HGTP2N120CN [FAIRCHILD]

13A, 1200V, NPT Series N-Channel IGBT; 13A , 1200V ,不扩散核武器条约系列N沟道IGBT
HGTP2N120CN
型号: HGTP2N120CN
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

13A, 1200V, NPT Series N-Channel IGBT
13A , 1200V ,不扩散核武器条约系列N沟道IGBT

晶体 晶体管 功率控制 瞄准线 双极性晶体管 栅 局域网
文件: 总9页 (文件大小:498K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
March 2005  
HGTP2N120CN, HGT1S2N120CN  
13A, 1200V, NPT Series N-Channel IGBT  
Features  
Description  
13A, 1200V, T = 25°C  
The HGTP2N120CN and HGT1S2N120CN are Non-Punch  
Through (NPT) IGBT designs. They are new members of the  
MOS gated high voltage switching IGBT family. IGBTs combine  
the best features of MOSFETs and bipolar transistors. This  
device has the high input impedance of a MOSFET and the low  
on-state conduction loss of a bipolar transistor.  
C
1200V Switching SOA Capability  
Typical Fall Time 360ns at T = 150°C  
J
Short Circuit Rating  
Low Conduction Loss  
Avalanche Rated  
The IGBT is ideal for many high voltage switching applications  
operating at moderate frequencies where low conduction losses  
are essential, such as: AC and DC motor controls, power sup-  
plies and drivers for solenoids, relays and contactors.  
Temperature Compensating SABER™ Model  
Thermal Impedance SPICE Model  
www.fairchildsemi.com  
Formerly Developmental Type TA49313  
Related Literature  
TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Ordering Informations  
Part Number  
HGTP2N120CN  
HGT1S2N120CN  
Package  
Brand  
2N120CN  
2N120CN  
TO-220AB  
TO-262  
Note: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-  
263AB and TO-252AA variant in tape and reel, e.g., HGT1S2N120CNS9A.  
C
E
C
COLLECTOR  
(FLANGE)  
E
C
G
G
G
COLLECTOR  
(FLANGE)  
TO-220  
TO-262  
E
FAIRCHILD SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
©2005 Fairchild Semiconductor Corporation  
HGTP2N120CN, HGT1S2N120CN Rev. C  
1
www.fairchildsemi.com  
Absolute Maximum Ratings  
T = 25°C, Unless Otherwise Specified  
C
HGTP2N120CN  
HGT1S2N120CN  
Symbol  
Parameter  
Units  
BV  
Collector to Emitter Voltage  
Collector Current Continuous  
1200  
V
CES  
I
I
At T = 25°C  
13  
7
A
A
C25  
C110  
C
At T = 110°C  
C
I
Collector Current Pulsed (Note 1)  
Gate to Emitter Voltage Continuous  
Gate to Emitter Voltage Pulsed  
20  
±20  
A
V
V
CM  
V
V
GES  
GEM  
±30  
SSOA  
Switching SOA Operating Area at T = 150°C (Figure 2)  
13A at 1200V  
104  
J
P
Power Dissipation Total at T = 25°C  
W
W/°C  
mJ  
D
C
Power Dissipation Derating T > 25°C  
0.83  
C
E
Forward Voltage Avalanche Energy (Note 2)  
18  
AV  
t , T  
Operating and Storage Junction Temperature Range  
-55 to 150  
°C  
J
STG  
Maximum Lead Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s  
Package Body for 10s, see Tech Brief 334  
T
T
300  
260  
°C  
°C  
L
PKG  
t
Short Circuit Withstand Time (Note 3) at V = 15V  
8
µs  
SC  
GE  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at  
these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Notes:  
1. Pulse width limited by maximum junction temperature.  
2. I = 3A, L = 4mH  
CE  
3. V  
= 840V, T = 125°C, R = 51.  
J G  
CE(PK)  
Electrical Characteristics  
T = 25°C unless otherwise noted  
C
Symbol  
CES  
Parameter  
Test Conditions  
Min. Typ. Max. Units  
BV  
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
I
I
= 250µA, V = 0V  
1200  
-
-
V
C
C
GE  
BV  
= 10mA, V = 0V  
15  
-
-
V
ECS  
GE  
I
V
= 1200V  
T = 25°C  
-
-
-
100  
-
100  
-
µA  
µA  
mA  
V
CES  
CE  
J
T = 125°C  
J
T = 150°C  
-
1.0  
2.40  
3.50  
-
J
V
V
Collector to Emitter Saturation Voltage  
I
V
= 2.6A,  
= 15V  
T = 25°C  
-
2.05  
2.75  
6.7  
-
CE(SAT)  
C
J
GE  
T = 150°C  
-
V
J
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
I
= 45µA, V = V  
6.4  
-
V
GE(TH)  
GES  
C
CE  
GE  
I
V
=
20V  
250  
-
nA  
A
GE  
SSOA  
T = 150°C, R = 51Ω, V = 15V  
13  
-
J
G
GE  
= 1200V  
L = 5mH, V  
CE(PK)  
V
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
I
I
= 2.6A, V = 600V  
-
-
-
10.2  
30  
-
V
