SPT7835SCD [FAIRCHILD]

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, CDIP28, 0.300 INCH, CERDIP-28;
SPT7835SCD
型号: SPT7835SCD
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, CDIP28, 0.300 INCH, CERDIP-28

CD 转换器
文件: 总12页 (文件大小:95K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPT7835  
10-BIT, 5 MSPS, 75 mW A/D CONVERTER  
FEATURES  
APPLICATIONS  
Monolithic 5 MSPS Converter  
• 75 mW Power Dissipation  
• On-Chip Track-and-Hold  
• Single +5 V Power Supply  
• TTL/CMOS Outputs  
• All High-Speed Applications Where  
Low Power Dissipation is Required  
• Video Imaging  
• Medical Imaging  
• 5 pF Input Capacitance  
• Low Cost  
• IR Imaging  
• Scanners  
• Tri-State Output Buffers  
• High ESD Protection: 3,500 V Minimum  
• Selectable +3 V or +5 V Logic I/O  
• Digital Communications  
GENERAL DESCRIPTION  
The SPT7835 is a 10-bit monolithic, low cost, ultralow power  
analog-to-digital converter capable of minimum word rates of  
5 MSPS. The on-chip track-and-hold function assures very  
good dynamic performance without the need for external  
components.Theinputdriverequirementsareminimizeddue  
to the SPT7835's low input capacitance of only 5 pF.  
The SPT7835 has incorporated proprietary circuit design  
andCMOSprocessingtechnologiestoachieveitsadvanced  
performance. Inputs and outputs are TTL/CMOS-compat-  
ible to interface with TTL/CMOS-logic systems. Output data  
format is straight binary.  
The SPT7835 is available in 28-lead 300 mil cerdip and  
PDIP, 28-lead SOIC and 32-lead small (7 mm square) TQFP  
packagesoverthecommercialtemperaturerange.For avail-  
ability of extended temperature ranges, and /883 processing  
requirements consult the factory.  
Power dissipation is extremely low at only 75 mW typical at  
5 MSPS with a power supply of +5.0 V. The digital outputs  
are+3Vor+5Vandareuserselectable.TheSPT7835ispin-  
compatiblewiththeentirefamilyofSPT10-bit, CMOSconvert-  
ers (SPT7835/40/50/55/60/61) which simplifies upgrades.  
BLOCK DIAGRAM  
ADC Section 1  
D10 Overrange  
Auto-  
1:8  
Mux  
11-Bit  
SAR  
11  
Zero  
A
T/H  
IN  
CMP  
D9 (MSB)  
11  
D8  
DAC  
P1  
P2  
D7  
11  
11  
ADC Section 2  
.
.
.
.
.
.
CLK In  
Enable  
.
.
.
.
.
.
D6  
Timing  
and  
Control  
11-Bit  
8:1  
Mux/  
Error  
Correction  
P7  
ADC Section 7  
D5  
P8  
ADC Section 8  
11  
D4  
Auto-  
Zero  
CMP  
11-Bit  
SAR  
T/H  
Data  
Valid  
D3  
11  
D2  
DAC  
D1  
Ref  
In  
DØ (LSB)  
Reference Ladder  
V
Ref  
Signal Processing Technologies, Inc.  
4755 Forge Road, Colorado Springs, Colorado 80907, USA  
Phone: (719) 528-2300 FAX: (719) 528-2370  
ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur)1 25 °C  
Supply Voltages  
AV .........................................................................+6 V  
Output  
Digital Outputs .......................................................10 mA  
DD  
DV  
........................................................................+6 V  
DD  
Input Voltages  
Temperature  
Analog Input ................................ -0.5 V to AV  
+0.5 V  
Operating Temperature ................................... 0 to 70 °C  
Junction Temperature........................................... 175 °C  
Lead Temperature, (soldering 10 seconds) ......... 300 °C  
Storage Temperature ...............................-65 to +150 °C  
DD  
V
........................................................................... 0 to AV  
REF  
DD  
CLK Input .................................................................. V  
AV - DV  
DD  
.............................................................±100 mV  
DD  
DD  
AGND - DGND..................................................±100 mV  
Note: 1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal  
applied conditions in typical applications.  
ELECTRICAL SPECIFICATIONS  
T =T  
A
to T  
, AV =DV =OV =+5.0 V, V =0 to 4 V, f  
=10 MHz, f =5 MSPS, V = 4.0 V, V =0.0 V, unless otherwise specified.  
CLK S RHS RLS  
MIN  
MAX  
DD  
DD  
DD  
IN  
TEST  
CONDITIONS  
TEST  
LEVEL  
SPT7835  
TYP  
PARAMETERS  
Resolution  
MIN  
MAX  
UNITS  
10  
Bits  
DC Accuracy  
Integral Nonlinearity  
Differential Nonlinearity  
No Missing Codes  
VI  
VI  
VI  
±1.0  
±0.5  
Guaranteed  
LSB  
LSB  
Analog Input  
Input Voltage Range  
Input Resistance  
Input Capacitance  
Input Bandwidth  
Offset  
VI  
IV  
V
V
V
V
V
RHS  
V
kΩ  
pF  
MHz  
LSB  
LSB  
RLS  
50  
5.0  
100  
±2.0  
±2.0  
(Small Signal)  
Gain Error  
V
Reference Input  
Resistance  
Bandwidth  
Voltage Range  
VI  
V
400  
100  
500  
150  
600  
2.0  
MHz  
V
RLS  
V
RHS  
V
RHS  
IV  
IV  
V
V
V
0
3.0  
1.0  
-
-
V
V
V
mV  
mV  
AV  
DD  
- V  
4.0  
90  
75  
5.0  
RLS  
)
)
(V  
(V  
- V  
RHF  
RLS  
RHS  
- V  
RLF  
Reference Settling Time  
V
RHS  
V
RLS  
V
V
15  
20  
Clock Cycles  
Clock Cycles  
Conversion Characteristics  
Maximum Conversion Rate  
Minimum Conversion Rate  
Pipeline Delay (Latency)  
Aperture Delay Time  
VI  
IV  
IV  
V
5
2
MHz  
MHz  
Clock Cycles  
ns  
12  
5
Aperture Jitter Time  
V
10  
ps  
Dynamic Performance  
Effective Number of Bits  
f
=1 MHz  
IN  
VI  
9.2  
Bits  
SPT7835  
SPT  
2
2/10/98  
ELECTRICAL SPECIFICATIONS  
T =T  
to T  
, AV =DV =OV =+5.0 V, V =0 to 4 V, f  
=10 MHz, f =5 MSPS, V = 4.0 V, V =0.0 V, unless otherwise specified.  
CLK S RHS RLS  
A
MIN  
MAX  
DD  
DD  
DD  
IN  
TEST  
CONDITIONS  
TEST  
LEVEL  
SPT7835  
TYP  
PARAMETERS  
MIN  
MAX  
UNITS  
Dynamic Performance  
Signal-to-Noise Ratio  
(without Harmonics)  
f
=1 MHz  
VI  
VI  
54  
59  
59  
63  
dB  
dB  
IN  
Harmonic Distortion  
=1 MHz  
f
IN  
Signal-to-Noise and Distortion  
(SINAD)  
f
=1 MHz  
IN  
VI  
52  
57  
dB  
Spurious Free Dynamic Range  
Differential Phase  
V
V
V
V
63  
TBD  
TBD  
TBD  
dB  
Degree  
%
Differential Gain  
Intermodulation Distortion  
dB  
Digital Inputs  
Logic "1" Voltage  
Logic "0" Voltage  
Maximum Input Current Low  
Maximum Input Current High  
Input Capacitance  
VI  
VI  
VI  
VI  
V
2.0  
V
V
µA  
µA  
pF  
0.8  
+10  
+10  
-10  
-10  
5
Digital Outputs  
Logic 1 Voltage  
Logic 0 Voltage  
(I =0.5 mA)  
(I =1.6 mA)  
OL  
15 pF load  
15 pF load  
VI  
VI  
V
V
V
3.5  
V
V
ns  
ns  
ns  
ns  
OH  
0.4  
t
t
10  
10  
10  
22  
RISE  
FALL  
Output Enable to Data Output Delay 20 pF load, T = +25 °C  
A
50 pF load over temp.  
V
Power Supply Requirements  
Voltages  
OV  
DV  
AV  
IV  
IV  
IV  
3.0  
4.75  
4.75  
5.0  
5.25  
5.25  
V
V
V
DD  
DD  
DD  
5.0  
5.0  
Currents  
AI  
VI  
VI  
VI  
9
6
75  
12  
10  
110  
mA  
mA  
mW  
DD  
DI  
DD  
Power Dissipation  
f
=1 MHz  
IN  
TEST LEVEL  
TEST PROCEDURE  
100% production tested at the specified temperature.  
TEST LEVEL CODES  
All electrical characteristics are subject to the  
followingconditions:Allparametershavingmin/  
max specifications are guaranteed. The Test  
Level column indicates the specific device test-  
ing actually performed during production and  
Quality Assurance inspection. Any blank sec-  
tion in the data column indicates that the speci-  
fication is not tested at the specified condition.  
I
II  
100% production tested at T =25 °C, and sample  
A
tested at the specified temperatures.  
III  
QA sample tested only at the specified temperatures.  
IV  
Parameter is guaranteed (but not tested) by design  
and characterization data.  
V
Parameter is a typical value for information purposes  
only.  
VI  
100% production tested at T = 25 °C. Parameter is  
A
guaranteed over specified temperature range.  
SPT7835  
SPT  
3
2/10/98  
Figure 1A: Timing Diagram 1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
ANALOG IN  
CLOCK IN  
(Internal)  
INVALID  
VALID  
1
2
3
4
5
6
7
8
9
10  
11  
DIGITAL OUT  
DATA VALID  
Figure 1B: Timing Diagram 2  
t
C
t
t
CL  
CH  
t
CLK  
CLOCK  
IN  
t
OD  
DATA  
OUTPUT  
Data Ø  
Data 1  
Data 2  
t
DAV  
t
DAV  
DATA  
VALID  
t
S
Table I - Timing Parameters  
DESCRIPTION  
Conversion Time  
Clock Period  
PARAMETERS  
MIN  
TYP  
MAX  
UNITS  
tc  
2*t  
ns  
ns  
%
CLK  
t
100  
40  
CLK  
Clock High Duty Cycle  
Clock Low Duty Cycle  
Output Delay  
tCH  
50  
50  
20  
60  
60  
25  
tCL  
40  
%
tOD  
15  
ns  
ns  
ns  
DAV Pulse Width  
Clock to DAV  
tDAV  
tS  
t
CLK  
16  
21  
26  
SPT7835  
SPT  
4
2/10/98  
SPECIFICATION DEFINITIONS  
APERTURE DELAY  
DIFFERENTIAL NONLINEARITY (DNL)  
Aperture delay represents the point in time, relative to the  
rising edge of the CLOCK input, that the analog input is  
sampled.  
Error in the width of each code from its theoretical value.  
N
(Theoretical = V /2 )  
FS  
INTEGRAL NONLINEARITY (INL)  
APERTURE JITTER  
Linearity error refers to the deviation of each individual code  
(normalized) from a straight line drawn from -Fs through  
+Fs. The deviation is measured from the edge of each  
particular code to the true straight line.  
The variations in aperture delay for successive samples.  
DIFFERENTIAL GAIN (DG)  
A signal consisting of a sine wave superimposed on various  
DC levels is applied to the input. Differential gain is the  
maximum variation in the sampled sine wave amplitudes at  
these DC levels.  
OUTPUT DELAY  
Time between the clock's triggering edge and output data  
valid.  
DIFFERENTIAL PHASE (DP)  
SIGNAL-TO-NOISE RATIO (SNR)  
A signal consisting of a sine wave superimposed on various  
DC levels that is applied to the input. Differential phase is the  
maximum variation in the sampled sine wave phases at  
these DC levels.  
Theratioofthefundamentalsinusoidpowertothetotalnoise  
power. Harmonics are excluded.  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
Theratioofthefundamentalsinusoidpowertothetotalnoise  
and distortion power.  
EFFECTIVE NUMBER OF BITS (ENOB)  
SINAD = 6.02N + 1.76, where N is equal to the effective  
number of bits.  
TOTAL HARMONIC DISTORTION (THD)  
SINAD - 1.76  
The ratio of the total power of the first 9 harmonics to the  
power of the measured sinusoidal signal.  
N =  
6.02  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
INPUT BANDWIDTH  
The ratio of the fundamental sinusoidal amplitude to the  
single largest harmonic or spurious signal.  
Small signal (50 mV) bandwidth (3 dB) of analog input stage.  
SPT7835  
SPT  
5
2/10/98  
TYPICAL PERFORMANCE CHARACTERISTICS  
SNR vs Input Frequency  
THD vs Input Frequency  
80  
70  
80  
70  
fs = 5 MSPS  
fs = 5 MSPS  
60  
50  
60  
50  
40  
30  
40  
30  
20  
20  
-1  
0
10  
-1  
0
10  
10  
10  
Input Frequency (MHz)  
Input Frequency (MHz)  
Total Power Dissipation Vs. Sample Rate  
Reference is excluded = 30 mW Typ  
SINAD vs Input Frequency  
110  
80  
70  
90  
70  
fs =5 MSPS  
60  
50  
50  
30  
40  
30  
20  
10  
0
5
-1  
10  
0
10  
Input Frequency (MHz)  
Sample Rate (CLK/2) MHz  
SPT7835  
SPT  
6
2/10/98  
TYPICAL INTERFACE CIRCUIT  
ThehighsamplerateisachievedbyusingmultipleSARADC  
sections in parallel, each of which samples the input signal in  
sequence. Each ADC uses 16 clock cycles to complete a  
conversion. The clock cycles are allocated as follows:  
Very few external components are required to achieve the  
stated device performance. Figure 1 shows the typical inter-  
face requirements when using the SPT7835 in normal circuit  
operation. The following sections provide descriptions of the  
major functions and outline critical performance criteria to  
consider for achieving the optimal device performance.  
Clock  
Operation  
1
2
3
4
Reference zero sampling  
Auto-zero comparison  
Auto-calibratecomparison  
Input sample  
Figure 1 - Typical Interface Circuit  
5-15  
16  
11-bit SAR conversion  
Data transfer  
Ref In  
(+4 V)  
V
V
RHF  
D10  
RHS  
V
V
V
The 16 phase clock, which is derived from the input clock,  
synchronizes these events. The timing signals for adjacent  
ADC sections are shifted by two clock cycles so that the  
analoginputissampledoneveryothercycleoftheinputclock  
byexactlyoneADCsection.After16clockperiods,thetiming  
cycle repeats. The sample rate for the configuration is one-  
half of the clock rate, e.g., for a 10 MHz clock rate, the input  
sample rate is 5 MHz. The latency from analog input sample  
to the corresponding digital output is 12 clock cycles.  
RLS  
RLF  
Interfacing  
Logics  
SPT7835  
V
IN  
IN  
V
CAL  
D0  
EN  
CLK  
CLK IN  
DAV  
AV  
D
D
DV  
DD  
AGND DGND*  
FB1  
FB2  
+D5  
• Since only eight comparators are used, a huge power  
savings is realized.  
• The auto-zero operation is done using a closed loop  
system that uses multiple samples of the comparators  
response to a reference zero.  
Enable/Tri-State  
(Enable = Active Low)  
+A5  
+A5  
+D5  
AGND  
DGND  
FB3  
• The auto-calibrate operation, which calibrates the gain of  
theMSBreferenceandtheLSBreference,isalsodonewith  
aclosedloopsystem.Multiplesamplesofthegainerrorare  
integrated to produce a calibration voltage for each ADC  
section.  
• Capacitive displacement currents, which can induce sam-  
pling error, are minimized since only one comparator  
samples the input during a clock cycle.  
+
+
10 µF  
10 µF  
*To reduce the possibility of latch-up, avoid  
connecting the DGND pins of the ADC to the  
digital ground of the system.  
+5 V  
Analog  
+5 V  
Analog  
RTN  
+5 V  
Digital  
RTN  
+5 V  
Digital  
NOTES: 1) FB3 is to be located as closely to the device as possible.  
2) There should be no additional connections to the right of FB1 and FB2.  
3) All capacitors are 0.1 µF surface-mount unless otherwise specified.  
4) FB1, FB2 and FB3 are 10 µH inductors or ferrite beads.  
• Thetotalinputcapacitanceisverylowsincesectionsofthe  
converter which are not sampling the signal are isolated  
from the input by transmission gates.  
POWER SUPPLIES AND GROUNDING  
SPT suggests that both the digital and the analog supply  
voltages on the SPT7835 be derived from a single analog  
supply as shown in figure 1. A separate digital supply should  
be used for all interface circuitry. SPT suggests using this  
power supply configuration to prevent a possible latch-up  
condition on power up.  
VOLTAGE REFERENCE  
The SPT7835 requires the use of a single external voltage  
reference for driving the high side of the reference ladder. It  
must be within the range of 3 V to 5 V. The lower side of the  
ladder is typically tied to AGND (0.0 V) but can be run up to  
2.0 V with a second reference. The analog input voltage  
range will track the total voltage difference measured be-  
OPERATING DESCRIPTION  
tween the ladder sense lines, V  
and V  
.
RLS  
RHS  
The general architecture for the CMOS ADC is shown in the  
block diagram. The design contains eight identical succes-  
sive approximation ADC sections (all operating in parallel),  
a 16-phase clock generator, an 11-bit 8:1 digital output  
multiplexer, correction logic, and a voltage reference gen-  
erator which provides common reference levels for each  
ADC section.  
Force and sense taps are provided to ensure accurate and  
stable setting of the upper and lower ladder sense line  
voltages across part-to-part and temperature variations. By  
using the configuration shown in figure 2, offset and gain  
errors of less than ±2 LSB can be obtained.  
SPT7835  
SPT  
7
2/10/98  
Figure 2 - Ladder Force/Sense Circuit  
Figure 3 - Reference Ladder  
+4.0 V  
External  
Reference  
1
AGND  
90 mV  
R/2  
V
+
-
RHS  
2
3
V
V
(+3.91 V)  
RHF  
R
R
RHS  
R
R
R
R
R=30 (typ)  
All capacitors are 0.01 µF  
4
5
N/C  
V
RLS  
-
+
6
7
V
RLF  
V
RLS  
(0.075 V)  
75 mV  
R/2  
V
IN  
V
(AGND)  
RLF  
0.0 V  
All capacitors are 0.01 µF  
Thedriverequirementsfortheanaloginputsareveryminimal  
whencomparedtomostotherconvertersduetotheSPT7835's  
extremely low input capacitance of only 5 pF and very high  
input resistance of 50 k.  
In cases where wider variations in offset and gain can be  
tolerated, V canbetieddirectlytoV andAGNDcanbe  
Ref  
RHF  
tied directly to V  
as shown in figure 3. Decouple force and  
RLF  
sense lines to AGND with a .01 µF capacitor (chip cap  
preferred) to minimize high-frequency noise injection. If this  
simplified configuration is used, the following considerations  
should be taken into account:  
The analog input should be protected through a series  
resistor and diode clamping circuit as shown in figure 4.  
CALIBRATION  
The reference ladder circuit shown in figure 3 is a simplified  
representation of the actual reference ladder with force and  
sense taps shown. Due to the actual internal structure of the  
The SPT7835 uses an autocalibration scheme to ensure 10-  
bitaccuracyovertimeandtemperature.Gainandoffseterrors  
are continually adjusted to 10-bit accuracy during device  
operation. This process is completely transparent to the user.  
ladder, the voltage drop from V  
to V  
is not equivalent  
RHF  
RHS  
to the voltage drop from V  
to V  
.
RLS  
RLF  
Typically, the top side voltage drop for V  
equal:  
to V  
will  
RHS  
Upon power-up, the SPT7835 begins its calibration algo-  
rithm. In order to achieve the calibration accuracy required,  
the offset and gain adjustment step size is a fraction of a 10-  
bit LSB. Since the calibration algorithm is an oversampling  
process, a minimum of 10k clock cycles are required. This  
results in a minimum calibration time upon power-up of  
1 msec for a 5 MHz sample rate. Once calibrated, the  
SPT7835 remains calibrated over time and temperature.  
RHF  
V
- V  
= 2.25 % of (V  
- V  
) (typical),  
RHF  
RHS  
RHF  
RLF  
RLS  
and the bottom side voltage drop for V  
- V = 1.9 % of (V - V  
to V  
will equal:  
RLF  
V
RLS  
) (typical).  
RLF  
RHF  
RLF  
Figure 3 shows an example of expected voltage drops for a  
specific case. V of 4.0 V is applied to V and V is  
Ref  
RHF  
RLF  
Since the calibration cycles are initiated on the rising edge of  
the clock, the clock must be continuously applied for the  
SPT7835 to remain in calibration.  
tied to AGND. A 90 mV drop is seen at V  
(= 3.91 V) and  
RHS  
a 75 mV increase is seen at V  
(= 0.075 V).  
RLS  
ANALOG INPUT  
INPUT PROTECTION  
VIN is the analog input. The input voltage range is from VRLS  
to VRHS (typically 4.0 V) and will scale proportionally with  
respect to the voltage reference. (See the Voltage Refer-  
ence section.)  
All I/O pads are protected with an on-chip protection circuit  
shown in figure 5. This circuit provides ESD robustness to  
3.5 kV and prevents latch-up under severe discharge condi-  
tions without degrading analog transition times.  
SPT7835  
SPT  
8
2/10/98  
Figure 4 - Recommended Input Protection Circuit  
CLOCK INPUT  
The SPT7835 is driven from a single-ended TTL-input clock.  
Because the pipelined architecture operates on the rising  
edge of the clock input, the device can operate over a wide  
range of input clock duty cycles without degrading the dy-  
namic performance. The device's sample rate is 1/2 of the  
input clock frequency. (See the timing diagram.)  
+V  
AV  
DD  
D1  
D2  
Buffer  
ADC  
DIGITAL OUTPUTS  
47  
The digital outputs (D0-D10) are driven by a separate supply  
(OVDD) ranging from +3 V to +5 V. This feature makes it  
possible to drive the SPT7835's TTL/CMOS-compatible out-  
puts with the user's logic system supply. The format of the  
output data (D0-D9) is straight binary. (See table II.) The  
outputs are latched on the rising edge of CLK. These outputs  
-V  
D1 = D2 = Hewlett Packard HP5712 or equivalent  
can be switched into a tri-state mode by bringing  
high.  
EN  
Table II - Output Data Information  
Figure 5 - On-Chip Protection Circuit  
ANALOG INPUT  
OVERRANGE  
D10  
OUTPUT CODE  
D9-D0  
V
+F.S. + 1/2 LSB  
+F.S. -1/2 LSB  
+1/2 F.S.  
1
1 1 1111 1111  
11 1111 111Ø  
ØØ ØØØØ ØØØØ  
OO OOOO OOOØ  
OO OOOO OOOO  
DD  
O
O
O
O
Analog  
120  
120 Ω  
+1/2 LSB  
0.0 V  
(Ø indicates the flickering bit between logic 0 and 1).  
Pad  
OVERRANGE OUTPUT  
The Overrange Output (D10) is an indication that the analog  
inputsignalhasexceededthepositivefullscaleinputvoltage  
by 1 LSB. When this condition occurs, D10 will switch to  
logic 1. All other data outputs (D0 to D9) will remain at logic 1  
as long as D10 remains at logic 1. This feature makes it  
possibletoincludetheSPT7835intohigherresolutionsystems.  
POWER SUPPLY SEQUENCING CONSIDERATIONS  
EVALUATION BOARD  
All logic inputs should be held low until power to the device  
has settled to the specific tolerances. Avoid power decou-  
pling networks with large time constants which could delay  
VDD power to the device.  
The EB7835 evaluation board is available to aid designers in  
demonstrating the full performance of the SPT7835. This  
board includes a reference circuit, clock driver circuit, output  
data latches and an on-board reconstruction of the digital  
data. An application note describing the operation of this  
board as well as information on the testing of the SPT7835 is  
also available. Contact the factory for price and availability.  
SPT7835  
SPT  
9
2/10/98  
PACKAGE OUTLINES  
28-Lead Cerdip, 300 mil  
INCHES  
MILLIMETERS  
MIN MAX  
SYMBOL  
MIN  
MAX  
A
B
C
D
E
F
G
H
I
0.005  
0.13  
0.200  
0.200  
0.018  
0.100  
0.056  
15°  
5.08  
0.125  
3.18  
0.00  
5.08  
0.46  
2.54  
1.42  
15°  
10°  
0°  
A
N
0.010  
0.317  
0.291  
0.25  
8.05  
7.39  
0.311  
0.285  
0.150  
0.015  
1.440  
7.90  
7.24  
28  
J
K
L
3.81  
0.060  
1.460  
0.098  
0.38  
1.52  
37.08  
2.49  
M
N
36.58  
1
M
J
L
B
K
I
C
E
F
D
H
G
28-Lead SOIC  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
B
C
D
E
F
G
H
I
0.696  
0.004  
0.712  
0.012  
.050 typ  
0.019  
0.012  
0.100  
0.050  
0.419  
0.299  
17.68  
0.10  
18.08  
0.30  
1.27 typ  
0.48  
28  
0.014  
0.009  
0.080  
0.016  
0.394  
0.291  
0.36  
0.23  
2.03  
0.41  
10.01  
7.39  
0.30  
2.54  
I
H
1.27  
10.64  
7.59  
1
A
H
F
B
C
D
G
E
SPT7835  
SPT  
10  
2/10/98  
PACKAGE OUTLINES  
28-Lead Skinny PDIP  
INCHES  
MILLIMETERS  
MIN MAX  
SYMBOL  
MIN  
MAX  
A
0.288 TYP  
1.386 TYP  
0.130 TYP  
0.060 TYP  
0.100 TYP  
0.020 TYP  
0.130 TYP  
0.310 TYP  
0.345 TYP  
7.3 TYP  
35.2 TYP  
3.3 TYP  
1.5 TYP  
2.5 TYP  
0.5 TYP  
3.3 TYP  
7.9 TYP  
8.8 TYP  
B
A
C
D
E
F
G
H
I
C
D
B
F
G
E
H
I
32-Lead TQFP  
INCHES  
MILLIMETERS  
MIN MAX  
8.90  
G
H
A
B
SYMBOL  
MIN  
MAX  
A
B
C
D
E
F
G
H
I
0.347  
0.269  
0.347  
0.269  
0.027  
0.012  
0.053  
0.002  
0.039 typ  
0.004  
0°  
0.355  
0.277  
0.355  
0.277  
0.035  
0.018  
0.057  
0.006  
9.10  
7.10  
9.10  
7.10  
0.89  
0.45  
1.45  
0.15  
6.90  
8.90  
6.90  
0.68  
C
D
0.30  
1.35  
0.05  
1.00 typ  
0.09  
I
J
0.008  
7°  
