HUF76113DK8 [FAIRCHILD]

6A, 30V, 0.032 Ohm, Dual N-Channel, Logic Level UltraFET Power MOSFET; 6A , 30V , 0.032欧姆,双N沟道逻辑电平UltraFET功率MOSFET
HUF76113DK8
型号: HUF76113DK8
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

6A, 30V, 0.032 Ohm, Dual N-Channel, Logic Level UltraFET Power MOSFET
6A , 30V , 0.032欧姆,双N沟道逻辑电平UltraFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 光电二极管
文件: 总12页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUF76113DK8  
Data Sheet  
January 2003  
6A, 30V, 0.032 Ohm, Dual N-Channel,  
Logic Level UltraFET Power MOSFET  
Features  
• Logic Level Gate Drive  
• 6A, 30V  
This N-Channel power MOSFET is  
®
manufactured using the innovative  
• Ultra Low On-Resistance, r  
= 0.032Ω  
UltraFET process. This advanced  
process technology achieves the  
DS(ON)  
®
Temperature Compensating PSPICE Model  
lowest possible on-resistance per silicon area, resulting in  
outstanding performance. This device is capable of  
withstanding high energy in the avalanche mode and the  
diode exhibits very low reverse recovery time and stored  
charge. It was designed for use in applications where power  
efficiency is important, such as switching regulators, switching  
converters, motor drivers, relay drivers, low-voltage bus  
switches, and power management in portable and battery-  
operated products.  
Temperature Compensating SABER Model  
• Thermal Impedance SPICE Model  
• Thermal Impedance SABER Model  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334, “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly developmental type TA76113.  
Ordering Information  
Symbol  
PART NUMBER  
PACKAGE  
BRAND  
76113DK8  
D1(8)  
D1(7)  
HUF76113DK8  
MS-012AA  
NOTE: When ordering, use the entire part number. Add the suffix T  
to obtain the variant in tape and reel, e.g., HUF76113DK8T.  
S1(1)  
G1(2)  
D2(6)  
D2(5)  
S2(3)  
G2(4)  
Packaging  
JEDEC MS-012AA  
BRANDING DASH  
5
1
2
3
4
©2003 Fairchild Semiconductor Corporation  
HUF76113DK8 Rev. B1  
HUF76113DK8  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
A
HUF76113DK8  
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
30  
30  
V
V
V
DSS  
Drain to Gate Voltage (R  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
GS  
Drain Current  
o
Continuous (T = 25 C, V  
A
= 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . I  
6
1.8  
1.7  
A
A
A
GS  
D
D
o
Continuous (T = 100 C, V  
= 5V) (Note 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
= 4.5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
A
GS  
o
Continuous (T = 100 C, V  
A
GS  
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
Figure 4  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
Figure 6  
AS  
Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
2.5  
0.02  
W
D
o
o
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W/ C  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
o
o
1. T = 25 C to 125 C.  
J
2. 50oC/W measured using FR-4 board at 1 second.  
o
2
3. 228 C/W measured using FR-4 board with 0.006 in footprint at 1000 seconds.  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
BV  
I
= 250µA, V  
= 0V (Figure 12)  
30  
-
-
-
-
-
-
V
DSS  
D
GS  
GS  
GS  
I
V
V
V
= 25V, V  
= 25V, V  
= ±20V  
= 0V  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
= 0V, T = 150 C  
-
250  
±100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
I
-
GSS  
V
V
= V , I = 250µA (Figure 11)  
DS  
1
-
-
3
V
GS(TH)  
GS  
D
r
I
I
I
= 6A, V  
GS  
= 10V (Figures 9, 10)  
0.026  
0.033  
0.035  
0.032  
0.041  
0.043  
DS(ON)  
D
D
D
= 1.8A, V  
= 1.7A, V  
= 5V (Figure 9)  
-
GS  
GS  
= 4.5V (Figure 9)  
-
THERMAL SPECIFICATIONS  
2
o
Thermal Resistance Junction to Ambient  
R
Pad Area = 0.76 in (Note 2)  
-
-
-
-
-
-
50  
C/W  
θJA  
2
o
Pad Area = 0.027 in (See TB377)  
