FPBL20SM60 [FAIRCHILD]

Smart Power Module (SPM); 智能功率模块( SPM )
FPBL20SM60
型号: FPBL20SM60
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Smart Power Module (SPM)
智能功率模块( SPM )

运动控制电子器件 信号电路 电动机控制
文件: 总17页 (文件大小:279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FPBL20SM60  
Smart Power Module (SPM)  
General Description  
Features  
FPBL20SM60 is an advanced smart power module (SPM)  
that Fairchild has newly developed and designed to provide  
very compact and low cost, yet high performance ac motor  
drives mainly targeting medium speed low-power inverter-  
driven application like air conditioners. It combines  
optimized circuit protection and drive matched to low-loss  
IGBTs. Highly effective short-circuit current detection/  
protection is realized through the use of advanced current  
sensing IGBT chips that allow continuous monitoring of the  
IGBTs current. System reliability is further enhanced by the  
integrated under-voltage lock-out protection. The high  
speed built-in HVIC provides opto-coupler-less IGBT gate  
driving capability that further reduce the overall size of the  
inverter system design. In addition the incorporated HVIC  
facilitates the use of single-supply drive topology enabling  
the FPBL20SM60 to be driven by only one drive supply  
voltage without negative bias.  
UL Certified No. E209204  
600V-20A 3-phase IGBT inverter bridge including control  
ICs for gate driving and protection  
Single-grounded power supply due to built-in HVIC  
Typical switching frequency of 7kHz  
Inverter power rating of 1.4kW / 100~253 Vac  
Isolation rating of 2500Vrms/min.  
Very low leakage current due to using ceramic substrate  
Adjustable current protection level by varying series  
resistor value with sense-IGBTs  
Applications  
AC 100V ~ 253V three-phase inverter drive for small  
power (1.4kW) ac motor drives  
Home appliances applications requiring medium  
switching frequency operation like air conditioners drive  
system  
Application ratings:  
- Power : 1.4kW / 100~253 Vac  
- Switching frequency : Typical 7kHz (PWM Control)  
- 100% load current : 10A (Irms)  
External View and Marking Information  
Top View  
Bottom View  
57 mm  
55 mm  
Marking  
Device Name  
Version, Lot Code  
Fig. 1.  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
Integrated Power Functions  
600V-20A IGBT inverter for three-phase DC/AC power conversion (Please refer to Fig. 3)  
Integrated Drive, Protection and System Control Functions  
For inverter high-side IGBTs: Gate drive circuit, High voltage isolated high-speed level shifting  
Control circuit under-voltage (UV) protection  
Note) Available bootstrap circuit example is given in Figs. 10, 15 and 16.  
For inverter low-side IGBTs: Gate drive circuit, Short circuit protection (SC)  
Control supply circuit under-voltage (UV) protection  
Fault signaling: Corresponding to a SC fault (Low-side IGBTs) or a UV fault (Low-side supply)  
Input interface: 5V CMOS/LSTTL compatible, Schmitt trigger input  
Pin Configuration  
Top View  
V
V
S(U)  
B(U)  
V
CC(UH)  
IN  
(UH)  
V
CC(L)  
COM  
(L)  
IN  
IN  
(UL)  
V
(VL)  
(WL)  
S(V)  
IN  
V
V
IN  
B(V)  
V
FOD  
C
FO  
CC(VH)  
C
(VH)  
SC  
COM  
(H)  
R
SC  
V
V
S(W)  
NC  
B(W)  
NC  
NC  
V
CC(WH)  
IN  
(WH)  
W
V
U
N
P
Fig. 2.  