0.20  
7°  
J
K
L
0°  
0.018  
0.029  
0.45  
0.75  
E
F
K
L
SPT7835  
SPT  
11  
2/10/98  
PIN ASSIGNMENTS  
PIN FUNCTIONS  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
D10  
D9  
D8  
D7  
D6  
D5  
OV  
AGND  
NAME  
FUNCTION  
2
V
RHF  
AGND  
Analog Ground  
3
4
V
RHS  
N/C  
V
Reference High Force  
Reference High Sense  
Reference Low Sense  
Reference Low Force  
Calibration Reference  
Analog Input  
RHF  
5
V
V
RLS  
RHS  
6
V
RLF  
V
V
V
V
RLS  
RLF  
CAL  
IN  
Cerdip  
PDIP and  
SOIC  
7
V
IN  
DD  
AGND  
8
OGND  
D4  
V
9
CAL  
10  
11  
12  
13  
14  
AV  
D3  
DD  
AV  
DV  
Analog V  
DD  
DD  
DD  
DV  
DD  
D2  
Digital V  
DD  
DGND  
CLK  
D1  
DGND  
CLK  
Digital Ground  
Input Clock f  
DØ  
EN  
=fs (TTL)  
DAV  
CLK  
Output Enable  
D0-9  
D10  
Tri-State Data Output, (DØ=LSB)  
Tri-State Output Overrange  
Data Valid Output  
V
RLF  
1
2
3
4
5
6
7
8
24 D7  
DAV  
V
IN  
23 D6  
22 D5  
21 OV  
OV  
Digital Output Supply  
AGND  
AGND  
DD  
OGND  
Digital Output Ground  
DD  
TQFP  
V
CAL  
20 OGND  
19 D4  
AV  
DD  
AV  
DD  
18 D3  
DV  
DD  
17 D2  
ORDERING INFORMATION  
PART NUMBER  
SPT7835SCD  
SPT7835SCN  
SPT7835SCS  
SPT7835SCT  
SPT7835SCU  
TEMPERATURE RANGE  
0 to +70 °C  
PACKAGE TYPE  
28L Cerdip (300 mil)  
28L Plastic DIP (300 mil)  
28L SOIC  
0 to +70 °C  
0 to +70 °C  
0 to +70 °C  
32L TQFP  
+25 °C  
Die*  
*Please see the die specification for guaranteed electrical performance.  
Covered by Patent Numbers 5262779 and 5272481.  
SignalProcessingTechnologies,Inc.reservestherighttochangeproductsandspecificationswithoutnotice.Permissionisherebyexpressly  
granted to copy this literature for informational purposes only. Copying this material for any other use is strictly prohibited.  
WARNING - LIFE SUPPORT APPLICATIONS POLICY - SPT products should not be used within Life Support Systems without the specific  
written consent of SPT. A Life Support System is a product or system intended to support or sustain life which, if it fails, can be reasonably  
expected to result in significant personal injury or death.  
Signal Processing Technologies believes that ultrasonic cleaning of its products may damage the wire bonding, leading to device  
failure. It is therefore not recommended, and exposure of a device to such a process will void the product warranty.  
SPT7835  
SPT  
12  
2/10/98  

相关型号:

SPT7835SCN

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, PDIP28, 0.300 INCH, SKINNY, PLASTIC, DIP-28
FAIRCHILD

SPT7835SCS

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, PDSO28, SOIC-28
FAIRCHILD

SPT7835SCT

10-BIT, 5 MSPS, 75 mW A/D CONVERTER
FAIRCHILD

SPT7835SCT

10-BIT, 5 MSPS, 75 mW A/D CONVERTER
CADEKA

SPT7835SIS

10-BIT, 5 MSPS, 75 mW A/D CONVERTER
FAIRCHILD

SPT7835SIS

10-BIT, 5 MSPS, 75 mW A/D CONVERTER
CADEKA

SPT7840

10-BIT, 10 MSPS, 100 mW A/D CONVERTER
FAIRCHILD

SPT7840

10-BIT, 10 MSPS, 100 mW A/D CONVERTER
CADEKA

SPT7840SCD

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, CDIP28, 0.300 INCH, CERDIP-28
FAIRCHILD

SPT7840SCN

暂无描述
FAIRCHILD

SPT7840SCS

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, PDSO28, SOIC-28
FAIRCHILD

SPT7840SCT

10-BIT, 10 MSPS, 100 mW A/D CONVERTER
FAIRCHILD