery Times vs Rate of Change of  
Current  
Figure 22. Stored Charge vs Rate of Change of  
Current  
6.0  
10  
V
= 390V, T = 125°C  
V
= 390V, T = 125°C  
CE J  
CE  
J
9
8
7
6
5
4
3
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
I
= 7A  
EC  
I
= 7A  
EC  
I
= 3.5A  
EC  
I
= 3.5A  
EC  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
dI /dt, CURRENT RATE OF CHANGE (A/  
µs)  
dI /dt, CURRENT RATE OF CHANGE (A/µs)  
EC  
EC  
Figure 23. Reverse Recovery Softness Factor vs  
Rate of Change of Current  
Figure 24. Maximum Reverse Recovery Current vs  
Rate of Change of Current  
©2002 Fairchild Semiconductor Corporation  
FGH20N6S2D / FGP20N6S2D / FGB20N6S2D Rev. A1  
Typical Performance Curves (Continued)  
0
10  
0.50  
0.20  
0.10  
t
1
P
D
-1  
10  
t
2
0.05  
DUTY FACTOR, D = t / t  
1
2
0.02  
0.01  
PEAK T = (P X Z  
X R ) + T  
J
D
θ
JC  
θJC C  
SINGLE PULSE  
-2  
10  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
Figure 25. IGBT Normalized Transient Thermal Impedance, Junction to Case  
Test Circuit and Waveforms  
FGH20N6S2D  
DIODE TA49469  
90%  
OFF  
10%  
V
GE  
E
ON2  
E
L = 500µH  
V
CE  
R
= 25Ω  
G
90%  
10%  
+
I
CE  
t
t
FGH20N6S2D  
d(OFF)I  
V
= 390V  
rI  
DD  
t
fI  
-
t
d(ON)I  
Figure 26. Inductive Switching Test Circuit  
Figure 27. Switching Test Waveforms  
©2002 Fairchild Semiconductor Corporation  
FGH20N6S2D / FGP20N6S2D / FGB20N6S2D Rev. A1  
Handling Precautions for IGBTs  
Operating Frequency Information  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating  
device performance for a specific application. Other  
typical frequency vs collector current (ICE) plots are  
possible using the information shown for a typical unit  
in Figures 5, 6, 7, 8, 9 and 11. The operating  
frequency plot (Figure 3) of a typical device shows  
fMAX1 or fMAX2; whichever is smaller at each point.  
The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge  
of energy through the devices. When handling these  
devices, care should be exercised to assure that the  
static charge built in the handlers body capacitance  
is not discharged through the device. With proper  
handling and application procedures, however,  
IGBTs are currently being extensively used in  
production by numerous equipment manufacturers in  
military, industrial and consumer applications, with  
virtually no damage problems due to electrostatic  
discharge. IGBTs can be handled safely if the  
following basic precautions are taken:  
fMAX1 is defined by fMAX1 = 0.05/(td(OFF)I+ td(ON)I).  
Deadtime (the denominator) has been arbitrarily held  
to 10% of the on-state time for a 50% duty factor.  
Other definitions are possible. td(OFF)I and td(ON)I are  
defined in Figure 27. Device turn-off delay can  
establish an additional frequency limiting condition for  
an application other than TJM. td(OFF)I is important  
when controlling output ripple under a lightly loaded  
condition.  
1. Prior to assembly into a circuit, all leads should be  
kept shorted together either by the use of metal  
shorting springs or by the insertion into conduc-  
tive material such as ECCOSORBDLD26or  
equivalent.  
2. When devices are removed by hand from their  
carriers, the hand being used should be grounded  
by any suitable means - for example, with a  
metallic wristband.  
fMAX2 is defined by fMAX2 = (PD - PC)/(EOFF + EON2).  
The allowable dissipation (PD) is defined by  
PD = (TJM - TC)/RθJC. The sum of device switching  
and conduction losses must not exceed PD. A 50%  
duty factor was used (Figure 3) and the conduction  
losses (PC) are approximated by PC = (VCE x ICE)/2.  
3. Tips of soldering irons should be grounded.  
4. Devices should never be inserted into or removed  
from circuits with power on.  
5. Gate Voltage Rating - Never exceed the gate-  
voltage rating of VGEM. Exceeding the rated VGE  
can result in permanent damage to the oxide layer  
in the gate region.  
EON2 and EOFF are defined in the switching  
waveforms shown in Figure 27. EON2 is the integral of  
the instantaneous power loss (ICE x VCE) during turn-  
on and EOFF is the integral of the instantaneous  
power loss (ICE x VCE) during turn-off. All tail losses  
are included in the calculation for EOFF; i.e., the  
collector current equals zero (ICE = 0)  
6. Gate Termination - The gates of these devices  
are essentially capacitors. Circuits that leave the  
gate open-circuited or floating should be avoided.  
These conditions can result in turn-on of the  
device due to voltage buildup on the input  
capacitor due to leakage currents or pickup.  
7. Gate Protection - These devices do not have an  
internal monolithic Zener diode from gate to  
emitter. If gate protection is required an external  
Zener is recommended.  
ECCOSORBD is a Trademark of Emerson and Cumming, Inc.  
©2002 Fairchild Semiconductor Corporation  
FGH20N6S2D / FGP20N6S2D / FGB20N6S2D Rev. A1  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
PACMAN™  
POP™  
Power247™  
PowerTrench  
QFET™  
QS™  
SPM™  
Stealth™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
ImpliedDisconnect™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
MSX™  
FACT™  
ActiveArray™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DOME™  
EcoSPARK™  
E2CMOSTM  
EnSignaTM  
FACT Quiet Series™  
â
FAST  
â
FASTr™  
FRFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
I2C™  
QT Optoelectronics™ TinyLogic™  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
TruTranslation™  
UHC™  
UltraFET  
MSXPro™  
OCX™  
â
OCXPro™  
OPTOLOGIC  
â
â
Across the board.Around the world.™  
The Power Franchise™  
SILENT SWITCHER VCX™  
SMARTSTART™  
OPTOPLANAR™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TOANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOTASSUMEANY LIABILITYARISING OUT OF THEAPPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I  