Pin Descriptions  
Pin Number  
Pin Name  
Pin Description  
1
2
V
Low-side Common Bias Voltage for IC and IGBTs Driving  
Low-side Common Supply Ground  
CC(L)  
COM  
(L)  
(UL)  
3
IN  
IN  
Signal Input Terminal for Low-side U Phase  
Signal Input Terminal for Low-side V Phase  
Signal Input Terminal for Low-side W Phase  
Fault Output Terminal  
4
(VL)  
5
IN  
(WL)  
6
V
FO  
7
C
Capacitor for Fault Output Duration Time Selection  
FOD  
8
C
Capacitor (Low-pass Filter) for Short-current Detection Input  
Resistor for Short-circuit Current Detection  
No Connection  
SC  
SC  
9
R
10  
11  
12  
13  
14  
15  
16  
NC  
NC  
NC  
W
No Connection  
No Connection  
Output Terminal for W Phase  
Output Terminal for V Phase  
Output Terminal for U Phase  
Negative DC–Link Input  
V
U
N
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
Pin Descriptions (Continued)  
Pin Number  
Pin Name  
Pin Description  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P
Positive DC–Link Input  
IN  
Signal Input Terminal for High-side W Phase  
High-side Bias Voltage for W Phase IC  
(WH)  
V
CC(WH)  
V
V
High-side Bias Voltage for W Phase IGBT Driving  
High-side Bias Voltage Ground for W Phase IGBT Driving  
High-side Common Supply Ground  
B(W)  
S(W)  
COM  
(H)  
(VH)  
IN  
Signal Input Terminal for High-side V Phase  
High-side Bias Voltage for V Phase IC  
V
CC(VH)  
V
V
High-side Bias Voltage for V Phase IGBT Driving  
High-side Bias Voltage Ground for V Phase IGBT Driving  
Signal Input Terminal for High-side U Phase  
High-side Bias Voltage for U Phase IC  
B(V)  
S(V)  
IN  
(UH)  
V
CC(UH)  
V
V
High-side Bias Voltage for U Phase IGBT Driving  
High-side Bias Voltage Ground for U Phase IGBT Driving  
B(U)  
S(U)  
Internal Equivalent Circuit and Input/Output Pins  
(29) VB(U)  
VB Vcc  
(28) VCC(UH)  
(27) IN(UH)  
HO  
IN  
VCC  
(1) VCC(L)  
(2) COM  
VS COM  
COM  
(L)  
(L)  
(30) V  
S(U)  
Uout  
Vout  
Wout  
(3) IN(UL)  
(4) IN(VL)  
(5) IN(WL)  
IN(UL)  
IN(VL)  
(25) VB(V)  
(24) VCC(VH)  
(23) IN(VH)  
(22) COM  
VB Vcc  
HO  
IN  
IN(WL)  
VS COM  
(H)  
(6) V  
V
FO  
(26) V  
(FO)  
S(V)  
(20) VB(W)  
(7) CFOD  
(8) CSC  
C(FOD)  
C(SC)  
(19) VCC(WH)  
(18) IN(WH)  
VB Vcc  
HO IN  
VS COM  
(9) RSC  
(10) NC  
(11) NC  
(12) NC  
(21) V  
S(W)  
P
(17)  
W
(13)  
V
U
N
(14)  
(15)  
(16)  
Note  
1. Inverter low-side ( (1) - (12) pins) is composed of three sense-IGBTs including freewheeling diodes for each IGBT and one control IC which has gate driving,  
current sensing and protection functions.  
2. Inverter power side ( (13) - (17) pins) is composed of two inverter dc-link input terminals and three inverter output terminals.  
3. Inverter high-side ( (18) - (30) pins) is composed of three normal-IGBTs including freewheeling diodes and three drive ICs for each IGBT.  
Fig. 3.  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
Absolute Maximum Ratings  
Inverter Part (T = 25°C, Unless Otherwise Specified)  
C
Item  
Symbol  
Condition  
Applied to DC - Link  
Applied between P- N  
Rating  
450  
Unit  
V
Supply Voltage  
V
DC  
PN(Surge)  
Supply Voltage (Surge)  
V
500  
V
Collector-Emitter Voltage  
V
600  
V
CES  
Each IGBT Collector Current  
Each IGBT Collector Current (Peak)  
Collector Dissipation  
± I  
T
T
T
