FSD210M [FAIRCHILD]

Green Mode Fairchild Power Switch (FPSTM); 绿色模式飞兆功率开关( FPSTM )
FSD210M
型号: FSD210M
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Green Mode Fairchild Power Switch (FPSTM)
绿色模式飞兆功率开关( FPSTM )

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总18页 (文件大小:392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FSD210, FSD200  
TM  
Green Mode Fairchild Power Switch (FPS )  
Features  
• Single Chip 700V Sense FET Power Switch  
• Precision Fixed Operating Frequency (134kHz)  
• Advanced Burst-Mode operation Consumes under 0.1W  
at 265Vac and no load (FSD210 only)  
OUTPUT POWER TABLE  
(3)  
230VAC ±15%  
85-265VAC  
PRODUCT  
Open  
Frame  
Open  
Frame  
(1)  
(1)  
Adapter  
Adapter  
(2)  
(2)  
• Internal Start-up Switch and Soft Start  
• Under Voltage Lock Out (UVLO) with Hysteresis  
• Pulse by Pulse Current Limit  
• Over Load Protection (OLP)  
• Internal Thermal Shutdown Function (TSD)  
• Auto-Restart Mode  
FSD210  
FSD200  
5W  
5W  
5W  
5W  
7W  
4W  
4W  
4W  
4W  
5W  
7W  
5W  
FSD210M  
FSD200M  
7W  
5W  
7W  
5W  
• Frequency Modulation for EMI  
• FSD200 does not require an auxiliary bias winding  
Table 1. Notes: 1. Typical continuous power in a non-ven-  
tilated enclosed adapter measured at 50°C ambient. 2.  
Maximum practical continuous power in an open frame  
design at 50°C ambient. 3. 230 VAC or 100/115 VAC with  
doubler.  
Applications  
• Charger & Adaptor for Mobile Phone, PDA & MP3  
• Auxiliary Power for White Goods, PC, C-TV & Monitor  
Typical Circuit  
Description  
The FSD200 and FSD210 are integrated Pulse Width Modu-  
lators (PWM) and Sense FETs specially designed for high  
performance off-line Switch Mode Power Supplies (SMPS)  
with minimal external components. Both devices are mono-  
lithic high voltage power switching regulators which com-  
bine an LDMOS Sense FET with a voltage mode PWM  
control block. The integrated PWM controller features in-  
clude: a fixed oscillator with frequency modulation for re-  
duced EMI, Under Voltage Lock Out (UVLO) protection,  
Leading Edge Blanking (LEB), optimized gate turn-on/turn-  
off driver, thermal shut down protection (TSD), temperature  
compensated precision current sources for loop compensa-  
tion and fault protection circuitry. When compared to a dis-  
crete MOSFET and controller or RCC switching converter  
solution, the FSD200 and FSD210 reduce total component  
count, design size, weight and at the same time increase effi-  
ciency, productivity, and system reliability. The FSD200  
eliminates the need for an auxiliary bias winding at a small  
cost of increased supply power. Both devices are a basic plat-  
form well suited for cost effective designs of flyback convert-  
ers.  
AC  
IN  
DC  
OUT  
Vstr  
PWM  
Drain  
Vfb  
Vcc  
Source  
Figure 1. Typical Flyback Application using FSD210  
AC  
IN  
DC  
OUT  
Vstr  
PWM  
Drain  
Vfb  
Vcc  
Source  
Figure 2. Typical Flyback Application using FSD200  
Rev.1.0.3  
©2004 Fairchild Semiconductor Corporation  
FSD210, FSD200  
Internal Block Diagram  
Vstr  
8
L
Vcc  
5
Internal  
Bias  
Voltage  
Ref  
Drain  
H
7
UVLO  
8.7/6.7V  
Frequency  
Modulation  
Vck  
OSC  
SFET  
DRIVER  
250uA  
5uA  
S
R
Q
Vfb  
4
BURST  
