RC4200N [FAIRCHILD]

Analog Multiplier; 模拟乘法器
RC4200N
型号: RC4200N
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Analog Multiplier
模拟乘法器

文件: 总23页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
RC4200  
Analog Multiplier  
Description  
Features  
The RC4200 analog multiplier has complete compensation  
for nonlinearity, the primary source of error and distortion.  
This multiplier also has three onboard operational amplifiers  
designed specifically for use in multiplier logging circuits.  
These amplifiers are frequency compensated for optimum  
AC response in a logging circuit, the heart of a multiplier,  
and can therefore provide superior AC response.  
• High accuracy  
• Nonlinearity – 0.1%  
Temperature coefficient – 0.005%/°C  
• Multiple functions  
• Multiply, divide, square, square root, RMS-to-DC  
conversion, AGC and modulate/demodulate  
• Wide bandwidth – 4 MHz  
• Signal-to-noise ratio – 94 dB  
The RC4200 can be used in a wide variety of applications  
without sacrificing accuracy. Four-quadrant multiplication,  
two-quadrant division, square rooting, squaring and RMS  
conversion can all be easily implemented with predictable  
accuracy. The nonlinearity compensation is not just trimmed  
at a single temperature, it is designed to provide compensa-  
tion over the full temperature range. This nonlinearity  
compensation combined with the low gain and offset drift  
inherent in a well-designed monolithic chip provides a very  
high accuracy and a low temperature coefficient.  
Applications  
• Low distortion audio modulation circuits  
Voltage-controlled active filters  
• Precision oscillators  
Block Diagram  
I
I
2
1
Q1  
Q2  
+
V
OS1  
+
V
OS2  
+
Q4  
Q3  
I
I
3
4
RC4200  
65-4200-01  
REV. 1.2.1 6/14/01  
RC4200  
PRODUCT SPECIFICATION  
Previous multiplier designs have suffered from an additional  
undesired linear term in the above equation; the collector  
Functional Description  
The RC4200 multiplier is designed to multiply two input  
current times the emitter resistance. The I r term intro-  
C E  
currents (I and I ) and to divide by a third input current (I ).  
1
2
4
duces a parabolic nonlinearity even with matched transistors.  
Fairchild Semiconductor has developed a unique and propri-  
etary means of inherently compensating for this undesired  
The output is also in the form of a current (I ). A simplified  
circuit diagram is shown in the Block Diagram. The nominal  
relationship between the three inputs and the output is:  
3
I r term. Furthermore, this Fairchild Semiconductor devel-  
C E  
oped circuit technique compensates linearity error over tem-  
perature changes. The nonlinearity versus temperature is  
significantly improved over earlier designs.  
I1I2  
---------  
I3  
=
(1)  
I4  
The three input currents must be positive and restricted to a  
range of 1 µA to 1 mA. These currents go into the multiplier  
chip at op amp summing junctions which are nominally at  
zero volts. Therefore, an input voltage can be easily  
From equation (2) and by assuming equal transistor junction  
temperatures, summing base-to-emitter voltage drops around  
the transistor array yields:  
I1  
I2  
I3  
I4  
converted to an input current by a series resistor. Any  
number of currents may be summed at the inputs. Depending  
on the application, the output current can be converted to a  
voltage by an external op amp or used directly. This capa-  
bilty of combining input currents and voltages in various  
combinations provides great versatility in application.  
KT  
-------  
q
-------  
IS1  
-------  
IS2  
-------  
IS3  
-------  
IS4  
In  
= In  
– In  
–In  
= 0 (3)  
This equation reduces to:  
IS1 S2  
I
I1I2  
---------------  
--------- =  
I3I4  
(4)  
IS3 S4  
I
Inside the multiplier chip, the three op amps make the  
collector currents of transistors Q1, Q2 and Q4 equal to their  
respective input currents (I , I , and I ). These op amps are  
The rate of reverse saturation current I I /I I , depends  
S1 S2 S3 S4  
on the transistor matching. In a monolithic multiplier this  
matching is easily achieved and the rate is very close to  
unity, typically 1.0 1%. The final result is the desired  
relationship:  
1
2
4
designed with current source outputs and are phase-compen-  
sated for optimum frequency response as a multiplier. Power  
drain of the op amps was minimized to prevent the introduc-  
tion of undesired thermal gradients on the chip. The three op  
amps operate on a single supply voltage (nominally -15V)  
and total quiescent current drain is less than 4 mA. These  
special op amps provide significantly improved performance  
in comparison to 741-type op amps.  
I1I2  
---------  
I3  
=
(5)  
I4  
The inherent linearity and gain stability combined with low  
cost and versatility makes this new circuit ideal for a wide  
range of nonlinear functions.  
The actual multiplication is done within the log-antilog  
configuration of the Q1-Q4 transistor array. These four  
