HUF76407DK8 [FAIRCHILD]

3.5A, 60V, 0.105 Ohm, Dual N-Channel, Logic Level UltraFET Power MOSFET; 3.5A , 60V , 0.105欧姆,双N沟道逻辑电平UltraFET功率MOSFET
HUF76407DK8
型号: HUF76407DK8
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

3.5A, 60V, 0.105 Ohm, Dual N-Channel, Logic Level UltraFET Power MOSFET
3.5A , 60V , 0.105欧姆,双N沟道逻辑电平UltraFET功率MOSFET

文件: 总12页 (文件大小:262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUF76407DK8  
Data Sheet  
December 2001  
3.5A, 60V, 0.105 Ohm, Dual N-Channel,  
Logic Level UltraFET® Power MOSFET  
Packaging  
Features  
JEDEC MS-012AA  
• Ultra Low On-Resistance  
BRANDING DASH  
- r  
- r  
= 0.090Ω, VGS = 10V  
= 0.105Ω, VGS = 5V  
DS(ON)  
DS(ON)  
• Simulation Models  
5
- Temperature Compensated PSPICE® and SABER™  
Electrical Models  
- SPICE and SABER Thermal Impedance Models  
- www.fairchildsemi.com  
1
2
3
4
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
Symbol  
Transient Thermal Impedance Curve vs Board Mounting  
Area  
SOURCE1 (1)  
GATE1 (2)  
DRAIN 1 (8)  
DRAIN 1 (7)  
• Switching Time vs R  
Curves  
GS  
Ordering Information  
SOURCE2 (3)  
GATE2 (4)  
DRAIN 2 (6)  
DRAIN 2 (5)  
PART NUMBER  
PACKAGE  
MS-012AA  
BRAND  
76407DK8  
HUF76407DK8  
NOTE: When ordering, use the entire part number. Add the suffix T  
to obtain the variant in tape and reel, e.g., HUF76407DK8T.  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
A
HUF76407DK8  
UNITS  
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
60  
60  
V
V
V
DSS  
DGR  
Drain to Gate Voltage (R  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±16  
GS  
Drain Current  
o
Continuous (T = 25 C, V  
A
= 5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
= 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
3.5  
3.8  
1.0  
A
A
A
A
GS  
GS  
D
D
o
Continuous (T = 25 C, V  
A
o
Continuous (T = 100 C, V  
= 5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
= 4.5V) (Figure 2) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
A
GS  
D
o
Continuous (T = 100 C, V  
1.0  
A
GS  
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Figure 4  
DM  
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS  
Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figures 6, 17, 18  
2.5  
20  
W
D
o
o
mW/ C  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
NOTES:  
o
o
1. T = 25 C to 125 C.  
J
o
2
2
2. 50 C/W measured using FR-4 board with 0.76 in (490.3 mm ) copper pad at 1 second.  
o
2
2
3. 228 C/W measured using FR-4 board with 0.006 in (3.87 mm ) copper pad at 1000 seconds.  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html  
For severe environments, see our Automotive HUFA series.  
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.  
©2001 Fairchild Semiconductor Corporation  
HUF76407DK8 Rev. B  
HUF76407DK8  
o
Electrical Specifications  
PARAMETER  
T = 25 C, Unless Otherwise Specified  
A
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
BV  
I
I
= 250µA, V  
= 250µA, V  
= 0V (Figure 12)  
o
60  
55  
-
-
-
-
-
-
-
-
V
DSS  
D
D
GS  
GS  
GS  
GS  
= 0V , T = -40 C (Figure 12)  
A
V
Zero Gate Voltage Drain Current  
I
V
V
V
= 55V, V  
= 50V, V  
= ±16V  
= 0V  
= 0V, T = 150 C  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
-
250  
±100  
A
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
I
-
GSS  
V
V
= V , I = 250µA (Figure 11)  
1
-
-
3
V
GS(TH)  
GS  
DS  
D
r
I
I
I
= 3.8A, V  
= 1.0A, V  
= 1.0A, V  
= 10V (Figures 9, 10)  
= 5V (Figure 9)  
0.075  
0.088  
0.092  
0.090  
0.105  
0.110  
DS(ON)  
D
D
D
GS  
GS  
GS  
-
= 4.5V (Figure 9)  