BURST  
V
LEB  
OLP  
Iover  
Rsense  
Vth  
S
R
Q
Reset  
V
SD  
S/S  
3mS  
TSD  
A/R  
GND  
1, 2, 3  
Figure 3. Functional Block Diagram of FSD210  
Vstr  
8
HV/REG  
Vcc  
5
ON/OFF  
Voltage  
Ref.  
INTERNAL  
BIAS  
Drain  
7
7V  
UVLO  
OSC  
Frequency  
Modulation  
Vck  
SFET  
DRIVER  
250uA  
5uA  
S
R
Q
Vfb  
4
BURST  
BURST  
V
LEB  
OLP  
Iover  
Rsense  
Vth  
S
R
Q
Reset  
V
SD  
S/S  
3mS  
TSD  
A/R  
GND  
1, 2, 3  
Figure 4. Functional Block Diagram of FSD200 showing internal high voltage regulator  
2
FSD210, FSD200  
Pin Definitions  
Pin Number  
Pin Name  
Pin Function Description  
1, 2, 3  
GND  
Sense FET source terminal on primary side and internal control ground.  
The feedback voltage pin is the inverting input to the PWM comparator with  
nominal input levels between 0.5Vand 2.5V. It has a 0.25mA current source  
connected internally while a capacitor and opto coupler are typically  
connected externally. A feedback voltage of 4V triggers overload protection  
(OLP). There is a time delay while charging between 3V and 4V using an  
internal 5uA current source, which prevents false triggering under transient  
conditions but still allows the protection mechanism to operate under true  
overload conditions.  
4
Vfb  
FSD210  
Positive supply voltage input. Although connected to an auxiliary  
transformer winding, current is supplied from pin 8 (Vstr) via an internal  
switch during startup (see Internal Block Diagram section). It is not until Vcc  
reaches the UVLO upper threshold (8.7V) that the internal start-up switch  
opens and device power is supplied via the auxiliary transformer winding.  
FSD200  
5
Vcc  
This pin is connected to a storage capacitor. A high voltage regulator  
connected between pin 8 (Vstr) and this pin, provides the supply voltage to  
the FSD200 at startup and when switching during normal operation. The  
FSD200 eliminates the need for auxiliary bias winding and associated  
external components.  
The Drain pin is designed to connect directly to the primary lead of the  
transformer and is capable of switching a maximum of 700V. Minimizing the  
length of the trace connecting this pin to the transformer will decrease  
leakage inductance.  
7
8
Drain  
Vstr  
The startup pin connects directly to the rectified AC line voltage source for  
both the FSD200 and FSD210. For the FSD210, at start up the internal  
switch supplies internal bias and charges an external storage capacitor  
placed between the Vcc pin and ground. Once this reaches 8.7V, the  
internal current source is disabled. For the FSD200, an internal high voltage  
regulator provides a constant supply voltage.  
Pin Configuration  
7-DIP  
7-LSOP  
GND  
GND  
GND  
Vfb  
Vstr  
1
2
8
7
Drain  
3
4
5
Vcc  
Figure 5. Pin Configuration (Top View)  
3
FSD210, FSD200  
Absolute Maximum Ratings  
(Ta=25°C unless otherwise specified)  
Parameter  
Symbol  
Value  
10  
Unit  
V
Maximum Supply Voltage (FSD200)  
Maximum Supply Voltage (FSD210)  
Input Voltage Range  
V
CC,MAX  
CC,MAX  
V
20  
V
V
0.3 to V  
STOP  
V
FB  
Operating Junction Temperature.  
Operating Ambient Temperature  
Storage Temperature Range  
T
+150  
°C  
°C  
°C  
J
T
A
25 to +85  
55 to +150  
T
STG  
Thermal Impedance  
Parameter  
7DIP  
Symbol  
Value  
Unit  
(1)  
θJA  
74.07(3)  
60.44(4)  
22.00  
°C/W  
°C/W  
°C/W  
Junction-to-Ambient Thermal  
(1)  
θJA  
(2)  
Junction-to-Case Thermal  
θJC  
7LSOP  
(1)  
θJA  
-
-
-
°C/W  
°C/W  
°C/W  
Junction-to-Ambient Thermal  
Junction-to-Case Thermal  
(1)  
θJA  
(2)  
θJC  
Note:  
1. Free standing without heat sink.  
2. Measured on the GND pin close to plastic interface.  
2
3. Soldered to 100mm copper clad.  
2
4. Soldered to 300mm copper clad.  
4
FSD210, FSD200  
Electrical Characteristics  
(Ta=25°C unless otherwise specified)  
Parameter  
Symbol  
Condition  
Min.  
Typ. Max.  
Unit  
Sense FET SECTION  
Drain-Source Breakdown Voltage  
Startup Voltage (Vstr) Breakdown  
Off-State Current  
BV  
BV  
V
V
= 0V, I = 100µA  
700  
-
-
-
-
V
V
DSS  
CC  
DS  
D
700  
STR  
I
= 560V  
-
-
-
-
-
-
100  
32  
48  
-
µA  
DSS  
Tj = 25°C, I = 25mA  
28  
42  
100  
50  
D
On-State Resistance  
R
DS(ON)  
Tj = 100°C, I = 25mA  
D
Rise Time  
T
V
V
= 325V, I = 50mA  
ns  
ns  
R
DS  
DS  
D
Fall Time  
T
= 325V, l = 25mA  
-
F
D
CONTROL SECTION  
Output Frequency  
Output Frequency Modulation  
Feedback Source Current  
Maximum Duty Cycle  
Minimum Duty Cycle  
F
Tj = 25°C  
Tj = 25°C  
Vfb = 0V  
Vfb = 3.5V  
Vfb = 0V  
126  
-
134  
±4  
0.25  
65  
0
142  
-
kHz  
kHz  
mA  
%
OSC  
F
MOD  
I
0.22  
60  
0
0.28  
70  
0
FB  
D
MAX  
D
%
MIN  
V
6.3  
5.3  
8.0  
6.0  
-
7
7.7  
6.7  
9.4  
7.4  
-
V
START  
UVLO Threshold Voltage (FSD200)  
UVLO Threshold Voltage (FSD210)  
V
After turn on  
6
V
STOP  
V
8.7  
6.7  
7
V
START  
V
After turn on  
-
V
STOP  
Supply Shunt Regulator (FSD200)  
Internal Soft Start Time  
V
V
CCREG  
T
S/S  
-
3
-
ms  
BURST MODE SECTION  
V
0.58  
0.5  
-
0.64  
0.58  
60  
0.7  
0.64  
-
V
V
BURH  
Burst Mode Voltage  
V
Tj = 25°C  
Tj = 25°C  
BURL  
Hysteresis  
mV  
PROTECTION SECTION  
Drain to Source Peak Current Limit  
Current Limit Delay(1)  
I
0.275 0.320 0.365  
A
ns  
°C  
V
OVER  
T
-
220  
145  
4.0  
5
-
160  
4.5  
7
CLD  
Thermal Shutdown Temperature (Tj)(1)  
Shutdown Feedback Voltage  
Feedback Shutdown Delay Current  
Leading Edge Blanking Time(2)  
TOTAL DEVICE SECTION  
T
125  
3.5  
3
SD  
SD  
V
-
I
Vfb = 4.0V  
µA  
ns  
DELAY  
T
200  
-
-
LEB  
Operating Supply Current (FSD200)  
Operating Supply Current (FSD210)  
Start Up Current (FSD200)  
I
I
Vcc = 7V  
Vcc = 11V  
Vcc = 0V  
Vcc = 0V  
Vcc = 0V  
-
-
600  
700  
1
-
-
µA  
µA  
mA  
µA  
V
OP  
OP  
I
I
-
1.2  
900  
-
START  
START  
Start Up Current (FSD210)  
-
700  
-
Vstr Supply Voltage  
20  
Note:  
1. These parameters, although guaranteed, are not 100% tested in production  
2. This parameter is derived from characterization  
5
FSD210, FSD200  
Comparison Between FSDH565 and FSD210  
Function  
FSDH0565  
FSD210  
FSD210 Advantages  
Soft-Start  
not applicable  
3mS  
• Gradually increasing current limit  
during soft-start further reduces peak  
current and voltage component  
stresses  
• Eliminates external components used  
for soft-start in most applications  
• Reduces or eliminates output  
overshoot  
Switching Frequency  
Frequency Modulation  
Burst Mode Operation  
100kHz  
134kHz  
±4kHz  
• Smaller transformer  
not applicable  