transistors, with associated proprietary circuitry, were  
specially designed to precisely implement the relationship.  
ICN  
kT  
------ --------  
VBEN  
=
In  
(2)  
Q
ISN  
Pin Assignments  
I
1
2
3
4
8
7
6
5
I
1
2
V
V
OS2  
V  
OS1  
GND  
S
I
(Output)  
I
4
3
65-4200-07  
2
REV. 1.2.1 6/14/01  
PRODUCT SPECIFICATION  
RC4200  
Absolute Maximum Ratings  
Parameter  
Supply Voltage1  
Min.  
Max.  
-22  
Unit  
V
Input Current  
-5  
mA  
°C  
°C  
Storage Temperature Range  
Operating Temperature Range  
Notes:  
RC4200/4200A  
RC4200/4200A  
-55  
0
+125  
+70  
1. For a supply voltage greater than -22V, the absolute maximum input voltage is equal to the supply voltage.  
2. Observe package thermal characteristics.  
Thermal Characteristics  
(Still air, soldered into PC board)  
8-Lead Plastic DIP  
+125°C  
8-Lead SOIC  
Maximum Junction Temperature  
Maximum P T < 50°C  
+125˚C  
300mW  
468mW  
D
A
Thermal Resistance θ  
Thermal Resistance θ  
JC  
JA  
160°C/W  
6.25mW/°C  
240˚C/W  
4.17mW/˚C  
For T > 50°C Derate at  
A
Electrical Characteristics  
(Over operating temperature range, V = -15V unless otherwise noted)  
S
4200A  
4200  
Parameters  
Test Conditlons  
Min.  
Typ.  
Max. Min.  
Typ.  
Max. Units  
Total Error as Multiplier  
TA = +25°C  
Untrimmed1  
2.0  
3.0  
%
%
With External Trim  
Versus Temperature  
0.2  
0.005  
0.1  
0.2  
0.005  
0.1  
%/°C  
%/V  
%
Versus Supply (-9 to -18V)  
Nonlinearity2  
50µA I  
1,2,4  
A
250 µA,  
0.1  
0.3  
T = +25°C  
Input Current Range  
1.0  
1000 1.0  
5.0  
1000 µA  
(I , I and I )  
1
2
4
Input Offset Voltage  
I = I = I = 150 µA  
T = +25°C  
A
10  
mV  
nA  
1
2
4
Input Bias Current  
I = I = I = 150 µA  
300  
500  
1
2
4
T = +25°C  
A
Average Input Offset  
Voltage Drift  
I = I = I = 150 µA  
50  
100 µV/°C  
1
2
4
Output Current Range (I )3  
1.0  
1000 1.0  
1000 µA  
3
REV. 1.2.1 6/14/01  
3
RC4200  
PRODUCT SPECIFICATION  
Electrical Characteristics (continued)  
(Over operating temperature range, V = -15V unless otherwise noted)  
S
4200A  
4200  
Parameters  
Test Conditlons  
Min.  
Typ.  
Max. Min.  
Typ.  
Max. Units  
Frequency Response,  
-3dB point  
Supply Voltage  
4.0  
-15  
4.0  
-15  
MHz  
V
-18  
-9.0 -18  
4.0  
-9.0  
4.0  
Supply Current  
I = I = I = 150 µA  
mA  
1
2
4
T = +25°C  
A
Notes:  
1. Refer to Figure 6 for example.  
2. The input circuits tend to become unstable at I , I , I < 50 µA and linearity decreases when I , I , I > 250 µA  
1
2
4
1 2 4  
(eq. @ I = I = 500 µA, nonlinearity error 0.5%).  
1
2
3. These specifications apply with output (I ) connected to an op amp summing junction. If desired, the output (I ) at pin (4) can  
3
3
be used to drive a resistive load directly. The resistive load should be less than 700and must be pulled up to a positive  
supply such that the voltage on pin (4) stays within a range of 0 to +5V.  
Applications Discussion  
Current Multiplier/ Divider  
Dynamic Range and Stability  
The basic design criteria for all circuit configurations using  
the RC4200 multiplier is contained in equation (1), that is,  
The precision dynamic range for the RC4200 is from +50  
µA  
to +250 µA inputs for I , I and I . Stability and accuracy  
degrade if this range is exceeded.  
1
2
4
I1I2  
I3 = ---------  
I4  
To improve the stability for input currents less than 50 µA,  
The current-product-balance equation restates this as:  
filter circuits (R C ) are added to each input (see Figure 2).  
S S  
I1I2 = I3I4 (6)  
R
4
R
1
8
5
+V  
Z
V
X
I
I
4
1
R
S
R
S
R
Z
4
R
1
7
8
5
V
V
X
Y
C
S
C
S
+
+
+
RC4200  
I
I
I
1
4
+V  
Z
R
2
V
R
X
7
1
1
2
I
=
1
V
I
=
V
4
Y
1
R
4
I
2
R
RC4200  
O
4
R
S
V
O
R
2
I
3
+V  
S
3
S
6
C
S
Ammeter  
A
2
4
A1  
V
R
V  
Y
I
=
2
2
+
2
I
3
3
6
V  
S
R
C
= 10k Ohms  
= 0.005 µF  
S
S
65-4200-02  
65-4200-03  
V  
S
Figure 2. Current Multiplier/Divider with Filters  
Figure 1. Current Multiplier/Divider  
Amplifier A1 is used to convert the I current to an output  
3
voltage.  
Multiplier: Vz = constant 0  
Divider: Vy = constant 0  
4
REV. 1.2.1 6/14/01  
PRODUCT SPECIFICATION  
RC4200  
Resistors R and R extend the range of the V and V  
Y
inputs by picking values such that:  
Voltage Multiplier/Divider  
a
b
X
R
4
R
1
8
5
VX(min.) VREF  
V
Z
V
V
X
Y
I1(min.) = ----------------------- + ------------- = 50 µA,  
I
I
1
R1  
Ra  
4
7
VX(max.) VREF  
and I1(max.) = ----------------------- + ------------- = 250 µA,  
R1 Ra  
RC4200  
R
2
1
2
VY(min.) VREF  
also I2(min.) = ---------------------- + ------------- = 50 µA,  
I
2
R2  
Rb  
4
V
R
O
O
I
VY(max.) VREF  
3
3
S
6
and I2(max.) = ----------------------- + ------------- = 250 µA.  
R2  
Rb  
V  
V V  
R R  
1
V V  
O Z  
R R  
O 4  
X
Y
=
Resistor R supplies bias current for I which allows the  
C
3
65-4200-04  
2
output to go negative.  
Figure 3. Voltage Multiplier/Divider  
Resistors R and R permit equation (6) to balance, ie.:  
CX  
CY  
VXVY R0R4  
Solving for V0 = -------------------------------------  
V
V
V
V
V
V
V
V
V
   