-
THERMAL SPECIFICATIONS  
2
2
o
Thermal Resistance Junction to  
Ambient  
R
Pad Area = 0.76 in (490.3 mm ) (Note 2)  
-
-
-
-
-
-
50  
C/W  
θJA  
2
2
o
Pad Area = 0.027 in (17.4 mm ) (Figure 23)  
191  
228  
C/W  
2
2
o
Pad Area = 0.006 in (3.87 mm ) (Figure 23)  
C/W  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 4.5V)  
GS  
t
V
V
= 30V, I = 1.0A  
-
-
-
-
-
-
-
57  
-
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
D
= 4.5V, R  
= 27Ω  
GS  
Turn-On Delay Time  
Rise Time  
t
8
d(ON)  
(Figures 15, 21, 22)  
t
30  
25  
25  
-
-
r
Turn-Off Delay Time  
Fall Time  
t
-
d(OFF)  
t
-
f
Turn-Off Time  
t
75  
OFF  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
t
GS  
V
V
R
= 30V, I = 3.8A  
D
= 10V,  
= 30Ω  
-
-
-
-
-
-
-
24  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
Turn-On Delay Time  
Rise Time  
t
5
-
d(ON)  
GS  
t
11  
46  
31  
-
-
r
(Figures 16, 21, 22)  
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
116  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 10V  
= 0V to 5V  
= 0V to 1V  
V
= 30V,  
-
-
-
-
-
9.4  
5.3  
11.2  
6.4  
0.5  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
= 1.0A,  
I
I
D
Gate Charge at 5V  
Q
g(5)  
= 1.0mA  
g(REF)  
Threshold Gate Charge  
Q
0.42  
1.05  
2.4  
g(TH)  
(Figures 14, 19, 20)  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
gs  
gd  
Q
-
C
V
= 25V, V  
GS  
= 0V,  
-
-
-
330  
100  
18  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 13)  
Output Capacitance  
C
C
OSS  
RSS  
Reverse Transfer Capacitance  
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
1.00  
48  
UNITS  
Source to Drain Diode Voltage  
V
I
I
I
I
= 3.8A  
= 1.0A  
-
-
-
-
-
-
-
-
V
V
SD  
SD  
SD  
SD  
SD  
Reverse Recovery Time  
t
= 1.0A, dI /dt = 100A/µs  
SD  
ns  
nC  
rr  
Reverse Recovered Charge  
Q
= 1.0A, dI /dt = 100A/µs  
SD  
89  
RR  
©2001 Fairchild Semiconductor Corporation  
HUF76407DK8 Rev. B  
HUF76407DK8  
Typical Performance Curves  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4
3
2
1
o
V
= 10V, R  
= 50 C/W  
GS  
θJA  
o
V
= 4.5V, R  
50  
= 228 C/W  
GS  
θJA  
0
0
25  
50  
75  
100  
125  
150  
25  
75  
100  
125  
150  
o
o
T , AMBIENT TEMPERATURE ( C)  
T , AMBIENT TEMPERATURE ( C)  
A
A
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
1
0.5  
0.2  
o
R
= 228 C/W  
0.1  
θJA  
0.05  
0.02  
0.01  
0.1  
P
DM  
t
1
0.01  
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
x Z  
x R + T  
SINGLE PULSE  
-3  
J
DM  
θJA  
θJA A  
0.001  
-5  
-4  
-2  
-1  
10  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
200  
o
o
= 25 C  
R
= 228 C/W  
θJA  
T
C
100  
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
150 - T  
A
I = I  
25  
V
= 5V  
125  
GS  
10  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
1
10  
-5  
-4  
10  
-3  
-2  
10  
-1  
0
1
2
3
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
10  
FIGURE 4. PEAK CURRENT CAPABILITY  
©2001 Fairchild Semiconductor Corporation  
HUF76407DK8 Rev. B  
HUF76407DK8  
Typical Performance Curves (Continued)  
50  
500  
SINGLE PULSE  
= MAX RATED  
o
If R = 0  
= (L)(I )/(1.3*RATED BV  
R
= 228 C/W  
θJA  
T
J
t
- V  
)
DD  
AV  
If R  
AS  
DSS  
o
T
= 25 C  
A
0
100  
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS DSS  
- V ) +1]  
DD  
AV  
10  
100µs  
10  
1
o
STARTING T = 25 C  
J
OPERATION IN THIS  
AREA MAY BE  
1ms  
o
LIMITED BY r  
DS(ON)  
STARTING T = 150 C  
J
10ms  
1
0.1  
0.01  
0.1  
1
10  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
200  
t
, TIME IN AVALANCHE (ms)  
