HUFA75617D3 [FAIRCHILD]

16A, 100V, 0.090 Ohm, N-Channel, UltraFET Power MOSFETs; 16A , 100V , 0.090 Ohm的N通道, UltraFET功率MOSFET
HUFA75617D3
型号: HUFA75617D3
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

16A, 100V, 0.090 Ohm, N-Channel, UltraFET Power MOSFETs
16A , 100V , 0.090 Ohm的N通道, UltraFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关
文件: 总10页 (文件大小:198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUFA75617D3, HUFA75617D3S  
Data Sheet  
December 2001  
16A, 100V, 0.090 Ohm, N-Channel,  
UltraFET® Power MOSFETs  
Packaging  
JEDEC TO-251AA  
JEDEC TO-252AA  
Features  
• Ultra Low On-Resistance  
SOURCE  
DRAIN  
GATE  
DRAIN  
(FLANGE)  
- r  
= 0.090Ω, VGS = 10V  
DS(ON)  
• Simulation Models  
- Temperature Compensated PSPICE® and SABER™  
Electrical Models  
GATE  
SOURCE  
DRAIN  
- Spice and SABER Thermal Impedance Models  
- www.fairchildsemi.com  
(FLANGE)  
HUFA75617D3S  
HUFA75617D3  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
Symbol  
Ordering Information  
D
S
PART NUMBER  
PACKAGE  
TO-251AA  
TO-252AA  
BRAND  
75617D  
75617D  
HUFA75617D3  
G
HUFA75617D3S  
NOTE: When ordering, use the entire part number. Add the suffix T  
to obtain the variant in tape and reel, e.g., HUFA75617D3ST.  
o
Absolute Maximum Ratings  
T = 25 C, Unless Otherwise Specified  
C
HUFA75617D3,  
HUFA75617D3S  
UNITS  
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
100  
100  
±20  
V
V
V
DSS  
Drain to Gate Voltage (R  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
Drain Current  
o
Continuous (T = 25 C, V  
C
= 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
16  
11  
A
A
GS  
D
D
o
Continuous (T = 100 C, V  
= 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
GS  
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Figure 4  
DM  
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS  
Figures 6, 14, 15  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
64  
0.43  
W
W/ C  
D
o
o
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 175  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
o
o
NOTE: T = 25 C to 150 C.  
J
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy  
of the requirements, see AEC Q101 at: http://www.aecouncil.com/  
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.  
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.  
©2001 Fairchild Semiconductor Corporation  
HUFA75617D3 Rev. B  
HUFA75617D3  
o
Electrical Specifications  
PARAMETER  
T = 25 C, Unless Otherwise Specified  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
BV  
I
= 250µA, V  
= 0V (Figure 11)  
100  
-
-
-
-
-
V
DSS  
D
GS  
GS  
GS  
I
V
V
V
= 95V, V  
= 90V, V  
= ±20V  
= 0V  
= 0V, T = 150 C  
-
-
-
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
250  
±100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
THERMAL SPECIFICATIONS  
I
GSS  
V
V
= V , I = 250µA (Figure 10)  
2
-
-
4
V
GS(TH)  
GS  
DS  
D
r
I
= 16A, V  
= 10V (Figure 9)  
0.080  
0.090  
¾
DS(ON)  
D
GS  
o
Thermal Resistance Junction to Case  
R
R
TO-251, TO-252  
-
-
-
-
2.34  
100  
C/W  
θJC  
o
Thermal Resistance Junction to  
Ambient  
C/W  
θJA  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
t
GS  
V
V
R
= 50V, I = 16A  
D
= 10V,  
= 12Ω  
-
-
-
-
-
-
-
60  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
Turn-On Delay Time  
Rise Time  
t
6
-
d(ON)  
GS  
(Figures 18, 19)  
t
35  
44  
28  
-
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
108  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
= 50V,  
-