   
   
   
VZ  
R1R2  
REF  
X
REF  
Y
REF  
0
REF  
X
Y
---------------  
-------- + --------------- -------- + ---------------  
=
------ + --------------- + ------------ + ------------  
   
R
D
R
R
R
R
R
R
R
R
   
1
a
2
b
0
C
CX  
CY  
For a multiplier circuit VZ = VR = constant  
V
V
V
V
V
V V  
REF  
Y
X
X
REF  
Y REF  
---------------  
----------------- + ------------------------- + ------------------------- +  
=
R R  
R R  
1
R R  
R R  
R0R4  
a
b
2
1
b
2 a  
Therefore: V0 = VXVYK where K = ---------------------  
VRR1R2  
2
V
V V  
V
V
V V  
REF  
0
REF  
X
REF  
Y REF  
----------------  
----------------------- + ------------------------- + ------------------------- +  
R R  
R R  
R
R
R
R
c
d
0
d
cx  
d
CY d  
For a divider circuit VY = VR = constant  
VX  
VRR0R4  
Cross-Product Cancellation  
Cross-products are a result of ths V V and V V terms.  
-------  
VZ  
Therefore: V0  
=
K where K = ---------------------  
R1R2  
X
R
Y R  
To the extend that R R = R R , and R R = R  
R
CY d  
1 b CX D 2 a  
cross-product cancellation will occur.  
Extended Range  
The input and output voltage ranges can be extended to  
include 0 and negative voltage signals by adding bias  
Arithmetic Offset Cancellation  
The offset caused by the V  
REF  
2 term will cancel to the  
currents. The R C filter circuits are eliminated when the  
S S  
extent that R R = R R , and the result is:  
a b  
0 d  
input and biasing resistors are selected to limit the respective  
currents to 50 µA min. and 250 µA max.  
V0VREF  
VYVX  
--------------------  
R0Rd  
--------------- =  
R1R2  
or V0 = VXVYK  
Extended Range Multiplier  
R0Rd  
+VREF  
---------------------------  
where K =  
VREFR1R2  
R
R
R
5
R
D
A
B
C
I
8
V
X
Resistor Values  
(Input)  
R
1
I
1
4
Inputs:  
7
VX(min.) ≤ VX VX(max.)  
VX = VX(max.) – VX(min.)  
VY(min.) ≤ VY VY(max.)  
VY = VY(max.) = VY(min.)  
VREF = Constant (+7V to +18V)  
V0  
RC4200  
R
2
1
2
V
Y
V
O
(Input)  
I
2
R
O
(Output)  
4
I
3
3
6
S
+V  
S
R
V  
C4  
R
V  
S
CX  
---------------  
K =  
(Design Requirements)  
VXVY  
65-4200-05  
Figure 4. Extended Range Multiplier  
REV. 1.2.1 6/14/01  
5
RC4200  
PRODUCT SPECIFICATION  
VX  
----------------  
VY  
200µA  
VREF  
----------------  
R1  
=
, R2  
=
, Rd = ----------------  
Multiplying Circuit Offset Adjust  
10K R = R = R 50K  
200µA  
250µA  
5
9
16  
VXVREF  
R = R = R , = 100Ω  
7
11 14  
Ra = --------------------------------------------------------------------------------  
250µAVX – 200µA VX(max.)  
R = R = 100(V /0.05)  
6
10  
S
VXVREF  
250µAVY – 200µA VY(max.)  
R
= 100(V /0.10)  
15  
S
Rb = --------------------------------------------------------------------------------  
R = R | | R  
8
1
a
R
R
= R | | R  
2 b  
12  
13  
RaRb  
R1Rb  
R2Ra  
------------  
Rd  
-------------  
Rd  
Rc  
=
, RCX  
=
, Rcy = ------------  
Rd  
= R | | R | | R | | R  
0
C
CX  
CY  
VXVYK  
R0 = ----------------------------  
160µA  
+V  
REF  
+V  
S
R
R
a
b
I
R
R
5
d
c
I
100 R  
R19  
d
R
1
8
7
R20  
Z
OS  
V
X
+V  
R
S
17  
(Input)  
1
R
4
8
R
6
R
18  
R
5
V  
S
X
OS  
R
7
0.1 µF  
RC4200  
V  
S
R
R can be used to help cancel  
17 20  
1
2
crossproduct errors caused by resistor  
product mismatch.  
V
Y
R
+V  
2
(Input)  
S
I
2
R
9
R
O
4
R
R
V
O
R
12  
11  
Y
10  
OS  
(Output)  
I
3
3
6
0.1 µF  
V  
V  
S
R
S
CY  
R
CX  
RC5534  
+
+V  
S
0.1 µF  
R
13  
R
V
OS  
16  
R
15  
R
14  
V  
S
65-4200-06  
Figure 5. Multiplying Circuit Offset Adjust  
Procedure  
1. Set all trimmer pots to 0V on the wiper.  
3. Connect V input to ground. Put in a full scale square  
Y
wave on V input. Adjust Y (R ) for no square wave  
OS  
X
9
2. Connect V input to ground. Put in a full scale square  
X
on V output (adjust for 0 feedthrough).  
0
wave on V input. Adjust X (R ) for no square wave  
OS  
Y
5
on V output (adjust for 0 feedthrough).  
4. Connect V and V to ground. Adjust V (R ) for 0V  
X Y OS 16  
0
on V output.  
0
6
REV. 1.2.1 6/14/01  
PRODUCT SPECIFICATION  
RC4200  
Notice that it is necessary to match the above resistor cross-  
products to within the amount of error tolerable in the out-  
put offset, i.e., with a 10V F.S. output, 0.1% resistor cross-  
product match will give 0.1% x 10V. untrimmable output  
offset voltage.  
Extended Range Divider  
+V  
REF  
+V  
REF  
Resistor Values  
Inputs:  
R
R
R
5
R
d
b
c
a
R
az  
R4  
R1  
V (min.) V V (max.)  
8
X
X
X
V
X
V
(Input)  
Z
V = V (max.) = V (min.)  
X
X
X
I1  
I4  
(Output)  
V (min.) V V (max.)  
Z
Z
Z
7
1
RC4200  
Multiplier  
V = V (max.) = V (min.)  
Z
Z
Z
V
REF  
= Constant (+7V to +18V)  
V
O
Outputs:  
V (min.) V V (max.)  
I2  
RO  
(Output)  
4
2
0
0
0
I3  
3
6
V = V (max.) = V (min.)  
0
0
0
+VS  
-VS  
V0VZ  
--------------  
VX  
K =  
(Design Requirement)  
RC5534  
V0  
750µA  
VREF  
250µA  
VZ  
200µA  
-VS  
R
----------------  
-----------------  
= , R4 = ----------------  
R0  
=
, Rb  
ao  
65-4200-08  
V0VREF  
750µAV0 – 700µA V0(max.)  
Figure 6. Extended Range Divider  
Rc = ------------------------------------------------------------------------------  
As with the extended range multiplier, resistors R and R  
az  
ao  
are added to cancel the cross-product error caused by the  
biasing resistors, i.e.  
VXVREF  
250µAVZ – 200µA VZ(max.)  
Rd = -------------------------------------------------------------------------------  
V
---------------  
V
V
V
V
V
V
V
V
   
   
   
   
REF  
R
b
X
0
Z
REF  
0
REF  
Z
REF  
-------- + --------- + --------- + ---------------  
=
------ + --------------- ------- + ---------------  
   
