N302AP [FAIRCHILD]

N-Channel Logic Level PWM Optimized UltraFET Trench Power MOSFETs; N沟道逻辑电平PWM优化UltraFET沟道功率MOSFET
N302AP
型号: N302AP
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

N-Channel Logic Level PWM Optimized UltraFET Trench Power MOSFETs
N沟道逻辑电平PWM优化UltraFET沟道功率MOSFET

文件: 总10页 (文件大小:125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 2002  
ISL9N302AP3  
N-Channel Logic Level PWM Optimized UltraFET® Trench Power MOSFETs  
General Description  
Features  
This device employs a new advanced trench MOSFET  
technology and features low gate charge while maintaining  
low on-resistance.  
• Fast switching  
• r  
• r  
= 0.0019(Typ), V = 10V  
GS  
DS(ON)  
DS(ON)  
= 0.0027(Typ), V = 4.5V  
Optimized for switching applications, this device improves  
the overall efficiency of DC/DC converters and allows  
operation to higher switching frequencies.  
GS  
• Q (Typ) = 110nC, V = 5V  
g
GS  
• Q (Typ) = 31nC  
gd  
Applications  
• DC/DC converters  
• C  
(Typ) = 11000pF  
ISS  
SOURCE  
DRAIN  
GATE  
D
S
G
DRAIN  
(FLANGE)  
TO-220AB  
MOSFET Maximum Ratings T = 25°C unless otherwise noted  
A
Symbol  
Parameter  
Ratings  
30  
Units  
V
V
V
V
Drain to Source Voltage  
Gate to Source Voltage  
DSS  
GS  
20  
Drain Current  
o
75  
75  
A
A
Continuous (T = 25 C, V = 10V)  
C
GS  
I
D
o
Continuous (T = 100 C, V = 4.5V)  
C
GS  
Pulsed  
Figure 4  
A
Power dissipation  
Derate above 25 C  
345  
2.3  
W
W/ C  
P
o
o
D
o
T , T  
Operating and Storage Temperature  
-55 to 175  
C
J
STG  
Thermal Characteristics  
o
o
R
Thermal Resistance Junction to Case TO-220  
0.43  
62  
C/W  
C/W  
θJC  
θJA  
R
Thermal Resistance Junction to Ambient TO-220  
Package Marking and Ordering Information  
Device Marking  
Device  
Package  
Reel Size  
Tape Width  
Quantity  
N302AP  
ISL9N302AP3  
TO-220AB  
Tube  
N/A  
50  
©2002 Fairchild Semiconductor Corporation  
Rev. B January 2002  
Electrical Characteristics T = 25°C unless otherwise noted  
A
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
I
= 250µA, V = 0V  
30  
-
-
-
-
-
-
V
VDSS  
D
GS  
V
V
V
= 25V  
= 0V  
1
DS  
GS  
GS  
I
µA  
nA  
DSS  
GSS  
o
T
= 150  
-
250  
100  
C
I
=
20V  
-
On Characteristics  
V
Gate to Source Threshold Voltage  
V
= V , I = 250µA  
1
-
-
3
V
GS(TH)  
GS  
DS  
D
I
I
= 75A, V = 10V  
0.0019 0.0025  
0.0027 0.0033  
D
D
GS  
r
Drain to Source On Resistance  
DS(ON)  
= 75A, V = 4.5V  
-
GS  
Dynamic Characteristics  
C
C
C
Input Capacitance  
-
-
-
11000  
2000  
900  
200  
110  
12  
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
ISS  
V
= 15V, V = 0V,  
GS  
DS  
Output Capacitance  
-
-
OSS  
RSS  
f = 1MHz  
Reverse Transfer Capacitance  
Total Gate Charge at 10V  
Total Gate Charge at 5V  
Threshold Gate Charge  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
Q
Q
Q
Q
Q
V
V
V
= 0V to 10V  
= 0V to 5V  
= 0V to 1V  
300  
165  
18  
-
g(TOT)  
g(5)  
g(TH)  
gs  
GS  
GS  
GS  
-
-
-
-
V
= 15V  
DD  
= 75A  
I
D
I = 1.0mA  
g
25  
31  
-
gd  
Switching Characteristics (V = 4.5V)  
GS  
t
t
t
t
t
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
29  
120  
45  
34  
-
224  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
-
d(ON)  
-
V
V
= 15V, I = 28A  
r
DD  
GS  
D
= 4.5V, R = 1.5Ω  
Turn-Off Delay Time  
Fall Time  
-
-
GS  
d(OFF)  
f
Turn-Off Time  
119  
OFF  
Switching Characteristics (V = 10V)  
GS  
t
t
t
t
t
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
16  
120  
70  
30  
-
204  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
-
d(ON)  
-
V
V
= 15V, I = 28A  
r
DD  
GS  
D
= 10V, R = 1.5Ω  
Turn-Off Delay Time  
Fall Time  
-
-
GS  
d(OFF)  
f
Turn-Off Time  
150  
OFF  
Unclamped Inductive Switching  
t
Avalanche Time  
I
= 7.2A, L = 3.0mH  
D
480  
-
-
µs  
AV  
Drain-Source Diode Characteristics  
I
I
I
I
= 75A  
= 40A  
-
-
-
-
-
-
-
-
1.25  
1.0  
42  
V
V
SD  
SD  
SD  
SD  
V
t
Source to Drain Diode Voltage  
SD  
Reverse Recovery Time  
= 75A, dI /dt = 100A/µs  
= 75A, dI /dt = 100A/µs  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
34  
RR  
SD  
©2002 Fairchild Semiconductor Corporation  
Rev. B January 2002  
Typical Characteristic  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
80  
60  
40  
20  