相关型号:

FGP3040G2-F085

IGBT,400V,26A,1.35V,300mJ,TO-220EcoSPARK® II,N 沟道点火
ONSEMI

FGP30B

Glass Passivated Ultrafast Rectifier
VISHAY

FGP30B

3A plug-in fast recovery diode 100V DO-201 series
SUNMATE

FGP30B-E3/54

DIODE 3 A, 100 V, SILICON, RECTIFIER DIODE, DO-204AC, ROHS COMPLIANT, PLASTIC, DO-15, 2 PIN, Rectifier Diode
VISHAY

FGP30B-HE3

DIODE 3 A, 100 V, SILICON, RECTIFIER DIODE, DO-204AC, LEAD FREE, PLASTIC, DO-15, 2 PIN, Rectifier Diode
VISHAY

FGP30B-HE3/54

DIODE 3 A, 100 V, SILICON, RECTIFIER DIODE, DO-204AC, ROHS COMPLIANT, PLASTIC, DO-15, 2 PIN, Rectifier Diode
VISHAY

FGP30B-HE3/73

DIODE 3 A, 100 V, SILICON, RECTIFIER DIODE, DO-204AC, ROHS COMPLIANT, PLASTIC, DO-15, 2 PIN, Rectifier Diode
VISHAY

FGP30BE3

DIODE 3 A, 100 V, SILICON, RECTIFIER DIODE, DO-204AC, LEAD FREE, PLASTIC, DO-15, 2 PIN, Rectifier Diode
VISHAY

FGP30BHE3

DIODE 3 A, 100 V, SILICON, RECTIFIER DIODE, DO-204AC, LEAD FREE, PLASTIC, DO-15, 2 PIN, Rectifier Diode
VISHAY

FGP30BHE3/54

DIODE 3 A, 100 V, SILICON, RECTIFIER DIODE, DO-204AC, ROHS COMPLIANT, PLASTIC, DO-15, 2 PIN, Rectifier Diode
VISHAY

FGP30B_11

Glass Passivated Ultrafast Rectifier
VISHAY

FGP30B_12

Glass Passivated Ultrafast Rectifier
VISHAY