MOC3051T-M [FAIRCHILD]

6-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVERS (600 VOLT PEAK); 6引脚DIP随机相位光隔离器可控硅驱动( 600伏PEAK )
MOC3051T-M
型号: MOC3051T-M
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

6-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVERS (600 VOLT PEAK)
6引脚DIP随机相位光隔离器可控硅驱动( 600伏PEAK )

可控硅 三端双向交流开关 驱动
文件: 总11页 (文件大小:541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
6-PIN DIP RANDOM-PHASE  
OPTOISOLATORS TRIAC DRIVERS  
(600 VOLT PEAK)  
MOC3051-M  
MOC3052-M  
PACKAGE  
SCHEMATIC  
ANODE  
1
6
MAIN TERM.  
6
6
CATHODE  
N/C  
2
3
5
4
NC*  
1
MAIN TERM.  
1
*DO NOT CONNECT  
(TRIAC SUBSTRATE)  
6
1
DESCRIPTION  
The MOC3051-M and MOC3052-M consist of a AlGaAs infrared emitting diode optically coupled to a non-zero-crossing silicon  
bilateral AC switch (triac). These devices isolate low voltage logic from 115 and 240 Vac lines to provide random phase control of  
high current triacs or thyristors. These devices feature greatly enhanced static dv/dt capability to ensure stable switching perfor-  
mance of inductive loads.  
FEATURES  
Excellent I stability—IR emitting diode has low degradation  
FT  
High isolation voltage—minimum 7500 peak VAC  
Underwriters Laboratory (UL) recognized—File #E90700  
600V peak blocking voltage  
VDE recognized (File #94766)  
- Ordering option V (e.g. MOC3052V-M)  
APPLICATIONS  
Solenoid/valve controls  
Lamp ballasts  
Static AC power switch  
Interfacing microprocessors to 115 and 240 Vac peripherals  
Solid state relay  
Incandescent lamp dimmers  
Temperature controls  
Motor controls  
© 2005 Fairchild Semiconductor Corporation  
Page 1 of 11  
6/15/05  
6-PIN DIP RANDOM-PHASE  
OPTOISOLATORS TRIAC DRIVERS  
(600 VOLT PEAK)  
MOC3051-M  
MOC3052-M  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
Parameters  
Symbol  
Device  
Value  
Units  
TOTAL DEVICE  
Storage Temperature  
Operating Temperature  
Lead Solder Temperature  
Junction Temperature Range  
T
All  
All  
All  
All  
All  
-40 to +150  
-40 to +85  
260 for 10 sec  
-40 to +100  
7500  
°C  
°C  
STG  
T
OPR  
T
°C  
SOL  
T
°C  
J
(3)  
Isolation Surge Voltage (peak AC voltage, 60Hz, 1 sec duration)  
V
Vac(pk)  
mW  
ISO  
Total Device Power Dissipation @ 25°C  
Derate above 25°C  
330  
P
All  
D
4.4  
mW/°C  
EMITTER  
Continuous Forward Current  
Reverse Voltage  
I
All  
All  
60  
3
mA  
V
F
V
R
Total Power Dissipation 25°C Ambient  
Derate above 25°C  
100  
1.33  
mW  
P
All  
D
mW/°C  
DETECTOR  
Off-State Output Terminal Voltage  
Peak Repetitive Surge Current (PW = 100 ms, 120 pps)  
Total Power Dissipation @ 25°C Ambient  
Derate above 25°C  
V
All  
All  
600  
1
V
A
DRM  
I
TSM  
300  
4
mW  
mW/°C  
P
All  
D
© 2005 Fairchild Semiconductor Corporation  
Page 2 of 11  
6/15/05  
6-PIN DIP RANDOM-PHASE  
OPTOISOLATORS TRIAC DRIVERS  
(600 VOLT PEAK)  
MOC3051-M  
MOC3052-M  
ELECTRICAL CHARACTERISTICS (T = 25°C Unless otherwise specified)  
A
INDIVIDUAL COMPONENT CHARACTERISTICS  
Parameters  
Test Conditions  
Symbol Device  
Min  
Typ*  
Max Units  
EMITTER  
Input Forward Voltage  
I = 10 mA  
V
All  
All  
1.15  
0.05  
1.5  
V
F
F
Reverse Leakage Current  
DETECTOR  
V = 3 V  
I
100  
µA  
R
R
Peak Blocking Current, Either Direction  
Peak On-State Voltage, Either Direction  
Critical Rate of Rise of Off-State Voltage  
V
, I = 0 (note 1)  
I
DRM  
All  
All  
All  
10  
100  
2.5  
nA  
V
DRM  
F
I
= 100 mA peak, I = 0  
V
TM  
1.7  
TM  
F
I = 0 (figure 7, @400V)  
dv/dt  
1000  
V/µs  
F