= 25°C (Note Fig. 4)  
= 25°C (Note Fig. 4)  
= 25°C per One Chip  
20  
A
C
CP  
C
C
C
C
± I  
P
40  
A
50  
W
°C  
Operating Junction Temperature  
T
(Note 1)  
-55 ~ 150  
J
Note  
1. It would be recommended that the average junction temperature should be limited to T 125°C (@T 100°C) in order to guarantee safe operation.  
J
C
Control Part (T = 25°C, Unless Otherwise Specified)  
C
Item  
Symbol  
Condition  
Rating  
18  
Unit  
V
Control Supply Voltage  
High-side Control Bias Voltage  
V
V
Applied between V  
Applied between V  
- COM , V  
- COM  
CC(L) (L)  
CC  
BS  
CC(H)  
(H)  
- V  
, V  
- V  
, V -  
B(W)  
20  
V
B(U)  
S(U)  
B(V)  
S(V)  
V
S(W)  
Input Signal Voltage  
V
Applied between IN  
, IN  
, IN  
- COM  
(H)  
-0.3 ~ 6.0  
V
IN  
(UH)  
(VH)  
(WH)  
IN  
, IN  
, IN  
- COM  
(WL) (L)  
(UL)  
(VL)  
Fault Output Supply Voltage  
Fault Output Current  
V
Applied between V - COM  
-0.3~V +0.5  
V
mA  
V
FO  
FO  
(L)  
CC  
I
Sink Current at V Pin  
5
FO  
FO  
Current Sensing Input Voltage  
V
Applied between C - COM  
-0.3~V +0.5  
SC  
SC  
(L)  
CC  
Total System  
Item  
Symbol  
Condition  
Applied to DC - Link,  
Rating  
Unit  
Self Protection Supply Voltage Limit  
(Short Circuit Protection Capability)  
V
400  
V
DC(PROT)  
V
= V = 13.5 ~ 16.5V  
CC  
BS  
T = 125°C, Non-repetitive, less than 6µs  
J
Module Case Operation Temperature  
Storage Temperature  
T
Note Fig. 4  
-20 ~ 100  
-55 ~ 150  
2500  
°C  
°C  
C
T
STG  
Isolation Voltage  
V
60Hz, Sinusoidal, AC 1 minute, Connection  
Pins to Heat-sink Plate  
V
rms  
ISO  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
Case Temperature (T ) Detecting Point  
C
V
V
S(U)  
B(U)  
V
CC(UH)  
IN  
(UH)  
V
CC(L)  
COM  
(L)  
IN  
(UL)  
IN  
(WL)  
V
(VL)  
S(V)  
IN  
V
B(V)  
V
FO  
V
CC(VH)  
C
FOD  
IN  
COM  
(VH)  
C
SC  
(H)  
Ceramic  
Substate  
R
SC  
V
V
S(W)  
NC  
B(W)  
NC  
NC  
V
IN  
CC(WH)  
(WH)  
W
V
U
N
P
Fig. 4. Tc Measurement Point  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
Absolute Maximum Ratings  
Thermal Resistance  
Item  
Symbol  
Condition  
Min. Typ. Max. Unit  
Junction to Case Thermal  
Resistance  
R
Each IGBT under Inverter Operating Condition  
(Note 2)  
-
-
-
-
-
-
2.49 °C/W  
th(j-c)Q  
R
Each FWDi under Inverter Operating Condition  
(Note 2)  
3.4 °C/W  
th(j-c)F  
Contact Thermal  
Resistance  
R
Ceramic Substrate (per 1 Module)  
Thermal Grease Applied  
0.06 °C/W  
th(c-f)  
Note  
2. For the measurement point of case temperature (T ), please refer to Fig. 4.  
c
Electrical Characteristics  
Inverter Part (T = 25°C, Unless Otherwise Specified)  
j
Item  
Symbol  
Condition  
Min.  
Typ.  
Max. Unit  
Collector - Emitter  
Saturation Voltage  
V
V
V
= V = 15V  
= 0V  
I
I
I
I
= 20A, T = 25°C  
-
-
-
-
-
-
-
-
-
-
-
-
2.5  
2.6  
2.5  
2.3  
-
V
V
CE(SAT)  
CC  
BS  
C
C
C
C
j
IN  
IN  
= 20A, T = 125°C  
j
FWDi Forward Voltage  
V
V
V
= 5V  
= 20A, T = 25°C  
-
V
FM  
ON  
j
= 20A, T = 125°C  
-
V
j
Switching Times  
t
= 300V, V = V = 15V  
0.39  
0.15  
0.8  
0.39  
0.1  
-
µs  
µs  
µs  
µs  
µs  
µA  
PN  
CC  
BS  
I
= 20A, T = 25°C  
t
C
j
-
C(ON)  
V
= 5V 0V, Inductive Load  
IN  
t
-
OFF  
(High-Low Side)  
t
-
C(OFF)  
t
(Note 3)  
-
rr  
Collector - Emitter  
Leakage Current  
I
V
= V  
, T = 25°C  