R
R
R
R
R
R
R
R
   
1
ao  
az  
a
0
C
4
D
RcRd  
RcR4  
R0Rd  
------------  
Rb  
------------  
Rb  
Ra  
=
, Raz  
=
, Rao = -------------  
Rb  
2
V
V
V
V V  
V
V
REF  
X
REF  
0
REF  
Z
REF  
R
----------------  
------------------------- + ----------------------- + ------------------------ +  
=
R R  
R R  
R
R
R
a
b
1
b
ao  
b
az b  
V0VZ  
R1 = ----------------------  
600µAK  
2
V
V V  
V V  
V V  
REF  
0
Z
0
REF  
Z
REF  
----------------  
--------------- + ----------------------- + ------------------------ +  
R R  
R R  
R R  
R R  
c
d
0
4
0
d
4 c  
To cancel cross-product and arithmetic offset:  
R
R = R R , R R = R R and R R = R R  
ao b 0 d az b 4 c a b c d  
and the result is:  
V0VZ  
--------------  
VX  
-----------  
or V0 =  
VXVREF  
--------------------- =  
R1Rb  
R0R4  
VZK  
V
REFR0R4  
---------------------------  
where K =  
R1Rb  
REV. 1.2.1 6/14/01  
7
RC4200  
PRODUCT SPECIFICATION  
Divider Circuit with Offset Adjustment  
+VREF  
R
R
5
R
R
d
c
b
a
RAX  
V Z  
(Input)  
R4  
R1  
8
VX  
(Input)  
+VS  
+VS  
VX (Offset)  
I
I
1
4
R10  
R11  
R12  
R8  
R6  
7
R13 ZOS  
R5  
RC4200  
Multiplier  
VZ (Offset)  
XOS  
R7  
-VS  
1
2
+VS  
-VS  
µ
0.1  
F
I
RO  
2
R21 = R  
b
4
I
YOS  
R18  
VO  
(Output)  
R19  
3
3
6
R20  
R9  
0.1µF  
-VS  
-VS  
µ
0.1  
F
R
ao  
+VS  
R14  
R15  
R16  
R18-R21 can be used in place of R9 to help  
cancel gain error due to resistor product  
mis-match (See Appendix 1).  
R17 VOS  
VO (Offset)  
-VS  
65-1878  
General  
Example: Two-Quad Divider  
V = K(V /V ), K = k, V = +V = +15V  
10K R = R = R 50K  
5
13 17  
0
X
Z
REF  
S
R + R R | | R | | R | | R  
-10 V +10, therefore V = 20  
7
8
1
a
az  
ao  
X
X
R
6
R (V /0.05)  
0 V +10, therefore V = 20  
Z Z  
7
S
R = R  
-10 V +10, therefore V = 20  
9
b
0 0  
R
10  
R
11  
R
12  
R
14  
R
16  
100 x R  
= 20K  
= 100K  
R = 26.7K  
R = 333K  
1
4
0
R = 60K  
R , R , R = 10K  
13 17  
b
5
R = 50K  
R , R = 1K  
15  
4
7
+ R R | | R  
15  
R = 37.5K  
R , R = 20K  
11  
0
c
c
8
R (V /0.10)  
R = 300K  
d
R , R , R = 300K  
15  
S
6
9
16  
R = 187.5K  
R
10  
R
12  
= 4.7M  
= 100K  
a
R
az  
R
ao  
= 31.25  
= 133K  
Figure 7. Divider Circuit with Offset Adjustment  
8
REV. 1.2.1 6/14/01  
PRODUCT SPECIFICATION  
RC4200  
Divider Circuit Offset Adjustment Procedure  
Square Root Circuit V = NV  
0
X
1. Set each trimmer pot to 0V on the wiper.  
+VREF  
2. Connect V (input) to ground. Put a DC voltage of  
X
approximatey 1/2 V (max.) DC on the V (input) with  
Z
Z
R
R
R
5
R
d
b
c
an AC (squarewave is easiest) voltage of 1/2 V (max.)  
a
Z
peak-to-peak superimposed on it. Adjust X (R5) for  
OS  
zero feedthrough. (No AC at V )  
0
R4  
R1  
8
VX  
(Input)  
I
I
1
4
V
(Max.)  
7
z
RC4200  
Multiplier  
1/2 V (Max.)  
z
1
2
1/2 V (Max.)  
z
VO  
(Output)  
I
RO  
2
4
I
0V  
3
3
6
+VS  
-VS  
3. Connect V (input) to V (input) and put in the  
X
Z
1/2 V (max.) DC with an AC of approximately 20 mV  
Z
less than V (max.).  
Z
R
-VS  
ao  
Adjust Z (R ) for zero feedthrough.  
OS 13  
65-1877  
Figure 8.  
V
(Max.)  
z
2
2
2
V
V
V
V V  
V
V V  
V V  
V
1/2 V (Max.)  
z
X
REF  
REF  
0
REF  
0
0
REF  
0
REF  
REF  
------------------------- + ---------------- + ----------------------- = -------------- + ----------------------- + ----------------------- + ----------------  
R R  
R R  
R
R
R R  
R R  
R
R
R R  
1
b
a
b
ao  
b
0
4
c
4
d
c d  
0
0V  
If R R = R R and R R R R + R R R R = R R R R  
a
b
c
d
ao  
b
0
d
ao  
b
c
4
c
d 0 4  
2
~
10 mV  
V
V
V
V
R R  
~
0
X
REF  
REF 0 4  
2
--------------  
-------------------------  
-------------------------------  
Then  
=
or V = V K where K =  
0
X
R R  
R R  
R R  
0
4
1
b
1 b  
65-1868  
and V = N  
V
where N =  
K
0
X
4. Return V (Input) to ground and connect V (max.)  
X
Z
DC on V (input). Adjust output V (R ) for V  
=
O
Z
OS 17  
0 V V (max.)and V (max.) = N  
V (max.)  
X
X
X
0
0V  
O
V
------------  
V
X
5. Connect V (input) to V (input) and and in V (max.)  
X
Z
Z
0
N =  
(Design Requirements)  
DC. (The output will equal K.) Decrease the input  
slowly until the output (V - K) deviates beyond the  
0
desired accuracy. Adjust Z to bring it back into toler-  
OS  
ance and return to Step 4. Continue steps 4 and 5 until  
2
V (max.)  
0
R
1
= ---------------------------  
2
74µA N  
V reduces to the lowest value desired.  
Z
V
REF  
R
R
= R = ---------------  
a
d
Notice that as the input to VX and VZ gets closer to zero (an  
illegal state) the system noise will predominate so much that  
an integrating voltmeter will be very helpful.  
50µA  
V
REF  
= R = -----------------  
b
c
150µA  
V (max.)  
0
50µA  
R
= ------------------------  
4
V (max.)  
0
125µA  
R
R
= ------------------------  
ao  
0
V (max.)  
0
= ------------------------  
225µA  
REV. 1.2.1 6/14/01  
9
RC4200  
PRODUCT SPECIFICATION  
Square Root Circuit Offset Adjust  
+VREF  
R
R
5
R
R
d
c
b
a
R4  
R1  
8
VX  
(Input)  
I
I
4
1
+VS  
RC4200  
Multiplier  
R8  
R6  
7
XOS  
R5  
R7  
1
2
+VS  
YOS  
-VS  
µ
µ
0.1  
F
F
I
RO  
R17 = R  
2
b
4
I
VO  
(Output)  
R14  
R15  
+VS  
3
3
6
R16  
R9  
0.1  
-VS  
-VS  
µ
F
0.1  
R
-VS  
ao  
+VS  
R10  
R11  
R12  
R14-R17 can be used in place of R9 to help  
reduce linearity error due to resistor product  
mis-match (See Appendix 1).  
R13 VOS  
-VS  
65-1876  
Figure 9. Square Root Circuit Offset Adjust  
10K R5 = R13 50K  
Procedure  
1. Set both trimmer pots to 0V on the wiper.  
R7 = 100Ω  
2. Put in a full scale (0 to V (max.) squarewave on V  
X
X
VS  
input. Adjust X (R5) for proper peak-to-peak ampli-  
OS  
tude on V output. (Scaling adjust)  
0
---------  
R6 = R7  
0.05  
||  
||  
3. Connect V input to ground. Adjust V (R13) for 0V  
R8 = R1 Ra Rao  
X
OS  
on V output.  
0
R9 = Rb  
||  
R10 = R0 RC  
R11 = 100Ω  
VS  
11 0.1  
------  
R12 = R  
10  
REV. 1.2.1 6/14/01  
PRODUCT SPECIFICATION  
RC4200  
2
Squaring Circuits V = K V  
0
X
+VREF  
R
R
R
c
R
d
b
a
R1  
8
5
VX  
(Input)  
I
I
1
4
7
RC4200  
Multiplier  
R1  
1
2
VO  
(Output)  
I
RO  
2
4
I
3
3
6
+VS  
-VS  
RCX  
RC5534  
-VS  
65-1875  
Figure 10. Squaring Circuit  
2
2
2
VX 2VXVREF VREF  
V0VREF VREF VXVREF  
-------2 + ------------------------- + ------------- = -------------------- + ------------- + ---------------------  
2
R1Ra  
R0Rd  
RcRd  
RcRd  
R1  
Ra  
2
if Ra = RcRd and R1Ra = 2RCXRD  
2
V0VREF  
VX  
R0Rd  
2
--------------------  
R0Rd  
-------  
or V0 = KVX where K =  
2
--------------------  
VREFR1  
then  
=
2
R1  
V (min.) V V (max.) V = V (max.) – V (min.)  
X
X
X
X
X
X
V0  
-------2  
VX  
K =  
(Design Requirement)  
VX  
----------------  
=
R1  
Ra  
200µA  
VXVREF  
--------------------------------------------------------------------------------  
=
250µAVX – 200µA VX(max.)  
VREF  
----------------  
Rd  
Rc  
=
=
250µA  
2
Ra  
------  
Rd  
R1Ra  
------------  
2Rd  
Rcx  
=
VX2K  
------------------  
160µA  
R0  
=
REV. 1.2.1 6/14/01  
11  
RC4200  
PRODUCT SPECIFICATION  
Squaring Circuits Offset Adjust  
+VREF  
+V  
S
R
R
R
a
b
I
R
5
d
c
I
R
100 R  
=
7
R
8
9
d
R
1
8
7
R
Z OS  
10  
VX  
(Input)  
1
R
4
5
R
-VS  
RC4200  
Multiplier  
R -R can be used to cancel all  
10  
7
µ
0.1  
F
linearity errors caused by input  
offsets and resistor product  
mis-match (See Appendix 1).  
R
1
1
2
I
2
R
6
RO  
4
V
O (Output)  
I
3
3
6
µ
0.1  
F
-VS  
RCX  
+V  
S
+V  
S
R
R
14  
16  
VOS  
R
13  
-VS  
R
15  
-VS  
0.1µ F  
65-1874  
Figure 11. Squaring Circuit Offset Adjust  
10K R10 = R11 50K  
R8, R15 = 100Ω  
VS  
Procedure  
1. Set both trimmer pots to 0V on the wiper.  
2. Put in a full scale ( V ) squarewave on V input.  
X
X
Adjust Z (R10) for uniform output.  
OS  
------  
R9, R14 = 100Ω  
0.1  
3. Connect V input to ground. Adjust V (R ) for 0V  
X
OS 11  
||  
on V outputs.  
0
R5, R6 = R1 Ra  
||  
||  
R16 = R0 Rc Ra  
12  
REV. 1.2.1 6/14/01  
PRODUCT SPECIFICATION  
RC4200  
Errors Caused by Input Offsets  
Appendix 1—System Errors  
There are four types of accuracy errors which affect overall  
system performance. They are:  
R R  
V
V
V
Z
1
V
Z
0
4
4
X
Y
V
=
V
V
V
V
V V  
V V  
OSX OSY  
0
Y
OSX  
X
OSY  
0
OSZ  
R R  
0
• Nonimearity—Incremental deviation from absolute  
accuracy. See Note 1.  
• Scaling Error—Linear deviation from absolute accuracy.  
• Output Offset—Constant deviation from absolute  
accuracy.  
V
V
Feedthrough  
Feedthrough  
Y
X
Scaling Error  
Output Offset Error  
• Feedthrough.—Cross-product errors caused by input  
offsets and external circuit limitations. See Note 2.  
System errors can be greatly reduced by externally trimming  
the input offset voltages of the RC4200. ( 3.0% F.S. for  
RC4200 and 0.1% for RC4200A.)  
This nonlinearity error in the transfer function of the  
RC4200 is 0.1% maximum ( 0.03 maximum for the  
RC4200A). That is,  
VZ  
R
R
4
1
8
7
5
VX  
+VS  
+VS  
I1I2  
---------  
0.1% F.S.(4)  
R
1
I3  
=
100 R  
4
I4  
XOS  
ZOS  
RC4200  
Multiplier  
R
2
-VS  
1
2
-VS  
VY  
The other system errors are caused by voltage offsets on the  
inputs of the RC4200 and can be as high as 3.0% ( 2.0%  
for RC4200A).  
+VS  
RO  
R
2
4
VO  
VXVY R0R4  
--------------- -------------  
3
6
V0  
=
3.0% F.S.(3)(4)  
-VS  
VZ R1R2  
-VS  
Ideal Op-Amp  
VOS = 0  
R
R
1
4
5
65-1870  
8
VZ  
VX  
I
I
1
4
If X  
OS  
= X , Y  
OSX OS  
= Y  
, Z  
= -V ,  
OSZ  
OSY OS  
7
RC4200  
Multiplier  
VXVY R0R4  
(3)  
R
2
--------------- -------------  
VZ R1R2  
then VO  
0.3% F.S.  
1
VY  
I
RO  
2
4
VO  
2
Figure 13. RC4200 with Input Offset Adjustment  
I
3
3
6
+VS  
Extended Range Circuit Errors  
-VS  
The extended range configurations have a disadvantage in  
that additional accuracy errors may be introduced by resistor  
product mismatching.  
Ideal Op-Amp  
VOS = 0  
Multiplier  
65-1871  
An error in resistor product matching will cause an  
equivalent feedthrough or output offset error. See Figure 6.  
Figure 12.  
Notes:  
1. The input circuits tend to become unstable at  
I , I , I < 50 µA and linearity decreases when I , I , I >  
R R = R α, V feedthrough (V = 0) = IαV  
R
1 b CX d X Y X  
1
2
4
1 2 4  
250 µA (e.g., @ I = I = 500µA nonlinearity error 0.5%).  
1
2
R R = R  
2 a  
R
β, V feedthrough (V = 0) = βV  
CY d Y X Y  
2. This section will not deal with feedthrough which is  
proportional to frequency of operation and caused by stray  
capacitance and/or bandwidth limitations. (refer to  
Figure 12.)  
3. Not including resistor tolerance or output offset on the  
operational amplifier.  
R R = R R γ, V offset (V = V = 0) = γV *  
a b REF  
C d  
0
X
Y
Note:  
*
Output offset errors can always be trimmed out with the  
output op amp offset adjust, VOS (R16).  
4. For 50 µA I , I , I 250 µA.  
1
2 4  
REV. 1.2.1 6/14/01  
13  
RC4200  
PRODUCT SPECIFICATION  
Select R to be 1% or 2% below (or above) the calculated  
d
value. This will cause α and β to both be positive (or nega-  
tive) by nearly the same amount. Now the effective value of  
Reducing Mismatch Errors  
You need not use 0.01% resistors to reduce resistor product  
mismatch errors. Here are a couple of ways to obtain  
maximum accuracy out of the extended range multiplier  
(see Figure 4) using 1% resistors.  
R can be trimmed with an offset adjustment Z (R ) on  
d
OS 20  
pin 5.  
This technique causes: a slight gain error which can be com-  
pensated with the R value, and an output of offset error that  
Method 1  
0
V
X
feedthrough, for example, occurs when V = 0 and  
Y
can be trimmed with V (R ) on the output op amp.  
OS 16  
V
0. This V feedthrough will equal V V .  
X OSY  
OSY  
X
Also, if V  
0, there is a V feedthrough equal to  
OSZ  
X
Extended Range Divider  
The only cross-product error of interest is the V  
Z
V V  
. A resistor-product error of α will cause a V  
X OSZ  
feedthrough of αV . Likewise, V feedthrough errors are:  
X
X
Y
V V  
Y OSX  
, V V  
and βV  
feedthrough (V = 0 and V 0) which is easily adjusted  
Y OSZ  
Y
X
OSX  
with X (R ). See Figure 6.  
OS  
5
Total feedthrough:  
V V V V  
αV βV (V + V ) V  
OSZ  
Resistor product mismatch will cause scaling errors (gain)  
that could be a problem for very low values of V . Adjust-  
X OSY Y OSX  
X
Y
X
Y
Z
By carefully abusing X (R ), Y (R ) and Z (R ) this  
OS OS OS 20  
equation can be made to very nearly equal zero and the  
feedthrough error will practically disappear.  
5
9
ments to Y (R ) can be made to improve the high gain  
OS 18  
accuracy.  
Square Root and Squaring  
These circuits are functions of single variables so  
feedthrough, as such, is not a consideration. Cross product  
errors will effect incremental accuracy that can be corrected  
A residual of set will probably remain which can be trimmed  
outwith V (R ) at the output of amp.  
OS 16  
Method 2  
Y (R ) or Z (R ). See Figure 9 and Figure 11.  
OS 14 OS 10  
Notice that the ratios of R R :R R and R R :R R are  
1 b CX d 2 a CY d  
both dependent of R also that R , R , R and R are all  
d
1
2
a
b
functions of the maximum input requirements. By designing  
a multiplier for the same input ranges on both V and V  
X
Y
then R = R , R  
= R and R = R . (Note: it is accept-  
1
2
CX  
CY  
a
b
able to design a four quadrant multiplier and use only two  
quadrants of it.)  
14  
REV. 1.2.1 6/14/01  
PRODUCT SPECIFICATION  
RC4200  
Therefore, the rms value of Asinωt becomes:  
Appendix 2Applications  
A
Vrms = ------  
Design Considerations for RMS-to-DC Circuits  
Average Value  
2
Consider V = Asinωτ. By definition,  
in  
RMS Value for Rectied Sine Waves  
Consider V = |A sin ωt|, a rectified wave. To solve,  
in  
T
---  
integrate of each half cycle.  
VAG  
=
2 VINdt  
0
1
T
---  
i.e.  
TVin2 dt =  
Where T = Period  
0
ω = 2πf  
T
T
1
---  
T
2π  
= ------  
T
-2--A2sin2ωt dt+ T (–Asinωt)2dt  
---  
0
2
1
1
This is the same as TA2sin2ωt dt  
--  
VIN  
A
0
so, |Asinωt|rms = Asinωtrms  
t
Practical Consideration: |Asinωt| has high-order harmonics;  
Asinωt does not. Therefore, non-ideal integrators may cause  
different errors for two approaches.  
0
T
2
T
65-1873  
T
---  
2
(a)  
---  
VAG  
=
2Asinωt dt  
T
Low Pass  
2
0
V
IN  
a
VO = VIN  
rms  
Filter  
T
2
---  
2
(b)  
V
IN  
2A  
T
1
ω
------- ---  
=
cos ωt  
V
IN  
VO  
2
a
Absolute  
Value  
Low Pass  
Filter  
2
0
V
IN  
VO  
=
A VGVIN  
b
2A  
-------  
2π  
=
[– cos(π) + cos(0)]  
65-4200-09  
2
--  
π
Average Value of Asinωt is  
A
Figure 14.  
2
RMS Value  
Again, consider V = Asinωt  
VIN  
---------  
V0  
Avg  
= V0  
IN  
T [VIN]2dt  
1
T
---  
Vrms  
=
VAVG  
=
2
0
implies V0  
=
Avg( V  
)
IN  
Vrms for Asinωtdt:  
2
V0 Avg V  
=
IN  
T
1
T
Vrms  
=
=
A2sin2ωt dt  
---  
0
A2  
------  
T
1
1
T
--  
-- – cos 2 cos 2 ωt dt  
Vrms  
2
2
0
A2  
------  
2
1
4ω  
T
0
T
------  
sin2 ωt  
Vrms  
Vrms  
Vrms  
=
=
=
--- –  
2
A2  
T
2
------ ---  
2
A2  
------  
2
REV. 1.2.1 6/14/01  
15  
RC4200  
PRODUCT SPECIFICATION  
+VREF  
300K  
200K  
60K  
300K  
100K  
100K  
167K  
5
100K  
5
100K  
100K  
VIN  
8
7
8
7
13.3K  
µ
22  
F
RC4200A  
Multiplier  
RC4200A  
Multiplier  
10K  
1
50K  
1
X2  
X
100K  
250K*  
44.4K**  
50K  
60K  
4
4
VOUT  
2
2
3
6
3
6
1/2  
RC5532  
-VS  
-VS  
83.3K  
1/2  
RC5532  
µ
F
0.1  
µ
F
0.1  
80K  
+VS  
15K  
+VS  
30K  
45.5 K  
100  
10K  
30K  
10K  
100  
-VS  
*Determines sacle factor (K) for X2 function.  
**Determines sacle factor (K) for function.  
-VS  
X
65-1869  
+V = +VREF = +15V  
s
s
-V = -15V  
2
Figure 15. RMS to DC Converter V =V  
OUT IN  
If V is made proportional to the average value of Asinωt  
Amplitude Modulator with A.G.C.  
H
(i.e., 2A/π) and scaled by a value of π/2 then:  
In many AC modulator applications, unwanted output  
modulation is caused by variations in carrier input ampli-  
tude. The versatility of the RC4200 multiplier can be utilizes  
to eliminate this undesired fluctuation. The extended range  
multiplier circuit (Figure 4) shows an output amplitude  
V =A  
H
and if: V = Modulating input (V )  
X
M
inversely proportional to the reference voltage V  
.
REF  
and: V Carrier input (Asinωt)  
Y
R0Rd  
VXVY R0Rd  
-------------  
R1R2  
Then: V = K V sinωt where K =  
0
M
--------------- -------------  
=
i.e., V0  
VREF R1R2  
The resistor scaling is determined by the dynamic range of  
the carrier variation and modulating input.  
By making V  
REF  
proportional to V (where V is the car-  
Y Y  
rier input) such that:  
The resistor values are solved, as with the other extended  
range circuits, in terms of the input voltages.  
VREF = VH ( VY  
=
)
Input voltages:  
Then the denominator becomes a variable value that auto-  
matically provides constant gain, such that the modulating  
Modulation voltage (V ): 0 V V (max.)  
M
M
X
Carrier (V ): V = Asinωt  
Y
Y
input (V ) modulates the carrier (V ) with a fixed scale  
X
Y
Carrier amplitude fluctuation (A):  
factor even though the carrier varies in amplitude.  
A(min.) sint V A(max.) sinΩωt  
Y
Dynamic Range (N): A(max.)/A(min.),  
A(max.) = V (max.) and A(min.) = V (min.)  
H
H
16  
REV. 1.2.1 6/14/01  
PRODUCT SPECIFICATION  
RC4200  
R
R
a
a
R
a
R1  
5
8
7
VM  
+V  
S
R1  
R
30K  
a
R
a
10K  
-VS  
100  
RO  
µ
RC4200  
Multiplier  
0.1  
F
R2  
1
2
VY  
=
ASIN ω  
t
+VS  
10K  
R2  
R
30K  
a
4
µ
F
0.1  
1/4  
RC4156  
100  
3
6
VO  
VM sin ω  
=
-VS  
t
-VS  
+V  
µ
0.1 F  
R1  
S
R*  
R2  
10K  
R3  
30K  
30K  
470  
C1  
-VS  
1/2 R3  
15K  
R3  
30K  
R3  
30K  
p
2
R3 47K  
1N914  
p
2
t
= A  
ω
VH  
=
AVG A sin  
1/4  
RC4156  
1/4  
RC4156  
*R1 R2  
R
RO  
a
1N914  
65-1866  
Figure 16. Amplitude Modulator with A.G.C.  
Example 1  
= Asinωt 2.5V A 10V, therefore N = 4  
The maximum and minimum values for I and I lead to:  
1
2
V
Y
VX(max.) VH(max.)  
0V V 10V, therefore V (max.) = 10V  
M
X
I1(max.) = ------------------------ + ------------------------ = 250µA  
K = 1, therefore V = V sinωt  
R1  
Ra  
0
M
VX(max.)  
VH(min.)  
10V  
50µA  
R1 = ----------------------- = ------------- = 2 0 0 K  
I1(min.) = ----------------------- = 50µA VM(min.) = 0  
50µA  
Ra  
A(max.)  
50µA  
10V  
50µA  
VH(max.)  
A(max.)  
R1 = ------------------- = ------------- = 2 0 0 K  
I2(max.) = -------------------- + ------------------------ = 250µA  
R2  
Ra  
A(min.)  
2.5V  
50µA  
Ra = ------------------ = ------------- = 5 0 K  
VH(min.)  
50µA  
I2(min.) = ----------------------- = 50µA  
Ra  
R1R2  
200K × 200K  
-------------  
---------------------------------  
= 800K  
RO = K  
= 1  
Ra  
50K  
For a dynamic range of N, where  
A(max.)  
Example 2  
= Asinωt 3 A 6, therefore N = 2  
--------------------  
N =  
< 5,  
A(min.)  
V
Y
0V V 8V, therefore V (max.) = 8V  
M
X
These equations combine to yield:  
V (max.)  
K = 0.2, therefore V = 0.2 V sinwt  
0
M
so:  
R = 53.3K, R = 40K  
A(max.)  
(5 – N)50µA  
----------X----------------------  
--------------------------------  
,
R1  
=
, R2  
1
2
(5 – N)50µA  
R = 60K and R = 7.11K  
a
0
R1R2  
A(min.)  
------------------  
-------------  
,
Ra  
=
and RO = K  
50µA  
Ra  
REV. 1.2.1 6/14/01  
17  
RC4200  
PRODUCT SPECIFICATION  
Inputs  
VZ  
+VS  
VOS4 ADJ  
R1  
8
7
VX  
R4  
100 R4  
I
1
5
R
s
C
s
+V  
I
S
4
-VS  
VOS1  
50 mV  
RC4200  
Multiplier  
R1  
100  
RO  
0.1 µF  
50 mV  
R2  
-VS  
1
VY  
I
2
Gain  
Adj.  
R
s
4
C
s
+V  
Output  
VO  
S
1/4  
4156  
I
3
VOS3  
VOS2  
2
µ
F
0.1  
3
6
100  
µ
0.1  
F
50 mV  
-VS  
+V  
S
-VS  
R O  
µ
RS = 10K, CS = 0.005  
VX VY  
F
µ
100 V  
-VS  
V
=
K
s
V
z
65-1867  
RO R4  
R1 R2  
Where K =  
Limited Range, First Quadrant Applications  
Thermal Symmetry  
The following circuit has the advantage that cross-product  
errors are due only to input offsets and nonlinearity error is  
sightly error is slightly less for lower input currents.  
I
1
2
3
4
8
7
6
5
I
1
2
V
V
The circuit also has no standby current to add to the noise  
content, although the signal-to-noise ratio worsens at very  
low input currents (1-5 µA) due to the noise current of the  
input stages.  
Thermal  
Symmetry  
Line  
OS2  
V  
OS1  
GND  
S
Output I  
I
4
3
The R C filter circuits are added to each input to improve  
S S  
the stability for input currents below 50 µA.  
65-0070  
The scale factor is sensitive to temperature gradients across  