TRANSFER CHARACTERISTICS (T = 25°C Unless otherwise specified.)  
A
DC Characteristics  
Test Conditions  
Symbol  
Device  
Min  
Typ*  
Max  
Units  
MOC3051-M  
MOC3052-M  
All  
15  
10  
LED Trigger Current,  
either direction  
Main terminal  
Voltage = 3V (note 2)  
I
mA  
µA  
FT  
Holding Current, Either Direction  
I
280  
H
*Typical values at T = 25°C  
A
Note  
1. Test voltage must be applied within dv/dt rating.  
2. All devices are guaranteed to trigger at an I value less than or equal to max I . Therefore, recommended operating I lies  
F
FT  
F
between max 15 mA for MOC3051, 10 mA for MOC3052 and absolute max I (60 mA).  
F
3. Isolation surge votlage, VISO, is an internal device breakdown rating. For this text, pins 1 and 2 are common, and pins 4, 5 and  
6 are common.  
© 2005 Fairchild Semiconductor Corporation  
Page 3 of 11  
6/15/05  
6-PIN DIP RANDOM-PHASE  
OPTOISOLATORS TRIAC DRIVERS  
(600 VOLT PEAK)  
MOC3051-M  
MOC3052-M  
Figure. 1 LED Forward Voltage vs. Forward Current  
Figure. 2 On-State Characteristics  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
800  
600  
400  
200  
0
TA = -55oC  
-200  
-400  
-600  
-800  
TA = 25oC  
TA = 100oC  
-3  
-2  
-1  
0
1
2
3
1
10  
IF - LED FORWARD CURRENT (mA)  
100  
ON-STATE VOLTAGE - VTM (V)  
Figure. 4 LED Current Required to Trigger vs. LED Pulse Width  
Figure. 3 Trigger Current vs. Ambient Temperature  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
25  
NORMALIZED TO:  
PW  
100 µs  
in  
20  
15  
10  
5
0
1
2
5
10  
20  
50  
100  
PW , LED TRIGGER PULSE WIDTH (µs)  
in  
NORMALIZED TO T = 25°C  
A
sine wave. Phase control may be accomplished by an AC line  
zero cross detector and a variable pulse delay generator which  
is synchronized to the zero cross detector. The same task can  
be accomplished by a microprocessor which is synchronized  
to the AC zero crossing. The phase controlled trigger current  
may be a very short pulse which saves energy delivered to the  
input LED. LED trigger pulse currents shorter than 100 µs must  
have an increased amplitude as shown on Figure 4.This graph  
-40  
-20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE - TA (oC)  
I versus Temperature (normalized)  
F
This graph (figure 3) shows the increase of the trigger current  
when the device is expected to operate at an ambient tempera-  
ture below 25°C. Multiply the normalized I shown this graph  
shows the dependency of the trigger current I versus the  
FT  
FT  
with the data sheet guaranteed I .  
pulse width can be seen on the chart delay t(d) versus the LED  
trigger current.  
FT  
Example:  
T = -40°C, I = 10 mA  
I
in the graph I versus (PW) is normalized in respect to the  
A
FT  
FT FT  
I
@ -40°C = 10 mA x 1.4 = 14 mA  
minimum specified I for static condition, which is specified in  
FT  
FT  
the device characteristic. The normalized I has to be multi-  
plied with the devices guaranteed static trigger current.  
FT  
Phase Control Considerations  
LED Trigger Current versus PW (normalized)  
Example:  
Guaranteed I = 10 mA, Trigger pulse width PW = 3 µs  
FT  
Random Phase Triac drivers are designed to be phase control-  
lable. They may be triggered at any phase angle within the AC  
I
(pulsed) = 10 mA x 5 = 50 mA  
FT  
© 2005 Fairchild Semiconductor Corporation  
Page 4 of 11  
6/15/05  
6-PIN DIP RANDOM-PHASE  
OPTOISOLATORS TRIAC DRIVERS  
(600 VOLT PEAK)  
MOC3051-M  
MOC3052-M  
Minimum LED Off Time in Phase Control  
Applications  
AC SINE  
In Phase control applications one intends to be able to control  