not applicable  
• Reduced conducted EMI  
Yes-built into  
controller  
• Improve light load efficiency  
• Reduces no-load consumption  
• Transformer audible noise reduction  
Drain Creepage at  
Package  
1.02mm  
3.56mm DIP  
3.56mm LSOP  
• Greater immunity to acting as a result  
of build-up of dust, debris and other  
contaminants  
6
FSD210, FSD200  
Typical Performance Characteristics  
(These characteristic graphs are normalized at Ta=25)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-25  
-25  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature ()  
Junction Temperature ()  
Frequency vs. Temp  
Operating Current vs. Temp  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature ()  
Junction Temperature ()  
Peak Current Limit vs. Temp  
Feedback Source Current vs. Temp  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0
25  
50  
75  
100 125  
-25  
0
25  
50  
75  
100 125  
Junction Temperature ()  
Junction Temperature ()  
Vstop Voltage vs. Temp  
Vstart Voltage vs. Temp  
7
FSD210, FSD200  
Typical Performance Characteristics (Continued)  
(These characteristic graphs are normalized at Ta=25)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature ()  
Junction Temperature ()  
On State Resistance vs. Temp  
Breakdown Voltage vs. Temp  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature ()  
Junction Temperature ()  
Vcc Regulation Voltage vs. Temp (for FSD200)  
Shutdown Feedback Voltage vs. Temp  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature ()  
Junction Temperature ()  
Start Up Current vs. Temp (for FSD210)  
Start Up Current vs. Temp (for FSD200)  
8
FSD210, FSD200  
Functional Description  
Vin,dc  
1. Startup : At startup, the internal high voltage current  
source supplies the internal bias and charges the external  
Vcc capacitor as shown in figure 7. In the case of the  
FSD210, when Vcc reaches 8.7V the device starts switching  
and the internal high voltage current source is disabled (see  
figure 1). The device continues to switch provided that Vcc  
does not drop below 6.7V. For FSD210, after startup, the  
bias is supplied from the auxiliary transformer winding. In  
the case of FSD200, Vcc is continuously supplied from the  
external high voltage source and Vcc is regulated to 7V by  
an internal high voltage regulator (HVReg), thus eliminating  
the need for an auxiliary winding (see figure 2).  
Istr  
Vstr  
i
=
i
Istr-max 1 00uA  
=
Istr-max  
1 0 0 u A  
J-FET  
Vcc  
max  
100uA  
UVLO  
Vref  
FSD2xx  
Vcc  
UVLO  
start  
Vin,dc  
Vin,dc  
Vcc must not drop  
to UVLO stop  
Istr  
Istr  
UVLO  
stop  
Vstr  
Vstr  
HV  
Auxiliary winding  
voltage  
Vcc  
Vcc  
L
Reg.  
H
7V  
8.7V/  
6.7V  
FSD210  
FSD200  
t
Figure 7. Charging the Vcc capacitor through Vstr  
Figure 6. Internal startup circuit  
Calculating the Vcc capacitor is an important step to design-  
ing in the FSD200/210. At initial start-up in both the  
FSD200/210, the stand-by maximum current is 100uA, sup-  
plying current to UVLO and Vref Block. The charging cur-  
rent (i) of the Vcc capacitor is equal to Istr - 100uA. After  
Vcc reaches the UVLO start voltage only the bias winding  
supplies Vcc current to device. When the bias winding volt-  