0
V
= 10V  
GS  
V
= 4.5V  
GS  
0
25  
50  
75  
100  
150  
175  
125  
o
25  
50  
75  
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
C
T , CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P  
x Z  
x R  
+ T  
J
DM  
θJC  
θJC C  
0.01  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
Figure 3. Normalized Maximum Transient Thermal Impedance  
5000  
o
T
= 25 C  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
1000  
V
= 10V  
= 5V  
I = I  
25  
GS  
V
GS  
100  
50  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
©2002 Fairchild Semiconductor Corporation  
Rev. B January 2002  
Typical Characteristic (Continued)  
150  
150  
125  
100  
75  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 3.5V  
GS  
125  
V
= 15V  
DD  
V
= 3V  
GS  
100  
75  
50  
25  
0
o
V
= 4.5V  
T
= 25 C  
GS  
J
50  
o
T
= 25 C  
o
C
T
= 175 C  
J
V
= 10V  
GS  
25  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
T
= -55 C  
J
0
0
1.5  
2.0  
2.5  
3.0  
3.5  
0.5  
1.0  
1.5  
2.0  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
DS  
Figure 5. Transfer Characteristics  
Figure 6. Saturation Characteristics  
10  
1.8  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
1.6  
8
6
4
2
0
I
= 75A  
D
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 10A  
D
V
= 10V, I = 75A  
D
GS  
-80  
-40  
0
40  
80  
120  
160  
200  
2
4
6
8
10  
o
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
Figure 7. Drain to Source On Resistance vs Gate  
Voltage and Drain Current  
Figure 8. Normalized Drain to Source On  
Resistance vs Junction Temperature  
1.4  
1.2  
V
= V , I = 250µA  
DS D  
GS  
I
= 250µA  
D
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.1  
1.0  
0.9  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 9. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 10. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
©2002 Fairchild Semiconductor Corporation  
Rev. B January 2002  
Typical Characteristic (Continued)  
20000  
10000  
10  
8
V
= 15V  
DD  
C
= C + C  
GS GD  
ISS  
C
C + C  
DS GD  
OSS  
6
4
C
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
2
1000  
500  
I
I
= 75A  
= 28A  
D
D
V
= 0V, f = 1MHz  
GS  
0
0
50  
100  
150  
200  
250  
0.1  
1
10  
30  
V
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
DS  
g
Figure 11. Capacitance vs Drain to Source  
Voltage  
Figure 12. Gate Charge Waveforms for Constant  
Gate Currents  
1000  
1400  
V
= 10V, V = 15V, I = 28A  
V
= 4.5V, V = 15V, I = 28A  
DD D  
GS  
DD  
D
GS  
1200  
1000  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
t
t
r
f
t
d(OFF)  
t
f
t
d(OFF)  
t
r
t
d(ON)  
t
d(ON)  
10  
20  
30  
40  
50  
0
0
10  
GS  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE ()  
R
, GATE TO SOURCE RESISTANCE ()  
GS  
Figure 13. Switching Time vs Gate Resistance  
Figure 14. Switching Time vs Gate Resistance  
Test Circuits and Waveforms  
V
BV  
DSS  
DS  
t
P
V
DS  
L
I
AS  
V
DD  
VARY t TO OBTAIN  
P
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
©2002 Fairchild Semiconductor Corporation  
Rev. B January 2002  
Test Circuits and Waveforms (Continued)  
V
DS  
V
Q
DD  
g(TOT)  
R
L
V
DS  
V
= 10V  
GS  
Q
g(5)  
V
GS  
+
-
V
V
= 5V  
DD  
V
GS  
GS  
V
= 1V  
DUT  
GS  
0
I
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
-
V
GS  
V
DD  
10%  
10%  
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
©2002 Fairchild Semiconductor Corporation  
Rev. B January 2002  
PSPICE Electrical Model  
SUBCKT ISL9N302AP3 2 1 3 ;  
rev Nov 2001  
CA 12 8 9e-9  
Cb 15 14 5.5e-9  
Cin 6 8 1e-8  
LDRAIN  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
DBREAK  
Ebreak 11 7 17 18 30.4  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
+
RSLC2  
5
51  
ESLC  
11  
-
+
50  
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
-
ESG  
EVTHRES  
+
16  
It 8 17 1  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
Lgate 1 9 5.618e-9  
Ldrain 2 5 1e-9  
Lsource 3 7 1.98e-9  
+
6
-
18  
22  
MMED  
9
20  
MSTRO  
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
RLgate 1 9 56.1  
RLdrain 2 5 15  
RLsource 3 7 19.8  
8
7
RSOURCE  
RLSOURCE  
S1A  
12  
S2A  
RBREAK  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 4e-4  