each AC sine half wave from 0 to 180 degrees.Turn on at zero  
degrees means full power and turn on at 180 degree means  
zero power. This is not quite possible in reality because triac  
driver and triac have a fixed turn on time when activated at  
zero degrees. At a phase control angle close to 180 degrees  
the driver’s turn on pulse at the trailing edge of the AC sine  
wave must be limited to end 200 ms before AC zero cross as  
shown in Figure 5. This assures that the triac driver has time  
to switch off. Shorter times may cause loss of control at the  
following half cycle.  
0
ϒ
180°  
LED PW  
LED CURRENT  
LED TURN OFF MIN 200 µs  
Figure 5. Minimum Time for LED Turn–Off to Zero  
Cross of AC Trailing Edge  
Figure. 7 Leakage Current, IDRM vs.Temperature  
10000  
Figure. 6 Holding Current, IH vs.Temperature  
1000  
100  
10  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1
0.1  
0
-40 -30 -20 -10  
0
10  
20 30 40 50 60 70 80  
0.1  
-40  
-20  
0
20  
40  
60  
80  
100  
o
T , AMBIENT TEMPERATURE ( C)  
A
o
T
, AMBIENT TEMPERATURE ( C)  
A
I
versus dv/dt  
FT  
Triac drivers with good noise immunity (dv/dt static) have inter-  
nal noise rejection circuits which prevent false triggering of the  
device in the event of fast raising line voltage transients. Induc-  
tive loads generate a commutating dv/dt that may activate the  
triac drivers noise suppression circuits. This prevents the  
device from turning on at its specified trigger current. It will in  
this case go into the mode of “half waving” of the load. Half  
waving of the load may destroy the power triac and the load.  
Figure. 8 LED Trigger Current, I FT vs. dv/dt  
1.5  
1.4  
1.3  
1.2  
1.1  
NORMALIZED TO:  
I
at 3 V  
FT  
1
Figure 8 shows the dependency of the triac drivers I versus  
the reapplied voltage rise with a Vp of 400 V. This dv/dt condi-  
tion simulates a worst case commutating dv/dt amplitude.  
0.9  
0.8  
0.7  
FT  
0.6  
0.5  
It can be seen that the I does not change until a commutat-  
FT  
ing dv/dt reaches 1000 V/ms. The data sheet specified I is  
FT  
0.001  
0.01  
0.1  
1
10  
s)  
100  
1000 10000  
therefore applicable for all practical inductive loads and load  
factors.  
dv/dt (V/  
µ
© 2005 Fairchild Semiconductor Corporation  
Page 5 of 11  
6/15/05  
6-PIN DIP RANDOM-PHASE  
OPTOISOLATORS TRIAC DRIVERS  
(600 VOLT PEAK)  
MOC3051-M  
MOC3052-M  
t(delay), t(f) versus I  
FT  
Figure 9. Delay Time, t(d), and Fall Time, t(f),  
vs. LED Trigger Current  
The triac driver’s turn on switching speed consists of a turn on  
delay time t(d) and a fall time t(f). Figure 9 shows that the delay  
time depends on the LED trigger current, while the actual  
trigger transition time t(f) stays constant with about one micro  
second.  
100  
10  
t(d)  
t(f)  
The delay time is important in very short pulsed operation  
because it demands a higher trigger current at very short  
trigger pulses. This dependency is shown in the graph I  
1
FT  
versus LED PW.  
The turn on transition time t(f) combined with the power triac’s  
turn on time is important to the power dissipation of this  
device.  
0.1  
10  
20  
30  
40  
50  
60  
IFT, LED TRIGGER CURRENT (mA)  
SCOPE  
ZERO CROSS  
DETECTOR  
I
FT  
115 VAC  
V
TM  
EXT. SYNC  
PHASE CTRL.  
PW CTRL.  
+400  
Vdc  
FUNCTION  
GENERATOR  
t(d)  
V
R
TEST  
t(f)  
PERIOD CTRL.  
R = 1 k  
V
AMPL. CTRL.  
o
V
out  
I
FT  
PULSE  
INPUT  
TM  
ISOL. TRANSF.  
AC  
MERCURY  
WETTED  
RELAY  
C
DUT  