250  
CES  
CE  
CES  
j
Note  
3.  
t
and t  
include the propagation delay time of the internal drive IC. t  
and t  
are the switching time of IGBT itself under the given gate driving condition  
C(OFF)  
ON  
OFF  
C(ON)  
internally. For the detailed information, please see Fig. 5.  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
100% IC  
t rr  
IC  
V
CE  
V
CE  
IC  
VIN  
t ON  
VIN  
tOFF  
t C(ON)  
90% IC  
10% IC 10% V  
tC(OFF)  
V
IN(ON)  
CE  
VIN(OFF)  
10% V  
10% IC  
CE  
(a) Turn-on  
(b) Turn-off  
Fig 5. Switching Time Definition  
IC : 5A/div.  
IC : 5A/div.  
VCE : 100V/div.  
VCE : 100V/div.  
time : 100ns/div.  
(a) Turn-on  
time : 100ns/div.  
(b) Turn-off  
Fig. 6. Experimental Results of Switching Waveforms  
Test Condition: Vdc=300V, Vcc=15V, L=500uH (Inductive Load), TC=25°C  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
Electrical Characteristics  
Control Part (T = 25°C, Unless Otherwise Specified)  
j
Item  
Symbol  
Condition  
,V - COM  
CC(H) CC(L)  
Min. Typ. Max. Unit  
Control Supply Voltage  
High-Side Bias Voltage  
V
Applied between V  
Applied between V  
13.5  
13.5  
15  
15  
16.5  
16.5  
V
V
CC  
V
- V  
, V  
- V  
,
BS  
B(U)  
S(U)  
B(V)  
S(V)  
V
- V  
S(W)  
B(W)  
Quiescent V Supply  
Current  
I
V
IN  
= 15V  
V
V
- COM  
(L)  
-
-
-
-
-
-
26  
mA  
uA  
uA  
CC  
QCCL  
QCCH  
CC  
CC(L)  
= 5V  
= 5V  
= 5V  
(UL, VL, WL)  
I
V
IN  
= 15V  
, V  
, V  
CC(W)  
-
130  
420  
CC  
CC(U)  
CC(V)  
COM  
(UH, VH, WH)  
(H)  
Quiescent V Supply  
I
V
IN  
= 15V  
V
V
- V  
, V  
-V  
,
BS  
QBS  
BS  
B(U)  
- V  
B(W) S(W)  
S(U)  
B(V)  
S(V)  
Current  
(UH, VH, WH)  
Fault Output Voltage  
V
V
V
= 0V, V Circuit: 4.7kto 5V Pull-up  
4.5  
-
-
-
1.1  
-
V
V
FOH  
SC  
SC  
FO  
V
= 1V, V Circuit: 4.7kto 5V Pull-up  
-
-
FOL  
FO  
PWM Input Frequency  
f
T
100°C, T 125°C  
7
-
kHz  
us  
PWM  
C
J
Allowable Input Signal  
Blanking Time Considering  
Leg Arm-Short  
t
-20°C T 100°C  
3
-
dead  
C
Short Circuit Trip Level  
V
T = 25°, V = 15V (Note 4)  
0.45 0.51 0.56  
0.37 0.45 0.56  
V
V
SC(ref)  
J
CC  
Sensing Voltage  
of IGBT Current  
V
-20°C T 100°C, @ R = 82 and  
SEN  
C
SC  
I
= 20A (Note Fig. 7)  
C
Supply Circuit Under-  
Voltage Protection  
UV  
UV  
UV  
UV  
T 125°C  
Detection Level  
Reset Level  
11.5  
12  
12  
12.5  
13  
V
V
CCD  
CCR  
BSD  
BSR  
J
12.5  
Detection Level  
Reset Level  
7.3  
8.6  
1.4  
9.0 10.8  
V
10.3  
1.8  
12  
V
Fault-Out Pulse Width  
t
V
= 15V, C(sc) = 1V  
CC  
2.0  
ms  
FOD  
C
= 33nF (Note 5)  
FOD  
ON Threshold Voltage  
OFF Threshold Voltage  
ON Threshold Voltage  
OFF Threshold Voltage  
V
High-Side  
Applied between IN  
, IN ,  
(VH)  
-
-
-
-
-
0.8  
-
V
V
V
V
IN(ON)  
(UH)  
IN  
- COM  
(H)  
V
(WH)  
3.0  
-
IN(OFF)  
V
Low-Side  
Applied between IN  
, IN ,  
(VL)  
0.8  
-
IN(ON)  
(UL)  
IN  
- COM  
(L)  
V
(WL)  
3.0  
IN(OFF)  
Note  
4. Short-circuit current protection is functioning only at the low-sides. It would be recommended that the value of the external sensing resistor (R ) should be  
SC  
selected around 56 in order to make the SC trip-level of about 30A.  
Please refer to Fig. 7 which shows the current sensing characteristics according to sensing resistor R  
.
SC  
-6  
5. The fault-out pulse width t  