GEP  
C
CE  
Q
= 2.6A,  
= 600V  
V
V
= 15V  
= 20V  
36  
43  
nC  
nC  
g(ON)  
C
V
GE  
GE  
CE  
36  
2
www.fairchildsemi.com  
HGTP2N120CN, HGT1S2N120CN Rev. C  
Electrical Characteristics  
T = 25°C unless otherwise noted (Continued)  
C
Symbol  
d(ON)l  
Parameter  
Test Conditions  
Min. Typ. Max. Units  
t
t
t
t
Current Trun-On Delay Time  
IGBT and Diode at T = 25°C  
CE  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
30  
ns  
J
I
= 2.6A  
Current Rise Time  
11  
15  
ns  
rl  
V
V
= 960V  
= 15V  
CE  
Curent Turn-Off Delay Time  
Current Fall Time  
205  
260  
96  
220  
320  
-
ns  
d(OFF)l  
GE  
R
= 51Ω  
L = 5mH  
G
ns  
fl  
E
E
E
Turn-On Energy (Note 4)  
Turn-On Energy (Note 4)  
Turn-Off Energy (Note 5)  
Curent Turn-On Delay Time  
Current Rise Time  
µJ  
ON1  
ON2  
OFF  
d(ON)l  
rl  
Test Circuit (Figure 18)  
425  
355  
21  
590  
390  
25  
µJ  
µJ  
t
t
t
t
IGBT and Diode at T = 150°C  
ns  
J
I
= 2.6A  
CE  
CE  
GE  
11  
15  
ns  
V
V
= 960V  
= 15V  
Curent Turn-Off Delay Time  
Current Fall Time  
225  
360  
96  
240  
420  
-
ns  
d(OFF)l  
fl  
R
= 51Ω  
L = 5mH  
G
ns  
E
E
E
Turn-On Energy (Note 4)  
Turn-On Energy (Note 4)  
Turn-Off Energy (Note 5)  
Thermal Resistance Junction to Case  
µJ  
ON1  
ON2  
OFF  
Test Circuit (Figure 18)  
800  
530  
-
1100  
580  
1.20  
µJ  
µJ  
R
°C/W  
θJC  
Notes:  
4. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss of the IGBT only. E  
is the turn-on loss when a typical  
ON2  
ON1  
diode is used in the test circuit and the diode is at the same T as the IGBT. The diode type is specified in Figure 18.  
J
5. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector  
OFF  
current equals zero (I = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method  
CE  
produces the true total Turn-Off Energy Loss.  
3
www.fairchildsemi.com  
HGTP2N120CN, HGT1S2N120CN Rev. C  
Typical Performance Characteristics  
Figure 1. DC Collector Current vs  
Case Temperature  
Figure 2. Minimum Switching Safe Operating  
Area  
14  
16  
o
V
= 15V  
T
= 150 C, R = 51, V = 15V, L = 5mH  
G GE  
GE  
J
14  
12  
10  
8
12  
10  
8
6
6
4
4
2
2
0
0
0
200  
400  
600  
800  
1000  
1200  
1400  
25  
50  
75  
100  
125  
150  
o
T
, CASE TEMPERATURE ( C)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
CE  
Figure 3. Operating Frequency vs Collector to  
Emitter Currentl  
Figure 4. Short Circuit Withstand Time  
50  
50  
40  
30  
20  
10  
0
200  
o
T
= 150 C, R = 51, V = 15V, L = 5mH  
G GE  
o
J
V
= 840V, R = 51, T = 125 C  
G J  
CE  
T
V
C
o
GE  
o
T
= 75 C,V = 15V  
GE  
C
100  
50  
75 C 15V  
40  
30  
20  
10  
0
o
IDEAL DIODE  
12V  
75 C  
f
f
= 0.05 / (t  
+ t  
ON2  
)
MAX1  
MAX2  
C
d(OFF)I  
C
d(ON)I  
I
t
SC  
SC  
= (P - P ) / (E  
+ E  
)
D
OFF  
P
= CONDUCTION DISSIPATION  
10  
T
V
C
GE  
(DUTY FACTOR = 50%)  
o
15V  
12V  
o
110 C  
R
= 1.2 C/W, SEE NOTES  
o
ØJC  
110 C  
10  
11  
V , GATE TO EMITTER VOLTAGE (V)  
GE  
12  
13  
14  
15  
1
2
3
4
5
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
Figure 5. Collector to Emitter On-State Voltage  
Figure 6. Collector to Emitter On-State Voltage  
10  
10  
DUTY CYCLE <0.5%, V = 15V  
GE  
250µ  
s PULSE TEST  
8
8
6
4
2
0
o
o
T
= -55 C  
T
= 25 C  
C
o
C
T
= 25 C  
C
6
4
2
0
o
T
= -55 C  
C
o
T
= 150 C  
C
o
T
= 150 C  
C
DUTY CYCLE <0.5%, V = 12V  
GE  
250  
µ
S PULSE TEST  
0
1
2
3
4
5
6
0
1
2
3
4
5
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
4
www.fairchildsemi.com  
HGTP2N120CN, HGT1S2N120CN Rev. C  
Typical Performance Characteristics (Continued)  
Figure 7. Turn-On Energy Loss vs Collector to  
Emitter Current  
Figure 8. Turn-Off Energy Loss vs Collector to  
Emitter Current  
900  
2000  
R
= 51, L = 5mH, V = 960V  
CE  
G
R
= 51, L = 5mH, V = 960V  
CE  
G
800  
700  
600  
500  
400  
300  
200  
100  
1500  
1000  
500  
0
o
o
T
= 150 C, V = 12V, V = 15V  
GE GE  
T
= 150 C, V = 12V OR 15V  
GE  
J
J
o
T
= 25 C, V = 12V OR 15V  
GE  
J
o
T
= 25 C, V = 12V, V = 15V  
GE GE  
J