191  
228  
C/W  
2
o
Pad Area = 0.006 in (See TB377)  
C/W  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 4.5V)  
GS  
t
V
V
= 15V, I  
= 4.5V, R  
1.7A, R = 8.8,  
-
-
-
-
-
-
-
110  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
D
L
= 18,  
GS  
GS  
Turn-On Delay Time  
Rise Time  
t
17  
57  
32  
38  
-
-
d(ON)  
(Figure 15)  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
105  
OFF  
©2003 Fairchild Semiconductor Corporation  
HUF76113DK8 Rev. B1  
HUF76113DK8  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
= 10V)  
GS  
t
V
= 15V, I  
6A, R = 2.5, V  
GS  
=
-
-
-
-
-
-
-
60  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
10V,  
D
L
Turn-On Delay Time  
Rise Time  
t
6.5  
33  
50  
40  
-
-
d(ON)  
R
= 18Ω  
(Figure 16)  
GS  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
135  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 10V  
= 0V to 5V  
= 0V to 1V  
V
R
= 15V, I  
D
= 8.3Ω  
1.8A,  
-
-
-
-
-
16.0  
8.4  
19.2  
10.2  
0.66  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
L
Gate Charge at 5V  
Q
g(5)  
I
= 1.0mA  
g(REF)  
(Figure 14)  
Threshold Gate Charge  
Q
0.55  
1.50  
3.90  
g(TH)  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
Q
gs  
gd  
-
C
V
= 25V, V = 0V,  
GS  
-
-
-
605  
275  
40  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 13)  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
C
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
1.00  
40  
UNITS  
Source to Drain Diode Voltage  
V
I
I
I
I
= 6A  
-
-
V
V
SD  
SD  
SD  
SD  
SD  
= 1.8A  
Reverse Recovery Time  
t
= 1.8A, dI /dt = 100A/µs  
SD  
-
-
-
-
ns  
nC  
rr  
Reverse Recovered Charge  
Q
= 1.8A, dI /dt = 100A/µs  
42  
RR  
SD  
Typical Performance Curves  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
7
6
5
4
3
2
o
V
= 10V, R  
= 50 C/W  
JA  
GS  
θ
o
V
= 4.5V, R  
= 228 C/W  
JA  
GS  
θ
1
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
o
o
T , AMBIENT TEMPERATURE ( C)  
T , AMBIENT TEMPERATURE ( C)  
A
A
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
©2003 Fairchild Semiconductor Corporation  
HUF76113DK8 Rev. B1  
HUF76113DK8  
Typical Performance Curves (Continued)  
2
DUTY CYCLE - DESCENDING ORDER  
1
0.5  
0.2  
o
R
= 228 C/W  
JA  
θ
0.1  
0.05  
0.02  
0.01  
0.1  
P
DM  
t
1
0.01  
0.001  
t
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P  
J
x Z  
x R  
+ T  
JA A  
DM  
JA  
θ
θ
-5  
-4  
10  
-3  
-2  
10  
-1  
10  
0
1
2
3
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
500  
o
o
= 25 C  
R
= 228 C/W  
T
JA  
θ
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
V
= 10V  
GS  
100  
10  
1
150 - T  
A
I = I  
25  
125  
V
= 5V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
-5  
-4  
-3  
10  
-2  
10  
-1  
0
1
2
3
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
10  
FIGURE 4. PEAK CURRENT CAPABILITY  
50  
If R = 0  
= (L)(I )/(1.3*RATED BV  
500  
100  
t
- V )  
DD  
T
T
= MAX RATED  
AV  
If R 0  
AS  
DSS  
J
o
= 25 C  
A
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
- V ) +1]  
DSS DD  
AV  
AS  
100µs  
o
STARTING T = 25 C  
J
10  
1ms  
OPERATION IN THIS  
AREA MAY BE  
o
10  
STARTING T = 150 C  
J
LIMITED BY r  
DS(ON)  
10ms  
V
= 30V  
1
DSS(MAX)  
10  
0.1  
1
10  
100  
1
1
100  
t
, TIME IN AVALANCHE (ms)  
AV  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
CAPABILITY  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
©2003 Fairchild Semiconductor Corporation  
HUF76113DK8 Rev. B1  
HUF76113DK8  
Typical Performance Curves (Continued)  
30  
30  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 4V  
GS  
V
= 15V  
DD  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
= 10V  
= 5V  
= 4.5V  
GS  
V
V
GS  
GS  
V
= 3.5V  
= 3V  
GS  
V
GS  
o
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
150 C  
o
o
25 C  
o
T
= 25 C  
A
-55 C  
0
0
0
1
2
3
4
5
0
1
2
3
4
5
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
DS  
FIGURE 7. TRANSFER CHARACTERISTICS  
FIGURE 8. SATURATION CHARACTERISTICS  
200  
150  
100  
50  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
PULSE DURATION = 80µs  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
I
= 6A  
DUTY CYCLE = 0.5% MAX  
D
V
= 10V, I = 6A  
D
GS  
I
= 1.8A  
D
0
-80  
-40  
0
40  
80  
120  
160  
0
2
4
6
8
10  
o
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
1.2  
1.2  
1.1  
1.0  
0.9  
I
= 250µA  
V
= V , I = 250µA  
D
GS  
DS  
D
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
©2003 Fairchild Semiconductor Corporation  
HUF76113DK8 Rev. B1  
HUF76113DK8  
Typical Performance Curves (Continued)  
10  
1000  
V
= 0V, f = 1MHz  
GS  
ISS  
V
= 15V  
DD  
C
C
C
= C  
+ C  
GS  
GD  
= C  
= C  
RSS  
OSS  
GD  
DS  
8
6
4
2
0
800  
600  
400  
200  
0
+ C  
GD  
C
ISS  
C
C
OSS  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 6A  
= 1.8A  
D
D
0
5
10  
15  
20  
25  
30  
0
5
10  
Q , GATE CHARGE (nC)  
15  
20  
V
, DRAIN TO SOURCE VOLTAGE (V)  
g
DS  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT  
GATE CURRENT  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
120  
150  
V
= 4.5V, V = 15V, I = 1.7A, R = 8.8Ω  
DD D L  
V
= 10V, V  
= 15V, I = 6A, R = 2.5Ω  
t
GS  
GS  
DD  
D
L
r
120  
90  
60  
30  
0
90  
60  
30  
0
t
t
d(OFF)  
f
t
f
t
d(OFF)  
t
r
t
d(ON)  
t
d(ON)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE ()  
R
, GATE TO SOURCE RESISTANCE ()  
GS  
GS  
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE  
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS  
©2003 Fairchild Semiconductor Corporation  
HUF76113DK8 Rev. B1  
HUF76113DK8  
Test Circuits and Waveforms (Continued)  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 10  
GS  
V
Q
GS  
g(5)  
+
-
V
DD  
V
= 5V  
V
GS  
GS  
DUT  
V
= 1V  
GS  
I
0
g(REF)  
Q
g(TH)  
I
g(REF)  
0
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT  
FIGURE 22. SWITCHING TIME WAVEFORM  
3. The use of external heat sinks.  
4. The use of thermal vias.  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, T , and the ther-  
JM  
5. Air flow and board orientation.  
mal resistance of the heat dissipating path determines the  
maximum allowable device power dissipation, P , in an  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
DM  
application. Therefore the application’s ambient tempera-  
o
o
ture, T ( C), and thermal resistance R  
( C/W) must be  
A
θJA  
reviewed to ensure that T is never exceeded. Equation 1  
mathematically represents the relationship and serves as  
the basis for establishing the rating of the part.  
Fairchild provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 23  
JM  
defines the R  
for the device as a function of the top  
θJA  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse applications  
can be evaluated using the Fairchild device Spice thermal  
model or manually utilizing the normalized maximum  
transient thermal impedance curve.  
(T  
T )  
JM  
Z
A
(EQ. 1)  
P
= ------------------------------  
DM  
θJA  
In using surface mount devices such as the SOP-8 package,  
the environment in which it is applied will have a significant  
influence on the part’s current and maximum power dissipa-  
tion ratings. Precise determination of P  
influenced by many factors:  
is complex and  
DM  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
Displayed on the curve are R  
θJA  
Specifications table. The points were chosen to depict the  
compromise between the copper board area, the thermal  
values listed in the Electrical  
2. The number of copper layers and the thickness of the  