depends on the capacitance value of C  
according to the following approximate equation : C  
= 18.3 x 10 x t  
[F]  
FOD  
FOD  
FOD  
FOD  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
120  
100  
80  
60  
40  
20  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Sensing Resistor RSC []  
Fig. 7. Relationship between Sensing Resistor and SC Trip Current  
for Short-Circuit Protection  
(ISC = 82 × Rating Current(20A) / RSC  
)
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
Mechanical Characteristics and Ratings  
Limits  
Typ.  
10  
Item  
Condition  
Recommended 10kg•cm  
Units  
Min.  
Max.  
12  
Mounting Torque  
Mounting Screw: M3  
(Note 6 and 7)  
8
0.78  
0
Kg•cm  
N•m  
um  
Recommended 0.98N•m  
(Note Fig. 8)  
0.98  
-
1.17  
+100  
-
Ceramic Flatness  
Weight  
-
56  
g
Fig. 8. Flatness Measurement Position of The Ceramic Substrate  
Note  
6. Do not make over torque or mounting screws. Much mounting torque may cause ceramic cracks and bolts and Al heat-fin destruction.  
7. Avoid one side tightening stress. Fig.9 shows the recommended torque order for mounting screws. Uneven mounting can cause the SPM ceramic substrate to  
be damaged.  
4
2
1
3
Fig. 9. Mounting Screws Torque Order (1 2 3 4)  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
Recommended Operating Conditions  
Value  
Item  
Symbol  
Condition  
Unit  
Min. Typ. Max.  
Supply Voltage  
V
V
Applied between P - N  
-
300  
15  
400  
V
V
PN  
Control Supply Voltage  
High-Side Bias Voltage  
Applied between V  
- COM  
,
(H)  
13.5  
16.5  
CC  
CC(H)  
B(U)  
V
- COM  
(L)  
CC(L)  
V
Applied between V  
- V  
- V  
, V  
- V ,  
S(V)  
13.5  
15  
-
16.5  
V
BS  
S(U)  
B(V)  
V
B(W)  
S(W)  
Blanking Time for Preventing  
Arm-short  
t
For Each Input Signal  
3
-
-
-
us  
dead  
PWM Input Signal  
f
T
100°C, T 125°C  
7
kHz  
V
PWM  
C
J
Input ON Threshold Voltage  
Input OFF Threshold Voltage  
V
Applied between U ,V , W - COM  
0 ~ 0.65  
4 ~ 5.5  
IN(ON)  
IN IN  
IN  
V
Applied between U ,V , W - COM  
V
IN(OFF)  
IN IN  
IN  
ICs Internal Structure and Input/Output Conditions  
CBSC  
CBS  
RBS  
DBS  
15V Line  
P
VB  
(UH,VH,WH)  
VCC  
(UH,VH,WH)  
UV  
DETECT  
R
R
S
LEVEL  
SHIFT  
5V Line  
PULSE  
FILTER  
Q
CBP15  
RP  
IN  
PULSE  
GENERATOR  
(UH,VH,WH)  
VS  
(UH,VH,WH)  
COM  
CPH  
HVIC  
LVIC  
U,V,W  
VCC  
(L)  
UV  
DETECT  
TIME  
DELAY  
UV  
LATCH_UP  
5V Line  
BANDGAP  
UV  
REFERENCE  
PROTECTION  
RP  
RPF  
OUTPUT  
(UL,VL,WL)  
BUFFER  
IN  
PULSE  
(UL,VL,WL)  
GENERATOR  
(HYSTERISIS)  
SC  
SOFT_OFF  
CONTROL  
PROTECTION  
V
FO  
FAULT OUTPUT  
DURATION  
SC  
LATCH_UP  
TIME  
DELAY  
SC  
DETECTION  
CPF  
CPL  
C
FOD  
CFOD  
N
RF  
CSC  
RSC  
Note  
1. One LVIC drives three Sense-IGBTs and can do short-circuit current protection also. Three sense emitters are commonly connected to R terminal to detect  
SC  
short-circuit current. Low-side part of the inverter consists of three sense-IGBTs  
2. One HVIC drives one normal-IGBT. High-side part of the inverter consists of three normal-IGBTs  
3. Each IC has under voltage detection and protection function.  
4. The logic input is compatible with standard CMOS or LSTTL outputs.  