the chip in the lateral direction. Where possible, the package  
should be oriented such that forces generating temperature  
gradients are located physically on the line of thermal sym-  
metry. This will minimize scale-factor error due to thermal  
gradients.  
Caution!  
The bandpass drops off significantly for lower currents  
(<50 µA) and non-symmetrical rise and fall times can cause  
second harmonic distortion.  
18  
REV. 1.2.1 6/14/01  
PRODUCT SPECIFICATION  
RC4200  
+3  
+1  
-1  
200 µA ac*  
µ
250 A dc  
5
4
8
V
x
V
z
µ
150 A dc  
7
1
2
4200  
µ
250 A dc  
-3  
VY  
-5  
V
o
-7  
6
3
-15V  
-9  
* Peak to Peak  
-11  
10  
102  
103  
104  
105  
106  
107  
Frequency (Hz)  
+3  
+1  
-1  
250 µA dc  
µ
250 A dc  
5
4
8
7
1
2
V
V
x
z
4200  
µ
200 A ac*  
-3  
VY  
µ
150 A dc  
-5  
V
o
-7  
6
3
-15V  
-9  
* Peak to Peak  
-11  
10  
102  
103  
104  
105  
106  
107  
Frequency (Hz)  
+3  
+1  
-1  
250 µA dc  
µ
83.4 A ac*  
5
4
8
7
1
2
V
V
x
z
µ
167 A dc  
4200  
µ
250 A dc  
-3  
VY  
-5  
V
o
-7  
6
3
-15V  
-9  
* Peak to Peak  
-11  
10  
102  
103  
104  
105  
106  
107  
Frequency (Hz)  
Figure 18. Outputs  
REV. 1.2.1 6/14/01  
19  
RC4200  
PRODUCT SPECIFICATION  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
5 nA  
4 nA  
3 nA  
2.5 nA  
2 nA  
1.0 nA  
1.2 nA  
150  
1.5 nA  
50  
100  
200  
I2 ( µA)  
Figure 19a. Output Noise Current (I )  
250  
300  
150  
50  
100  
200  
250  
I1 ( µA)  
Figure 19b. Output Noise Current (I )  
3
3
vs. Input Currents (I , I ) for I = 250µA  
vs. Input Currents (I , I ) for I = 250µA  
4 1 2  
1
2
4
250  
200  
150  
100  
50  
Multiplier Configuration  
VXVY  
V
=
o
10  
VY = 0  
VX = 10 sin  
ω
t
VX = 0  
ω
VY = 10 sin  
t
0
1.0  
10  
100  
1K  
10K  
1M  
100K  
Frequency (Hz)  
Figure 20. AC Feedthrough vs. Frequency  
20  
REV. 1.2.1 6/14/01  
PRODUCT SPECIFICATION  
RC4200  
Mechanical Dimensions  
8-Lead SOIC Package  
Notes:  
Inches  
Millimeters  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
Min.  
Max.  
2. "D" and "E" do not include mold flash. Mold flash or  
protrusions shall not exceed .010 inch (0.25mm).  
A
.053  
.004  
.013  
.008  
.189  
.150  
.069  
.010  
.020  
.010  
.197  
.158  
1.35  
0.10  
0.33  
0.20  
4.80  
3.81  
1.75  
0.25  
0.51  
0.25  
5.00  
4.01  
A1  
B
3. "L" is the length of terminal for soldering to a substrate.  
4. Terminal numbers are shown for reference only.  
5. "C" dimension does not include solder finish thickness.  
6. Symbol "N" is the maximum number of terminals.  
C
D
E
5
2
2
e
.050 BSC  
1.27 BSC  
H
h
.228  
.010  
.016  
.244  
.020  
.050  
5.79  
0.25  
0.40  
6.20  
0.50  
1.27  
L
3
6
N
α
8
8
0°  
8°  
0°  
8°  
ccc  
.004  
0.10  
8
5
E
H
1
4
h x 45°  
D
C
A1  
A
α
SEATING  
PLANE  
C –  
L
e
LEAD COPLANARITY  
ccc C  
B
REV. 1.2.1 6/14/01  
21  
RC4200  
PRODUCT SPECIFICATION  
Mechanical Dimensions (continued)  
8-Lead Plastic DIP Package  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
2. "D" and "E1" do not include mold flashing. Mold flash or protrusions  
shall not exceed .010 inch (0.25mm).  
A
.210  
.38  
5.33  
A1  
A2  
B
.015  
.115  
.014  
.045  
.008  
3. Terminal numbers are for reference only.  
.195  
.022  
.070  
.015  
2.93  
.36  
4.95  
.56  
4. "C" dimension does not include solder finish thickness.  
5. Symbol "N" is the maximum number of terminals.  
B1  
C
1.14  
.20  
1.78  
.38  
4
2
D
.348  
.005  
.300  
.240  
.430  
.325  
.280  
8.84  
.13  
10.92  
D1  
E
7.62  
6.10  
8.26  
7.11  
2
5
E1  
e
.100 BSC  
2.54 BSC  
eB  
L
.430  
.160  
10.92  
4.06  
.115  
2.92  
N
8°  
8°  
D
1
4
E1  
D1  
5
8
e
E
A2  
A
A1  
C
L
eB  
B1  
B
22  
REV. 1.2.1 6/14/01  
RC4200  
PRODUCT SPECIFICATION  
Ordering Information  
Part Number  
RC4200N  
Package  
Operating Temperature Range  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead SOIC  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
RC4200AN  
RC4200M  
RC4200AM  
8-Lead SOIC  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO  
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME  
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
6/14/01 0.0m 003  
Stock#DS30004841  
© 2001 Fairchild Semiconductor Corporation  

相关型号:

RC4200NB

Analog Multiplier Or Divider, BIPolar, PDIP8,
RAYTHEON

RC4200NB1

Analog Multiplier Or Divider, BIPolar, PDIP8,
RAYTHEON

RC4200NB2

Analog Multiplier Or Divider, BIPolar, PDIP8,
RAYTHEON

RC4207FN

Operational Amplifier, 2 Func, 75uV Offset-Max, BIPolar, PDIP8,
RAYTHEON

RC4207FNB

Voltage-Feedback Operational Amplifier
ETC

RC4207GDE

Operational Amplifier, 2 Func, 250uV Offset-Max, BIPolar, CDIP8,
RAYTHEON

RC4207GN

Operational Amplifier, 2 Func, 250uV Offset-Max, BIPolar, PDIP8, MINI, PLASTIC, DIP-8
FAIRCHILD

RC4207GNB

Voltage-Feedback Operational Amplifier
ETC

RC4227BD

Operational Amplifier, 2 Func, 400uV Offset-Max, BIPolar, CDIP8, CERAMIC, DIP-8
FAIRCHILD

RC4227FN

Operational Amplifier, 2 Func, 150uV Offset-Max, BIPolar, PDIP8, PLASTIC, DIP-8
FAIRCHILD