Rgate 9 20 5.93e-1  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
Rsource 8 7 RsourceMOD 1.3e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
RVTHRES  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),3))}  
.MODEL DbodyMOD D (IS=2e-10 N=1.05 RS=1.8e-3 TRS1=9e-4 TRS2=1e-6 + CJO=4.9e-9 M=4.9e-1 TT=1e-13 XTI=0)  
.MODEL DbreakMOD D (RS=2.5e-1 TRS1=1e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=3.5e-9 IS=1e-30 N=10 M=4.7e-1)  
.MODEL MstroMOD NMOS (VTO=2.1 KP=550 IS=1e-25 N=10 TOX=1 L=1u W=1u)  
.MODEL MmedMOD NMOS (VTO=1.6 KP=30 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=5.93e-1)  
.MODEL MweakMOD NMOS (VTO=1.22 KP=1e-1 IS=1e-40 N=10 TOX=1 L=1u W=1u RG=5.93 RS=1e-1)  
.MODEL RbreakMOD RES (TC1=1e-3 TC2=-7e-7)  
.MODEL RdrainMOD RES (TC1=1.2e-2 TC2=2.5e-5)  
.MODEL RSLCMOD RES (TC1=3.5e-9 TC2=5e-6)  
.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-2.9e-3 TC2=-9e-6)  
.MODEL RvtempMOD RES (TC1=-1.8e-3 TC2=1e-6)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-1.5)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-3.5)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.4 VOFF=0.1)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.1 VOFF=-0.4)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2002 Fairchild Semiconductor Corporation  
Rev. B January 2002  
SABER Electrical Model  
REV Nov 2001  
template ISL9N302AP3 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=2e-10,nl=1.05,rs=1.8e-3,trs1=9e-4,trs2=1e-6,cjo=4.9e-9,m=4.9e-1,tt=1e-13,xti=0)  
dp..model dbreakmod = (rs=2.5e-1,trs1=1e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=3.5e-9,isl=10e-30,nl=10,m=4.7e-1)  
m..model mstrongmod = (type=_n,vto=2.1,kp=550,is=1e-25, tox=1)  
m..model mmedmod = (type=_n,vto=1.6,kp=30,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=1.22,kp=1e-1,is=1e-40, tox=1,rs=1e-1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-3.5,voff=-1.5)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-3.5)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.4,voff=0.1)  
LDRAIN  
DPLCAP  
DRAIN  
2
5
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.1,voff=-0.4)  
c.ca n12 n8 = 5e-9  
c.cb n15 n14 = 5.5e-9  
c.cin n6 n8 = 1e-8  
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
ISCL  
DBREAK  
11  
50  
-
RDRAIN  
6
8
ESG  
spe.ebreak n11 n7 n17 n18 = 30.4  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
+
6
-
18  
22  
EBREAK  
+
MMED  
1
9
20  
MSTRO  
17  
18  
-
RLGATE  
LSOURCE  
i.it n8 n17 = 1  
CIN  
SOURCE  
3
8
7
l.lgate n1 n9 = 5.618e-9  
l.ldrain n2 n5 = 1e-9  
l.lsource n3 n7 = 1.98e-9  
RSOURCE  
RLSOURCE  
S1A  
12  
S2A  
RBREAK  
15  
13  
8
14  
13  
17  
18  
res.rlgate n1 n9 = 56.1  
res.rldrain n2 n5 = 15  
res.rlsource n3 n7 = 19.8  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
res.rbreak n17 n18 = 1, tc1=1e-3,tc2=-7e-7  
res.rdrain n50 n16 = 4e-4, tc1=1.2e-2,tc2=2.5e-5  
res.rgate n9 n20 = 5.93e-1  
res.rslc1 n5 n51 = 1e-6, tc1=3.5e-9,tc2=5e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 1.3e-3, tc1=1e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-2.9e-3,tc2=-9e-6  
res.rvtemp n18 n19 = 1, tc1=-1.8e-3,tc2=1e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 3))  
}
©2002 Fairchild Semiconductor Corporation  
Rev. B January 2002  
SPICE Thermal Model  
JUNCTION  
th  
REV May 2001  
TISL9N302AP3  
CTHERM1 th 6 4.5e-3  
CTHERM2 6 5 2e-2  
CTHERM3 5 4 1.5e-2  
CTHERM4 4 3 2.5e-2  
CTHERM5 3 2 7e-2  
CTHERM6 2 tl 2.5e-1  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 th 6 2e-3  
RTHERM2 6 5 8.5e-3  
RTHERM3 5 4 6e-2  
RTHERM4 4 3 8e-2  
RTHERM5 3 2 9e-2  
RTHERM6 2 tl 1e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model TISL9N302AP3  
template thermal_model th tl  
thermal_c th, tl  
4
3
2
{
ctherm.ctherm1 th 6 = 4.5e-3  
ctherm.ctherm2 6 5 = 2e-2  
ctherm.ctherm3 5 4 = 1.5e-2  
ctherm.ctherm4 4 3 = 2.5e-2  
ctherm.ctherm5 3 2 = 7e-2  
ctherm.ctherm6 2 tl = 2.5e-1  
rtherm.rtherm1 th 6 =2e-3  
rtherm.rtherm2 6 5 = 8.5e-3  
rtherm.rtherm3 5 4 = 6e-2  
rtherm.rtherm4 4 3 = 8e-2  
rtherm.rtherm5 3 2 = 9e-2  
rtherm.rtherm6 2 tl = 1e-1  
}
tl  
CASE  
©2002 Fairchild Semiconductor Corporation  
Rev. B January 2002  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