AV  
V
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
CAPABILITY  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
20  
20  
PULSE DURATION = 80  
DUTY CYCLE = 0.5% MAX  
= 15V  
µs  
V
V
= 10V  
= 5V  
GS  
V
= 4.5V  
V
GS  
GS  
DD  
o
T
= 25 C  
J
15  
10  
5
15  
10  
o
T
= -55 C  
J
V
= 4V  
GS  
o
T
= 150 C  
J
V
= 3.5V  
GS  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
5
0
o
T
= 25 C  
V
= 3V  
A
GS  
0
0
1
2
3
4
2.0  
2.5  
3.0  
3.5  
4.5  
5.0  
4.0  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
DS  
FIGURE 7. TRANSFER CHARACTERISTICS  
FIGURE 8. SATURATION CHARACTERISTICS  
150  
120  
2.0  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V, I = 3.8A  
D
PULSE DURATION = 80  
DUTY CYCLE = 0.5% MAX  
µs  
GS  
I
= 3.8A  
D
1.5  
1.0  
0.5  
I
= 1A  
D
90  
60  
2
3
4
5
6
7
8
9
10  
-80  
-40  
0
40  
80  
120  
o
160  
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
J
GS  
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
©2001 Fairchild Semiconductor Corporation  
HUF76407DK8 Rev. B  
HUF76407DK8  
Typical Performance Curves (Continued)  
1.2  
1.2  
1.1  
V
= V , I = 250  
µA  
I
= 250µA  
GS  
DS  
D
D
1.0  
0.8  
0.6  
1.0  
0.9  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
10  
V
= 30V  
1000  
DD  
C
=
C
+ C  
GS GD  
ISS  
8
6
4
2
0
100  
C
C
+ C  
DS GD  
OSS  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 3.8A  
= 1.0A  
D
D
C
= C  
GD  
RSS  
10  
5
V
= 0V, f = 1MHz  
GS  
0
2
4
6
8
10  
0.1  
1.0  
10  
60  
Q , GATE CHARGE (nC)  
g
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT  
GATE CURRENT  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
50  
80  
V
= 10V, V = 30V, I = 3.8A  
DD D  
t
V
= 4.5V, V  
DD  
= 30V, I = 1.0A  
D
GS  
d(OFF)  
GS  
t
r
40  
30  
20  
60  
40  
20  
0
t
f
t
t
f
d(OFF)  
t
d(ON)  
t
r
10  
0
t
d(ON)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE (  
)  
R
, GATE TO SOURCE RESISTANCE ()  
GS  
GS  
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE  
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE  
©2001 Fairchild Semiconductor Corporation  
HUF76407DK8 Rev. B  
HUF76407DK8  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
AS  
G
V
DD  
-
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 10V  
GS  
V
Q
GS  
g(5)  
+
-
V
DD  
V
= 5V  
V
GS  
GS  
DUT  
V
= 1V  
GS  
I
0
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT  
FIGURE 22. SWITCHING TIME WAVEFORM  
©2001 Fairchild Semiconductor Corporation  
HUF76407DK8 Rev. B  
HUF76407DK8  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, T , and the  
thermal resistance of the heat dissipating path determines  
JM  
300  
250  
200  
150  
100  
50  
R
= 103.2 - 24.3 * ln(AREA)  
θJA  
the maximum allowable device power dissipation, P , in an  
DM  
o
2
228 C/W - 0.006in  
application. Therefore the application’s ambient  
o
o
o
2
temperature, T ( C), and thermal resistance R  
( C/W)  
191 C/W - 0.027in  
A
θJA  
is never exceeded.  
must be reviewed to ensure that T  
JM  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(T  
T )  
JM  
R
A
(EQ. 1)  
P
= ------------------------------  
DM  
θJA  
Rθβ = 46.4 - 21.7 * ln(AREA)  
0
In using surface mount devices such as the SOP-8 package,  
the environment in which it is applied will have a significant  
influence on the part’s current and maximum power  
0.001  
0.01  
0.1  
2
1
AREA, TOP COPPER AREA (in ) PER DIE  
FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA  
dissipation ratings. Precise determination of P  
and influenced by many factors:  