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
Figure 9. Turn_On Delay Time vs Collector to  
Emitter Current  
Figure 10. Turn-On Rise Time vs Collector to  
Emitter Current  
40  
45  
R
= 51, L = 5mH, V = 960V  
CE  
G
R
= 51, L = 5mH, V = 960V  
CE  
G
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
o
o
T
= 25 C, T = 150 C, V = 12V  
J
J
GE  
o
o
T
= 25 C, T = 150 C, V = 12V  
J GE  
J
o
o
T
= 25 C, T = 150 C, V = 15V  
J
J
GE  
o
o
T
= 25 C, T = 150 C, V = 15V  
J
J
GE  
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
Figure 11. Turn-Off Delay Time vs Collector to  
Emitter Current  
Figure 12. Fall Time vs Collector to Emitter  
Current  
700  
400  
R
= 51, L = 5mH, V = 960V  
CE  
R
= 51, L = 5mH, V = 960V  
CE  
G
G
600  
500  
400  
300  
200  
100  
350  
300  
250  
200  
150  
100  
o
V
= 12V, V = 15V, T = 150 C  
GE J  
GE  
o
T
= 150 C, V = 12V OR 15V  
GE  
J
o
o
V
= 12V, V = 15V, T = 25 C  
GE J  
T
= 25 C, V = 12V OR 15V  
GE  
J
GE  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
5
www.fairchildsemi.com  
HGTP2N120CN, HGT1S2N120CN Rev. C  
Typical Performance Characteristics (Continued)  
Figure 13. Transfer Characteristic  
Figure 14. Gate Charage Waveforms  
16  
40  
o
I
= 1mA, R = 260, T = 25 C  
L C  
G(REF)  
DUTY CYCLE <0.5%, V = 20V  
CE  
14  
12  
10  
8
35  
30  
25  
20  
15  
10  
5
250µS PULSE TEST  
V
= 1200V  
CE  
V
= 400V  
V
= 800V  
CE  
CE  
6
o
T
= -55 C  
C
4
o
2
T
= 25 C  
C
o
T
= 150 C  
C
0
0
0
5
10  
15  
20  
25  
30  
7
8
9
10  
11  
12  
13  
14  
15  
Q , GATE CHARGE (nC)  
V
, GATE TO EMITTER VOLTAGE (V)  
G
GE  
Figure 15. Capacitance vs Collector to Emitter  
Figure 16. Collector to Emitter On-Sate Voltage  
2.0  
5
o
DUTY CYCLE <0.5%, T = 110 C  
C
FREQUENCY = 1MHz  
250µs PULSE TEST  
4
3
2
1
0
1.5  
V
= 15V  
GE  
C
IES  
1.0  
0.5  
0
V
= 10V  
GE  
C
OES  
C
RES  
0
0.5  
1.0  
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
1.5  
2.0  
2.5  
3.0  
3.5  
0
5
10  
15  
20  
25  
V
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
Figure 17. Normalized Transient Thermal Response, Junction to Case  
0
10  
0.5  
0.2  
0.1  
-1  
t
10  
10  
1
0.05  
P
D
0.02  
t
2
DUTY FACTOR, D = t / t  
1
2
0.01  
PEAK T = (P X Zθ X Rθ ) + T  
J
D
JC  
JC  
C
SINGLE PULSE  
-2  
10  
-5  
-4  
-3  
-2  
-1  
0
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
6
www.fairchildsemi.com  
HGTP2N120CN, HGT1S2N120CN Rev. C  
Test Circuit and Waveforms (Continued)  
Figure 18. Inductive Switching Test Circuit  
RHRD4120  
Figure 19. Switching Test Waveforms  
90%  
10%  
V
GE  
L = 5mH  
E
ON2  
E
OFF  
R
= 51Ω  
G
V
CE  
90%  
10%  
+
V
= 960V  
DD  
I
-
CE  
t
t
d(OFF)I  
rI  
t
fI  
t
d(ON)I  
7
www.fairchildsemi.com  
HGTP2N120CN, HGT1S2N120CN Rev. C  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to gate-insu-  
lation damage by the electrostatic discharge of energy through  
the devices. When handling these devices, care should be exer-  
cised to assure that the static charge built in the handler’s body  
capacitance is not discharged through the device. With proper  
handling and application procedures, however, IGBTs are cur-  
rently being extensively used in production by numerous equip-  
ment manufacturers in military, industrial and consumer  
applications, with virtually no damage problems due to electro-  
static discharge. IGBTs can be handled safely if the following  
basic precautions are taken:  
Operating frequency information for a typical device (Figure 3)  
is presented as a guide for estimating device performance for a  
specific application. Other typical frequency vs collector current  
(I ) plots are possible using the information shown for a typical  
CE  
unit in Figures 5, 6, 7, 8, 9 and 11. The operating frequency plot  
(Figure 3) of a typical device shows f  
or f  
; whichever is  
MAX2  
MAX1  
smaller at each point. The information is based on measure-  
ments of a typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
= 0.05/(t  
+ t  
). Deadtime  