TEST  
10 kΩ  
X100  
SCOPE  
PROBE  
D.U.T.  
100  
1. The mercury wetted relay provides a high speed repeated  
pulse to the D.U.T.  
V
= 400 V  
max  
APPLIED VOLTAGE  
WAVEFORM  
252 V  
2. 100x scope probes are used, to allow high speeds and  
voltages.  
0.63 V  
2
τ
0 VOLTS  
dv/dt =  
=
τ
RC  
τ
RC  
3. The worst-case condition for static dv/dt is established by  
triggering the D.U.T. with a normal LED input current, then  
Figure 10. Static dv/dt Test Circuit  
removing the current.The variable R  
allows the dv/dt to  
TEST  
be gradually increased until the D.U.T. continues to trigger  
in response to the applied voltage pulse, even after the LED  
current has been removed. The dv/dt is then decreased  
until the D.U.T. stops triggering. τ is measured at this  
RC  
point and recorded.  
© 2005 Fairchild Semiconductor Corporation  
Page 6 of 11  
6/15/05  
6-PIN DIP RANDOM-PHASE  
OPTOISOLATORS TRIAC DRIVERS  
(600 VOLT PEAK)  
MOC3051-M  
MOC3052-M  
APPLICATIONS GUIDE  
TRIAC DRIVER  
V
R
LED  
CC  
POWER TRIAC  
Basic Triac Driver Circuit  
AC LINE  
The new random phase triac driver family MOC3052-M and  
MOC3051-M are very immune to static dv/dt which allows  
snubberless operations in all applications where external  
generated noise in the AC line is below its guaranteed dv/dt  
withstand capability. For these applications a snubber circuit is  
not necessary when a noise insensitive power triac is used.  
Figure 11 shows the circuit diagram. The triac driver is directly  
connected to the triac main terminal 2 and a series Resistor R  
which limits the current to the triac driver. Current limiting  
resistor R must have a minimum value which restricts the  
current into the driver to maximum 1A.  
R
Q
LOAD  
CONTROL  
RET.  
R
= (V  
CC  
p
- V LED - V Q)/I  
sat FT  
R = V AC line/I  
TSM  
LED  
F
Figure 11. Basic Driver Circuit  
R = Vp AC/I max rep. = Vp AC/1A  
TM  
TRIAC DRIVER  
POWER TRIAC  
V
R
The power dissipation of this current limiting resistor and the  
triac driver is very small because the power triac carries the  
load current as soon as the current through driver and current  
limiting resistor reaches the trigger current of the power triac.  
The switching transition times for the driver is only one micro  
second and for power triacs typical four micro seconds.  
CC  
LED  
R
S
AC LINE  
R
MOV  
C
S
CONTROL  
RET.  
LOAD  
Triac Driver Circuit for Noisy Environments  
Typical Snubber values R = 33 , C = 0.01 µF  
S
S
MOV (Metal Oxide Varistor) protects triac and  
When the transient rate of rise and amplitude are expected to  
exceed the power triacs and triac drivers maximum ratings a  
snubber circuit as shown in Figure 12 is recommended. Fast  
transients are slowed by the R-C snubber and excessive  
amplitudes are clipped by the Metal Oxide Varistor MOV.  
driver from transient overvoltages >V max.  
DRM  
Figure 12. Triac Driver Circuit for Noisy Environments  
Triac Driver Circuit for Extremely Noisy Environments, as  
specified in the noise standards IEEE472 and IEC255-4.  
Industrial control applications do specify a maximum transient  
noise dv/dt and peak voltage which is superimposed onto the  
AC line voltage. In order to pass this environment noise test a  
modified snubber network as shown in Figure 13 is recom-  
mended.  
POWER TRIAC  
TRIAC DRIVER  
V
R
R
CC  
LED  
R
S
AC LINE  
MOV  
C
S
CONTROL  
RET.  
LOAD  
Recommended snubber to pass IEEE472 and IEC255-4 noise tests  
= 47 W, C = 0.01 mF  
R
S
S