age is not sufficient, the Vcc level decreases to the UVLO  
stop voltage. At this time Vcc oscillates. In order to prevent  
this ripple it is recommended that the Vcc capacitor be sized  
between 10uF and 47uF.  
3. Leading edge blanking (LEB) : At the instant the inter-  
nal Sense FET is turned on, there usually exists a high cur-  
rent spike through the Sense FET, caused by the primary side  
capacitance and secondary side rectifier diode reverse recov-  
ery. Exceeding the pulse-by-pulse current limit could cause  
premature termination of the switching pulse (see Protection  
Section). To counter this effect, the FPS employs a leading  
edge blanking (LEB) circuit. This circuit inhibits the over  
current comparator for a short time (TLEB) after the Sense  
FET is turned on.  
2. Feedback Control : The FSD200/210 are both voltage  
mode devices as shown in Figure 8. Usually, a H11A817  
optocoupler and KA431 voltage reference (or a FOD2741  
integrated optocoupler and voltage reference) are used to  
implement the isolated secondary feedback network. The  
feedback voltage is compared with an internally generated  
sawtooth waveform, directly controlling the duty cycle.  
When the KA431 reference pin voltage exceeds the internal  
reference voltage of 2.5V, the optocoupler LED current  
increases pulling down the feedback voltage and reducing  
the duty cycle. This event will occur when either the input  
voltage increases or the output load decreases.  
OSC  
Vcc  
Vref  
5uA  
0.25mA  
Gate  
driver  
FB  
Vfb  
Vo  
4
Cfb  
R
KA431  
OLP  
VSD  
Figure 8. PWM and feedback circuit  
4. Protection Circuit : The FSD200/210 has 2 self protec-  
tion functions: over load protection (OLP) and thermal shut-  
down (TSD). Because these protection circuits are fully  
integrated into the IC with no external components, system  
9
FSD210, FSD200  
reliability is improved without a cost increase. If either of  
these thresholds are triggered, the FPS starts an auto-restart  
cycle. Once the fault condition occurs, switching is termi-  
nated and the Sense FET remains off. This causes Vcc to  
fall. When Vcc reaches the UVLO stop voltage  
to detect the temperature of the Sense FET. When the tem-  
perature exceeds approximately 145°C, thermal shutdown is  
activated.  
(6.7V:FSD210, 6V:FSD200), the protection is reset and the  
internal high voltage current source charges the Vcc capaci-  
tor. When Vcc reaches the UVLO start voltage  
Vfb  
under Vstop of UVLO  
(8.7V:FSD210,7V:FSD200), the device attempts to resume  
normal operation. If the fault condition is no longer present  
start up will be successful. If it is still present the cycle is  
repeated (see figure 10).  
OLP  
4V  
3V  
FPS Switching Area  
Idelay (5uA) charges Cfb  
IC Reset  
OSC  
t
S
R
Q
5uA  
250uA  
R
GATE  
DRIVER  
+
-
t1  
t2  
t3  
Vfb  
4
3V  
t1<<t2, t3  
t1 = -1/RCΧ ln( 1-v(t1)/R )  
t2 = CfbΧ {v(t1+t2)-v(t1)}/ Idelay  
Cfb  
v(t1)=3V  
OLP  
S
Q
FSD2xx  
OLP, TSD  
Protection Block  
R
RESET  
Vth 4V  
TSD  
A/R  
Figure 10. Over load protection delay  
5. Soft Start : FSD200/210 has an internal soft start circuit  
that gradually increases current through the Sense FET as  
shown in figure 11. The soft start time is 3msec in FSD200/  
210.  
Figure 9. Protection block  
4.1 Over Load Protection (OLP) : Over load protection  
occurs when the load current exceeds a pre-set level due to  
an abnormal situation. If this occurs, the protection circuit  
should be triggered to protect the SMPS. It is possible that a  
short term load transient can occur under normal operation.  
In order to avoid false shutdowns, the over load protection  
circuit is designed to trigger after a delay. Therefore the  
device can differentiate between transient over loads and  
true fault conditions. The maximum input power is limited  
using the pulse-by-pulse current limit feature. If the load  
tries to  
I(A)  
3mS  
0.3A  
Iover  
0.25A  
0.2A  
t
draw more than this, the output voltage will drop below its  
set value. This reduces the optocoupler LED current which  
in turn reduces the photo-transistor current (see figure 9).  
Therefore, the 250uA current source will charge the feed-  
back pin capacitor, Cfb, and the feedback voltage, Vfb, will  
increase. The input to the feedback comparator is clamped at  
3V. Once Vfb reaches 3V, the device switches at maximum  
power, the 250uA current source is blocked and the 5uA  
source continues to charge Cfb. Once Vfb reaches 4V,  
switching stops.and overload protection is triggered. The  
resultant shutdown delay time is set by the time required to  
charge Cfb from 3Vto 4Vwith 5uA as shown in Fig. 10.  
FSD200/210  
Figure 11. Internal Soft Start  
6. Burst operation : In order to minimize the power dissipa-  
tion in standby mode, the FSD200/210 implements burst  
mode functionality (see figure 12). As the load decreases, the  
feedback voltage decreases. As shown in figure 13, the  
device automatically enters burst mode when the feedback  
(0.58V). At this point switching  
stops and the output voltages start to drop at a rate dependant  
on standby current load. This causes the feedback voltage to  
voltage drops below V  
BURL  
rise. Once it passes V  
(0.64V) switching starts again.  
BURH  
The feedback voltage falls and the process repeats. Burst  
mode operation alternately enables and disables switching of  
the power Sense FET thereby reducing switching loss in  
4.2 Thermal Shutdown (TSD) : The Sense FET and the  
control IC are integrated, making it easier for the control IC  
10  
FSD210, FSD200  
standby mode.  
Internal  
Oscillator  
OSC  
138kHz  
GATE  
DRIVER  
S
R
Q
5uA  
250uA  
Drain to  
Source  
voltage  
4
on/off  
Vfb  
0.64V  
/0.58V  
FSD2xx  
Burst Operation Block  
Drain to  
Source  
current  
Vds  
Waveform  
Figure 12. Circuit for burst operation  
8kHz  
130kHz  
134kHz  
138kHz  
Vo  
Voset  
Turn-off  
point  
Turn-on  
Figure 14. Frequency Modulation Waveforms  
VFB  
0.64V  
0.58V  
CISPR22Q(PK)  
CISPR22A(AV)  
Ids  
Vds  
time  
Frequency(MHz)  
Figure 13. Burst mode operation  
Figure 15. FSDH0165 Full Range EMI scan(100kHz, no  
Frequency Modulation) with charger set  
7. Frequency Modulation : EMI reduction can be accom-  
plished by modulating the switching frequency of a SMPS.  
Frequency modulation can reduce EMI by spreading the  
energy over a wider frequency range. The amount of EMI  
reduction is directly related to the level of modulation  
(Fmod) and the rate of modulation. As can be seen in Figure  
14, the frequency changes from 130kHz to 138kHz in 4mS  
for the FSD200/FSD210. Frequency modulation allows the  
use of a cost effective inductor instead of an AC input mode  
choke to satisfy the requirements of world wide EMI limits.  
CISPR22Q(PK)  
CISPR22A(AV)  
Frequency(MHz)  
Figure 16. FSD210 Full Range EMI scan(134kHz, with Fre-  
quency Modulation) with charger set  
11  
FSD210, FSD200  
Typical application circuit  
Application  
Output power  
3.38W  
Input voltage  
Output voltage (Max current)  
Cellular Phone Charger  
Universal input (85-265Vac)  
5.2V (650mA)  
Features  
• High efficiency (>67% at Universal Input)  
• Low zero load power consumption (<100mW at 240Vac) with FSD210  
• Low component count  
• Enhanced system reliability through various protection functions  
• Internal soft-start (3ms)  
• Frequency Modulation for low EMI  
Key Design Notes  
• The constant voltage (CV) mode control is implemented with resistors, R8, R9, R10 and R11, shunt regulator, U2, feedback  
capacitor, C9 and opto-coupler, U3.  
• The constant current (CC) mode control is designed with resistors, R8, R9, R15, R16, R17 and R19, NPN transistor, Q1 and  
NTC, TH1. When the voltage across current sensing resistors, R15,R16 and R17 is 0.7V, the NPN transistor turns on and the  
current through the opto coupler LED increases. This reduces the feedback voltage and duty ratio. Therefore, the output  
voltage decreases and the output current is regulated.  
• The NTC(negative thermal coefficient) is used to compensate the temperature characteristics of the transistor Q1.  
1. Schematic  
C6 152M-Y, 250Vac  
R6  
R7  
4.7M, 1/4W  
4.7M 1/4W  
0
L3  
L1 330uH  
R1 4.7k  
D7  
SB260  
TX1  
Vo  
1
2
7
8
4uH  
Fuse  
R3  
47k  
(5.2V/0.65A)  
AC  
AC  
R9  
56R  
C7  
330uF 16V  
C8  
330uF 16V  
1W, 10R  
D1  
1N4007  
D2  
1N4007  
C3  
102k 1kV  
R10  
2.2k  
R4  
47k  
R8  
510R  
C1  
U3  
C2  
H11A817B  
4.7UF 400V  
4.7uF 400V  
.
D3  
D4  
1N4007  
1N4007  
C9 470nF  
D5  
UF4007  
C10  
4.7uF 50V  
U2  
TL431  
1
Q1  
KSP2222A  
R12  
2k  
D6  
R5  
5
0
Vcc  
1N4148 39R  
8
4
H11A817B  
Vstr  
Vfb  
TH1  
10k  
3
4
U1  
FSD210  
R19  
510R  
C5  
33uF 50V  
R15 3R0  
R16 3R0  
R17 3R0  
0
For FSD21x  
C4  
100nF  
12  
FSD210, FSD200  
2. Demo Circuit Part List  
Reference  
Part #  
Quantity Description  
Requirement/Comment  
DO41 Type  
D1,D2,D3,D4  
1N4007  
UF4007  
1N4148  
SB260  
4
1
1
1
1
1
1A/1000V Junction Rectifier  
D5  
D6  
D7  
Q1  
U1  
1A/1000V Ultra Fast Diode  
10mA/100V Junction Diode  
2A/60V Schottky Diode  
Ic=600mA, Vce=30V  
0.5A/700V  
DO41 Type  
D0-213 Type  
D0-41 Type  
KSP2222A  
TO-92 Type  
FSD210  
Iover=0.3A, Fairchildsemi  
(FSD200)  
U2  
U3  
KA431AZ  
H11A817A  
1
1
Vref=2.495V(Typ.)  
CTR 80~160%  
TO-92 Type, LM431  
-
3. Transformer Schematic Diagram  
2mm  
2mm  
1
2
3
8
7
6
5
W4  
W3  
W2  
W1  
.
4
CORE : EE1616  
BOBBIN : EE1616(H)  
4. Winding Specification  
No.  
Pin (S F)  
Wire  
Turns  
Winding Method  
W1  
1
2
0.16  
Φ Χ  
1
99 Ts  
SOLENOID WINDING  
INSULATION : POLYESTER TAPE t=0.025mm / 10mm, 2Ts  
W2  
4
3
0.16  
Φ Χ  
1
18 Ts  
CENTER SOLENOID  
WINDING  
INSULATION : POLYESTER TAPE t=0.025mm / 10mm, 2Ts  
open 0.16 50 Ts SOLENOID WINDING  
W3  
W4  
1
1
Φ Χ  
INSULATION : POLYESTER TAPE t=0.025mm / 10mm, 3Ts  
0.40 9 Ts SOLENOID WINDING  
8
7
1
Φ Χ  
INSULATION : POLYESTER TAPE t=0.025mm / 10mm, 3Ts  
5. Electrical Characteristics  
ITEM  
TERMINAL  
1 – 2  
SPECIFICATION  
1.6mH  
REMARKS  
INDUCTANCE  
LEAKAGE L  
1kHz, 1V  
1 – 2  
50uH  
3,4,7,8short  
100kHz, 1V  
13  
FSD210, FSD200  
Typical application circuit  
Application  
Output power  
1.2W  
Input voltage  
Universal dc input  
(100 ~ 375Vac)  
Output voltage (Max current)  
Non Isolation Buck  
12V (100mA)  
Features  
• Non isolation buck converter  
• Low component count  
• Enhanced system reliability through various protection functions  
Key Design Notes  
• The output voltage(12V) is regulated with resistors, R1, R2 and R3, zener diode, D3, the transistor, Q1 and the capacitor,  
C2. While the FSD210 is off diodes, D1 and D2, are on. At this time the output voltage, 12V, can be sensed by the feedback  
components above. This output is also used with bias voltage for the FSD210.  
• R, 680K, is to prevent the OLP(over load protection) at startup.  
• R, 8.2K, is a dummy resistor to regulate output voltage in light load.  
1. Schematic  
VINDC  
D2  
5
Vcc  
8
4
UF4004  
Vstr  
Vfb  
R2  
110  
U1  
FSD21x  
D3(ZD)  
1N759A  
C1  
C5  
47uF 50V  
4.7uF/400V  
R1 110  
R
680K  
C2  
47nF/50V  
Q1  
KSP2222A  
R3  
VOUT(12V/100mA)  
D1  
750  
L1  
GND  
1mH  
UF4004  
C4  
R
1000uF 16V  
8.2K  
GND  
0
2. Demo Circuit Part List  
Reference  
D1,D2,  
Q1  
Part #  
Quantity Description  
Requirement/Comment  
UF4007  
2
1
1
1
1A/1000V Ultra Fast Diode  
Ic=200mA, Vcc=40V  
DO41 Type  
TO-92 Type  
DO-35 Type  
Iover=0.3A  
KSP2222A  
1N759A  
ZD1  
12VZD/0.5W  
0.5A/700V  
U1  
FSD210  
14  
FSD210, FSD200  
Layout Considerations (for Flyback Convertor)  
Copper area for heatsink  
#1 : GND  
#2 : GND  
#3 : GND  
#4 : Vfb  
#5 : Vcc  
#6 : N.C.  
#7 : Drain  
#8 : Vstr  
Figure 17. Layout Considerations for FSD2x0 using 7DIP  
15  
FSD210, FSD200  
Package Dimensions  
7-DIP  
16  
FSD210, FSD200  
Package Dimensions (Continued)  
7-LSOP  
17  
FSD210, FSD200  
Ordering Information  
Product Number  
FSD210  
Package  
7DIP  
Rating  
Topr (°C)  
700V, 0.5A  
700V, 0.5A  
700V, 0.5A  
700V, 0.5A  
25°C to +85°C  
25°C to +85°C  
25°C to +85°C  
25°C to +85°C  
FSD200  
7DIP  
FSD210M  
FSD200M  
7LSOP  
7LSOP  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER  
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
6/21/04 0.0m 001  
2004 Fairchild Semiconductor Corporation  

相关型号:

FSD210_NL

Switching Regulator, Voltage-mode, 0.365A, 142kHz Switching Freq-Max, PDIP7, LEAD FREE, DIP-7
FAIRCHILD

FSD270

SILICON DUAL VARIABLE CAPACITANCE DIODE
ZETEX

FSD270TA

SILICON DUAL VARIABLE CAPACITANCE DIODE
ZETEX

FSD273

SILICON LOW VOLTAGE HYPERABRUPT VARACTOR DIODES
ZETEX

FSD273TA

Variable Capacitance Diode, 33.5pF C(T), 12V, Silicon, Hyperabrupt, SURFACE MOUNT PACKAGE-3
DIODES

FSD273TA-A

VARACTOR DIODE,DUAL, COMMON CATHODE,SOT-323
DIODES

FSD273TA-C

Variable Capacitance Diode,
ZETEX

FSD72-6-D

FERRULE - SINGLE WIRE (DIN)
PANDUIT

FSD72-8-D

FERRULE - SINGLE WIRE (DIN)
PANDUIT

FSD73-6-D

FERRULE - SINGLE WIRE (DIN)
PANDUIT