is complex  
DM  
While Equation 2 describes the thermal resistance of a  
single die, several of the new UltraFETs are offered with two  
die in the SOP-8 package. The dual die SOP-8 package  
introduces an additional thermal component, thermal  
coupling resistance, Rθβ. Equation 3 describes Rθβ as a  
function of the top copper mounting pad area.  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
Rθβ = 46.4 21.7 × ln(Area)  
(EQ. 3)  
3. The use of external heat sinks.  
4. The use of thermal vias.  
The thermal coupling resistance vs. copper area is also  
graphically depicted in Figure 23. It is important to note the  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
thermal resistance (R  
) and thermal coupling resistance  
θJA  
(Rθβ) are equivalent for both die. For example at 0.1 square  
inches of copper:  
Fairchild provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 23  
o
R
= R  
= 159 C/W  
o
θJA1  
θJA2  
defines the R  
for the device as a function of the top  
θJA  
Rθβ1 = Rθβ2 = 97 C/W  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse applications  
can be evaluated using the Fairchild device Spice thermal  
model or manually utilizing the normalized maximum  
transient thermal impedance curve.  
T
and T define the junction temerature of the respective  
J2  
J1  
die. Similarly, P and P define the power dissipated in each  
1
2
die. The steady state junction temperature can be calculated  
using Equation 4 for die 1and Equation 5 for die 2.  
Example: To calculate the junction temperature of each die  
when die 2 is dissipating 0.5 Watts and die 1 is dissipating 0  
Watts. The ambient temperature is 70 C and the package is  
o
mounted to a top copper area of 0.1 square inches per die.  
Displayed on the curve are R  
θJA  
values listed in the  
Use Equation 4 to calulate T and and Equation 5 to  
J1  
Electrical Specifications table. The points were chosen to  
depict the compromise between the copper board area, the  
thermal resistance and ultimately the power dissipation,  
calulate T  
.
J2  
.
P
.
T
T
T
= P R  
+ P Rθβ + T  
(EQ. 4)  
o
DM  
J1  
J1  
J1  
1
θJA  
2
A
o
o
= (0 Watts)(159 C/W) + (0.5 Watts)(97 C/W) + 70 C  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 23 or by calculation using  
Equation 2. R  
o
= 119 C  
is defined as the natural log of the area  
θJA  
times a cofficient added to a constant. The area, in square  
inches is the top copper area including the gate and source  
pads.  
T
T
T
= P R  
+ P Rθβ + T  
(EQ. 5)  
J2  
J2  
2
θJA  
1
A
o
o
= (0.5 Watts)(159 C/W) + (0 Watts)(97 C/W) + 70°C  
R
= 103.2 24.3 × ln(Area)  
(EQ. 2)  
o
θJA  
= 150 C  
J2  
©2001 Fairchild Semiconductor Corporation  
HUF76407DK8 Rev. B  
HUF76407DK8  
The transient thermal impedance (Z  
θJA  
) is also effected by  
Copper pad area has no perceivable effect on transient  
thermal impedance for pulse widths less than 100ms. For  
pulse widths less than 100ms the transient thermal  
impedance is determined by the die and package. Therefore,  
CTHERM1 through CTHERM5 and RTHERM1 through  
RTHERM5 remain constant for each of the thermal models. A  
listing of the model component values is available in Table 1.  
varied top copper board area. Figure 24 shows the effect of  
copper pad area on single pulse transient thermal  
impedance. Each trace represents a copper pad area in  
square inches corresponding to the descending list in the  
graph. Spice and SABER thermal models are provided for  
each of the listed pad areas.  
160  
COPPER BOARD AREA - DESCENDING ORDER  
2
0.020 in  
2
0.140 in  
2
0.257 in  
120  
2
0.380 in  
2
0.493 in  
80  
40  
0
-1  
10  
0
1
2
3
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 24. THERMAL RESISTANCE vs MOUNTING PAD AREA  
10  
10  
©2001 Fairchild Semiconductor Corporation  
HUF76407DK8 Rev. B  
HUF76407DK8  
PSPICE Electrical Model  
.SUBCKT HUF76407DK8 2 1 3 ;  
REV 28 May 1999  
CA 12 8 4.55e-10  
CB 15 14 5.20e-10  
CIN 6 8 3.11e-10  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
LDRAIN  
DPLCAP  
10  
DRAIN  
2
5
RLDRAIN  
RSLC1  
51  
EBREAK 11 7 17 18 67.8  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
50  
+
EVTEMP 20 6 18 22 1  
-
17  
DBODY  
RDRAIN  
6
ESG  
8
EBREAK 18  
IT 8 17 1  
-
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LDRAIN 2 5 1.0e-9  
LGATE 1 9 1.5e-9  
LSOURCE 3 7 4.86e-10  
LGATE  
EVTEMP  
+
RGATE  
GATE  
1
6
-
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 3.00e-2  
RGATE 9 20 3.37  
RLDRAIN 2 5 10  
RLGATE 1 9 15  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RLSOURCE 3 7 4.86  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 3.80e-2  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
22  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*105),2))}  
.MODEL DBODYMOD D (IS = 3.17e-13 RS = 2.21e-2 TRS1 = 6.25e-4 TRS2 = -1.11e-6 CJO = 6.82e-10 TT = 7.98e-8 M = 0.65)  
.MODEL DBREAKMOD D (RS = 3.36e- 1TRS1 = 1.25e- 4TRS2 = 1.34e-6)  
.MODEL DPLCAPMOD D (CJO = 2.91e-1 0IS = 1e-3 0M = 0.85)  
.MODEL MMEDMOD NMOS (VTO = 2.00 KP = 1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.37)  
.MODEL MSTROMOD NMOS (VTO = 2.33 KP = 19 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 1.71 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 33.7 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 1.06e- 3TC2 = 0)  
.MODEL RDRAINMOD RES (TC1 = 1.23e-2 TC2 = 2.58e-5)  
.MODEL RSLCMOD RES (TC1 = 1.0e-3 TC2 = 1.0e-6)  
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = -2.19e-3 TC2 = -4.97e-6)  
.MODEL RVTEMPMOD RES (TC1 = -1.11e- 3TC2 = 0)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.0 VOFF= -2.5)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.5 VOFF= -7.0)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.0 VOFF= 0)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0 VOFF= -1.0)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2001 Fairchild Semiconductor Corporation  
HUF76407DK8 Rev. B  
HUF76407DK8  
SABER Electrical Model  
REV 28May 1999  
template huf76407dk8 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
d..model dbodymod = (is = 3.17e-13, cjo = 6.82e-10, tt = 7.98e-8, m = 0.65)  
d..model dbreakmod = ()  
d..model dplcapmod = (cjo = 2.91e-10, is = 1e-30, m = 0.85)  
m..model mmedmod = (type=_n, vto = 2.00, kp = 1, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 2.33, kp = 19, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 1.71, kp = 0.02, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7, voff = -2.5)  
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.5, voff = -7)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0, voff = -1)  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
DRAIN  
2
5
10  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
c.ca n12 n8 = 4.55e-10  
c.cb n15 n14 = 5.20e-10  
c.cin n6 n8 = 3.11e-10  
RSLC2  
ISCL  
50  
-
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
71  
RDRAIN  
6
8
ESG  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
i.it n8 n17 = 1  
LGATE  
EVTEMP  
+
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