-
-
-
-
31  
18  
39  
22  
1.6  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
= 16A,  
I
I
D
Gate Charge at 10V  
Q
g(10)  
g(TH)  
= 1.0mA  
g(REF)  
(Figures 13, 16, 17)  
Threshold Gate Charge  
Q
1.3  
2.7  
6.4  
Gate to Source Gate Charge  
Gate to Drain "Miller" Charge  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
gs  
gd  
Q
-
C
V
= 25V, V  
GS  
= 0V,  
-
-
-
570  
125  
20  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 12)  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
C
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
1.00  
80  
UNITS  
Source to Drain Diode Voltage  
V
I
I
I
I
= 16A  
= 7A  
-
-
-
-
-
-
-
-
V
V
SD  
SD  
SD  
SD  
SD  
Reverse Recovery Time  
t
= 16A, dI /dt = 100A/µs  
SD  
ns  
nC  
rr  
Reverse Recovered Charge  
Q
= 16A, dI /dt = 100A/µs  
SD  
170  
RR  
©2001 Fairchild Semiconductor Corporation  
HUFA75617D3 Rev. B  
HUFA75617D3  
Typical Performance Curves  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
18  
15  
12  
9
V
= 10V  
GS  
6
3
0
25  
50  
75  
100  
125  
150  
175  
0
25  
50  
75  
100  
150  
175  
125  
o
o
T , CASE TEMPERATURE ( C)  
T
, CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
x Z  
x R  
+ T  
JC C  
SINGLE PULSE  
J
DM  
θJC  
θ
0.01  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
300  
o
= 25 C  
T
C
200  
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
100  
175 - T  
150  
C
I = I  
25  
V
= 10V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
10  
-5  
-4  
10  
-3  
-2  
-1  
0
1
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
FIGURE 4. PEAK CURRENT CAPABILITY  
©2001 Fairchild Semiconductor Corporation  
HUFA75617D3 Rev. B  
HUFA75617D3  
Typical Performance Curves (Continued)  
100  
200  
If R = 0  
= (L)(I )/(1.3*RATED BV  
DSS  
SINGLE PULSE  
100  
t
- V )  
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV - V ) +1]  
DSS DD  
T
= MAX RATED  
AS  
J
o
T
= 25 C  
C
t
AV  
AS  
10  
1
100  
1ms  
10ms  
µ
s
o
10  
STARTING T = 25 C  
J
OPERATION IN THIS  
AREA MAY BE  
o
STARTING T = 150 C  
J
LIMITED BY r  
DS(ON)  
1
0.001  
0.1  
0.01  
0.1  
1
10  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
200  
t
, TIME IN AVALANCHE (ms)  
AV  
V
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
CAPABILITY  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
30  
25  
20  
30  
PULSE DURATION = 80  
DUTY CYCLE = 0.5% MAX  
= 15V  
µs  
V
= 10V  
GS  
V
DD  
25  
20  
V
= 6V  
GS  
V
= 5V  
GS  
15  
10  
15  
10  
o
o
T
= 175 C  
T
= -55 C  
J
J
PULSE DURATION = 80µs  
5
0
5
0
DUTY CYCLE = 0.5% MAX  
o
T
= 25 C  
o
J
T
= 25 C  
C
2
3
4
5
6
0
1
2
3
4
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
FIGURE 7. TRANSFER CHARACTERISTICS  
FIGURE 8. SATURATION CHARACTERISTICS  
1.2  
1.0  
0.8  
0.6  
3.0  
V
= V , I = 250µA  
DS  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
GS  
D
2.5  
2.0  
1.5  
1.0  
0.5  
V
= 10V, I = 16A  
D
GS  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
T , JUNCTION TEMPERATURE ( C)  
o
J
T , JUNCTION TEMPERATURE ( C)  
J
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
©2001 Fairchild Semiconductor Corporation  
HUFA75617D3 Rev. B  
HUFA75617D3  
Typical Performance Curves (Continued)  
1.2  
2000  
V
= 0V, f = 1MHz  
GS  
I
= 250µA  
D
1000  
C
= C  
+ C  
GS GD  
ISS  
1.1  
1.0  
0.9  
C
C
+ C  
DS GD  
OSS  
100  
C
= C  
GD  
RSS  
10  
0.1  
-80  
-40  
0
40  
80  
120  
160  
200  
1.0  
10  
100  
o
T , JUNCTION TEMPERATURE ( C)  
J
