KA3014 [FAIRCHILD]

Spindle + 4-CH Motor Driver; 主轴+ 4 -CH电机驱动器
KA3014
型号: KA3014
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Spindle + 4-CH Motor Driver
主轴+ 4 -CH电机驱动器

驱动器 电机
文件: 总26页 (文件大小:412K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
KA3014  
Spindle + 4-CH Motor Driver  
Features  
Description  
• Built-in power save circuit  
• Built-in current limit circuit  
The KA3014 is a monolithic integrated circuit suitable for a  
4-ch motor driver which drives the tracking actuator, focus  
actuator, sled motor, loading motor and 3-phase BLDC spin-  
dle motor of the MDP/CAR-MD/CAR-NAVIGATION sys-  
tem.  
• Built-in thermal shutdown circuit (TSD)  
• Built-in hall bias  
• Built-in FG signal output circuit  
• Built-in rotational direction detecting circuit  
• Built-in protection circuit for reverse rotation  
• Built-in short brake circuit  
48-QFPH-1414  
• Built-in variable-regulator  
• Built-in 4-CH balanced transformerless (BTL) driver  
• Built-in BTL mute circuit (CH1/2, CH3 and CH4)  
• Corresponds to 3.3V DSP  
Target Application  
Ordering Information  
• Mini disk player  
Device  
Package  
Operating Temp.  
• Digital video disk player  
• Car mini disk player  
• Car navigation system  
KA3014  
48-QFPH-1414  
35°C ~ +85°C  
Rev. 1.0.2  
May. 2000.  
©2000 Fairchild Semiconductor International  
1
KA3014  
Pin Assignments  
FIN  
(GND)  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
VH  
1
2
3
4
5
6
36  
35  
34  
33  
32  
31  
DO4 +  
FG  
DO4 −  
ECR  
AVM3  
EC  
DO3 +  
VCC2  
PC1  
DO3 −  
BTLPGND2  
KA3014  
7
30  
29  
28  
27  
26  
25  
SIGGND  
VM  
BTLPGND1  
DO2 +  
8
CS1  
DO2 −  
9
SS  
DO1 +  
10  
11  
12  
DIR  
SB  
DO1 −  
DI1  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
(GND)  
FIN  
2
KA3014  
Pin Definitions  
Pin Number  
Pin Name  
VH  
I/O  
I
Pin Function Descrition  
1
Hall bias  
2
FG  
O
I
FG signal output  
3
ECR  
Torque control reference  
Torque control signal  
Supply voltage  
4
EC  
I
5
VCC2  
PC1  
-
6
-
Phase compensation capacitor  
Signal ground  
7
SIGGND  
VM  
-
8
-
Motor supply voltage  
Current sensor  
9
CS1  
I
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
S/S  
I
Start/stop  
DIR  
O
I
3-phase rotational direction output  
Short brake  
SB  
PWRGND  
A3  
-
Power ground  
O
O
O
I
3-phase output 3  
A2  
3-phase output 2  
A1  
3-phase output 1  
RESX  
VREGX  
REGOX  
VCC1  
AVM12  
DI4  
Variable regulator reset  
Variable regulator  
O
O
-
Variable regulator output  
Supply voltage  
-
BTL CH-1, 2 motor supply voltage  
BTL drive input 4  
I
DI3  
I
BTL drive input 3  
DI2  
I
BTL drive input 2  
DI1  
I
BTL drive input 1  
DO1−  
DO1+  
DO2−  
DO2+  
BTLPGND1  
BTLPGND2  
O
O
O
O
-
BTL drive 1 output ()  
BTL drive 1 output (+)  
BTL drive 2 output ()  
BTL drive 2 output (+)  
BTL power ground 1  
BTL power ground 2  
3
KA3014  
Pin Definitions (Continued)  
Pin Number  
Pin Name  
DO3–  
DO3+  
AVM3  
DO4–  
DO4+  
MUTE4  
MUTE3  
MUTE12  
AVM4  
BIAS  
I/O  
O
O
O
O
I
Pin Function Descrition  
BTL drive 3 output (–)  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
BTL drive 3 output (+)  
BTL CH3 motor supply voltage  
BTL drive 4 output (–)  
BTL drive 4 output (+)  
BTL drive mute CH 4  
BTL drive mute CH 3  
BTL drive mute CH 1, 2  
BTL CH 4 motor supply voltage  
BTL bias voltage  
I
I
I
BTLSGND  
H1–  
BTL drive signal ground  
Hall1(–) input  
H1+  
I
Hall1(+) input  
H2–  
I
Hall2(–) input  
H2+  
I
Hall2(+) input  
H3–  
I
Hall3(–) input  
H3+  
I
Hall3(+) input  
4
KA3014  
Internal Block Diagram  
FIN (GND)  
12  
11  
10  
9
8
7
6
5
4
3
2
1
13  
PWRGND  
+
48  
47  
46  
H3+  
Power  
Save  
Absolute  
Values  
14  
15  
16  
17  
A3  
A2  
H3  
+
H2+  
Direction  
Detector  
Detector  
A1  
H2  
45  
44  
43  
RESX  
H1+  
VREGX  
18  
H1−  
+
+
REGOX  
19  
42 BTLSGND  
VCC1 20  
BIAS  
41  
+
+
+
+
AVM12  
21  
22  
23  
24  
40 AVM4  
+
+
+
+
39  
MUTE12  
DI4  
DI3  
DI2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
x2  
MUTE  
MUTE  
MUTE  
38  
37  
MUTE3  
MUTE4  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
FIN (GND)  
5
KA3014  
Equivalent Circuits  
Hall bias  
FG signal output  
10kΩ  
1
2
5Ω  
50Ω  
50kΩ  
Torque control reference & signal  
Phase compensation capacitor  
2kΩ  
6
3
4
50Ω  
1kΩ  
2kΩ  
Current detector  
Start / Stop  
50Ω  
50kΩ  
2.7kΩ  
10  
9
30kΩ  
120Ω  
6
KA3014  
Equivalent Circuits (Continued)  
3-phase rotational direction output  
Short brake  
25kΩ  
50Ω  
1kΩ  
17  
11  
50Ω  
80kΩ  
3-phase output  
Variable regulator reset  
50Ω  
50kΩ  
60kΩ  
14  
15  
16  
12  
30kΩ  
Variable regulator  
Variable regulator output  
18  
50Ω  
19  
50Ω  
7
KA3014  
Equivalent Circuits (Continued)  
BTL drive input  
BTL drive output  
26  
27  
28  
29  
32  
33  
35  
36  
22  
10kΩ  
50Ω  
100Ω  
23  
24  
25  
20kΩ  
BTL drive mute  
BTL bias voltage  
37  
38  
39  
50Ω  
50kΩ  
41  
50Ω  
200Ω  
30kΩ  
Hall input  
43  
45  
47  
44  
46  
48  
50Ω  
1kΩ  
1kΩ  
50Ω  
8
KA3014  
Absolute Maximum Ratings ( Ta=25°C)  
Parameter  
Symbol  
Value  
Unit  
V
Supply voltage (BTL signal)  
Supply voltage (Spindle signal)  
Supply voltage (Spindle motor)  
Supply voltage (BTL motor)  
Power dissipation  
V
15  
CC1MAX  
CC2MAX  
V
7
15  
V
V
V
MMAX  
V
15  
V
MBTLMAX  
P
D
3.0 note  
35 ~ +85  
55 ~ +150  
1.3  
W
°C  
°C  
A
Operating temperature  
T
OPR  
Storage temperature range  
Maximum output current (Spindle part)  
Maximum output current (BTL part)  
Notes:  
T
STG  
I
I
OMAXS  
OMAXB  
1
A
1. When mounted on 70mm × 70mm × 1.6mm PCB (Phenolic resin material)  
2. Power dissipation is reduced 24mW / °C for using above Ta=25°C  
3. Do not exceed Pd and SOA (Safe Operating Area)  
Pd (mW)  
3,000  
2,000  
1,000  
0
0
25  
50  
75  
100  
125  
150  
175  
Ambient temperature, Ta [°C]  
Recommended Operating Conditions ( Ta=25°C)  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
13.2  
5.5  
Unit  
Operating supply voltage (BTL signal)  
Operating supply voltage (Spindle signal)  
Operating supply voltage (Spindle motor)  
Operating supply voltage (BTL motor)  
V
V
4.5  
4.5  
4.5  
4.5  
-
-
-
-
V
V
V
V
CC1  
CC2  
V
13.2  
5.5  
M
V
MBTL  
9
KA3014  
Electrical Charateristics  
(SPINDLE PART, Ta=25°C, V  
=5V, V =12V)  
M
CC2  
Parameter  
Circuit current 1  
Circuit current 2  
START / STOP  
On voltage range  
Off voltage range  
HALL BIAS  
Symbol  
Condition  
Power save=0V  
Min.  
Typ.  
0
Max.  
0.1  
Units  
mA  
I
CC 1  
I
Power save=5V  
8.0  
mA  
CC2  
V
L-H circuit on  
H-L circuit off  
2.5  
V
V
PSON  
V
0.5  
PSOFF  
Hall bias voltage  
HALL AMP  
V
I
=20mA  
HB  
1.2  
1.8  
V
HB  
HA  
Hall bias current  
In-phase in voltage range  
Minimum in level  
TORQUE CONTROL  
In voltage range  
Offset voltage ()  
Offset voltage (+)  
In current  
I
1
5
4.0  
µA  
V
V
1.5  
60  
HAR  
V
mVpp  
INH  
E
0.5  
80  
20  
3.3  
20  
80  
V
C
E
E
E
E
=2.5V  
=2.5V  
50  
50  
mV  
mV  
µA  
COFF–  
COFF+  
CR  
CR  
E
E =E =2.5V  
5  
1  
CIN  
C
CR  
In/output gain  
G
EC  
E
=2.5V, R =0.5Ω  
0.41  
0.51  
0.61  
A / V  
CR  
CS  
FG  
FG output voltage (H)  
FG output voltage (L)  
Input voltage range  
OUTPUT BLOCK  
V
I
I
= 10µA  
=10µA  
3.0  
V
CC  
V
V
V
FGH  
FG  
FG  
V
0.5  
4.0  
FHL  
V
Hn+, Hninput D-range  
1.5  
FGR  
Saturation voltage (upper TR)  
Saturation voltage (lower TR)  
Torque limit current  
V
I = 300mA  
0.9  
0.2  
700  
1.6  
0.6  
840  
V
V
OH  
O
V
I =300mA  
O
OL  
TL  
I
R
CS  
=0.5Ω  
560  
mA  
DIRECTION DETECTOR  
Dir output voltage (H)  
Dir output voltage (L)  
SHORT BRAKE  
V
I
I
=10µA  
=10µA  
3.0  
V
V
V
DIRH  
FG  
FG  
CC  
V
0.5  
DIRL  
On voltage range  
V
2.5  
0
V
V
V
SBON  
CC  
Off voltage range  
V
SBOFF  
0.5  
10  
KA3014  
Electrical Charateristics (Continued)  
(BTL DRIVE PART, Ta=25°C, V  
=12V, V  
CC1  
=12V, R =24)  
MBTL  
L
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Units  
BTL DRIVE PART (Ta=25°C, V  
Quiescent circuit current  
Output offset voltage  
=12V, V  
=12V, R =24)  
CC1  
MBTL  
L
I
9
12  
30  
mA  
mV  
V
CC  
V
OO  
V
OM  
30  
9.5  
Maximum output  
Amplitude voltage  
10.5  
Voltage gain  
G
V =0.1V  
IN  
, 1kHz  
10.5  
12.0  
60  
1.0  
13.5  
dB  
dB  
V/µs  
V
VC  
RMS  
RMS  
Ripple rejection ratio  
Slew rate  
RR  
V =0.1V  
IN  
, 120kHz  
SR  
120Hz, 2Vpp  
Mute off voltage  
V
0.5  
MOFF  
Mute on voltage  
V
MON  
2.5  
V
VARIABLE-REGULATOR  
Regulator output range  
Load regulation  
V  
V  
IL=100mA  
2.0  
40  
0
5.25  
10  
V
mV  
mV  
V
REG  
V  
IL=0 200mA  
R1  
Line regulation  
IL=200mA, V =6V9V  
20  
0
30  
CC  
CC  
Regulator output voltage 1  
Regulator output voltage 2  
V
REG1  
V
REG2  
IL=100mA  
IL=100mA  
4.75  
3.135  
5.0  
3.3  
5.25  
3.465  
V
Calculation of Gain & Torque Limit Current  
VM  
VM  
I
O
Output  
Current sense  
V
S
+
R
S
CS1 (Pin 9)  
Current / Voltage  
Convertor  
Negative  
Feedback loop  
Vin  
+
I
O
R1  
U
V
Power  
Transistors  
+
EC  
+
+
Driver  
Gm  
W
ECR  
Absolute  
Values  
Commutation  
Distributor  
+
Vmax  
H1  
H2  
H3  
VM  
Max. output current limiting  
0.255 is GM times R1 and it is a fixed value within IC.  
0.255  
Gain = --------------  
RS  
Vmax (see above block diagram) is set to 350mV.  
Vmax  
RS RS  
350[mV]  
Itl[mA] = --------------- = -----------------------  
11  
KA3014  
Application Information  
1. MUTE FUNCTION  
• Mute control voltage condition  
When using the mute function, the applied control voltage condition is as follows.  
Mute on voltage  
Mute off voltage  
2.5[V] above  
Mute function operation  
Normal operation  
Open or 0.5[V] below  
• Individual channel mute function  
These pins are used for individual channel mute operation.  
- When the mute pins (pin 37, 38 and 39) are open or the voltages at the mute pins are below 0.5[V], the mute circuit is  
stopped and BTL output circuits operate normally.  
- When the mute pins (pin 37, 38 and 39) are above 2.5[V], the mute circuits are activated so that the BTL  
output circuit is muted.  
- If the junction temperature rises above 175°C, then the thermal shutdown (TSD) circuit is activated and all the output  
circuits (4-CH BTL drivers and 3-phase BLDC driver) are muted.  
2. 4-CH BALANCED TRANSFORMERLESS (BTL) DRIVER  
VCC  
Q1  
Q2  
DRIVE  
AMP  
DRIVE  
AMP  
M
27  
29  
33  
36  
26  
28  
X2  
X2  
32  
35  
Q3  
Q4  
GND  
41  
Vbias  
Vin  
+
LEVEL  
SHIFT  
AMP1  
Rextern  
22 23  
24 25  
10k  
• The voltage, Vbias, is the reference voltage given by the external bias voltage of pin 41.  
• The input signals, Vin, through the pins (pin 22, 23, 24 and 25) are amplified 10k/rextern times and then fed to  
the level shift.  
• The level shift produces the current due to the difference between the input signal (Vin) and the arbitrary  
reference voltage (Vbias). The current produced as + I and − ∆I are fed into the drive buffers.  
• The drive buffer operates the power TR of the output stage according to the state of the input signal (Vin).  
• The output stage is the BTL driver, and the motor (or actuator) rotates in forward direction when TR  
Q1 and TR Q4 are on. On the other hand, if TR Q2 and TR Q3 are on, the motor (or actuator) is rotating in  
reverse direction.  
• When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is below the Vbias, then the motor (actuator) moves in  
forward direction.  
• When the input signal Vin, through the pin (pin 22, 23, 24 and 25) is above the Vbias, then the motor (actuator)  
moves in reverse direction.  
• To change the gain, Modify the external resistor's value (Rextern)  
12  
KA3014  
3. TORQUE & OUTPUT CURRENT CONTROL  
Torque & output current control  
V
V
M
M
R
NF  
+
V
RNF  
Torque sense amp  
I
O
Current sense amp  
V
AMP  
Gain  
Controller  
E
Driver  
C
+
+
M
TSD  
E
CR  
• By amplifying the voltage difference between E and E from the servo IC, the torque sense amp produces the input  
CR  
C
(V  
) for the current sense amp.  
• The current sense amp produces the input for the gain controller to allow the output current (I ) of the driver to be  
AMP  
O
controlled by the input voltage (V  
), where the output current (I ) is detected by the sense resistor (R ) and is  
NF  
AMP  
O
converted into V  
.
RNF  
• In the end, the signals of the servo IC control the velocity of the motor by controlling the output current (I ) of the driver.  
O
• When the junction temperature rises up to about 175°C, then the output drive circuit will shut down.  
• The range of the torque control input voltage is as shown below.  
V
RNF  
[V]  
Reverse  
Forward  
Rotation  
Ec < E  
Ec > E  
Forward rotation  
CR  
CR  
Stop after detecting  
reverse rotation  
Ecoff−  
Ecoff+  
3 mV  
0
E
-E [V]  
C
CR  
The input range (E ) of the torque sense amp is 0.5V ~ 3.3V.  
C
13  
KA3014  
4. POWER SAVE FUNCTION  
• .  
Bias block  
100k  
V
CC  
10  
30KΩ  
Start  
Stop  
Q1  
12KΩ  
• The power save circuit is activated by operating TR Q1.  
• When the SS (Start / Stop) pin 10 is high (V ), the TR Q1 is turned on and the bias circuit is enabled.  
CC  
On the other hand, when the SS (Start/Stop) pin 10 is open or low (GND), the TR Q1 is turned off and the bias circuit is  
disabled.  
• The power save operation controlled by SS (pin 10) input conditions is as follows;  
Pin #10  
High  
KA3014  
Start  
Opin / Low  
Stop  
14  
KA3014  
5. SHORT BRAKE FUNCTION  
V
M
MOTOR  
OFF  
Drive logic  
V
CC  
14  
12  
15  
1KΩ  
ON  
16  
Q1  
ON  
OFF  
80KΩ  
When the pick-up moves from the inner to the outer spindle of the MD(Mini Disk), the brake function of the reverse voltage is  
commonly employed to rate the rotational velocity of the spindle motor.  
However, if the spindle motor rotates rapidly, the brake function of the reverse voltage may produce too much heat at the drive  
IC.  
To remove these shortcomings and to enhance efficiency, the short brake function is added to KA3014. When the short brake  
function is active, all upper power transistors are turned off and the lower power transistors turned on, so as to reduce the rota-  
tional velocity of the motor. The short brake operation controlled by SB (pin 12), and the input conditions are as follows.  
Pin #12  
High  
Short brake  
On  
Off  
Low  
6. THERMAL SHUTDOWN (TSD) FUNCTION  
When the junction temperature rises up to 175°C, then the output drive circuit shuts down, when the junction temperature falls  
off to 160°C, the output drive circuit operates normally. It has the temperature hysteresis of about 15°C.  
15  
KA3014  
7. ROTATING DIRECTION DETECTION FUNCTION  
V
CC  
+
H2+  
11  
DIR  
R
H2−  
Rotation  
Forward  
Reverse  
DIR  
Low  
11  
D
Q
E
E
< E  
> E  
C
CR  
CR  
CK  
High  
C
+
H3+  
D-F/F  
H3−  
• The forward and reverse rotations of the MD are detected by the circuit, as shown in the above table.  
• The rotational direction of the MD can be learned by the output waveforms of the hall sensor and/or the driver.  
If the hall sensors turn on in the order, H1H2H3, then this indicates reverse rotation. The output waveforms of the hall  
sensors are as shown below.  
H1  
H2  
H3  
( a)  
Inversely, if the hall sensors turn on in the order, H3 H2 H1, then this shows forward rotation. The output waveforms of  
the hall sensors are as shown below\.  
H1  
H2  
H3  
( b)  
.
16  
KA3014  
8. REVERSE ROTATION PREVENTING FUNCTION  
E
+
C
Current  
Sense  
Amp  
E
CR  
H2+  
+
H2−  
D
Q
CK  
H3+  
+
Gain  
Driver  
M
Controller  
H3−  
D-F/F  
• The forward and reverse rotation of the motor are detected, as shown in the table below. Consequently at reverse rotation,  
the D-F/F output Q becomes low and cuts off the output current sense amp, resulting in the stoppage of the gain controller  
function.  
• When the MD is rotating in forward direction, E >E is sometimes controlled to retard and/or stop the MD.  
CR  
C
As the controlling time of E >E gets longer, MD slows down, stops, and then rotates in the reverse direction. To prevent  
CR  
C
the MD from rotating in the reverse direction, a reverse rotation preventing function is required.  
Its operational principles are discussed below.  
Reverse rotation preventer  
E <E E >E  
CR  
Rotation  
H2  
H3  
D-F/F  
C
CR  
C
Forward  
Reverse  
H
L
H L  
H L  
H
L
Forward  
Brake and stop  
stop  
9. FG OUTPUT FUNCTION  
The FG output detects the number of rotations of the MD. This is generated from zero-crossing of the hall sensor output wave-  
forms. The FG output circuit is as shown below.  
+
H1  
+
H2  
FG OUTPUT  
+
H3  
17  
KA3014  
10. HALL SENSOR CONNECTION  
External hall sensors are used in series or in parallel connection as shown below.  
V
V
CC  
CC  
HALL 1  
HALL 2  
HALL 3  
HALL 1  
HALL 2  
HALL 3  
1
1
VH  
VH  
18  
KA3014  
11. HALL INPUT OUTPUT TIMING CHART  
The 3-phase hall signal is amplified in the hall amplifiers and sent to the matrix section, where the signal is further amplified.  
After the signal is converted to a current in the amplitude control circuit, the current is supplied to the output driver, which then  
provides a motor drive current. The phases of the hall input signal, output voltage, and output current are shown below.  
H1 +  
H2 +  
H3 +  
A1 output current  
A1 output voltage  
A2 output current  
A2 output voltage  
A3 output current  
A3 output voltage  
19  
KA3014  
Typical Performance Characteristics  
Icc1(A)  
Icc2(A)  
10  
Vcc vs Icc1  
0.015  
Vcc vs Icc2  
8
6
4
2
0.010  
0.005  
0.000  
SS = 5V  
8
0
0
0
2
4
6
8
10 12 14 16 18 20  
Vcc(V)  
2
4
6
10  
Vcc(V)  
Icc1(mA)  
Icc2(mA)  
8.0  
Temp vs Icc1  
Temp vs Icc2  
11.0  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
7.8  
7.6  
7.4  
7.2  
Vcc =12V  
SS = 5V  
Vcc = 12V  
75  
10.0  
-35  
7.0  
-35  
-25  
0
25  
50  
90  
-25  
0
25  
50  
75  
90  
Temp (°C)  
Temp (°C)  
Vom(V)  
Gvo(dB)  
13.0  
Vcc vs Vom  
Vcc vs Gvo (5V)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
12.5  
12.0  
11.5  
11.0  
10.5  
Input = 0.5V, 4.5V  
Bias = 2.5V  
Rin = 10KΩ  
Vcc1 = 5V  
Vin = 0.1V rms  
f = 1KHz  
Rin=10KΩ  
10.0  
4.0  
3.0 3.5  
4.0  
4.5  
5.0  
5.5 6.0  
6.5 7.0  
Vcc(V)  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
Vcc(V)  
20  
KA3014  
Typical Performance Characteristics (Continued)  
Gvo(dB)  
13.0  
Vout(V)  
Vcc1 vs Gvo(12V)  
Vin vs Vout (5V)  
4
3
12.5  
12.0  
11.5  
11.0  
10.5  
2
1
0
-1  
-2  
-3  
Vcc1 = 12V  
Vin = 0.1V rms  
f = 1KHz  
Vcc1 = 5V  
Bias = 2.5V  
Rin=10KΩ  
Rin=10KΩ  
10.0  
9
-4  
0
10  
11  
12  
13  
14  
15  
1
2
3
4
5
6
7
8
Vcc(V)  
Vin(V)  
Vout(V)  
15  
Vin vs Vout (12V)  
10  
5
0
-5  
Vcc1 = 12V  
Bias = 2.5V  
Rin=10KΩ  
-10  
-15  
0
1
2
3
4
5
6
7
8
Vin(V)  
Vol(mV)  
500  
Voh(V)  
1.2  
Io vs Voh  
Io vs Vol  
1.0  
0.8  
0.6  
0.4  
0.2  
400  
300  
200  
100  
0
Io = source current  
Io = source current  
0
50 100 150 200 250 300 350 400 450 500  
50  
150  
225  
275  
325  
375  
450  
Io(mA)  
Io(mA)  
21  
KA3014  
Typical Performance Characteristics (Continued)  
Vrnf(mV)  
350  
Vrnf(mV)  
350  
Ec vs Vrnf  
Ec vs Vrnf  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
Ecr = 2.5V  
RNF=0.5Ω  
Ecr = 1.6V  
RNF=0.5Ω  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
Ec(V)  
Ec(V)  
22  
KA3014  
Test Circuits 1  
BTL Drive Part  
10µF  
12V  
2.5V  
42 41 40 39 38 37  
48 47 46 45 44 43  
V
RL4’  
RL4  
VH  
36  
35  
34  
1
2
3
4
5
6
DO4+  
SW4  
12V  
10µF  
FG  
DO4−  
ECR  
AVM3  
33  
32  
31  
EC  
DO3+  
SW3  
RL3’  
RL3  
VCC2  
DO3−  
PC1  
BTLPGND2  
V
V
KA3014  
RL2  
7
8
30  
29  
SIGGND  
VM  
BTLPGND1  
DO2+  
SW2  
9
CS1  
SS  
DO2−  
DO1+  
DO1−  
DI1  
28  
27  
26  
25  
10  
11  
12  
DIR  
SB  
SW1  
RL1  
V
13  
14 15 16 17  
18  
19  
20 21  
22 23 24  
A
SERVO AMP  
TRACKING  
FOCUS  
10µF  
12V  
10µF  
BTL SVCC  
12V  
SLED  
CONTROL TRAY  
23  
KA3014  
Test Circuits 2  
Spindle Motor Drive Part  
H3+  
H2+  
H1+  
H2H1−  
H3−  
A
A
A
A
A
A
V
V
48  
47 46 45  
44 43  
42 41  
40 39 38  
37  
SW12  
SW13  
36  
1
2
3
4
5
6
VH  
DO4+  
DO435  
FG  
2.5V  
AVM3  
ECR  
34  
33  
32  
31  
E
C
DO3+  
EC  
SW14  
DO3−  
VCC2  
PC1  
5V  
BTLPGND2  
A
KA3014  
SW15  
30  
29  
28  
7
8
9
BTLPGND1  
DO2+  
12V  
SIGGND  
VM  
DO2−  
CS1  
V
SW16  
DO1+ 27  
10 SS  
V
11  
26  
25  
DO1−  
DIR  
SW17  
12  
DI1  
SB  
IFR  
SW18  
13 14 15  
16 17  
18  
19  
20 21  
22 23 24  
VSB  
SW19  
SW20  
24  
KA3014  
Application Circuits  
+5V  
48 47 46 45 44 43  
42  
41  
40 39  
38 37  
1
2
3
4
5
6
VH  
36  
35  
34  
33  
32  
31  
DO4+  
10K  
TRAY  
MOTOR  
FG SIGNAL  
100pF  
DO4−  
FG  
AVM3  
SERVO  
ECR  
TORQUE  
CONTROL  
+5V  
DO3+  
EC  
SLED  
MOTOR  
DO3−  
VCC2  
PC1  
VCC  
BTLPGND2  
0.1µF  
KA3014  
BTLPGND1 30  
7
8
SIGGND  
VM  
DO2+  
29  
12V  
FOCUS  
ACTUATOR  
DO2−  
CS1  
9
28  
SYSTEM  
CONTROL  
DO1+  
SS  
DIR  
SB  
27  
26  
10  
11  
12  
TRACKING  
ACTUATOR  
ROTATE  
DO1−  
DIRECTION  
DI1 25  
SHORT  
BREAK  
13 14 15 16 17 18  
19  
20 21  
VCC  
22 23 24  
SERVO AMP  
+5V  
TRACKING  
FOCUS  
SLED  
xxV  
RESET  
CONTROL TRAY  
VARIABLE  
VOLTAGE  
S/S  
VCC  
25  
KA3014  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER  
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
INTERNATIONAL. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
12/1/00 0.0m 001  
Stock#DSxxxxxxxx  
2000 Fairchild Semiconductor International  

相关型号:

KA3016D

SPINDLE MOTOR DRIVER
FAIRCHILD

KA3017

Spindle + 4-CH Motor Driver
FAIRCHILD

KA3018D2

CD Motor Driver, PDSO28, 0.300 INCH, HEAT SINK, SSOP-28
FAIRCHILD

KA3018D2TF

CD Motor Driver, PDSO28, 0.300 INCH, HEAT SINK, SSOP-28
FAIRCHILD

KA3019D2

CD Motor Driver, 4 Channel, PDSO28, 0.300 INCH, HSSOP-28
FAIRCHILD

KA301A

Single Operational Amplifier
FAIRCHILD

KA301A

Operational Amplifier, 1 Func, 10000uV Offset-Max, BIPolar, PDIP8, 0.300 INCH, DIP-8
SAMSUNG

KA301AD

Operational Amplifier, 1 Func, 10000uV Offset-Max, BIPolar, PDSO8, 0.225 INCH, SOP-8
SAMSUNG

KA3021D

4-Channel Motor Driver
FAIRCHILD

KA3021DTF

4-Channel Motor Driver
FAIRCHILD

KA3022D

4-Channel Motor Driver
FAIRCHILD

KA3022D3

4-Channel Motor Driver
FAIRCHILD