SG6901ASZ [FAIRCHILD]

PFC / Flyback PWM Controller; PFC /反激式PWM控制器
SG6901ASZ
型号: SG6901ASZ
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

PFC / Flyback PWM Controller
PFC /反激式PWM控制器

功率因数校正 控制器
文件: 总18页 (文件大小:705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
very few external components to achieve versatile  
protections. It is available in a 20-pin SOP package.  
FEATURES OVERVIEW  
„
„
„
„
Interleaved PFC/PWM switching  
Low start-up and operating current  
Innovative switching charge multiplier-divider  
Multi-vector control for improved PFC output  
transient response  
The patented interleave-switching feature synchronizes  
the PFC and PWM stages and reduces switching noise.  
For PFC stage, the proprietary multi-vector control  
„
„
„
„
„
„
„
„
„
Average-current-mode control for PFC  
Programmable two-level PFC output voltage  
PFC over-voltage and under-voltage protections  
PFC and PWM feedback open-loop protection  
Cycle-by-cycle current limiting for PFC/PWM  
Slope compensation for PWM  
scheme provides a fast transient response in a  
low-bandwidth PFC loop, in which the overshoot and  
undershoot of the PFC voltage are clamped. If the  
feedback loop is broken, the SG6901A shuts off PFC to  
prevent extra-high voltage on output. Programmable  
two-level output voltage control reduces the PFC output  
voltage at low line input to increase the efficiency of the  
power supply.  
Constant power limit for PWM  
Brownout protection  
Over-temperature protection (OTP)  
For the flyback PWM, the synchronized slope  
compensation ensures the stability of the current loop  
under continuous-conduction-mode operation. Built-in  
APPLICATIONS  
„
Switching Power Supplies with Active PFC and  
Standby Power  
line-voltage  
compensation  
maintains  
constant  
„
High-Power Adaptors  
output-power limit. Hiccup operation during output  
overloading is also guaranteed.  
DESCRIPTION  
The highly integrated SG6901A is designed for power  
supplies with boost PFC and flyback PWM. It requires  
In addition, SG6901A provides protection functions, such  
as brownout and RI pin open/short protection.  
Typical Application  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 1 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
MARKING DIAGRAMS  
PIN CONFIGURATION  
T: S=SOP  
P : Z=Lead Free  
SG6901A TP  
Null=regular package  
XXXXXXXX: Wafer Lot  
Y: Year; WW: Week  
V: Assembly Location  
XXXXXXXXYWWV  
ORDERING INFORMATION  
Part Number  
Pb-Free  
Package  
SG6901ASZ  
20-pin SOP  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 2 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
PIN DESCRIPTIONS  
Name  
Pin No.  
Type  
Function  
Line voltage detection. The pin is used for PFC multiplier, RANGE control of PFC output  
voltage, and brownout protection. For brownout protection, the controller is disabled  
after a delay time when the VRMS voltage drops below a threshold.  
Line-Voltage  
Detection  
VRMS  
1
Reference setting. One resistor connected between RI and ground determines the  
switching frequency. The switching frequency is equal to [1560 / RI] KHz, where RI is  
in KΩ. For example, if RI is equal to 24KΩ, the switching frequency is 65KHz.  
RI  
2
3
Oscillator Setting  
This pin supplies an over-temperature protection signal. A constant current is output from  
this pin. An external NTC thermistor must be connected from this pin to ground. The  
impedance of the NTC thermistor decreases whenever the temperature increases. Once  
the voltage of the OTP pin drops below the OTP threshold, the SG6901A is disabled.  
Over Temperature  
Protection  
OTP  
Output for PFC  
Current Amplifier  
Inverting Input for  
PFC Current  
This is the output of the PFC current amplifier. The signal from this pin is compared with  
an internal sawtooth and determines the pulse width for PFC gate drive.  
IEA  
4
5
The inverting input of the PFC current amplifier. Proper external compensation circuits  
result in excellent input power factor via average-current-mode control.  
IPFC  
Amplifier  
Non-inverting Input  
for PFC Current  
Amplifier  
The non-inverting input of the PFC current amplifier and the output of multiplier. Proper  
external compensation circuits will result in excellent input power factor via  
average-current-mode control.  
IMP  
6
7
8
ISENS  
E
Peak Current Limit  
Setting for PFC  
The peak-current setting for PFC.  
The control input for voltage-loop feedback of PWM stage. It is internally pulled high  
through a 6.5kΩ resistance. Usually an external opto-coupler from secondary feedback  
circuit is connected to this pin.  
FBPW  
M
PWM Feedback  
Input  
The current-sense input for the flyback PWM. Via a current sense resistor, this pin  
provides the control input for peak-current-mode control and cycle-by-cycle current  
limiting.  
PWM Current  
Sense  
IPWM  
AGND  
9
10  
Ground  
Signal ground.  
During startup, the SS pin will charge an external capacitor with a 50µA (RI=24KΩ)  
constant current source. The voltage on FBPWM will be clamped by SS during startup. In  
the event of a protection condition occurring and/or PWM being disabled, the SS pin will  
be quickly discharged.  
SS  
11  
PWM Soft-Start  
The totem-pole output drive for the Flyback PWM MOSFET. This pin is internally  
clamped under 17V to protect the MOSFET.  
OPWM  
GND  
12  
13  
14  
15  
PWM Gate Drive  
Ground  
Power ground.  
The totem-pole output drive for the PFC MOSFET. This pin is internally clamped under  
17V to protect the MOSFET.  
OPFC  
VDD  
PFC Gate Drive  
Supply  
The power supply pin.  
Two-level output voltage setting for PFC. The PFC output voltage at low line can be  
reduced to improve efficiency. The RANGE pin has high impedance whenever the VRMS  
voltage is lower than a threshold.  
PFC Output  
RANGE  
16  
Voltage Control  
The PFC stage over voltage input. The comparator disables the PFC output driver if the  
voltage at this input exceeds a threshold. This pin can be connected to FBPFC or it can be  
connected to the PFC boost output through a divider network.  
PFC Over-Voltage  
Input  
OVP  
17  
18  
Voltage Feedback  
Input for PFC  
Error Amplifier  
Output for PFC  
Voltage Feedback  
Loop  
The feedback input for PFC voltage loop. The inverting input of PFC error amplifier. This  
pin is connected to the PFC output through a divider network.  
FBPFC  
The error amplifier output for PFC voltage feedback loop. A compensation network  
(usually a capacitor) is connected between this pin and ground. A large capacitor value  
results in a narrow bandwidth and improves the power factor.  
VEA  
IAC  
19  
20  
Input AC Current  
This input is used to provide current reference for the multiplier.  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 3 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
BLOCK DIAGRAM  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 4 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
VVDD  
IAC  
DC Supply Voltage*  
25  
2
V
Input AC Current  
mA  
VHigh  
VLow  
PD  
OPWM, OPFC, IAC  
-0.3 to +25.0  
-0.3 to +7.0  
1.15  
V
Others  
V
Power Dissipation at TA < 50°C  
Operating Junction Temperature  
Storage Temperature Range  
Thermal Resistance (Junction-to-Case)  
W
TJ  
-40 to +125  
-55 to +150  
23.64  
°C  
°C  
°C/W  
TSTG  
R
θJC  
TL  
Lead Temperature (Wave Soldering or Infrared, 10 Seconds)  
260  
°C  
VESD,HBM  
VESD,MM  
Electrostatic Discharge Capability, Human Body Model  
Electrostatic Discharge Capability, Machine model  
4.5  
KV  
V
250  
*All voltage values, except differential voltages, are given with respect to GND pin.  
*Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Value  
Unit  
TA  
Operating Ambient Temperature*  
-20 to +85  
°C  
*For proper operation.  
ELECTRICAL CHARACTERISTICS  
VDD=15V, TA=25°C unless otherwise noted.  
VDD Section  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
VDD-OP  
IDD-ST  
Continuously Operating Voltage  
Start-up Current  
20  
25  
V
0V < VDD < VDD-ON  
VDD=15V; OPFC, OPWM open;  
RI=24K  
10  
6
µA  
IDD-OP  
Operating Current  
10  
mA  
VDD-ON  
Start Threshold Voltage  
Minimum Operating Voltage  
VDD OVP Threshold  
11  
9
12  
13  
V
VDD-OFF  
VDD-OVP  
tD-VDDOVP  
10  
11  
V
23.5  
8
24.5  
25.5  
25  
V
Debounce Time of VDD OVP  
µs  
Oscillator Section  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
FOSC  
RI  
PWM Frequency  
RI=24KΩ  
62  
65  
68  
KHz  
RI Pin Resistance Range  
RI Pin Open Protection  
15.6  
47.0  
KΩ  
RIOPEN  
200  
2
KΩ  
KΩ  
If RI > RIopen , SG6901A Turns Off  
RI Pin Short Protection  
RISHORT  
If RI < RIshort , SG6901A Turns Off  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 5 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
VRMS for UVP and RANGE  
Symbol  
Parameter  
Test Conditions Min.  
Typ.  
Max.  
Unit  
RMS AC Voltage Under-Voltage Protection  
Threshold (with tUVP delay)  
VRMS-UVP-1  
0.75  
0.8  
0.85  
V
VRMS-UVP-1  
VRMS-UVP-1  
+ 0.18V  
VRMS-UVP-1  
+ 0.2V  
tUVP-Min+1  
4
VRMS-UVP-2  
tD-PWM  
Recovery Level on VRMS  
V
+ 0.16V  
When UVP Occurs, Interval from PFC Off to  
PWM Off  
tUVP-Min+9  
ms  
tUVP  
Under-Voltage Protection Delay Time*  
High VRMS Threshold for RANGE  
Comparator  
150  
195  
240  
ms  
V
VRMS-H  
1.90  
1.95  
2.00  
VRMS-L  
Low VRMS Threshold for RANGE  
Comparator  
1.55  
140  
1.60  
170  
1.65  
V
tRANGE  
VOL  
Range-Enable Delay Time  
Output Low Voltage of RANGE Pin  
200  
0.5  
50  
ms  
V
Io=1mA  
IOH  
Output High Leakage Current of RANGE Pin RANGE=5V  
nA  
* No delay for start-up.  
PFC Stage  
Voltage Error Amplifier  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
VREF  
Av  
Reference Voltage  
2.95  
3.00  
60  
3.05  
V
Open-Loop Gain  
dB  
KΩ  
V
Zo  
Output Impedance  
110  
3.25  
OVPPFC  
PFC Over-Voltage Protection (OVP Pin)  
PFC Feedback Voltage Protection  
Hysteresis  
3.20  
60  
3.30  
120  
OVPPFC  
90  
mV  
tOVP-PFC  
Debounce Time of PFC OVP  
Clamp-High Feedback Voltage  
Clamp-High Gain  
40  
70  
120  
µs  
VFBPFC-H  
GFBPFC-H  
VFBPFC-L  
GFBPFC-L  
IFBPFC-L  
3.10  
3.15  
0.5  
3.20  
V
µA/mV  
V
Clamp-Low Feedback Voltage  
Clamp-Low Gain  
2.75  
2.85  
6.5  
2.90  
mA/mV  
mA  
µA  
Maximum Source Current  
Maximum Sink Current  
1.5  
70  
2.0  
IFBPFC-H  
110  
0.40  
70  
UVPFBPFC  
tUVP-FBPFC  
PFC Feedback Under-Voltage Protection  
Debounce Time of PFC UVP  
0.35  
40  
0.45  
120  
V
µs  
Current Error Amplifier  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
VOFFSET  
AI  
Input Offset Voltage ((-) > (+))  
Open-Loop Gain  
8
mV  
dB  
MHz  
dB  
V
60  
1.5  
70  
BW  
Unit Gain Bandwidth  
CMRR  
VOUT-HIGH  
VOUT-LOW  
IMR1, IMR2  
IL  
Common Mode Rejection Ratio  
Output High Voltage  
VCM=0 to +1.5V  
3.2  
Output Low Voltage  
0.2  
70  
V
Reference Current Source  
Maximum Source Current  
Maximum Sink Current  
RI=24K(IMR=20+IRI•0.8)  
50  
3
µA  
mA  
mA  
IH  
0.25  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 6 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
Peak Current Limit  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
IP  
Constant Current Output  
RI=24KΩ  
VRMS=1.05V  
VRMS=3V  
90  
100  
110  
µA  
V
Peak Current Limit Threshold Voltage  
0.15  
0.35  
0.20  
0.40  
0.25  
VPK  
Cycle-by-Cycle Limit (VSENSE < VPK  
)
0.45  
200  
450  
V
tPD-PFC  
Propagation Delay  
ns  
ns  
tLEB-PFC  
Leading-Edge Blanking Time  
270  
350  
Multiplier  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Unit  
IAC  
Input AC Current  
Multiplier Linear Range  
RI=24KΩ  
0
360  
µA  
µA  
IMO–max  
Maximum Multiplier Current Output  
Multiplier Current Output (Low-line,  
High-power)  
250  
250  
VRMS=1.05V; IAC=90µA;  
IMO-1  
200  
280  
µA  
V
EA=7.5V; RI=24KΩ  
VRMS=3V; IAC=264µA;  
EA=7.5V; RI=24KΩ  
Multiplier Current Output (High-line,  
High-power)  
IMO–2  
VIMP  
65  
85  
µA  
V
V
Voltage of IMP Open  
3.4  
3.9  
4.4  
PFC Output Driver  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Unit  
VZ  
Output Voltage Maximum (Clamp)  
Output Voltage Low  
VDD=20V  
16  
18  
V
V
VOL-PFC  
VDD=15V; IO=100mA  
1.5  
Interval OPFC Lags Behind OPWM at  
Start-up  
tPFC  
9.0  
8
11.5  
14.0  
120  
ms  
V
VOH-PFC  
tR-PFC  
Output Voltage High  
VDD=13V; IO=100mA  
VDD=15V; CL=5nF;  
O/P=2V to 9V  
Rising Time  
40  
70  
60  
ns  
VDD=15V; CL=5nF;  
O/P=9V to 2V  
tF-PFC  
Falling Time  
40  
93  
110  
98  
ns  
%
DCYMAX  
Maximum Duty Cycle  
PWM Stage  
FBPWM  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Av-PWM  
ZFB  
FB to Current Comparator Attenuation  
Input Impedance  
2.5  
4
3.1  
5
3.5  
7
V/V  
KΩ  
mA  
V
IFB  
Maximum Source Current  
0.8  
4.2  
45  
1.2  
4.5  
56  
1.5  
4.8  
70  
FBOPEN-LOOP  
tOPEN-PWM  
PWM Open-Loop Protection voltage  
PWM Open-Loop Protection Delay Time  
Interval of PWM Open-Loop Protection  
Reset  
ms  
450  
600  
750  
tOPEN-PWM-Hiccup  
ms  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 7 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
PWM-Current Sense  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
tPD-PWM  
VLIMIT-1  
VLIMIT-2  
tLEB-PWM  
Propagation Delay to Output  
VDD=15V,OPWM<=9V  
RANGE=Open  
60  
120  
0.75  
0.70  
450  
ns  
V
Peak Current Limit Threshold Voltage1  
Peak Current Limit Threshold Voltage2  
Leading-Edge Blanking Time  
0.65  
0.60  
270  
0.70  
0.65  
350  
RANGE=Ground  
V
ns  
VS=VSLOPE x (Ton/T)  
VS: Compensation Voltage  
Added to Current Sense  
VSLOPE  
Slope Compensation  
0.45  
0.50  
0.55  
V
PWM Output Driver  
Symbol  
VZ-PWM  
Parameter  
Test Conditions  
VDD=20V  
Min.  
Typ.  
Max.  
18  
Unit  
V
Output Voltage Maximum (Clamp)  
Output Voltage Low  
16  
VOL-PWM  
VOH-PWM  
VDD=15V; IO=100mA  
VDD=13V; IO=100mA  
1.5  
V
Output Voltage High  
8
V
V
9V  
DD=15V; CL=5nF; O/P=2V to  
tR-PWM  
Rising Time  
30  
60  
120  
ns  
V
2V  
DD=15V; CL=5nF; O/P=9V to  
tF-PWM  
Falling Time  
30  
73  
50  
78  
110  
83  
ns  
%
DCYMAXPWM  
Maximum Duty Cycle  
OTP Section  
Symbol  
IOTP  
Parameter  
Test Conditions  
Min.  
90  
Typ.  
100  
Max.  
110  
Unit  
µA  
V
OTP Pin Output Current  
Recovery Level on OTP  
OTP Threshold Voltage  
OTP Debounce Time  
RI=24KΩ  
VOTP-ON  
VOTP-OFF  
tOTP  
1.35  
1.15  
8
1.40  
1.20  
1.45  
1.25  
25  
V
µs  
Soft-Start Section  
Symbol  
ISS  
Parameter  
Test Conditions  
Min.  
Typ.  
50  
Max.  
Unit  
µA  
Constant Current Output for Soft-Start  
Discharge RDSON  
RT=24KΩ  
44  
56  
RD  
470  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 8 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
TYPICAL CHARACTERISTICS  
Start-Up Current (IDD-ST) vs Temperature  
Minimum Operating Voltage (VDD-OF F ) vs  
Temperature  
25  
11.0  
10.6  
10.2  
9.8  
20  
15  
10  
5
9.4  
0
9.0  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (  
)  
Temperature ()  
PWM Frequency (FOSC ) vs Temperature  
Operating Current (IDD-OP) vs Temperature  
68  
10.0  
8.8  
7.6  
6.4  
5.2  
4.0  
67  
66  
64  
63  
62  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature (  
)  
Temperature ()  
VDD Over Voltage Protection (VDD-OVP) vs  
Temperature  
Start Threshold Voltage (VDD-ON) vs Temperature  
13.0  
12.6  
12.2  
11.8  
11.4  
11.0  
25.5  
25.1  
24.7  
24.3  
23.9  
23.5  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (  
)  
Temperature ()  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 9 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
High VRMS Threshold for RANGE Comparator (VRM S- H) vs  
Reference Voltage (VREF ) vs Temperature  
Temperature  
3.05  
3.03  
3.01  
2.99  
2.97  
2.95  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature (  
)  
Temperature (℃)  
Low VRMS Threshold for RANGE Comparator  
(VRMS-L) vs Temperature  
Rising Time (tR-PF C ) vs Temperature  
120  
104  
88  
1.65  
1.63  
1.61  
1.59  
1.57  
1.55  
72  
56  
40  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature ()  
Temperature ()  
PFC Over Voltage Protection (OVPPF C ) vs  
Temperature  
Falling Time (tF -PF C ) vs Temperature  
110  
96  
82  
68  
54  
40  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature ()  
Temperature ()  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 10 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
Peak Current Limit Threshold Voltage 1 (VLIMIT-1  
vs Temperature  
)
Maximum Duty Cycle (DCYMAX) vs Temperature  
98  
97  
96  
95  
94  
93  
0.75  
0.73  
0.71  
0.69  
0.67  
0.65  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature (  
)  
Temperature ()  
Peak C urrent Limit Threshold Voltage 2 (VLIMIT-2) vs  
Temperature  
PWM Open Loop Protection Voltage (FBOPEN-LOOP  
vs Temperature  
)
0.70  
4.80  
4.68  
4.56  
4.44  
4.32  
4.20  
0.68  
0.66  
0.64  
0.62  
0.60  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature ()  
Temperature ()  
Rising Time (tR-PWM) vs Temperature  
PWM Open Loop Protection Delay Time (tOPEN-PWM ) vs  
Temperature  
120  
70  
65  
60  
55  
50  
45  
102  
84  
66  
48  
30  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature ()  
Temperature (℃)  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 11 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
Falling Time (tF -PWM) vs Temperature  
PWM Maximum Duty Cycle (DCYMAXPWM) vs  
Temperature  
110  
94  
78  
62  
46  
30  
83  
81  
79  
77  
75  
73  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature ()  
Temperature ()  
OTP Threshold Voltage (VOTP-OF F ) vs  
Temperature  
PWM Maximum Duty Cycle (DCYMAXPWM) vs  
Temperature  
83  
81  
79  
77  
75  
73  
1.25  
1.23  
1.21  
1.19  
1.17  
1.15  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature ()  
Temperature ()  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 12 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
OPERATION DESCRIPTION  
SG6901A is a highly integrated PFC/PWM combination  
controller. Many functions and protections are built in to  
provide a compact design. The following sections  
describe the operation and function.  
PFC Output Voltage Control (RANGE)  
For an universal input (90 ~ 264VAC) power supply  
applying active boost PFC and flyback as a second stage,  
the output voltage of PFC is usually designed around  
250V at low line and 390V at high line. This can improve  
the efficiency at low-line input. The RANGE pin  
(open-drain structure) is used for the two-level output  
voltage setting.  
Switching Frequency and Current  
Sources  
The switching frequency of SG6901A can be  
programmed by the resistor RI connected between RI pin  
and GND. The relationship is:  
Figure 2 shows the RANGE output that programs the PFC  
output voltage. The RANGE output is shorted to ground  
when the VRMS voltage exceeds VRMS-H (1.95V) while it is  
of high impedance (open) whenever the VRMS voltage  
drops below VRMS-L (1.6V). The output voltages can be  
designed using equations:  
1560  
RI (k)  
FOSC  
=
(kHz)  
-----------  
(1)  
For example, a 24Kresistor RI results in a 65KHz  
switching frequency. Accordingly, a constant current, IT,  
flows through RI:  
RA + RB  
Range = Open VO  
=
× 3V  
RB  
RA  
----  
(3)  
+
(RB //RC  
)
× 3V  
Range = Ground VO  
=
(RB //RC  
)
1.2V  
RI (k)  
IT =  
(mA)  
----------------  
(2)  
IT is used to generate internal current reference.  
Line Voltage Detection (VRMS)  
Figure 1 shows a resistive divider with low-pass filtering  
for line-voltage detection on the VRMS pin. The VRMS  
voltage is used for the PFC multiplier, brownout  
protection, and range control.  
For brownout protection, the SG6901A is disabled with  
195ms delay time if the voltage VRMS drops below 0.8V.  
For PFC multiplier and range control, refer to section  
below for more details.  
FIG.2 Range Control Two-Level Output Voltage  
FIG.1 Line Voltage Detection Circuit  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 13 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
Through the differential amplification of the signal across  
RS, better noise immunity is achieved. The output of IEA is  
compared with an internal sawtooth and the pulse width  
for PFC is determined. Through the average current-mode  
Interleave Switching  
The SG6901A uses interleaved switching to synchronize  
the PFC and flyback stages, which reduces switching  
noise and spreads the EMI emissions. Figure 3 shows  
off-time, TOFF, inserted between the turn-off of the PFC  
gate drive and the turn-on of the PWM.  
control loop, the input current IS is proportional to IMO  
:
IMO ×R2 = IS ×R  
S --------------------  
(5)  
According to Equation 5, the minimum value of R2 and  
maximum of RS can be determined since IMO should not  
exceed the specified maximum value.  
There are different concerns in determining the value of  
the sense resistor RS. The value of RS should be small  
enough to reduce power consumption, but large enough to  
maintain the resolution. A current transformer (CT) may  
be used to improve efficiency of high-power converters.  
FIG.3 Interleaved Switching Pattern  
To achieve good power factor, the voltage for VRMS and  
VEA should be kept as constant as possible, according to  
Equation 4. Good RC filtering for VRMS and narrow  
bandwidth (lower than the line frequency) for voltage  
loop are suggested for better input current shaping. The  
transconductance error amplifier has output impedance  
ZO and a capacitor CEA (1µF ~ 10µF) should be connected  
to ground. This establishes a dominant pole f1 for the  
voltage loop:  
PFC Operation  
The purpose of a boost active power factor corrector (PFC)  
is to shape the input current of a power supply. The input  
current waveform and phase follow that of the input  
voltage. Average-current-mode control is utilized for  
continuous-current-mode operation for the PFC booster.  
With the innovative multi-vector control for voltage loop  
and switching charge multiplier-divider for current  
reference, excellent input power factor is achieved with  
good noise immunity and transient response. Figure 4  
shows the total control loop for the average-current-mode  
control circuit of SG6901A.  
1
f
1 =  
----------------------  
(6)  
2π ×ZO × CEA  
The average total input power can be expressed as:  
The current source output from the switching charge  
multiplier-divider can be expressed as:  
Pin = VIN  
×IIN  
(rms)  
(rms)  
VRMS ×IMO  
IAC × VEA  
VRMS  
----------------  
(7)  
IAC × VEA  
IMO = K×  
(µA)  
------------  
(4)  
VRMS  
×
×
2
2
VRMS  
Vin  
× VEA  
RAC  
VRMS  
VRMS  
As shown in Figure 4, the current output from IMP pin,  
MP, is the summation of IMO and IMR1. IMR1 and IMR2 are  
2
I
VEA  
=
2 ×  
RAC  
identical fixed-current sources used to pull high the  
operating point of the IMP and IPFC pins since the  
voltage across RS goes negative with respect to ground.  
Constant current sources IMR1 and IMR2 are typically 60µA.  
From Equation 7, VEA, the output of the voltage error  
amplifier, controls the total input power and the power  
delivered to the load.  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 14 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
FIG.4 Average-Current-Mode Control Loop  
Multi-Vector Error Amplifier  
PFC Over-Voltage Protection  
Although the PFC stage has a low bandwidth voltage loop  
for better input power factor, the innovative multi-vector  
error amplifier provides a fast transient response to clamp  
the overshoot and undershoot of the PFC output voltage.  
Using a voltage divider from the output of PFC to the  
OVP pin, the PFC output voltage can be safely protected.  
Once the voltage on the OVP pin is over OVPPFC, the  
OPFC is disabled. THE OPFC is not enabled again until  
Figure 5 shows the block diagram of the multi-vector  
error amplifier. When the variation of the feedback  
voltage exceeds ±5% of the reference voltage, the  
transconductance error amplifier adjusts its output  
impedance to increase the loop response.  
the OVP voltage falls below OVPPFC.  
Cycle-by-Cycle Current Limiting  
SG6901A provides cycle-by-cycle current limiting for  
both PFC and PWM stages. Figure 6 shows the peak  
current limit for the PFC stage. The PFC gate drive is  
terminated once the voltage on the ISENSE pin goes  
below VPK  
.
The voltage of VRMS determines the voltage of VPK. The  
relationship between VPK and VRMS is shown in Figure 6.  
The amplitude of the constant current, IP, is determined by  
the internal current reference according to the equation:  
1.2V  
IP = 2×  
---------------------  
(8)  
RI  
FIG. 5 Multi-Vector Error Amplifier  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 15 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
Limited Power Control  
Every time the output of power supply is shorted or  
overloaded, the FBPWM voltage increases. If the  
FBPWM voltage is higher than a designed threshold,  
FBOPEN-LOOP (4.5V) for longer than tOPEN-PWM (56ms), the  
OPWM is turned off.  
As long as the voltage on the VDD pin is larger than  
V
DD-OFF (minimum operating voltage), the OPWM is not  
enabled. This protection is reset every tOPEN-PWM-Hiccup  
interval. low-frequency hiccup mode protection  
FIG. 6 VRMS Controlled Current Limiting  
A
prevents the power supply from being overheated under  
overloading conditions.  
The peak current of the ISENSE is given by (VRMS<1.05V):  
(IP ×RP )-0.2V  
ISENSE_peak =  
------------------  
(9)  
RS  
Over-Temperature Protection  
SG6901A provides an OTP pin for over-temperature  
protection. A constant current is output from this pin. If RI  
is equal to 24K, the magnitude of the constant current is  
100µA. An external NTC thermistor must be connected  
from this pin to ground, as shown as Figure 8. When the  
OTP voltage drops below VOTP-OFF (1.2V), SG6901A is  
disabled and does not recover until OTP voltage exceeds  
Flyback PWM and Slope Compensation  
As shown in Figure 7, peak-current-mode control is  
utilized for flyback PWM. The SG6901A inserts a  
synchronized 0.5V ramp at the beginning of each  
switching cycle. This built-in slope compensation ensures  
stable operation for continuous current-mode operation.  
VOTP-ON (1.4V).  
FIG. 8 OTP Function  
FIG. 7 Peak Current Control Loop  
Soft-Start  
When the IPWM voltage, across the sense resistor,  
reaches the threshold voltage (0.9V), the OPWM is turned  
During start-up of PWM stage, the SS pin charges an  
external capacitor with a constant current source. The  
voltage on FBPWM is clamped by the SS voltage during  
start-up. In the event of a protected condition and/or  
PWM disabled, the SS pin quickly discharges.  
off after a small propagation delay tPD-PWM  
.
To improve stability or prevent sub-harmonic oscillation,  
a synchronized positive-going ramp is inserted at every  
switching cycle.  
Gate Drivers  
SG6901A output stage is a fast totem-pole gate driver.  
The output driver is clamped by an internal 18V Zener  
diode to protect the external power MOSFET.  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 16 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
PACKAGE INFORMATION  
20 PINS – PLASTIC SOP (S)  
E
H
Detail A  
F
A
c
1
10  
b
e
D
θ
L
A2  
y
A1  
Detail A  
Dimensions:  
Millimeter  
Inch  
Min.  
Symbol  
Min.  
Typ.  
Max.  
Typ.  
Max.  
0.104  
A
A1  
A2  
b
2.362  
0.101  
2.260  
2.642  
0.305  
2.337  
0.093  
0.004  
0.089  
0.012  
0.092  
0.406  
0.016  
c
0.203  
0.008  
D
E
12.598  
7.391  
12.903  
7.595  
0.496  
0.291  
0.508  
0.299  
e
1.270  
0.050  
H
L
10.007  
0.406  
10.643  
1.270  
0.394  
0.016  
0.419  
0.050  
F
0.508X45°  
0.020X45°  
y
θ°  
0.101  
8°  
0.004  
8°  
0°  
0°  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 17 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  
Product Specification  
PFC / Flyback PWM Controller  
SG6901A  
© System General Corp.  
Version 1.0.1 (IAO33.0062.B0)  
- 18 -  
www.sg.com.tw • www.fairchildsemi.com  
September 26, 2007  

相关型号:

SG6902

Green-Mode PFC / Flyback-PWM Controller
FAIRCHILD

SG6902RZ

Switching Regulator/Controller, Current-mode, 68kHz Switching Freq-Max, PDSO20,
FAIRCHILD

SG6902SZ

Green-Mode PFC / Flyback-PWM Controller
FAIRCHILD

SG6905

Green mode PFC/Flyback-PWM Controller
FAIRCHILD

SG6905SZ

Green mode PFC/Flyback-PWM Controller
FAIRCHILD

SG6932

Green-Mode PFC / Forward PWM Controller
FAIRCHILD

SG6932DZ

Green-Mode PFC / Forward PWM Controller
FAIRCHILD

SG6932SZ

Green-Mode PFC / Forward PWM Controller
FAIRCHILD

SG6932SZ

POWER FACTOR CONTROLLER, 68kHz SWITCHING FREQ-MAX, PDSO16, LEAD FREE, PLASTIC, SOP-16
ROCHESTER

SG6932_08

PFC / Forward PWM Controller
FAIRCHILD

SG6961

Power Factor Controller
FAIRCHILD

SG6961DZ

Power Factor Controller
FAIRCHILD