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
10  
V
= 50V  
DD  
8
6
4
2
0
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
I
= 16A  
= 10A  
= 4A  
D
D
D
0
5
10  
Q , GATE CHARGE (nC)  
15  
20  
g
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT  
©2001 Fairchild Semiconductor Corporation  
HUFA75617D3 Rev. B  
HUFA75617D3  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
-
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 20V  
GS  
V
Q
GS  
g(10)  
+
-
V
DD  
V
= 10V  
V
GS  
GS  
DUT  
V
= 2V  
GS  
I
0
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 16. GATE CHARGE TEST CIRCUIT  
FIGURE 17. GATE CHARGE WAVEFORMS  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. SWITCHING TIME WAVEFORM  
©2001 Fairchild Semiconductor Corporation  
HUFA75617D3 Rev. B  
HUFA75617D3  
PSPICE Electrical Model  
.SUBCKT HUFA75617d3 2 1 3 ;  
rev 24May 2000  
CA 12 8 9.9e-10  
CB 15 14 1.0e-9  
CIN 6 8 5.4e-10  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
LDRAIN  
DPLCAP  
10  
DRAIN  
2
5
RLDRAIN  
RSLC1  
51  
EBREAK 11 7 17 18 117.8  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
+
50  
-
17  
18  
-
DBODY  
RDRAIN  
6
ESG  
8
EBREAK  
IT 8 17 1  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LDRAIN 2 5 1.0e-9  
LGATE 1 9 5.24e-9  
LSOURCE 3 7 4.25e-9  
LGATE  
RGATE  
EVTEMP  
GATE  
1
+
6
-
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 3.9e-2  
RGATE 9 20 2.45  
RLDRAIN 2 5 10  
RLGATE 1 9 52.4  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RLSOURCE 3 7 42.5  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 3.2e-2  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
22  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*32),3.5))}  
.MODEL DBODYMOD D (IS = 6.0e-13 RS = 11.0e-3 XTI = 4.5 TRS1 = 1.1e-3 TRS2 = 7.1e-6 CJO = 6.5e-10 TT = 4.1e-8 M = 0.54)  
.MODEL DBREAKMOD D (RS = 5.6e- 1TRS1 = 8.0e- 4TRS2 = 3.0e-6)  
.MODEL DPLCAPMOD D (CJO = 7.0e-1 0IS = 1e-3 0M = 0.89 N = 10)  
.MODEL MMEDMOD NMOS (VTO = 3.10 KP = 3 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.45)  
.MODEL MSTROMOD NMOS (VTO = 3.64 KP = 42 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 2.68 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 24.5)  
.MODEL RBREAKMOD RES (TC1 = 1.05e- 3TC2 = -5.0e-7)  
.MODEL RDRAINMOD RES (TC1 = 1.20e-2 TC2 = 3.00e-5)  
.MODEL RSLCMOD RES (TC1 = 3.2e-3 TC2 = 1.0e-6)  
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)  
.MODEL RVTHRESMOD RES (TC1 = -2.2e-3 TC2 = -9.0e-6)  
.MODEL RVTEMPMOD RES (TC1 = -2.4e- 3TC2 = -1.8e-6)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.9 VOFF= -3.1)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.1 VOFF= -5.9)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.6 VOFF= 0.5)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -0.6)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2001 Fairchild Semiconductor Corporation  
HUFA75617D3 Rev. B  
HUFA75617D3  
SABER Electrical Model  
REV 24 May 2000  
template HUFA75617d3 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl = 6.0e-13, rs = 11.0e-3, xti = 4.5, trs1 = 1.1e-3, trs2 = 7.1e-6, cjo = 6.5e-10, tt = 4.1e-8, m = 0.54)  
dp..model dbreakmod = (rs = 5.6e-1, trs1 = 8.0e-4, trs2 = 3.0e-6)  
dp..model dplcapmod = (cjo = 7.0e-10, isl = 10e-30, m = 0.89, nl = 10)  
m..model mmedmod = (type=_n, vto = 3.10, kp = 3, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 3.64, kp = 42, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 2.68, kp = 0.02, is = 1e-30, tox = 1)  
LDRAIN  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.9, voff = -3.1)  
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3.1, voff = -5.9)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.6, voff = 0.5)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -0.6)  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
c.ca n12 n8 = 9.9e-10  
c.cb n15 n14 = 1.0e-9  
c.cin n6 n8 = 5.4e-10  
RSLC2  
ISCL  
DBREAK  
11  
50  
-
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
RDRAIN  
6
8
ESG  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
i.it n8 n17 = 1  
LGATE  
EVTEMP  
DBODY  
RGATE  
GATE  
1
6
+
-
18  
22  
EBREAK  
+
l.ldrain n2 n5 = 1.0e-9  
l.lgate n1 n9 = 5.24e-9  
l.lsource n3 n7 = 4.25e-9  
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5.0e-7  
res.rdrain n50 n16 = 3.9e-2, tc1 = 1.20e-2, tc2 = 3.00e-5  
res.rgate n9 n20 = 2.45  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
S1B  
S2B  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 52.4  
res.rlsource n3 n7 = 42.5  
res.rslc1 n5 n51 = 1e-6, tc1 = 3.2e-3, tc2 = 1.0e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 3.2e-2, tc1 = 1e-3, tc2 = 1e-6  
res.rvtemp n18 n19 = 1, tc1 = -2.4e-3, tc2 = 1.8e-6  
res.rvthres n22 n8 = 1, tc1 = -2.2e-3, tc2 = -9.0e-6  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
spe.ebreak n11 n7 n17 n18 = 117.8  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/32))** 3.5))  
}
}
©2001 Fairchild Semiconductor Corporation  
HUFA75617D3 Rev. B  
HUFA75617D3  
SPICE Thermal Model  
REV 24 May 2000  
JUNCTION  
th  
HUFA75617D  
CTHERM1 th 6 1.00e-3  
CTHERM2 6 5 4.00e-3  
CTHERM3 5 4 4.00e-3  
CTHERM4 4 3 3.60e-3  
CTHERM5 3 2 7.00e-3  
CTHERM6 2 tl 5.00e-2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 th 6 1.59e-2  
RTHERM2 6 5 3.96e-2  
RTHERM3 5 4 1.12e-1  
RTHERM4 4 3 4.27e-1  
RTHERM5 3 2 6.45e-1  
RTHERM6 2 tl 7.00e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model HUFA75617D  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 1.00e-3  
ctherm.ctherm2 6 5 = 4.00e-3  
ctherm.ctherm3 5 4 = 4.00e-3  
ctherm.ctherm4 4 3 = 3.60e-3  
ctherm.ctherm5 3 2 = 7.00e-3  
ctherm.ctherm6 2 tl = 5.00e-2  
4
3
2
rtherm.rtherm1 th 6 = 1.59e-2  
rtherm.rtherm2 6 5 = 3.96e-2  
rtherm.rtherm3 5 4 = 1.12e-1  
rtherm.rtherm4 4 3 = 4.27e-1  
rtherm.rtherm5 3 2 = 6.45e-1  
rtherm.rtherm6 2 tl = 7.00e-1  
}
tl  
CASE  
©2001 Fairchild Semiconductor Corporation  
HUFA75617D3 Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

HUFA75617D3S

16A, 100V, 0.090 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUFA75617D3ST

TRANSISTOR | MOSFET | N-CHANNEL | 100V V(BR)DSS | 16A I(D) | TO-252AA
FAIRCHILD

HUFA75623P3

22A, 100V, 0.064 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUFA75623S3S

Power Field-Effect Transistor, 22A I(D), 100V, 0.064ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB
FAIRCHILD

HUFA75623S3ST

22A, 100V, 0.064 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUFA75631P3

33A, 100V, 0.040 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUFA75631S3ST

33A, 100V, 0.040 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUFA75631SK8

5.5A, 100V, 0.039 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUFA75631SK8T

TRANSISTOR | MOSFET | N-CHANNEL | 100V V(BR)DSS | 5.5A I(D) | SO
FAIRCHILD

HUFA75637P3

44A, 100V, 0.030 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUFA75637S3S

44A, 100V, 0.030 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUFA75637S3ST

44A, 100V, 0.030 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD