KM4200IM8TR3_NL [FAIRCHILD]

Operational Amplifier, 2 Func, 8000uV Offset-Max, BIPolar, PDSO8, MSOP-8;
KM4200IM8TR3_NL
型号: KM4200IM8TR3_NL
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Operational Amplifier, 2 Func, 8000uV Offset-Max, BIPolar, PDSO8, MSOP-8

运算放大器 放大器电路 光电二极管
文件: 总11页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
KM4200  
Dual, Low Cost, +2.7V & +5V, 260MHz Rail-to-Rail Amplifier  
Features  
General Description  
The KM4200 is a dual, low cost, voltage feedback  
amplifier. This amplifier is designed to operate on  
+2.7V, +5V, or 2.5V supplies. The input voltage  
range extends 300mV below the negative rail and  
1.2V below the positive rail. The KM4100 (single) and  
KM4101 (single with disable) are also available.  
260MHz bandwidth  
Fully specified at +2.7V and +5V supplies  
Output voltage range: 0.036V to 4.953V;  
V = +5; R = 2k  
s
L
Input voltage range: -0.3V to +3.8V; V = +5  
s
145V/µs slew rate  
4.2mA supply current per amplifier  
55mA linear output current  
85mA short circuit current  
Directly replaces AD8052 and AD8042 in single  
supply applications  
The KM4200 offers superior dynamic performance  
with a 260MHz small signal bandwidth and 145V/µs  
slew rate. The combination of low power, high out-  
put current drive, and rail-to-rail performance make  
the KM4200 well suited for battery-powered com-  
munication/computing systems.  
Small package options (SOIC and MSOP)  
The combination of low cost and high performance  
make the KM4200 suitable for high volume applica-  
tions in both consumer and industrial applications  
such as wireless phones, scanners, and color copiers.  
Applications  
A/D driver  
Active filters  
CCD imaging systems  
CD/DVD ROM  
Coaxial cable drivers  
High capacitive load driver  
Output Swing  
2.7  
Portable/battery-powered applications  
Twisted pair driver  
Video driver  
KM4200 Packages  
SOIC  
V
R
G = -1  
= +2.7V  
= 2k  
s
Out1  
-In1  
+In1  
-Vs  
1
2
3
4
8
7
6
5
+Vs  
L
0
Out2  
-In2  
+In2  
-
Time (0.5µs/div)  
+
-
+
MSOP  
Out1  
-In1  
+In1  
-Vs  
1
2
3
4
8
7
6
5
+Vs  
Out2  
-In2  
+In2  
-
+
-
+
REV. 1A February 2001  
DATA SHEET  
KM4200  
(V = +2.7V, G = 2, R = 2kto V /2; unless noted)  
KM4200 Electrical Characteristics  
s
L
s
PARAMETERS  
CONDITIONS  
TYP  
MIN & MAX UNITS  
NOTES  
Case Temperature  
+25°C  
+25°C  
Frequency Domain Response  
-3dB bandwidth  
G = +1, V = 0.05Vpp  
o
215  
85  
MHz  
MHz  
MHz  
MHz  
1
G = +2, V = 0.2Vpp  
o
full power bandwidth  
gain bandwidth product  
G = +2, V = 2Vpp  
o
36  
86  
Time Domain Response  
rise and fall time  
settling time to 0.1%  
overshoot  
0.2V step  
3.7  
40  
9
ns  
ns  
1
1V step  
0.2V step,  
2.7V step, G = -1  
%
slew rate  
130  
V/µs  
Distortion and Noise Response  
2nd harmonic distortion  
3rd harmonic distortion  
THD  
input voltage noise  
input current noise  
crosstalk  
1Vpp, 5MHz  
1Vpp, 5MHz  
1Vpp, 5MHz  
>1MHz  
79  
82  
77  
16  
1.3  
65  
dBc  
dBc  
1
1
1
dB  
nV/Hz  
pA/Hz  
dB  
>1MHz  
10MHz  
1
DC Performance  
input offset voltage  
average drift  
-1.6  
10  
3
8
8
mV  
µV/°C  
µA  
2
2
input bias current  
average drift  
7
nA/°C  
µA  
input offset current  
power supply rejection ratio  
open loop gain  
0.1  
57  
75  
3.9  
1
52  
65  
5
2
2
2
2
DC  
dB  
dB  
quiescent current per amplifier  
mA  
Input Characteristics  
input resistance  
4.3  
1.8  
-0.3 to 1.5  
87  
MΩ  
pF  
V
input capacitance  
input common mode voltage range  
common mode rejection ratio  
DC, Vcm = 0V to Vs - 1.5  
72  
dB  
2
Output Characteristics  
output voltage swing  
RL = 10kto Vs/2  
RL = 2kto Vs/2  
RL = 150to Vs/2  
0.023 to 2.66  
V
V
0.025 to 2.653 0.1 to 2.6  
2
2
0.065 to 2.55 0.3 to 2.325  
V
linear output current  
55  
50  
85  
mA  
mA  
mA  
V
-40°C to +85°C  
short circuit output current  
power supply operating range  
2.7  
2.5 to 5.5  
Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels  
are determined from tested parameters.  
NOTES:  
1) R = 1kwas used used for optimal performance. (For G = +1, R = 0)  
f
f
2) 100% tested at +25°C.  
Absolute Maximum Ratings  
Package Thermal Resistance  
Package  
θ
JA  
supply voltage  
0 to +6V  
+175°C  
-65°C to +150°C  
+300°C  
maximum junction temperature  
storage temperature range  
lead temperature (10 sec)  
8 lead SOIC  
8 lead MSOP  
152°C/W  
206°C/W  
operating temperature range (recommended) -40°C to +85°C  
input voltage range  
+Vs +0.5V; -Vs -0.5V  
internal power dissipation  
see power derating curves  
2
REV. 1A February 2001  
KM4200  
DATA SHEET  
(V = +5V, G = 2, R = 2kto V /2; unless noted)  
KM4200 Electrical Characteristics  
s
L
s
Parameters  
Conditions  
TYP  
+25°C  
Min & Max UNITS  
NOTES  
Case Temperature  
+25°C  
Frequency Domain Response  
-3dB bandwidth  
G = +1, V = 0.05Vpp  
o
260  
90  
MHz  
MHz  
MHz  
MHz  
1
G = +2, V = 0.2Vpp  
o
full power bandwidth  
gain bandwidth product  
G = +2, V = 2Vpp  
o
40  
90  
Time Domain Response  
rise and fall time  
settling time to 0.1%  
overshoot  
0.2V step  
3.6  
40  
7
ns  
ns  
1
2V step  
0.2V step,  
5V step, G = -1  
%
slew rate  
145  
V/µs  
Distortion and Noise Response  
2nd harmonic distortion  
3rd harmonic distortion  
THD  
input voltage noise  
input current noise  
crosstalk  
2Vpp, 5MHz  
2Vpp, 5MHz  
2Vpp, 5MHz  
>1MHz  
71  
78  
70  
16  
1.3  
62  
dBc  
dBc  
dB  
nV/Hz  
pA/Hz  
dB  
1
1
1
>1MHz  
10MHz  
1
DC Performance  
input offset voltage  
average drift  
1.4  
10  
3
8
8
mV  
µV/°C  
µA  
2
2
input bias current  
average drift  
7
nA/°C  
µA  
input offset current  
power supply rejection ratio  
open loop gain  
0.1  
57  
78  
4.2  
0.8  
52  
2
2
2
2
DC  
dB  
68  
dB  
quiescent current per amplifier  
5.2  
mA  
Input Characteristics  
input resistance  
4.3  
1.8  
-0.3 to 3.8  
87  
MΩ  
pF  
V
input capacitance  
input common mode voltage range  
common mode rejection ratio  
DC, Vcm = 0V to Vs - 1.5  
72  
dB  
2
Output Characteristics  
output voltage swing  
RL = 10kto Vs/2  
RL = 2kto Vs/2  
RL = 150to Vs/2  
0.027 to 4.97  
V
V
0.036 to 4.953 0.1 to 4.9  
2
2
0.12 to 4.8  
0.3 to 4.625  
V
linear output current  
55  
50  
85  
5
mA  
mA  
mA  
V
-40°C to +85°C  
short circuit output current  
power supply operating range  
2.5 to 5.5  
Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels  
are determined from tested parameters.  
NOTES:  
1) R = 1kwas used used for optimal performance. (For G = +1, R = 0)  
f
f
2) 100% tested at +25°C.  
REV. 1A February 2001  
3
DATA SHEET  
KM4200  
(V = +5V, G = 2, R = 2k, R = 2kto V /2; unless noted)  
KM4200 Performance Characteristics  
s
f
L
s
Non-Inverting Freq. Response V = +5V  
s
Inverting Frequency Response V = +5V  
s
G = -1  
G = 1  
f
R = 2k  
f
R = 0  
G = 2  
R = 1kΩ  
f
G = -10  
R = 2kΩ  
G = 10  
f
f
R = 2kΩ  
G = -5  
R = 2kΩ  
f
G = 5  
R = 2kΩ  
f
G = -2  
R = 2kΩ  
f
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Non-Inverting Freq. Response V = +2.7  
s
Inverting Frequency Response V = +2.7V  
s
G = -1  
G = 1  
f
R = 2kΩ  
f
R = 0  
G = 2  
R = 1kΩ  
f
G = -10  
R = 2kΩ  
f