EBREAK  
+
l.ldrain n2 n5 = 1e-9  
l.lgate n1 n9 = 1.5e-9  
l.lsource n3 n7 = 4.86e-10  
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
res.rbreak n17 n18 = 1, tc1 = 1.06e-3, tc2 = 0  
res.rdbody n71 n5 = 2.21e-2, tc1 = -6.25e-4, tc2 = -1.11e-6  
res.rdbreak n72 n5 = 3.36e-1, tc1 = 1.25e-4, tc2 = 1.34e-6  
res.rdrain n50 n16 = 3.00e-2, tc1 = 1.23e-2, tc2 = 2.58e-5  
res.rgate n9 n20 = 3.37  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 15  
res.rlsource n3 n7 = 4.86  
res.rslc1 n5 n51 = 1e-6, tc1 = 1e-3, tc2 = 1e-6  
res.rslc2 n5 n50 = 1e3  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
res.rsource n8 n7 = 3.80e-2, tc1 = 0, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -1.11e-3, tc2 = 0  
res.rvthres n22 n8 = 1, tc1 = -2.19e-3, tc2 = -4.97e-6  
RVTHRES  
spe.ebreak n11 n7 n17 n18 = 67.8  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/105))** 2))  
}
}
©2001 Fairchild Semiconductor Corporation  
HUF76407DK8 Rev. B  
HUF76407DK8  
SPICE Thermal Model  
JUNCTION  
th  
REV 1June 1999  
HUF76407DK8  
2
Copper Area = 0.02 in  
RTHERM1  
CTHERM1  
CTHERM1 th 8 8.5e-4  
CTHERM2 8 7 1.8e-3  
CTHERM3 7 6 5.0e-3  
CTHERM4 6 5 1.3e-2  
CTHERM5 5 4 4.0e-2  
CTHERM6 4 3 9.0e-2  
CTHERM7 3 2 4.0e-1  
CTHERM8 2 tl 1.4  
8
7
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
RTHERM7  
RTHERM8  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM7  
CTHERM8  
RTHERM1 th 8 3.5e-2  
RTHERM2 8 7 6.0e-1  
RTHERM3 7 6 2  
6
5
RTHERM4 6 5 8  
RTHERM5 5 4 18  
RTHERM6 4 3 39  
RTHERM7 3 2 42  
RTHERM8 2 tl 48  
SABER Thermal Model  
2
Copper Area = 0.02 in  
4
3
2
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 8 = 8.5e-4  
ctherm.ctherm2 8 7 = 1.8e-3  
ctherm.ctherm3 7 6 = 5.0e-3  
ctherm.ctherm4 6 5 = 1.3e-2  
ctherm.ctherm5 5 4 = 4.0e-2  
ctherm.ctherm6 4 3 = 9.0e-2  
ctherm.ctherm7 3 2 = 4.0e-1  
ctherm.ctherm8 2 tl = 1.4  
rtherm.rtherm1 th 8 = 3.5e-2  
rtherm.rtherm2 8 7 = 6.0e-1  
rtherm.rtherm3 7 6 = 2  
rtherm.rtherm4 6 5 = 8  
rtherm.rtherm5 5 4 = 18  
rtherm.rtherm6 4 3 = 39  
rtherm.rtherm7 3 2 = 42  
rtherm.rtherm8 2 tl = 48  
}
tl  
AMBIENT  
TABLE 1. THERMAL MODELS  
2
2
2
2
2
COMPONENT  
CTHERM6  
0.02 in  
0.14 in  
1.3e-1  
6.0e-1  
2.5  
0.257 in  
0.38 in  
1.5e-1  
6.5e-1  
3
0.493 in  
1.5e-1  
7.5e-1  
3
9.0e-2  
4.0e-1  
1.4  
1.5e-1  
4.5e-1  
2.2  
CTHERM7  
CTHERM8  
RTHERM6  
39  
26  
20  
20  
20  
RTHERM7  
42  
32  
31  
29  
23  
RTHERM8  
48  
35  
38  
31  
25  
©2001 Fairchild Semiconductor Corporation  
HUF76407DK8 Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

HUF76407DK8T

3.5A, 60V, 0.105 Ohm, Dual N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76407P3

12A, 60V, 0.107 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76407P3

12A, 60V, 0.107 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76409D3

17A, 60V, 0.071 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76409D3

17A, 60V, 0.071 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76409D3S

17A, 60V, 0.071 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76409D3S

17A, 60V, 0.071 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76409D3ST

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 17A I(D) | TO-252AA
FAIRCHILD

HUF76409P3

17A, 60V, 0.070 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76409P3

17A, 60V, 0.070 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76409S3S

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 17A I(D) | TO-263AB
ETC

HUF76409T3S

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 2.5A I(D) | SOT-223
ETC