board.  
resistance and ultimately the power dissipation, P  
DM  
.
©2003 Fairchild Semiconductor Corporation  
HUF76113DK8 Rev. B1  
HUF76113DK8  
o
Thermal resistances corresponding to other copper areas can  
be obtained from Figure 23 or by calculation using Equation 2.  
Rθβ1 = Rθβ2 = 97 C/W  
T
and T define the junction temerature of the respective  
die. Similarly, P and P define the power dissipated in each  
die. The steady state junction temperature can be calculated  
using Equation 4 for die 1and Equation 5 for die 2.  
J1  
J2  
R
is defined as the natural log of the area times a cofficient  
θJA  
1
2
added to a constant. The area, in square inches is the top  
copper area including the gate and source pads.  
R
= 103.2 24.3 × ln(Area)  
(EQ. 2)  
θ JA  
Example: To calculate the junction temperature of each die  
when die 2 is dissipating 0.5 Watts and die 1 is dissipating 0  
Watts. The ambient temperature is 70°C and the package is  
mounted to a top copper area of 0.1 square inches per die.  
300  
R
= 103.2 - 24.3 * ln(AREA)  
θJA  
250  
o
2
Use Equation 4 to calulate T and and Equation 5 to  
228 C/W - 0.006in  
J1  
calulate T ..  
J2  
o
2
200  
150  
100  
50  
191 C/W - 0.027in  
T
= P R  
+ P Rθ β + T  
θJA 2 A  
(EQ. 4)  
J1  
1
T
T
T
= (0 Watts)(159°C/W) + (0.5 Watts)(97°C/W) + 70°C  
= 119°C  
J1  
J1  
= P R  
+ P Rθ β + T  
(EQ. 5)  
Rθβ = 46.4 - 21.7 * ln(AREA)  
J2  
2
θJA  
1
A
0
o
o
o
0.001  
0.01  
0.1  
2
1
T
T
= (0.5 Watts)(159 C/W) + (0 Watts)(97 C/W) + 70 C  
J2  
J2  
AREA, TOP COPPER AREA (in ) PER DIE  
o
= 150 C  
FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA  
While Equation 2 describes the thermal resistance of a  
single die, several of the new UltraFETs are offered with two  
die in the SOP-8 package. The dual die SOP-8 package  
introduces an additional thermal component, thermal  
coupling resistance, Rθβ. Equation 3 describes Rθβ as a  
function of the top copper mounting pad area.  
The transient thermal impedance (Z  
) is also effected by  
θJA  
varied top copper board area. Figure 24 shows the effect of  
copper pad area on single pulse transient thermal  
impedance. Each trace represents a copper pad area in  
square inches corresponding to the descending list in the  
graph. Spice and SABER thermal models are provided for  
each of the listed pad areas.  
Rθβ = 46.4 21.7 × ln(Area)  
(EQ. 3)  
Copper pad area has no perceivable effect on transient  
thermal impedance for pulse widths less than 100ms. For  
pulse widths less than 100ms the transient thermal  
The thermal coupling resistance vs. copper area is also  
graphically depicted in Figure 23. It is important to note the  
thermal resistance (R  
(Rθβ) are equivalent for both die. For example at 0.1 square  
inches of copper:  
) and thermal coupling resistance  
impedance is determined by the die and package. Therefore,  
CTHERM1 through CTHERM5 and RTHERM1 through  
RTHERM5 remain constant for each of the thermal models. A  
listing of the model component values is available in Table 1.  
θJA  
o
R
= R  
= 159 C/W  
θJA1  
θJA2  
160  
COPPER BOARD AREA - DESCENDING ORDER  
2
0.020 in  
2
0.140 in  
0.257 in  
2
120  
80  
40  
0
2
0.380 in  
2
0.493 in  
-1  
10  
0
1
2
3
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 24. THERMAL RESISTANCE vs MOUNTING PAD AREA  
10  
10  
©2003 Fairchild Semiconductor Corporation  
HUF76113DK8 Rev. B1  
HUF76113DK8  
PSPICE Electrical Model  
.SUBCKT HUF76113 2 1 3 ;  
REV July 1998  
CA 12 8 8.50e-10  
CB 15 14 8.05e-10  
CIN 6 8 5.71e-10  
LDRAIN  
DPLCAP  
10  
DRAIN  
2
5
RLDRAIN  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
50  
EBREAK 11 7 17 18 38.7  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
+
-
17  
18  
-
DBODY  
RDRAIN  
6
ESG  
8
EBREAK  
EVTHRES  
+
16  
21  
+
-
EVTEMP 20 6 18 22 1  
19  
MWEAK  
LGATE  
EVTEMP  
+
8
RGATE  
GATE  
1
6
-
18  
22  
MMED  
IT 8 17 1  
9
20  
MSTRO  
8
RLGATE  
LDRAIN 2 5 1e-9  
LGATE 1 9 9.67e-10  
LSOURCE 3 7 3.27e-10  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
RLSOURCE  
S1A  
S2A  
S2B  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 3.04e-3  
RGATE 9 20 2.65  
RLDRAIN 2 5 10  
RLGATE 1 9 9.67  
RLSOURCE 3 7 3.27  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 25.0e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
S1B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*256),2))}  
.MODEL DBODYMOD D (IS = 8.35e-13 RS = 1.39e-2 TRS1 = 1.03e-3 TRS2 = 6.85e-6 CJO = 9.11e-10 TT = 2.14e-8 M = 0.42)  
.MODEL DBREAKMOD D (RS = 8.21e-2 TRS1 = 2.25e-3 TRS2 = 4.14e-5)  
.MODEL DPLCAPMOD D (CJO = 3.76e-10 IS = 1e-30 N = 10 M = 0.68)  
.MODEL MMEDMOD NMOS (VTO = 2.03 KP = 3.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.65)  
.MODEL MSTROMOD NMOS (VTO = 2.36 KP = 50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 1.77 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 26.5 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 1e-3 TC2 = 1e-7)  
.MODEL RDRAINMOD RES (TC1 = 3.67e-2 TC2 = 4.11e-5)  
.MODEL RSLCMOD RES (TC1 = 2.26e-3 TC2 = 1.23e-6)  
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC = -2.97e-3 TC2 = -5.91e-6)  
.MODEL RVTEMPMOD RES (TC1 = -7.41e-4 TC2 = 9.41e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.05 VOFF= -2.00)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.00 VOFF= -6.05)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.00 VOFF= 0.60)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.60 VOFF= 0.00)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2003 Fairchild Semiconductor Corporation  
HUF76113DK8 Rev. B1  
HUF76113DK8  
SABER Electrical Model  
REV July 1998  
template huf76113 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
d..model dbodymod = (is = 8.35e-13, cjo = 9.11e-10, tt = 2.14e-8, m = 0.42)  
d..model dbreakmod = ()  
d..model dplcapmod = (cjo = 3.76e-10, is = 1e-30, n = 10, m = 0.68)  
m..model mmedmod = (type=_n, vto = 2.03, kp = 3.75, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 2.36, kp = 50, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 1.77, kp = 0.1, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.05, voff = -2)  
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2, voff = -6.05)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 0.6)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.6, voff = 0)  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
DRAIN  
2
5
10  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
c.ca n12 n8 = 8.5e-10  
c.cb n15 n14 = 8.05e-10  
c.cin n6 n8 = 5.71e-10  
RSLC2  
ISCL  
50  
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
-
71  
RDRAIN  
6
8
ESG  
EVTHRES  
+
16  
21  
+
-
i.it n8 n17 = 1  
19  
8
MWEAK  
LGATE  
EVTEMP  
DBODY  
RGATE  
GATE  
1
6
+
-
l.ldrain n2 n5 = 1e-9  
l.lgate n1 n9 = 9.67e-10  
l.lsource n3 n7 = 3.27e-10  
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
12  
S2A  
14  
res.rbreak n17 n18 = 1, tc1 = 1e-3, tc2 = 1e-7  
res.rdbody n71 n5 = 1.39e-2, tc1 = 1.03e-3, tc2 = 6.85e-6  
res.rdbreak n72 n5 = 8.21e-2, tc1 = 2.25e-3, tc2 = 4.14e-5  
res.rdrain n50 n16 = 3.04e-3, tc1 = 3.67e-2, tc2 = 4.11e-5  
res.rgate n9 n20 = 2.65  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 9.67  
res.rlsource n3 n7 = 3.27  
res.rslc1 n5 n51 = 1e-6, tc1 = 2.26e-3, tc2 = 1.23e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 25e-3, tc1 = 0, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -7.41e-4, tc2 = 9.41e-7  
res.rvthres n22 n8 = 1, tc1 = -2.97e-3, tc2 = -5.91e-6  
RBREAK  
15  
13  
8
17  
18  
13  
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
spe.ebreak n11 n7 n17 n18 = 38.7  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/256))** 2))  
}
}
©2003 Fairchild Semiconductor Corporation  
HUF76113DK8 Rev. B1  
HUF76113DK8  
SPICE Thermal Model  
JUNCTION  
th  
REV June 1998  
HUF76113DK8  
2
Copper Area = 0.02 in  
CTHERM1 th 8 8.5e-4  
CTHERM2 8 7 1.8e-3  
CTHERM3 7 6 5.0e-3  
CTHERM4 6 5 1.3e-2  
CTHERM5 5 4 4.0e-2  
CTHERM6 4 3 9.0e-2  
CTHERM7 3 2 4.0e-1  
CTHERM8 2 tl 1.4  
RTHERM1  
CTHERM1  
8
7
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
RTHERM7  
RTHERM8  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM7  
CTHERM8  
RTHERM1 th 8 3.5e-2  
RTHERM2 8 7 6.0e-1  
RTHERM3 7 6 2  
RTHERM4 6 5 8  
6
5
RTHERM5 5 4 18  
RTHERM6 4 3 39  
RTHERM7 3 2 42  
RTHERM8 2 tl 48  
SABER Thermal Model  
2
Copper Area = 0.02 in  
4
3
2
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 8 = 8.5e-4  
ctherm.ctherm2 8 7 = 1.8e-3  
ctherm.ctherm3 7 6 = 5.0e-3  
ctherm.ctherm4 6 5 = 1.3e-2  
ctherm.ctherm5 5 4 = 4.0e-2  
ctherm.ctherm6 4 3 = 9.0e-2  
ctherm.ctherm7 3 2 = 4.0e-1  
ctherm.ctherm8 2 tl = 1.4  
rtherm.rtherm1 th 8 = 3.0e-2  
rtherm.rtherm2 8 7 = 6.0e-1  
rtherm.rtherm3 7 6 = 3.8  
rtherm.rtherm4 6 5 = 9.5  
rtherm.rtherm5 5 4 = 25  
rtherm.rtherm6 4 3 = 38  
rtherm.rtherm7 3 2 = 25  
rtherm.rtherm8 2 tl = 38  
}
tl  
CASE  
TABLE 1. Thermal Models  
2
2
2
2
2
COMPONANT  
CTHERM6  
CTHERM7  
CTHERM8  
RTHERM6  
RTHERM7  
RTHERM8  
0.02 in  
0.14 in  
1.3e-1  
6.0e-1  
2.5  
0.25 in  
1.5e-1  
0.38 in  
0.50 in  
9.0e-2  
4.0e-1  
1.4  
1.5e-1  
6.5e-1  
3
1.5e-1  
7.5e-1  
3
4.5e-1  
2.2  
20  
39  
26  
20  
20  
42  
32  
31  
29  
23  
48  
35  
38  
31  
25  
©2003 Fairchild Semiconductor Corporation  
HUF76113DK8 Rev. B1  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
FACT™  
ImpliedDisconnect™ PACMAN™  
SPM™  
ActiveArray™  
Bottomless™  
CoolFET™  
FACT Quiet Series™ ISOPLANAR™  
POP™  
Stealth™  
®
FAST  
LittleFET™  
MicroFET™  
MicroPak™  
Power247™  
PowerTrench  
QFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
®
FASTr™  
CROSSVOLT™ FRFET™  
DOME™  
GlobalOptoisolator™ MICROWIRE™  
QS™  
SyncFET™  
®
EcoSPARK™  
GTO™  
MSX™  
QT Optoelectronics™ TinyLogic  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
SILENT SWITCHER VCX™  
SMART START™  
2
E CMOS™  
HiSeC™  
I C™  
MSXPro™  
OCX™  
TruTranslation™  
2
EnSigna™  
UHC™  
UltraFET  
®
Across the board. Around the world.™ OCXPro™  
The Power Franchise™  
Programmable Active Droop™  
®
®
OPTOLOGIC  
OPTOPLANAR™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or In  
Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I2  

相关型号:

HUF76113DK8T

TRANSISTOR | MOSFET | MATCHED PAIR | N-CHANNEL | 30V V(BR)DSS | 6A I(D) | SO
ETC

HUF76113SK8

6.5A, 30V, 0.030 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76113SK8

6.5A, 30V, 0.030 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76113SK8T

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | 6.5A I(D) | SO
INTERSIL

HUF76113T3ST

4.7A, 30V, 0.031 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76113T3ST

4.7A, 30V, 0.031 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76121D3

20A, 30V, 0.023 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
FAIRCHILD

HUF76121D3

20A, 30V, 0.023 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
INTERSIL

HUF76121D3S

20A, 30V, 0.023 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
FAIRCHILD

HUF76121D3S

20A, 30V, 0.023 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
INTERSIL

HUF76121D3ST

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | 20A I(D) | TO-252AA
ETC

HUF76121D3ST_NL

Power Field-Effect Transistor, 20A I(D), 30V, 0.033ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, TO-252AA, 3 PIN
FAIRCHILD