N302AS

N-Channel Logic Level PWM Optimized UltraFET Trench Power MOSFETs
FAIRCHILD

N303AP

N-Channel Logic Level UltraFET Trench MOSFETs 30V, 75A, 3.2mз
FAIRCHILD

N303AS

N-Channel Logic Level UltraFET Trench MOSFETs 30V, 75A, 3.2mз
FAIRCHILD

N304-003

Duplex Multimode 62.5/125 Fiber Patch Cable (SC/ST), 1M (3-ft.)
TRIPPLITE

N304-004

Duplex Multimode 62.5/125 Fiber Patch Cable (SC/ST), 1.2M (4-ft.)
TRIPPLITE

N304-010

Duplex Multimode 62.5/125 Fiber Patch Cable (SC/ST), 3M (10-ft.)
TRIPPLITE

N304-05M

Duplex Multimode 62.5/125 Fiber Patch Cable (SC/ST), 5M (16-ft.)
TRIPPLITE

N304-06M

Duplex Multimode 62.5/125 Fiber Patch Cable (SC/ST), 6M (20-ft.)
TRIPPLITE

N304-09M

Duplex Multimode 62.5/125 Fiber Patch Cable (SC/ST), 9M (30-ft.)
TRIPPLITE

N304-11M

Duplex Multimode 62.5/125 Fiber Patch Cable (SC/ST), 11M (36-ft.)
TRIPPLITE

N304-15M

Duplex Multimode 62.5/125 Fiber Patch Cable (SC/ST), 15M (50-ft.)
TRIPPLITE

N306-001

Duplex Multimode 62.5/125 Fiber Patch Cable (SC/SC), 0.3M (1-ft.)
TRIPPLITE