Figure 13. Triac Driver Circuit for Extremely Noisy  
Environments  
© 2005 Fairchild Semiconductor Corporation  
Page 7 of 11  
6/15/05  
6-PIN DIP RANDOM-PHASE  
OPTOISOLATORS TRIAC DRIVERS  
(600 VOLT PEAK)  
MOC3051-M  
MOC3052-M  
Package Dimensions (Through Hole)  
Package Dimensions (Surface Mount)  
0.350 (8.89)  
0.320 (8.13)  
0.350 (8.89)  
0.320 (8.13)  
Pin 1 ID  
Pin 1 ID  
0.390 (9.90)  
0.332 (8.43)  
0.260 (6.60)  
0.240 (6.10)  
0.260 (6.60)  
0.240 (6.10)  
0.070 (1.77)  
0.040 (1.02)  
0.070 (1.77)  
0.040 (1.02)  
0.320 (8.13)  
0.320 (8.13)  
0.014 (0.36)  
0.014 (0.36)  
0.010 (0.25)  
0.010 (0.25)  
0.200 (5.08)  
0.115 (2.93)  
0.200 (5.08)  
0.115 (2.93)  
0.012 (0.30)  
0.008 (0.20)  
0.100 (2.54)  
0.015 (0.38)  
0.025 (0.63)  
0.020 (0.51)  
0.100 [2.54]  
0.035 (0.88)  
0.012 (0.30)  
0.020 (0.50)  
0.016 (0.41)  
15°  
0.020 (0.50)  
0.016 (0.41)  
0.100 (2.54)  
0.012 (0.30)  
Package Dimensions (0.4” Lead Spacing)  
Recommended Pad Layout for  
Surface Mount Leadform  
0.350 (8.89)  
0.320 (8.13)  
Pin 1 ID  
0.070 (1.78)  
0.260 (6.60)  
0.240 (6.10)  
0.060 (1.52)  
0.070 (1.77)  
0.040 (1.02)  
0.014 (0.36)  
0.010 (0.25)  
0.425 (10.79)  
0.100 (2.54)  
0.305 (7.75)  
0.030 (0.76)  
0.200 (5.08)  
0.115 (2.93)  
0.100 (2.54)  
0.015 (0.38)  
0.012 (0.30)  
0.100 [2.54]  
0.020 (0.50)  
0.016 (0.41)  
0.008 (0.21)  
0.425 (10.80)  
0.400 (10.16)  
NOTE  
All dimensions are in inches (millimeters)  
© 2005 Fairchild Semiconductor Corporation  
Page 8 of 11  
6/15/05  
6-PIN DIP RANDOM-PHASE  
OPTOISOLATORS TRIAC DRIVERS  
(600 VOLT PEAK)  
MOC3051-M  
MOC3052-M  
ORDERING INFORMATION  
Option  
Order Entry Identifier  
Description  
S
S
SR2  
T
Surface Mount Lead Bend  
Surface Mount; Tape and reel  
0.4" Lead Spacing  
SD  
W
300  
300W  
3S  
V
VDE 0884  
TV  
VDE 0884, 0.4" Lead Spacing  
VDE 0884, Surface Mount  
VDE 0884, Surface Mount, Tape & Reel  
SR2V  
SR2V  
3SD  
MARKING INFORMATION  
1
2
MOC3051  
V X YY Q  
6
5
3
4
Definitions  
1
2
Fairchild logo  
Device number  
VDE mark (Note: Only appears on parts ordered with VDE  
option – See order entry table)  
3
4
5
6
One digit year code, e.g., ‘3’  
Two digit work week ranging from ‘01’ to ‘53’  
Assembly package code  
*Note – Parts that do not have the ‘V’ option (see definition 3 above) that are marked with  
date code ‘325’ or earlier are marked in portrait format.  
© 2005 Fairchild Semiconductor Corporation  
Page 9 of 11  
6/15/05  
6-PIN DIP RANDOM-PHASE  
OPTOISOLATORS TRIAC DRIVERS  
(600 VOLT PEAK)  
MOC3051-M  
MOC3052-M  
Carrier Tape Specifications  
12.0 0.1  
4.5 0.20  
2.0 0.05  
Ø1.5 MIN  
1.75 0.10  
0.30 0.05  
4.0 0.1  
11.5 1.0  
24.0 0.3  
9.1 0.20  
21.0 0.1  
Ø1.5 0.1/-0  
10.1 0.20  
0.1 MAX  
User Direction of Feed  
Reflow Profile (White Package, -M Suffix)  
300  
280  
260  
240  
220  
200  
180  
260°C  
>245°C = 42 Sec  
Time above  
160  
°C  
183°C = 90 Sec  
140  
120  
100  
80  
1.822°C/Sec Ramp up rate  
60  
40  
33 Sec  
20  
0
0
60  
120  
180  
270  
360  
Time (s)  
© 2005 Fairchild Semiconductor Corporation  
Page 10 of 11  
6/15/05  
6-PIN DIP RANDOM-PHASE  
OPTOISOLATORS TRIAC DRIVERS  
(600 VOLT PEAK)  
MOC3051-M  
MOC3052-M  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO  
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME  
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in a significant injury of the user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
© 2005 Fairchild Semiconductor Corporation  
Page 11 of 11  
6/15/05  

相关型号:

MOC3051TM

6-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVERS (600 VOLT PEAK)
FAIRCHILD

MOC3051TV

Triac Output Optocoupler, 1-Element, 7500V Isolation, PLASTIC, DIP-6
MOTOROLA

MOC3051TV-M

6-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVERS (600 VOLT PEAK)
FAIRCHILD

MOC3051TVM

6-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVERS (600 VOLT PEAK)
FAIRCHILD

MOC3051TVM

6-Pin DIP Random-Phase Triac Driver Optocoupler (600 Volt Peak)
ONSEMI

MOC3051V-M

6-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVERS (600 VOLT PEAK)
FAIRCHILD

MOC3051VM

6-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVERS (600 VOLT PEAK)
FAIRCHILD

MOC3051VM

6 引脚 DIP 随机相位三端双向可控硅开关驱动器光耦合器
ONSEMI

MOC3052

6-Pin DIP Random-Phase Optoisolators Triac Drivers
MOTOROLA

MOC3052

Property of Lite-On Only
LITEON

MOC3052-M

6-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVERS (600 VOLT PEAK)
FAIRCHILD

MOC3052-SMT&R

Optocoupler - Trigger Device Output, 1 CHANNEL TRIAC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, SURFACE MOUNT, DIP-6
ISOCOM