5. R C coupling at each input/output is recommended in order to prevent the gating input/output signals oscillation and it should be as close as possible to each  
P
P
SPM gating input pin.  
6. It would be recommended that the bootstrap diode, D , has soft and fast recovery characteristics.  
BS  
Fig. 10.  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
Time Charts of SPMs Protective Function  
Input Signal  
Internal IGBT  
Gate- Emitter Voltage  
P3  
P2  
UV  
reset  
P5  
Control Supply Voltage  
UV  
detect  
P6  
P1  
Output Current  
P4  
Fault Output Signal  
P1 : Normal operation - IGBT ON and conducting current  
P2 : Under voltage detection  
P3 : IGBT gate interrupt  
P4 : Fault signal generation  
P5 : Under voltage reset  
P6 : Normal operation - IGBT ON and conducting current  
Fig. 11. Under-Voltage Protection (Low-side)  
Input Signal  
Internal IGBT  
Gate- Emitter Voltage  
P3  
P2  
UV  
reset  
P5  
Control Supply Voltage  
UV  
detect  
V
BS  
P6  
P1  
Output Current  
Fault Output Signal  
P4  
P1 : Normal operation - IGBT ON and conducting current  
P2 : Under voltage detection  
P3 : IGBT gate interrupt  
P4 : No fault signal  
P5 : Under voltage reset  
P6 : Normal operation - IGBT ON and conducting current  
Fig. 12. Under-Voltage Protection (High-side)  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
P5  
Input Signal  
P6  
Internal IGBT  
Gate- Emitter Voltage  
SC Detection  
P1  
P4  
P7  
Output Current  
P2  
SC Reference  
Voltage (0.5V)  
Sensing Voltage  
RC Filter Delay  
P8  
Fault Output Signal  
P3  
P1 : Normal operation - IGBT ON and conducting currents  
P2 : Short-circuit current detection  
P3 : IGBT gate interrupt / Fault signal generation  
P4 : IGBT is slowly turned off  
P5 : IGBT OFF signal  
P6 : IGBT ON signal - but IGBT cannot be turned on during the fault-output activation  
P7 : IGBT OFF state  
P8 : Fault-output reset and normal operation start  
Fig. 13. Short-circuit Current Protection (Low-side Operation only)  
5V-Line  
FPBL20SM60  
4.7kΩ  
4.7kΩ  
4.7kΩ  
100 Ω  
100 Ω  
100 Ω  
,
,
IN(UH) IN(VH)  
IN(WH)  
IN(WL)  
,
,
IN(UL) IN(VL)  
CPU  
VFO  
1nF  
1nF  
0.47nF  
1.2nF  
COM  
Note  
It would be recommended that by-pass capacitors for the gating input signals, IN  
should be placed on the SPM pins and on the both sides of CPU and SPM  
(XX)  
for the fault output signal, V , as close as possible.  
FO  
Fig. 14. Recommended CPU I/O Interface Circuit  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
One-leg Diagram of FPBL20SM60  
15V-Line  
P
2 0Ω  
Vcc VB  
IN HO  
0.1uF  
33uF  
COM VS  
Inverter  
Output  
Vcc  
0.1uF  
1000uF  
IN OUT  
COM  
N
Fig. 15. Recommended Bootstrap Operation Circuit and Parameters  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
Gating UL  
Gating VL  
Gating WL  
Fault  
Gating UH  
Gating VH  
Gating WH  
CPU  
CBPF  
RS RS RS  
RS RS RS RS  
DBS  
RBS  
RBS  
RBS  
VB(U) (29)  
5V line  
RP RP  
V
CC(UH) (28)  
5V line  
VB Vcc  
HO IN  
VS COM  
IN(UH) (27)  
(1) VCC(L)  
(2) COM  
RP  
V
CC  
(L)  
COM  
(L)  
CBSC CBS  
DBS  
RP RP RP RP  
V
S(U) (30)  
B(V) (25)  
CC(VH) (24)  
(3) IN(UL)  
(4) IN(VL)  
(5) IN(WL)  
Uout  
IN(UL)  
IN(VL)  
V
V
VB Vcc  
HO IN  
VS COM  
CPH CPH  
CPH  
IN(VH) (23)  
Vout  
IN(WL)  
COM(H) (22)  
(6)  
V
FO  
CBSC CBS  
DBS  
VS(V) (26)  
V
(FO)  
CPL  
CPF  
CPL CPL  
CFOD  
CSC  
VB(W) (20)  
(7) CFOD  
(8) CSC  
Wout  
C(FOD)  
C(SC)  
V
CC(WH) (19)  
VB Vcc  
HO IN  
VS COM  
IN(WH) (18)  
(9) RSC  
15V line  
RF  
CBSC CBS  
VS(W) (21)  
(10) NC  
RSC  
(11) NC  
(12) NC  
CSPC15  
CSP15  
(13)  
(14)  
(15)  
(16)  
N
(17) P  
W
V
U
CDCS  
M
-
+
Vdc  
Note  
1. R C /R C coupling at each SPM input is recommended in order to prevent input signals’ oscillation and it should be as close as possible to each SPM input  
P
PL  
P PH  
pin.  
2. By virtue of integrating an application specific type HVIC inside the SPM, direct coupling to CPU terminals without any opto-coupler or transformer isolation is  
possible.  
3.  
V
output is open collector type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 4.7kresistance. Please  
FO  
refer to Fig. 14.  
C of around 7 times larger than bootstrap capacitor C is recommended.  
SP15  
4.  
5.  
BS  
V
output pulse width should be determined by connecting an external capacitor(C  
) between C  
(pin7) and COM (pin2). (Example : if C  
= 5.6 nF,  
FO  
FOD  
FOD  
(L)  
FOD  
then t = 300 µs (typ.)) Please refer to the note 5 for calculation method.  
FO  
6. Each input signal line should be pulled up to the 5V power supply with approximately 4.7kresistance (other RC coupling circuits at each input may be needed  
depending on the PWM control scheme used and on the wiring impedance of the system’s printed circuit board). Approximately a 0.22~2nF by-pass capacitor  
should be used across each power supply connection terminals.  
7. To prevent errors of the protection function, the wiring around R , R and C should be as short as possible.  
SC  
F
SC  
8. In the short-circuit protection circuit, please select the R C time constant in the range 3~4 µs. R should be at least 30 times larger than R . (Recommended  
F
SC  
F
SC  
Example: R = 56 , R = 3.9kand C = 1nF)  
SC  
F
SC  
9. Each capacitor should be mounted as close to the pins of the SPM as possible.  
10.To prevent surge destruction, the wiring between the smoothing capacitor and the P&N pins should be as short as possible. The use of a high frequency non-  
inductive capacitor of around 0.1~0.22 uF between the P&N pins is recommended.  
11. Relays are used at almost every systems of electrical equipments of home appliances. In these cases, there should be sufficient distance between the CPU and  
the relays. It is recommended that the distance be 5cm at least  
Fig. 16. Application Circuit  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
Detailed Package Outline Drawings  
©2002 Fairchild Semiconductor Corporation  
Rev. B, February 2002  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
Bottomless™  
CoolFET™  
FAST®  
FASTr™  
FRFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
CROSSVOLT™  
DenseTrench™  
DOME™  
EcoSPARK™  
E2CMOS™  
EnSigna™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
POP™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
TruTranslation™  
TinyLogic™  
Power247™  
PowerTrench®  
QFET™  
QS™  
QT Optoelectronics™  
Quiet Series™  
SLIENT SWITCHER®  
FACT™  
FACT Quiet Series™  
UHC™  
UltraFET®  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or In  
Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
©2002 Fairchild Semiconductor Corporation  
Rev. H4  

相关型号:

FPBL30SL60

Smart Power Module (SPM)
FAIRCHILD

FPBS-04A

Barometric pressure measurable
FUJIKURA

FPBS-82A

Barometric pressure measurable
FUJIKURA

FPC

MAGNETIC SWITCHES
SHIELD

FPC-03-2

Card Edge Connector, 3 Contact(s), 1 Row(s), Right Angle, 0.1 inch Pitch, Solder Terminal
MARKTECH

FPC-10-1

Card Edge Connector, 10 Contact(s), 1 Row(s), Straight, 0.1 inch Pitch, Solder Terminal,
MARKTECH

FPC-10-2

Card Edge Connector, 10 Contact(s), 1 Row(s), Right Angle, 0.1 inch Pitch, Solder Terminal,
MARKTECH

FPC-16-1

Card Edge Connector, 16 Contact(s), 1 Row(s), Straight, 0.1 inch Pitch, Solder Terminal
MARKTECH

FPC-16-2

Card Edge Connector, 16 Contact(s), 1 Row(s), Right Angle, 0.1 inch Pitch, Solder Terminal
MARKTECH

FPC-20-1

Card Edge Connector, 20 Contact(s), 1 Row(s), Straight, 0.1 inch Pitch, Solder Terminal,
MARKTECH

FPC-22-1

Card Edge Connector, 22 Contact(s), 1 Row(s), Straight, 0.1 inch Pitch, Solder Terminal,
MARKTECH

FPC-23-1

Card Edge Connector, 23 Contact(s), 1 Row(s), Straight, 0.1 inch Pitch, Solder Terminal
MARKTECH