G = 10  
f
R = 2kΩ  
G = -5  
R = 2kΩ  
f
G = 5  
R = 2kΩ  
G = -2  
f
R = 2kΩ  
f
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. C  
Large Signal Frequency Response  
L
C
= 100pF  
L
R
= 25Ω  
V
V
= 1V  
= 2V  
s
o
pp  
C
R
= 50pF  
L
= 33Ω  
s
o
pp  
C
R
= 20pF  
L
+
-
= 20Ω  
Rs  
s
CL RL  
1k  
C
= 10pF  
L
R
= 0Ω  
1kΩ  
s
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. Temperature  
Input Voltage Noise  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (MHz)  
Frequency (Hz)  
4
REV. 1A February 2001  
KM4200  
DATA SHEET  
(V = +5V, G = 2, R = 2k, R = 2kto V /2; unless noted)  
KM4200 Performance Characteristics  
s
f
L
s
2nd & 3rd Harmonic Distortion; V = +5V  
2nd & 3rd Harmonic Distortion; V = +2.7V  
s
s
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V
= 2V  
V = 1V  
o
o
pp  
pp  
R = 1kΩ  
R = 1kΩ  
3rd  
= 150Ω  
f
f
R
L
2nd  
= 150Ω  
3rd  
= 150Ω  
R
R
L
L
2nd  
= 150Ω  
R
L
2nd  
= 2kΩ  
2nd  
R
R
= 2kΩ  
L
L
3rd  
L
3rd  
L
R
= 2kΩ  
R
= 2kΩ  
0
5
10  
15  
0
5
10  
15  
20  
20  
Frequency (MHz)  
Frequency (MHz)  
2nd Harmonic Distortion vs. V  
3rd Harmonic Distortion vs. V  
o
o
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
R = 1kΩ  
f
R = 1kΩ  
f
20MHz  
10MHz  
20MHz  
10MHz  
5MHz  
2MHz  
5MHz  
2MHz  
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.5  
2.5  
100  
100  
Output Amplitude (V  
)
Output Amplitude (V )  
pp  
pp  
PSRR  
CMRR  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-40  
-50  
-60  
-70  
-80  
-90  
1k  
0.01  
0.1  
1
0.01  
0.1  
1.0  
10  
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Open Loop Gain & Phase vs. Frequency  
Output Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.6  
0.4  
0.2  
0
|Gain|  
Linear output current –55mA  
Short circuit current –85mA  
0
-0.2  
-0.4  
Phase  
-45  
-90  
-135  
-180  
-0.6  
-0.8  
-10  
-20  
0.01  
0.1  
1
10  
100  
-100  
-50  
0
50  
Frequency (MHz)  
Output Current (mA)  
REV. 1A February 2001  
5
DATA SHEET  
KM4200  
(V = +5V, G = 2, R = 2k, R = 2kto V /2; unless noted)  
KM4200 Performance Characteristics  
s
f
L
s
Small Signal Pulse Response V = +5V  
s
Small Signal Pulse Response V = +2.7V  
s
R = 1kΩ  
R = 1kΩ  
f
f
Time (20ns/div)  
Time (20ns/div)  
Large Signal Pulse Response V = +5V  
s
Output Swing  
2.7  
R = 1kΩ  
f
V
R
= +2.7V  
= 2kΩ  
s
L
G = -1  
0
Time (20ns/div)  
Time (0.5µs/div)  
Channel Matching V = +5V  
s
CMIR  
R = 1kΩ  
f
R
= 2kΩ  
Channel 1  
L
G = 2  
Channel 2  
0
0.1  
1
10  
100  
-1  
0
4
5
1
2
3
Frequency (MHz)  
CMIR (1V/div)  
6
REV. 1A February 2001  
KM4200  
DATA SHEET  
Frequency Reponse vs. R  
General Description  
f
The KM4200 is a single supply, general purpose, voltage-  
feedback amplifier fabricated on a complementary  
bipolar process using a patent pending topography. It  
features a rail-to-rail output stage and is unity gain  
stable. Both gain bandwidth and slew rate are insensitive  
to temperature.  
G = 2  
R
V
= 2k  
= +5V  
L
R = 2kΩ  
f
s
R = 1kΩ  
f
The common mode input range extends to 300mV  
below ground and to 1.2V below V . Exceeding these  
s
values will not cause phase reversal. However, if the  
input voltage exceeds the rails by more than 0.5V, the  
input ESD devices will begin to conduct. The output  
will stay at the rail during this overdrive condition.  
1
10  
100  
Frequency (MHz)  
Figure 2: Frequency Response vs. R  
The design uses a Darlington output stage. The out-  
put stage is short circuit protected and offers soft”  
saturation protection that improves recovery time.  
f
Power Dissipation  
The maximum internal power dissipation allowed is  
directly related to the maximum junction temperature.  
If the maximum junction temperature exceeds 150°C,  
some reliability degradation will occur. If the maximum  
junction temperature exceeds 175°C for an extended  
time, device failure may occur.  
The typical circuit schematic is shown in Figure 1.  
+Vs  
6.8µF  
+
The KM4200 is short circuit protected. However, this  
may not guarantee that the maximum junction tem-  
perature (+150°C) is not exceeded under all conditions.  
Follow the maximum power derating curves shown in  
Figure 3 to ensure proper operation.  
0.01µF  
+In1  
+
Out1  
1/2  
KM4200  
-
Maximum Power Dissipation  
Rf  
2.0  
Rg  
1.5  
SOIC-8 lead  
1.0  
Figure 1: Typical Configuration  
At non-inverting gains other than G = +1, keep R  
MSOP-8 lead  
0.5  
g
below 1kto minimize peaking; thus, for optimum  
response at a gain of +2, a feedback resistor of 1kis  
recommended. Figure 2 illustrates the KM4200  
frequency response with both 1kand 2kfeedback  
resistors.  
0
-50  
-30  
-10  
10  
30  
50  
70  
90  
Ambient Temperature ( C)  
Figure 3: Power Derating Curves  
Overdrive Recovery  
For an amplifier, an overdrive condition occurs when  
the output and/or input ranges are exceeded. The  
recovery time varies based on whether the input or  
output is overdriven and by how much the ranges are  
exceeded. The KM4200 will typically recover in less  
than 20ns from an overdrive condition. Figure 4  
shows the KM4200 in an overdriven condition.  
REV. 1A February 2001  
7
DATA SHEET  
KM4200  
Overdrive Recovery  
Refer to the evaluation board layouts shown in Figure  
7 for more information.  
R
V
= 2kΩ  
L
Input  
=2V  
in  
pp  
G = 5  
f
When evaluating only one channel, complete the  
following on the unused channel  
R = 1kΩ  
Output  
1.  
2.  
Ground the non-inverting input  
Short the output to the inverting input  
Evaluation Board Information  
The following evaluation boards are available to aid  
in the testing and layout of this device:  
Time (20ns/div)  
Eval Board  
Description  
Products  
Figure 4: Overdrive Recovery  
Driving Capacitive Loads  
KEB006  
Dual Channel, Dual Supply  
8 lead SOIC  
KM4200IC8  
KEB010  
Dual Channel, Dual Supply  
8 lead MSOP  
KM4200IM8  
The Frequency Response vs. C plot on page 4,  
illustrates the response of the KM4200. A small series  
L
resistance (R ) at the output of the amplifier, illustrated  
s
in Figure 5, will improve stability and settling  
Evaluation board schematics and layouts are shown in  
Figure 6 and Figure 7.  
performance. R values in the Frequency Response vs.  
s
C plot were chosen to achieve maximum bandwidth  
with less than 1dB of peaking. For maximum flatness,  
L
The KEB006 evaluation board is built for dual supply  
operation. Follow these steps to use the board in a  
single supply application:  
use a larger R .  
s
1.  
2.  
Short -V to ground  
Use C3 and C4, if the -V pin of the KM4200 is  
not directly connected to the ground plane.  
s
+
-
s
Rs  
CL RL  
Rf  
Rg  
Figure 5: Typical Topology for driving  
a capacitive load  
Layout Considerations  
General layout and supply bypassing play major roles  
in high frequency performance. Fairchild has evaluation  
boards to use as a guide for high frequency layout  
and to aid in device testing and characterization.  
Follow the steps below as a basis for high frequency  
layout:  
Include 6.8µF and 0.01µF ceramic capacitors  
Place the 6.8µF capacitor within 0.75 inches  
of the power pin  
Place the 0.01µF capacitor within 0.1 inches  
of the power pin  
Remove the ground plane under and around the  
part, especially near the input and output pins to  
reduce parasitic capacitance  
Minimize all trace lengths to reduce  
series inductances  
Figure 6: Evaluation Board Schematic  
8
REV. 1A February 2001  
KM4200  
DATA SHEET  
KM4200 Evaluation Board Layout  
Figure 7a: KEB006 (top side)  
Figure 7b: KEB006 (bottom side)  
Figure 7c: KEB010 (top side)  
Figure 7d: KEB010 (bottom side)  
REV. 1A February 2001  
9
DATA SHEET  
KM4200  
KM4200 Package Dimensions  
SOIC-8  
MIN  
SYMBOL  
MAX  
0.25  
0.46  
0.25  
4.98  
3.99  
A1  
B
C
D
E
e
0.10  
0.36  
0.19  
4.80  
3.81  
1.27 BSC  
D
7¡  
e
ZD  
C
L
SOIC  
H
h
L
5.80  
0.25  
0.41  
1.52  
0
6.20  
0.50  
1.27  
1.72  
8
C
E
H
L
A
ZD  
A2  
0.53 ref  
1.57  
1.37  
Pin No. 1  
B
DETAIL-A  
L
NOTE:  
1. All dimensions are in millimeters.  
h x 45¡  
DETAIL-A  
2. Lead coplanarity should be 0 to 0.10mm (.004") max.  
3. Package surface finishing:  
A1  
A2  
α
A
(2.1) Top: matte (charmilles #18~30).  
(2.2) All sides: matte (charmilles #18~30).  
(2.3) Bottom: smooth or matte (charmilles #18~30).  
C
4. All dimensions excluding mold flashes and end flash  
from the package body shall not exceed o.152mm (.006)  
per side(d).  
02  
e
S
MSOP-8  
SYMBOL  
A
MIN  
MAX  
1.10  
t1  
A1  
A2  
D
D2  
E
E1  
E2  
E3  
E4  
R
R1  
t1  
t2  
b
b1  
c
c1  
01  
02  
03  
L
L1  
aaa  
bbb  
ccc  
e
0.10  
0.86  
3.00  
2.95  
4.90  
3.00  
2.95  
0.51  
0.51  
0.15  
0.15  
0.31  
0.41  
0.33  
0.30  
0.18  
±0.05  
±0.08  
±0.10  
±0.10  
±0.15  
±0.10  
±0.10  
±0.13  
±0.13  
+0.15/-0.06  
+0.15/-0.06  
±0.08  
±0.08  
+0.07/-0.08  
±0.05  
±0.05  
+0.03/-0.02  
±3.0°  
±3.0°  
±3.0°  
±0.15  
MSOP  
R1  
E/2 2X  
t2  
H –  
R
Gauge  
Plane  
3
7
E1  
0.25mm  
b
01  
L
03  
2
B –  
E3  
E4  
L1  
Detail A  
ccc  
A B C  
1
2
Scale 40:1  
c
c1  
2
4
6
b1  
Detail A  
D2  
A2  
E2  
Section A - A  
0.15  
3.0°  
5
A
A
12.0°  
12.0°  
0.55  
0.95 BSC  
0.10  
0.08  
0.25  
0.65 BSC  
0.525 BSC  
A –  
b
A
E1  
E
bbb M A B C  
A1  
aaa  
A
D
3
4
NOTE:  
S
1
2
3
4
5
6
7
All dimensions are in millimeters (angle in degrees), unless otherwise specified.  
Datums B and C to be determined at datum plane H .  
Dimensions "D" and "E1" are to be determined at datum H .  
Dimensions "D2" and "E2" are for top package and dimensions "D" and "E1" are for bottom package.  
Cross sections A A to be determined at 0.13 to 0.25mm from the leadtip.  
Dimension "D" and "D2" does not include mold flash, protrusion or gate burrs.  
Dimension "E1" and "E2" does not include interlead flash or protrusion.  
10  
REV. 1A February 2001  
KM4200  
DATA SHEET  
Ordering Information  
Model  
Part Number  
KM4200IC8  
Package Container Pack Qty  
KM4200  
SOIC-8  
SOIC-8  
Rail  
Reel  
Rail  
95  
2500  
50  
KM4200IC8TR3  
KM4200IM8  
MSOP-8  
MSOP-8  
KM4200IM8TR3  
Reel  
4000  
Temperature range for all parts: -40°C to +85°C.  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICES TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT  
OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:  
1.  
Life support devices or systems are devices or systems which, (a) are intended for  
surgical implant into the body, or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant injury of the user.  
2.  
A critical component in any component of a life support device or system whose  
failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
© 2001 Fairchild Semiconductor Corporation  

相关型号:

KM4210

Dual, 0.5mA, Low Cost, +2.7V and %V, 75MHz Rail-to-Rail Amplifier
FAIRCHILD

KM4210IC8

Operational Amplifier, 2 Func, 5000uV Offset-Max, BIPolar, PDSO8, SOIC-8
FAIRCHILD

KM4210IM8

Dual, 0.5mA, Low Cost, +2.7V and %V, 75MHz Rail-to-Rail Amplifier
FAIRCHILD

KM4210IM8TR3

Dual, 0.5mA, Low Cost, +2.7V and %V, 75MHz Rail-to-Rail Amplifier
FAIRCHILD

KM4211

Dual, 0.2mA, Low Cost, +2.7V & +5V, 35MHz Rail-to-Rail Amp
FAIRCHILD

KM4211IC8

Dual, 0.2mA, Low Cost, +2.7V & +5V, 35MHz Rail-to-Rail Amp
FAIRCHILD

KM4211IC8TR3

Dual, 0.2mA, Low Cost, +2.7V & +5V, 35MHz Rail-to-Rail Amp
FAIRCHILD

KM4211IM8

Dual, 0.2mA, Low Cost, +2.7V & +5V, 35MHz Rail-to-Rail Amp
FAIRCHILD

KM4211IM8TR3

Dual, 0.2mA, Low Cost, +2.7V & +5V, 35MHz Rail-to-Rail Amp
FAIRCHILD

KM4212

Dual, 70A, Low Cost, +2.7V & +5V, 7.3MHz Rail-to-Rail Amp
FAIRCHILD

KM4212IC8

Dual, 70A, Low Cost, +2.7V & +5V, 7.3MHz Rail-to-Rail Amp
FAIRCHILD

KM4212IC8TR3

Dual, 70A, Low Cost, +2.7V & +5V, 7.3MHz Rail-to-Rail Amp
FAIRCHILD