MAX1  
MAX1  
d(OFF)I  
d(ON)I  
(the denominator) has been arbitrarily held to 10% of the on-  
state time for a 50% duty factor. Other definitions are possible.  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting springs  
or by the insertion into conductive material such as  
“ECCOSORBD™ LD26” or equivalent.  
t
and t  
are defined in Figure 19. Device turn-off  
d(OFF)I  
d(ON)I  
delay can establish an additional frequency limiting condition for  
an application other than T . t is important when control-  
JM d(OFF)I  
ling output ripple under a lightly loaded condition.  
2. When devices are removed by hand from their carriers, the  
hand being used should be grounded by any suitable means  
- for example, with a metallic wristband.  
f
is defined by f = (P - P )/(E + E ). The allowable  
MAX2  
MAX2  
D
C
OFF  
ON2  
dissipation (P ) is defined by P = (T - T )/Rθ . The sum of  
D
D
JM  
C
JC  
device switching and conduction losses must not exceed P .  
D
3. Tips of soldering irons should be grounded.  
A 50% duty factor was used (Figure 3) and the conduction  
4. Devices should never be inserted into or removed from cir-  
cuits with power on.  
losses (P ) are approximated by P = (V x I )/2.  
C
C
CE  
CE  
E
and E  
are defined in the switching waveforms shown  
OFF  
ON2  
5. Gate Voltage Rating - Never exceed the gate-voltage rating  
in Figure 19. E  
is the integral of the instantaneous power  
ON2  
of V  
. Exceeding the rated V  
can result in permanent  
loss (I x V ) during turn-on and E  
is the integral of the  
OFF  
GEM  
GE  
CE  
CE  
damage to the oxide layer in the gate region.  
instantaneous power loss (I x V ) during turn-off. All tail  
CE CE  
losses are included in the calculation for E  
; i.e., the collec-  
OFF  
6. Gate Termination - The gates of these devices are essen-  
tially capacitors. Circuits that leave the gate open-circuited or  
floating should be avoided. These conditions can result in  
turn-on of the device due to voltage buildup on the input  
capacitor due to leakage currents or pickup.  
tor current equals zero (I = 0).  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate protection  
is required, an external Zener is recommended.  
8
www.fairchildsemi.com  
HGTP2N120CN, HGT1S2N120CN Rev. C  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to  
be an exhaustive list of all such trademarks.  
FAST®  
IntelliMAX™  
ISOPLANAR™  
LittleFET™  
POP™  
SPM™  
A
CEx™  
FASTr™  
Power247™  
Stealth™  
ActiveArray™  
Bottomless™  
CoolFET™  
FPS™  
PowerEdge™  
PowerSaver™  
PowerTrench®  
QFET®  
SuperFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
TinyLogic®  
TINYOPTO™  
TruTranslation™  
UHC™  
FRFET™  
GlobalOptoisolator™  
GTO™  
MICROCOUPLER™  
MicroFET™  
MicroPak™  
MICROWIRE™  
MSX™  
CROSSVOLT™  
DOME™  
HiSeC™  
QS™  
EcoSPARK™  
I2C™  
QT Optoelectronics™  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
µSerDes™  
E2CMOS™  
i-Lo™  
MSXPro™  
EnSigna™  
ImpliedDisconnect™  
OCX™  
FACT™  
OCXPro™  
FACT Quiet Series™  
OPTOLOGIC®  
OPTOPLANAR™  
PACMAN™  
UltraFET®  
Across the board. Around the world.™  
SILENT SWITCHER®  
SMART START™  
UniFET™  
The Power Franchise®  
VCX™  
Programmable Active Droop™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY  
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT  
CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems which,  
(a) are intended for surgical implant into the body, or (b) support  
or sustain life, or (c) whose failure to perform when properly used  
in accordance with instructions for use provided in the labeling,  
can be reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably expected  
to cause the failure of the life support device or system, or to  
affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Advance Information  
Product Status  
Definition  
Formative or In  
Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I15  
9
www.fairchildsemi.com  
HGTP2N120CN, HGT1S2N120CN Rev. C  

相关型号:

HGTP2N120CN9A

Insulated Gate Bipolar Transistor, 13A I(C), 1200V V(BR)CES, N-Channel
FAIRCHILD

HGTP2N120CND

13A, 1200V, NPT Series N-Channel IGBTs with Anti-Parallel Hyperfast Diodes
INTERSIL

HGTP2N120CNDS

Insulated Gate Bipolar Transistor
FAIRCHILD

HGTP2N120CNDS9A

Insulated Gate Bipolar Transistor
FAIRCHILD

HGTP2N120CNS

13A, 1200V, NPT Series N-Channel IGBT
FAIRCHILD

HGTP2N120CN_NL

Insulated Gate Bipolar Transistor, 13A I(C), 1200V V(BR)CES, N-Channel, TO-220AB, TO-220AB, 3 PIN
FAIRCHILD

HGTP3N60A4

600V, SMPS Series N-Channel IGBT
FAIRCHILD

HGTP3N60A4

600V, SMPS Series N-Channel IGBT
INTERSIL

HGTP3N60A4

17A, 600V, N-CHANNEL IGBT, TO-220AB, TO-220AB, 3 PIN
ROCHESTER

HGTP3N60A4

IGBT,600 V,SMPS
ONSEMI

HGTP3N60A4D

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD

HGTP3N60A4D

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL